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ABSTRACT

The autonomous and decentralized nature of available online sourc
prevents most existing integration systems from supporting flexi-
ble query processing that takes into account conflicting user objec-
tives such as coverage, cost-related, or data-quality objectives. To
achieve multi-objective query processing, a data integration system
must be able to determine which sources are most relevant for a par-
ticular query, given the desired objectives. To do so, it must gather
and use source-specific statistics. In this paper we present an ap
proach which automatically gathers coverage and overlap statistics
as well as response time statistics, and jointly uses these statistic
to select relevant sources. We describe our approach and prese
experimental results done in the context of BibFinder that demon-
strate the efficiency and effectiveness of our approach.
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1. INTRODUCTION

The availability of information sources on the web has recently
lead to significant interest in query processing frameworks that can
integrate online data sources. Not only must a data integration sys-
tem adapt to the variety of sources available, but it also has to
take into account multiple — and possibly conflicting — user ob-
jectives. Such objectives can include overall coverage objectives,
cost-related objectives (e.g. overall response time, time to first tu-
ple), and data quality objectives (e.g. density [6], provenance of re-
sults [2]). To address these conflicting user preferences, query op tic
timization in data integration requires the ability to figure out what ering and using these statistics. which can effectively resolve con-
sources are most relevant both to the given query and to the spe; t'g gt t ! i q y o i
cific user objectives. For this purpose, the query optimizer needs ICling user requirements on response ime and coverage. Jur.ap

to access several types of source-specific statistics and perform agroﬁgnéls b‘?ilgl%(ejg'\'lecl(())r?']e?J?er:’dsi\ilgl!]léaeteb?tm(;[hI’Gacohntamuemdigt((:’)?i];‘.’hat
multi-objective optimization of the query using these statistics. p y P grapny

Unfortunately, the autonomous and decentralized nature of the we ha\;e bI(_een geveloplngsfqr the E"’let yeBrt?]Flnderlntegr_atelsd_
data sources constrains the mediators to operate with very little in- Seggrapgﬂ,'an?\, tomF;(UIBe.LI. aencE INggraﬁcX//sgwge[S’L .'SC uding
formation about the structure, scope, contents, and access costs 0 A CM) A CM éu',.’g;r A (’?I\/II(OBQ)V&;EE);E(X Io)fe (IEEE)IngE(l:ielllcre ag/l._
the information sources they are trying to integrate. While some y . ! p g
types of statistics may well be voluntarily publicized by the individ- rect (SClandCiteSeer. The global schema exported BybFinder

ual data sources, much of these statistics need to be Iearned/gatheré:(ﬁm be modeled in terms of the following relation:

; : . B . paper(title, author, year, conference/journal)
actively by the mediator. This thus raises two challenges: Two major issues need to be resolvedBipFinderin order to ad-

o How to automatically gather various statistics from autonomougress conflicting cost and coverage requirements. First, each of the
individual sources may export only a subset of the global relation.
For example, the sourc®ET only contains publications in Net-
works, whileDBLP gives more emphasis to Database related pub-
lications. Second, the sources being integrated all have different
response times which can vary greatly depending on the attributes
being bound by the query.

sources, and

e How to use the gathered statistics to support multi-objective
query processing.

Not surprisingly, due to the lack of available source statistics, most
existing integration frameworks are unable to support flexible query
processing that takes conflicting user preferences into account.

In this paper we concentrate on coverage and response time statis-
s. We present an integrated approach (see Figure 1) for both gath-

L pvailable at http://rakaposhi.eas.asu.edu/bibfinder
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queries.

AV Hierarchy for the Conference Attribute AV Hierarchy for the Year Attribute

described here focuses on two types of statistics: coverage and
& overlap statistics, and response time statistics. Note that as the first
CEDRED step of a more general approach, this work only considers selection

6. i E .i P g PP y

2.1 Coverage and Overlap Statistics

The obvious approach for gathering coverage and overlap statis-
tics — which would consist in remembering statistics with respect
to each individual query — is of course infeasible. We therefore
learn these statistics with respectdoery classesa query class
being a set of selection queries. We further define query classes
such that there is a natural hierarchical subsumption among differ-
Query Class Hierarchy ent classes. The query classes themselves are defined in terms of
AV hierarchies — which can be seen as hierarchical clusters of like
values of an attribute. Before describing this appréaute give
Figure 2: AV Hierarchies and the Corresponding Query Class more precise terminology.

