
Joint Use of Multiple Learned Statistics for Improving
Online Source Selection

Thomas Hernandez
Arizona State University
Department of Computer
Science and Engineering

Tempe, AZ 85287

th@asu.edu

Zaiqing Nie
Arizona State University
Department of Computer
Science and Engineering

Tempe, AZ 85287

nie@asu.edu

Subbarao Kambhampati
Arizona State University
Department of Computer
Science and Engineering

Tempe, AZ 85287

rao@asu.edu

ABSTRACT
The autonomous and decentralized nature of available online sources
prevents most existing integration systems from supporting flexi-
ble query processing that takes into account conflicting user objec-
tives such as coverage, cost-related, or data-quality objectives. To
achieve multi-objective query processing, a data integration system
must be able to determine which sources are most relevant for a par-
ticular query, given the desired objectives. To do so, it must gather
and use source-specific statistics. In this paper we present an ap-
proach which automatically gathers coverage and overlap statistics
as well as response time statistics, and jointly uses these statistics
to select relevant sources. We describe our approach and present
experimental results done in the context of BibFinder that demon-
strate the efficiency and effectiveness of our approach.

1. INTRODUCTION
The availability of information sources on the web has recently

lead to significant interest in query processing frameworks that can
integrate online data sources. Not only must a data integration sys-
tem adapt to the variety of sources available, but it also has to
take into account multiple – and possibly conflicting – user ob-
jectives. Such objectives can include overall coverage objectives,
cost-related objectives (e.g. overall response time, time to first tu-
ple), and data quality objectives (e.g. density [6], provenance of re-
sults [2]). To address these conflicting user preferences, query op-
timization in data integration requires the ability to figure out what
sources are most relevant both to the given query and to the spe-
cific user objectives. For this purpose, the query optimizer needs
to access several types of source-specific statistics and perform a
multi-objective optimization of the query using these statistics.

Unfortunately, the autonomous and decentralized nature of the
data sources constrains the mediators to operate with very little in-
formation about the structure, scope, contents, and access costs of
the information sources they are trying to integrate. While some
types of statistics may well be voluntarily publicized by the individ-
ual data sources, much of these statistics need to be learned/gathered
actively by the mediator. This thus raises two challenges:

• How to automatically gather various statistics from autonomous

Copyright is held by the author/owner.
Seventh International Workshop on the Web and Databases (WebDB 2004),
June 17-18, 2004, Paris, France.

Learn


AV


Hierarchies


DBLP

ACM


DL

Netbib


Science


Direct


Discover


Frequent


Query


Classes


Learn


Coverage


and


Overlap


Statistics


Query List


User


Query


Answer


Tuples


Citeseer


IEEE


Xplore


CSB


ACM


Guide


Learn


Response


Time


Figure 1: StatMinerArchitecture

sources, and

• How to use the gathered statistics to support multi-objective
query processing.

Not surprisingly, due to the lack of available source statistics, most
existing integration frameworks are unable to support flexible query
processing that takes conflicting user preferences into account.

In this paper we concentrate on coverage and response time statis-
tics. We present an integrated approach (see Figure 1) for both gath-
ering and using these statistics, which can effectively resolve con-
flicting user requirements on response time and coverage. Our ap-
proach is being developed and evaluated in the context ofBibFinder1,
a publicly “fielded” computer science bibliography mediator that
we have been developing for the past year.BibFinder integrates
several online Computer Science bibliography sources, including
CSB, DBLP, Network Bibliography (NET), ACM Digital Library
(ACM), ACM Guide (ACMG), IEEE Xplore (IEEE), ScienceDi-
rect (SCI)andCiteSeer2. The global schema exported byBibFinder
can be modeled in terms of the following relation:

paper(title, author, year, conference/journal).
Two major issues need to be resolved byBibFinderin order to ad-
dress conflicting cost and coverage requirements. First, each of the
individual sources may export only a subset of the global relation.
For example, the sourceNET only contains publications in Net-
works, whileDBLP gives more emphasis to Database related pub-
lications. Second, the sources being integrated all have different
response times which can vary greatly depending on the attributes
being bound by the query.
1Available at http://rakaposhi.eas.asu.edu/bibfinder
2Plans are underway to add several additional scientific sources includ-
ingComputational Geometry Bibliography, Compendex, Ingenta,andAMS
MathSciNet.



AI


SIGMOD
 ICDE
 AAAI
 ECP


RT


DB


AV Hierarchy for the Conference Attribute


RT,02
 AI,RT


SIGMOD,RT
 ICDE,RT
 DB,02
 AAAI,RT
 AI,01
 ECP,RT


RT,01


SIGMOD01
 ICDE02
ICDE01
 AAAI01


DB,01


ECP01


RT,RT


DB,RT


Query Class Hierarchy


RT


2001
 2002


AV Hierarchy for the Year Attribute


Figure 2: AV Hierarchies and the Corresponding Query Class
Hierarchy

Instead of sending the query to all sources – with all the obvi-
ous drawbacks implied, our approach directs the query only to the
most relevant sources, taking into account the coverage, overlap,
and response time of these sources for the given query.

For example, given that a source like ACMG has a significantly
broad coverage, the mediator may be tempted to send most user
queries its way. This may however not be very efficient considering
that ACMG tends to be significantly slower than some of the other
sources that have a lower coverage. The most efficient plan may be
to call a set of complementary sources that cover all of ACMG’s
answers but that are each much faster than ACMG. Clearly, a joint
optimization of both cost and coverage is necessary to select rel-
evant sources for a given query. Accordingly, our approach uses
the statistics we learn to support multi-objective query processing.
Handling the interactions between these competing objectives by
using the gathered source statistics introduces several new chal-
lenges into query optimization, including the need to develop and
use more sophisticated cost and reward models for query plans.

The rest of the paper is organized as follows. In the next sec-
tion we discuss the problem of automatically gathering coverage
and overlap statistics and response time statistics, and how that was
done in the context ofBibFinder. In section 3 we explain how
we use the learned statistics to select relevant sources for a given
query, either by using only coverage and overlap, or by also taking
into account response time. In section 4 we describe the results of
our experiments to evaluate the impact of using coverage and over-
lap statistics alone or in conjunction with response time statistics.
Finally we conclude in section 5 by pointing out some interesting
issues raised by our findings.

1.1 Related Work
There has been little work on statistics gathering in data integra-

tion scenarios. Although the utility of quantitative coverage statis-
tics to rank the sources was explored by Florescuet. al. [3], the
primary aim of the effort was on the “use” of coverage statistics.
There also has been some previous work on learning selectivity
and response-time statistics both in multi-database literature [11]
and data integration literature [4]. In contrast to the previous work,
in our research we look at both learning and using these source
statistics to support source selection and multi-objective query pro-
cessing. Finally, some cost and reward models have been suggested
in [7, 10, 5, 9].

2. GATHERING SOURCE STATISTICS
In this section we discuss StatMiner, the module we use for mod-

eling and gathering source statistics (see Figure 1). While many
statistics could be useful in the source selection process, the work

described here focuses on two types of statistics: coverage and
overlap statistics, and response time statistics. Note that as the first
step of a more general approach, this work only considers selection
queries.

2.1 Coverage and Overlap Statistics
The obvious approach for gathering coverage and overlap statis-

tics – which would consist in remembering statistics with respect
to each individual query – is of course infeasible. We therefore
learn these statistics with respect toquery classes; a query class
being a set of selection queries. We further define query classes
such that there is a natural hierarchical subsumption among differ-
ent classes. The query classes themselves are defined in terms of
AV hierarchies – which can be seen as hierarchical clusters of like
values of an attribute. Before describing this approach3, we give
more precise terminology.