Hierarchy

2.1.1 Terminology

Query List: To reduce the number of statistics stored, statistics are
maintained with respect to frequent query classes. We facilitate the
discovery of frequent query classes by maintaining an informative
log of queries, which contains for each query the query frequency,

Instead of sending the query to all sources — with all the obvi-
ous drawbacks implied, our approach directs the query only to the
most relevant sources, taking into account the coverage, overlap,
and response time of these sources for the given query. the total number of distinct answers, and the number of answers

For example, given that_a source like ACMG has a significantly £om each source set which has answers for that query.
broad coverage, the mediator may be tempted to send most user

queries its way. This may however not be very efficient considering A Hierarchy: Since we consider selection queries, we can clas-
that ACMG tends to be significantly slower than some of the other sify the queries in terms of the seleqted attributes and the_lr values.
sources that have a lower coverage. The most efficient plan may beAn AV hierarchy(or attribute value hierarchy) over an attribute

to call a set of complementary sources that cover all of ACMG’s 1S @ hierarchical classmca_tlon of the values of the attr_lmlten
answers but that are each much faster than ACMG. Clearly, a joint which leaf node_s of the hierarchy correspond to specific concrete
optimization of both cost and coverage is necessary to select rel-values ofA, while non-leaf nodes are abstract values that corre-
evant sources for a given query. Accordingly, our approack use Spond to the union of values below them (see Figure 2 for two
the statistics we learn to support multi-objective query processing. simplified _AV hierarchies). '_I'he class_lflcatory at_trlbutes may either
Handling the interactions between these competing objectives by Pe determined by the mediator designer or using automated tech-
using the gathered source statistics introduces several new challNiques. The AV hierarchies themselves can either be hand-coded
lenges into query optimization, including the need to develop and by the designer, or can be learned automatically. In Section 2.1.2,
use more sophisticated cost and reward models for query plans. We give details on how we learn them automatically.

The rest of the paper is organized as follows. In the next sec- Query Classes: Since a typical selection query will have values
tion we discuss the problem of automatically gathering coverage of some set of attributes bound, we group such queries into query
and overlap statistics and response time statistics, and how that waglasses using the AV hierarchies. A quéeatureis defined as the
done in the context oBibFinder In section 3 we explain how  assignment of a classificatory attribute to a specific value from its
we use the learned statistics to select relevant sources for a givenav hierarchy. A query class is a set of (selection) queries that all
query, either by using only coverage and overlap, or by also taking share a particular set of features. The space of query classes is just
into account response time. In section 4 we describe the results ofthe cartesian product of the AV hierarchies of all the classificatory
our experiments to evaluate the impact of using coverage and over-attributes. The AV hierarchies induce subsumption relations among
lap statistics alone or in conjunction with response time statistics. the query classes. A clags is subsumed by class; if every fea-
Finally we conclude in section 5 by pointing out some interesting ture in C; is equal to, or a specialization of, the same dimension

issues raised by our findings. feature inC;. A query(Q is said to belong to a clags if the values
of the classificatory attributes i® are equal to, or are specializa-
1.1 Related Work tions of, the features definir@. Figure 2 shows the class hierarchy

There has been little work on statistics gathering in data integra- which corresponds to the two AV hierarchies in the Figure.
tion scenarios. Although the utility of quantitative coverage statis- Coverage and Overlap: The coverageof a data source with
tics to rank the sources was explored by Florestual. [3], the ~  respect to a querg), denoted byP(S|Q), is the probability that a
primary aim of the effort was on the “use” of coverage statistics. random answer tuple of que€yis present in sourc§. Theoverlap
There also has been some previous work on learning selectivity among a sef of sources with respect to a que; denoted by

and response-time statistics both in multi-database literature [11] _ . .
and data integration literature [4]. In contrast to the previous work, £ (51@). is the probability that a random answer tuple of the query

in our research we look at both learning and using these source@ is presentin each souréee S. The overlap (or coverage when
statistics to support source selection and multi-objective query pro- S is a singleton) statistics w.r.t. a quefyare computed using the

cessing. Finally, some cost and reward models have been suggesteﬂ)rmwap(g@) _ No(® WhereNQ(§) is the number of answer

in[7, 10, 5, 9]. Ne ~
tuples ofQ that are in all sources & and N is the total number
2. GATHERING SOURCE STATISTICS of answer tupléfor Q.

In this section we discuss StatMiner, the module we use for mod- 3Further details on coverage and overlap statistics legream be found in
eling and gathering source statistics (see Figure 1). While many [8]
statistics could be useful in the source selection process, the work *We assume that the union of the contents of the available eswithin



Similarly, we define coverage and overlap with respect to a query statistics is to make a single pass over the query list, map each query

classC. For example, the overlap of a source Sefor coverage into its ancestor frequent classes and update the corresponding cov-
S . . =
whenS is a singleton) w.r.t. a query claéscan be computed using  erage and overlap statistics vectdt6S|C) of its ancestor classes
the following formula: ) o —_—
using the query’s coverage and overlap statistics vePI(d|Q)
. P(S|Q)P Py S
P(S|C) = 2 gec P(51Q) (Q)7 through the formulaP(S|C) = w. When the
P(C) mapping and updating procedure is completed, we simply need to
where P(Q) is the probability of occurrence @ in the query prune the overlap statistics which are smaller than the threshold
list, and P(C) is the probability that a random query posed to the minoverlap. ] ) ) ] o
mediator is subsumed by the claSs The coverage and overlap One potential problem of this naive approach is the possibility
statistics w.r.t. a clas€’ will then be used to estimate the source ©Of running out of memory, since the system has to remember the
coverage and overlap for all the queries that are mappedirsee coverage and overlap statistics for each source set and class combi-
Section 3). nation. In order to handle scenarios with large number of sources,

we can use a modified Apriori algorithm [1] to avoid considering
2.1.2 Learning AV Hierarchies and Discovering Fre- any supersets of an uncorrelated source set. We first identify indi-
quent Query Classes vidual sources with coverage statistics more th@anoverlap and