2.1.1 Terminology

Query List: To reduce the number of statistics stored, statistics are
maintained with respect to frequent query classes. We facilitate the
discovery of frequent query classes by maintaining an informative
log of queries, which contains for each query the query frequency,
the total number of distinct answers, and the number of answers
from each source set which has answers for that query.

AV Hierarchy: Since we consider selection queries, we can clas-
sify the queries in terms of the selected attributes and their values.
An AV hierarchy(or attribute value hierarchy) over an attributeA
is a hierarchical classification of the values of the attributeA, in
which leaf nodes of the hierarchy correspond to specific concrete
values ofA, while non-leaf nodes are abstract values that corre-
spond to the union of values below them (see Figure 2 for two
simplified AV hierarchies). The classificatory attributes may either
be determined by the mediator designer or using automated tech-
niques. The AV hierarchies themselves can either be hand-coded
by the designer, or can be learned automatically. In Section 2.1.2,
we give details on how we learn them automatically.

Query Classes:Since a typical selection query will have values
of some set of attributes bound, we group such queries into query
classes using the AV hierarchies. A queryfeatureis defined as the
assignment of a classificatory attribute to a specific value from its
AV hierarchy. A query class is a set of (selection) queries that all
share a particular set of features. The space of query classes is just
the cartesian product of the AV hierarchies of all the classificatory
attributes. The AV hierarchies induce subsumption relations among
the query classes. A classCi is subsumed by classCj if every fea-
ture in Ci is equal to, or a specialization of, the same dimension
feature inCj . A queryQ is said to belong to a classC if the values
of the classificatory attributes inQ are equal to, or are specializa-
tions of, the features definingC. Figure 2 shows the class hierarchy
which corresponds to the two AV hierarchies in the Figure.

Coverage and Overlap: The coverageof a data sourceS with
respect to a queryQ, denoted byP (S|Q), is the probability that a
random answer tuple of queryQ is present in sourceS. Theoverlap
among a set̂S of sources with respect to a queryQ, denoted by
P (Ŝ|Q), is the probability that a random answer tuple of the query
Q is present in each sourceS ∈ Ŝ. The overlap (or coverage when
Ŝ is a singleton) statistics w.r.t. a queryQ are computed using the

formulaP (Ŝ|Q) =
NQ(Ŝ)

NQ
, whereNQ(Ŝ) is the number of answer

tuples ofQ that are in all sources of̂S andNQ is the total number
of answer tuples4 for Q.

3Further details on coverage and overlap statistics learning can be found in
[8]
4We assume that the union of the contents of the available sources within



Similarly, we define coverage and overlap with respect to a query
classC. For example, the overlap of a source setŜ (or coverage
whenŜ is a singleton) w.r.t. a query classC can be computed using
the following formula:

P (Ŝ|C) =

∑
Q∈C P (Ŝ|Q)P (Q)

P (C)
,

whereP (Q) is the probability of occurrence ofQ in the query
list, andP (C) is the probability that a random query posed to the
mediator is subsumed by the classC. The coverage and overlap
statistics w.r.t. a classC will then be used to estimate the source
coverage and overlap for all the queries that are mapped intoC (see
Section 3).

2.1.2 Learning AV Hierarchies and Discovering Fre-
quent Query Classes

We now discuss how we can automatically learn AV Hierarchies
and Query Classes based on the query list maintained by the me-
diator. The main idea of generating an AV hierarchy is to group
similar attribute values into clusters in terms of the coverage and
overlap statistics of their corresponding selection queries (i.e. the
queries binding these values). The problem of finding similar at-
tribute values thus implies finding similar selection queries. As in
any clustering algorithm, we first need to define a distance function
between a pair of selection queries:

d(Q1, Q2) =

√∑

i

[P (Ŝi|Q1) − P (Ŝi|Q2)]2,

whereŜi denotes theith source set of all possible source sets in
the mediator5. Although the number of all possible source sets is
exponential in terms of the number of available sources, we only
need to consider source sets with answers for at least one of the
two queries to computed(Q1, Q2). Similarly we define a distance
function to measure the distance between a pair of query classes:

d(C1, C2) =
√∑

i
[P (Ŝi|C1) − P (Ŝi|C2)]2.

The coverage and overlap statisticsP (Ŝ|Q) for a specific query
Q are computed using the statistics from the query list maintained
by the mediator. We can then use the distance function with these
statistics as the basis to achieve an agglomerative hierarchical clus-
tering for each classificatory attribute.

Once the AV hierarchies have been learned, the query class hier-
archy is defined in terms of the cartesian product of the AV hierar-
chies. The statistics are stored with respect to these query classes.
In order to keep the amount of statistics low, we would like to prune
query classes which are rarely accessed. The frequently accessed
classes can be discovered in a two-stage process. Starting from the
query list, the frequent classes can be computed efficiently by it-
erating over queries with one bound feature, two bound features
and so on. The computation can be made efficient by using the
anti-monotone property of frequent classes [8].

2.1.3 Mining Coverage and Overlap Statistics
For each frequent query class in the mediator, we learn coverage

and overlap statistics. Since overlap statistics can be potentially
exponential in the number of sources, we use a minimum support
thresholdminoverlap to prune overlap statistics for uncorrelated
source sets. A simple way of learning the coverage and overlap

the system covers 100% of the answers of the query.
5Note that we are not measuring the similarity of the answers ofQ1
and Q2, but rather the similarity of the way their answer tuples are
distributed over the sources. In this sense, we may find a selection
query (conference = “AAAI”) and another query(conference =
“SIGMOD”) to be similar in as much as the sources having tuples for
the former also have tuples for the latter.

statistics is to make a single pass over the query list, map each query
into its ancestor frequent classes and update the corresponding cov-

erage and overlap statistics vectors
−−−−−→
P (Ŝ|C) of its ancestor classes

using the query’s coverage and overlap statistics vector
−−−−−→
P (Ŝ|Q)

through the formula
−−−−−→
P (Ŝ|C) =

∑
Q∈C

−−−−−→
P (Ŝ|Q)×P (Q)

P (C)
. When the

mapping and updating procedure is completed, we simply need to
prune the overlap statistics which are smaller than the threshold
minoverlap.

One potential problem of this naive approach is the possibility
of running out of memory, since the system has to remember the
coverage and overlap statistics for each source set and class combi-
nation. In order to handle scenarios with large number of sources,
we can use a modified Apriori algorithm [1] to avoid considering
any supersets of an uncorrelated source set. We first identify indi-
vidual sources with coverage statistics more thanminoverlap, and
keep coverage statistics for these sources. Then we discover all
2-sourceSet with overlap more thanminoverlap, and keep only
overlap statistics for these source sets. This process continues until
we have the overlap statistics for all the correlated source sets.

2.1.4 Learned Statistics from BibFinder
The statistics gathering approach described thus far has been

evaluated in the context ofBibFinder. The query list consisted of
25000 real queries asked byBibFinderusers. Among them, we ran-
domly chose 4500 queries as test queries and the others were used
as training data. The AV Hierarchies for all of the four attributes
(i.e. author, title, year, and conference) were learned automati-
cally as described previously. The learned Author hierarchy has
more than 8000 distinct values, the Title hierarchy keeps only 1200
frequently asked keyword itemsets, the Conference hierarchy has
more than 600 distinct values, and the Year hierarchy has 95 dis-
tinct values6. Next, the query class hierarchy obtained from these
four learned AV hierarchies contained from 500 to 10000 classes,
depending on the pruning threshold.

2.2 Response Time Statistics
Unlike coverage and overlap statistics, which need to be learned

with respect to specific query features (and hence classes), the ad-
vantage of response time statistics is that they are mostly indepen-
dent of the actual values being bound to attributes in the query.
On the flip side though, not only are the response time statistics
dependent both on the sources themselves as well as the status of
the network, but they may also depend on the set of attributes –
as opposed to values – that are bound in the query. We thus need
to estimate several types of statistics for the integrated sources (in-
cluding the time required to open a connection, the time required
to parse the results, and the total response time) each with respect
to the binding attributes of the queries.

2.2.1 Different Types of Response Time

Average Connection Time: Connection time essentially tells us
how long it takes to receive one result page from the source. Note
that depending on the source, it may be necessary to request and
receive several result pages from a single source7.

Average Parsing Time:Parsing time refers to the time needed by
the mediator itself to parse the results received from the source.
Although this is not exactly a response time component, it is im-
portant to take it into account as well since the format of the results
sent back by the source will greatly influence the parsing time, and

6Note that we consider a range query (for example: “>1990”) as a single
distinct value.
7For example, ACM only returns 20 answers per page, and therefore may
require to navigate through several result pages to retrieve all results.



Figure 3: Average total time per tuple and average total time for each
source (in ms).

hence the overall response time.

Average Total Time: The average total time gives us an idea of the
average time necessary to call, retrieve and parse all the results from
each source, regardless of the actual number of results retrieved.
Unlike the previous response time statistics, the total time takes
into account the case when several pages must be opened from a
single source for a particular query. In other words the total time
adds up as many connection times as were necessary to retrieve all
results.

These response time statistics must be gathered for each source
and every type of query binding. Information about the number
of results returned by each source must be stored along with the
types of response time statistics presented above. Storing the num-
ber of results allows to estimate aper tupleaverage of the different
response times. As some have shown (c.f. [4]), it is possible that
response time is affected by time of day and/or day of week. There-
fore it is important, when gathering these response time statistics,
to take into account the precise time at which the query is asked.
Furthermore, since different query types may lead to very different
response times on the same source, the exact query bindings must
be stored as well. In order to determine which are the factors that
influence the response time of each source, each query attribute and
its impact on response time should be analyzed separately.

2.2.2 Learned Response Time Statistics from BibFinder
In order to obtain response time statistics in BibFinder, the sources

integrated at the time of the experiments (i.e.DBLP, CSB, NET,
ACM, andSCI) were methodically probed. The experiments were
run at regular intervals during day and night, and all information
was stored with respect to the time of day it was gathered, as well
as the specific source and query. Two different query lists were
used for each run. A list of 37 queries was used to probe ACM,
DBLP, and CSB. A list of 13 queries was used for NET and SCI.
The attributes that were bound in the queries varied as well as the
values being bound. Range queries (for the year attribute) were
also included.

DBLP has the fastest average connection time with close to 485ms,
compared to SCI which had the worst average with 2420ms. The
average parsing time per answer tuple was below 100ms for every
source except NET which had a parsing time of 501ms per tuple8.

Figure 3 summarizes the total time statistics. When averaging
the total response time on a tuple per tuple basis, the sources can
be divided into two sets. DBLP and CSB are the fastest with an

8The fact that NET returns a single page with the complete set ofresults and
their full abstract may explain the relatively high parsing time compared to
other sources.

average time close to 100ms (i.e. 73ms for DBLP and 107ms for
CSB). The second set of sources comprises ACM, SCI, and NET,
which have total response times per tuple approximately between
400ms and 700ms.

When looking at the average total time, the sources are ranked
in the same order of connection response time. Interestingly, even
though either DBLP or CSB often resulted in the highest coverage
for most queries, they both have the lowest overall response time at
1323ms and 1767ms respectively. This means that their connection
speed and simple result page design (hence faster parsing) compen-
sated for the high number of results they returned. Following DBLP
and CSB were NET and ACM between 3000ms and 4000ms, and
far behind SCI at 7536ms9.

Figure 4 shows how some attributes can influence the response
time of the sources. The individual tables contain the average total
time for different types of queries asked toBibFinder, depending
on the attributes being bound10. Figure 4b. summarizes the effect
of having a year range in the query. A range query deteriorates
greatly the response time of SCI, as well as that of DBLP, CSB,
and NET. However it greatly improves the response time of ACM.
Figure 4c. explores non-range queries based on the bindings of the
author attribute. It can be seen that binding the author attribute will
greatly worsen DBLP’s response time. On the other hand, it will
improve the response times of NET and ACM.

3. USING THE SOURCE STATISTICS
This section discusses how to use the learned statistics in the

source selection process. We will start by discussing how to use
the learned statistics to estimate the coverage and overlap statistics
for a new query, and how these statistics are used to generate query
plans. We will then discuss how to use coverage and overlap statis-
tics in conjunction with response time statistics to further improve
source selection.

3.1 Using Coverage and Overlap Statistics
Query Mapping: Given a queryQ, we need to gets its coverage
and overlap statistics. The statistics will naturally depend on what
query class(es) the query should be seen as belonging to. To de-
termine which class(es) the query belongs to, we first get all the
abstract values from the AV hierarchies corresponding to the bind-
ing values inQ. Both the binding values and the abstract values
are used to map the query into query classes with statistics. For
each attributeAi with bindings, we generate a feature setftSetAi

which includes the corresponding binding value and abstract val-
ues for the attribute. The mapped classes will be a subset of the
candidate class setcSet = ftSetA1

× ftSetA2
× ... × ftSetAn

wheren is the number of attributes with bindings in the query. Let
sSet denote all the frequent classes which have learned statistics
andmSet denote all the mapped classes of queryQ. Then the set
of mapped classes is:mSet = cSet − {C|(C ∈ cSet) ∩ (C /∈
sSet)}−{C|(∃C′ ∈ (sSet∩cSet))(C′ ⊂ C)}. In other words, to
obtain the mapped class set we remove all the classes which do not
have any learned statistics as well as the classes which subsume any
class with statistics from the candidate class set. The reason for the
latter is because the statistics of the subsumed class are more spe-
cific to the query. Once we have the relevant class set, we compute

the estimated coverage and overlap statistics vector
−−−−−→
P (Ŝ|Q) for

the new queryQ using the coverage and overlap statistics vectors

of the mapped classes
−−−−−→
P (Ŝ|Ci) and their corresponding tightness

informationt(Ci):
−−−−−→
P (Ŝ|Q) =

∑
Ci

t(Ci)∑
t(Ci)

−−−−−→
P (Ŝ|Ci). Since the

9One particular year range query increased the average totaltime for SCI
by about 2000ms.

10Due to a lack of space we only show statistics for binding attributesauthor
andyear.



Figure 4: Average total time for queries with specific bindings (all bindings in a,year range in b, author with no year range in c.

classes with large tightness values are more likely to provide more
accurate statistics, we give more weight to query classes with large
tightness values.

Using Coverage and Overlap Statistics to rank sources:Once
we have the coverage and overlap statistics, we can use theSim-
ple GreedyandGreedy Selectalgorithms described in [3] to select
sources. Specifically,Simple Greedygenerates plans by greedily
selecting the topk sources ranked only according to their cover-
ages, whileGreedy Selectselects sources with high residual cov-
erages calculated using both the coverage and overlap statistics
(residual coverage of a sourceS2 for a queryQ w.r.t. sourceS is
P (S2|Q)−P (S2 ∧S|Q)). An algorithm for efficiently computing
residual coverage using the estimated coverage and overlap statis-
tics is discussed in [8]. Specifically, we only keep overlap statistics
for correlated source sets with sufficient number of overlap tuples,
and assume that source sets without overlap statistics are disjoint
(thus their probability of overlap is zero). If the overlap is zero
for a source set̂S, we can ignore looking up the overlap statistics
for supersets of̂S, since they will all be zero by the anti-monotone
property.

3.2 Multi-objective query processing
By using only coverage and overlap statistics, a data integra-

tion system would always call the sources with highest coverage
regardless of their response time, even though there may be a bet-
ter, faster source set to call to achieve the same coverage. In our
current work, we experiment with two different source utility mod-
els which take into account both the coverage statistics and the re-
sponse time statistics of each source. In both formulas,cost(Si|Q)
denotes the average total response time of sourceSi for queries
with the same binding attributes asQ.

OurDiscountutility function essentially uses a delay penalty:

utilityD(Si) = P (Si|Q) × γcost(Si|Q)

The penalty ensures that if the delay to achieve a high coverage
is large, then the utility of that source is reduced considerably,
and faster sources with lower coverage would be preferred. Our
Weighted Sumutility function uses coverage and response time in a
linear combination:

utilityW (Si) = δ × log(P (Si|Q)) − (1 − δ) × cost(Si|Q)

Naturally, the discount factorγ and the weightδ can vary, thereby
leading to source call plans which can put more or less weight on
the source response time. In both functions, increasingγ or δ will
logically give more importance to coverage, while decreasing them
favors response time.

BothutilityD andutilityW are used in a greedy way when se-
lecting the source plan for a given query: the source with the largest
utility is added to the plan, then the source with next largest utility,

0.6


0.65


0.7


0.75


0.8


0.85


0.9


0.95


1


0.03
 0.13
 0.23
 0.33
 0.43
 0.53
 0.63
 0.73


minfreq (%)


P
re

c
is

io
n


 RS


SG0


GS0


SG0.3


GS0.3


Figure 5: Precision for top-3 query plans

and so on. Note that except for the selection of the first source,
the coverage used in both utility functions to choose the next best
source is actually the residual coverage with respect to the set of
already selected sources.

4. EXPERIMENTS

4.1 Impact of Coverage and Overlap Statistics
We conducted an evaluation of the effectiveness of the coverage

and overlap statistics inBibFinder11. The learned statistics were
used in concert withSimple GreedyandGreedy Selectalgorithms
to selecttop-K sources for any given query. The effectiveness of
the source selection was compared against both a random source
selection algorithm for selectingtop-K sources, as well as the ac-
tual top-K sources for the query (as found by sending the query to
all the sources, and using apost-factoanalysis to figure out the real
top-K sources). Figure 5 shows the comparative results for top-3
sources. The plans using our learned statistics have high precision,
and their precision decreases slowly as we change theminfreqand
minoverlapthresholds (to reduce the amount of stored statistics).
The plot here shows thatGreedy Select, which uses overlap statis-
tics in addition to coverage statistics, does about the same asSimple
Greedywhich uses coverage statistics alone. More evaluation re-
sults are available in [8].

4.2 Impact of Multi-Objective Optimization
11A prototype version ofBibFinderwhich uses coverage and overlap statis-
tics has been developed, and is available at http://sagarmatha.eas.asu.edu



ACM:
coverage,
RT

CSB:
coverage,
RT

DBLP:
coverage,
RT

NET:
coverage,
RT

SCI:
coverage,
RT

Greedy Select
plan

Discount plan Weighted Sum
plan

q1 0.11 0.51 0.55 0.0 0.0 DBLP, CSB, ACM DBLP, CSB, ACM DBLP, CSB, ACM
3986ms 1702ms 1143ms 2906ms 3411ms

q2 0.13 0.52 0.49 0.0 0.0 CSB, DBLP, ACM DBLP, CSB, ACM DBLP, CSB, ACM
3986ms 1702ms 1143ms 2906ms 3411ms

q3 0.12 0.35 0.53 0.0 0.15 DBLP, CSB, SCI CSB, ACM, DBLP ACM, CSB, DBLP
1443ms 2919ms 4462ms 4277ms 30221ms

Table 1: Plans generated for 3 sample queries using different source utility measures for combining coverage and response time (RT).

Preliminary experiments were also conducted to measure the ef-
fectiveness of our multi-objective utility functions. Table 1 shows
a sample of three queries for which plans were generated using
Greedy Select(i.e. not taking into account the response time statis-
tics of the sources), theutilityD function, and theutilityW func-
tion. Both the discountγ and the coverage weightδ used in the
utility functions were set to 0.5.

All three methods agree on the first query q1, where DBLP has
highest coverage as well as best average response time, followed
by CSB. For query q2 however,Greedy Selectwill first call CSB
because of its high coverage, but the Discount and Weighted Sum
utility functions will actually choose DBLP over CSB because for
approximately the same coverage, it has a lower response time. For
query q3, which is a year range query, all three methods disagree.
Greedy Selectchooses DBLP first even though it has the second
to last response time, and even includes SCI in its plan despite the
30221ms average response time for this kind of query on SCI. The
multi-objective utility functions agree on the set of sources to call
– note that they both eliminate SCI – but not on the order in which
to call them. In this case the Weighted Sum function will end up
choosing the source with best response time, whereas the Discount
function will essentially determine that CSB has a high enough cov-
erage to compensate for not being the fastest source.

Note that the tests described here determined which response
time statistics to use based only on whether the query was a range
query (since this was the attribute which impacted the response
times the most).

5. CONCLUSION
In the process of selecting relevant sources for a given query, a

data integration system must have source-specific statistics avail-
able. Although several types of statistics can be useful, our ap-
proach specifically gathers and uses coverage and overlap informa-
tion in conjunction with response time statistics, and in doing so
greatly improves the source call plans. We are also currently in-
vestigating how to include other statistics such as density into our
approach and how these could be gathered and used effectively.

Even though response time is generally less query-dependent
than coverage, we have seen that the specific bindings of a query
can considerably influence the overall response time of a source.
By keeping more statistics and refining the query analysis to deter-
mine which statistics to use, a better response time estimate could
be obtained. One could for instance use the data from Figure 4c.
to go one level deeper than in our experiments and have different
statistics for queries that are not range queries and that bind (or
not) the author. Nonetheless, this issue goes back to the traditional
tradeoff issue between number of statistics to gather, store, and use,
and the performance of the system. More experiments are currently
in progress to further determine the impact of our utility functions
given different types of queries.

Another issue raised by these query-dependent response time
statistics is whether we could consider reformulating a selection

query by splitting it on attributes that are not bound, on the basis
that, for a particular source, binding specific attributes results in im-
proved response time and/or coverage. The learned statistics could
definitely help to determine which attributes should be bound when
possible.

6. REFERENCES
[1] R. Agrawal and R. Srikant. Fast Algorithms for Mining

Association Rules. InProceedings of VLDB, Santiago, Chile,
1994.

[2] P. Buneman, S. Khanna, and W-C. Tan. Why and where: A
characterization of data provenance. InIntl. Conf. on Database
Theory (ICDT), 2001.

[3] D. Florescu, D. Koller, and A. Levy. Using probabilistic
information in data integration. InProceedings of VLDB, 1997.

[4] J. Gruser, L. Raschid, V. Zadorozhny, and T. Zhan. Learning
response time for websources using query feedback and
application in query optimization.VLDB Journal., 9(1):18–37,
2000.

[5] Ulrich Junker. Preference-Based Search and Multi-Criteria
Optimization.AAAI/IAAI 2002, 34-40.

[6] F. Naumann and J.C. Freytag and U. Leser. Completeness of
Information Sources. Workshop on Data Quality in Cooperative
Information Systems. 2003.

[7] Z. Nie and S. Kambhampati. Joint optimization of cost and
coverage of query plans in data integration. InProceedings of
ACM CIKM, Atlanta, Georgia, 2001.

[8] Z. Nie and S. Kambhampati. Frequency-based Approach for
Mining Coverage Statistics in Data Integration. InProceedings
of ICDE, 2004.

[9] C.H. Papadimitriou and M. Yannakakis. Multiobjective query
optimization. InProceedings of PODS, 2001.

[10] R. E. Steuer Multiple Criteria Optimization: Theory,
Computation and Application. John Wiley, New York. 1986.

[11] Qiang Zhu and Per-Ake Larson. Developing regression cost
models for multidatabase systems. InProceedings of PDIS,
1996.