We now discuss how we can automatically learn AV Hierarchies keep coverage statistics for these sources. Then we discover all
and Query Classes based on the query list maintained by the me-2-sourceSet with overlap more thaminoverlap and keep only
diator. The main idea of generating an AV hierarchy is to group ©Verlap statistics for these source sets. This process continues until
similar attribute values into clusters in terms of the coverage and We have the overlap statistics for all the correlated source sets.
overlap statistics of their corresponding selection queries (i.e. the . -
queries binding these values). The problem of finding similar at- 2-1.4 ~Learned Statistics from BibFinder
tribute values thus implies finding similar selection queries. Asin  The statistics gathering approach described thus far has been
any clustering algorithm, we first need to define a distance function evaluated in the context @ibFinder The query list consisted of
between a pair of selection queries: 25000 real queries asked BypFinderusers. Among them, we ran-
domly chose 4500 queries as test queries and the others were used

5 5 as training data. The AV Hierarchies for all of the four attributes
d(Q1,Q2) = \/Z [P(5i]Q1) = P(Si]@2)]?, (i.e. author, title, year, and conference) were learned automati-
‘ cally as described previously. The learned Author hierarchy has

more than 8000 distinct values, the Title hierarchy keeps only 1200
frequently asked keyword itemsets, the Conference hierarchy has
exponential in terms of the number of available sources, we only more than 600 distinct values, and t_he Year h'e"’!mhy has 95 dis-
need to consider source sets with answers for at least one of thel!NCt values. Next_, the query class_ hierarchy obtained from these
two queries to computé(Q:, Q). Similarly we define a distance four learned AV hierarchies contained from 500 to 10000 classes,
function to measure the distance between a pair of query classes.dependmg on the pruning threshold.
d(Ch,Ca) = /S, [P(SC) — P(Si|Ca))2. 2.2 Response Time Statistics

The coverage and overlap statistie§S|Q) for a specific query Unlike coverage and overlap statistics, which need to be learned
Q are computed using the statistics from the query list maintained with respect to specific query features (and hence classes), the ad-
by the mediator. We can then use the distance function with thesevantage of response time statistics is that they are mostly indepen-
statistics as the basis to achieve an agglomerative hierarchical clus-dent of the actual values being bound to attributes in the query.
tering for each classificatory attribute. On the flip side though, not only are the response time statistics

Once the AV hierarchies have been learned, the query class hier-dependent both on the sources themselves as well as the status of
archy is defined in terms of the cartesian product of the AV hierar- the network, but they may also depend on the set of attributes —
chies. The statistics are stored with respect to these query classesas opposed to values — that are bound in the query. We thus need
In order to keep the amount of statistics low, we would like to prune to estimate several types of statistics for the integrated sources (in-
query classes which are rarely accessed. The frequently accessedluding the time required to open a connection, the time required
classes can be discovered in a two-stage process. Starting from theo parse the results, and the total response time) each with respect
query list, the frequent classes can be computed efficiently by it- to the binding attributes of the queries.
erating over queries with one bound feature, two bound features
and so on. The computation can be made efficient by using the 2.2.1 Different Types of Response Time
anti-monotone property of frequent classes [8].

whereS; denotes the'™ source set of all possible source sets in
the mediatat. Although the number of all possible source sets is

Average Connection Time: Connection time essentially tells us

2.1.3 Mining Coverage and Overlap Statistics how long it takes to receive one result page from the source. Note
For each frequent query class in the mediator, we learn coveragelNat depending on the source, it may be necessary to request and

and overlap statistics. Since overlap statistics can be potentially "6C€ive several result pages from a single sdurce

exponential in the number of sources, we use a minimum support Average Parsing Time: Parsing time refers to the time needed by
thresholdminoverlap to prune overlap statistics for uncorrelated the mediator itself to parse the results received from the source.
source sets. A simple way of learning the coverage and overlap Although this is not exactly a response time component, it is im-
portant to take it into account as well since the format of the results
sent back by the source will greatly influence the parsing time, and

the system covers 100% of the answers of the query.

®Note that we are not measuring the similarity of the answers)of
and Q2, but rather the similarity of the way their answer tuples are 7 - .
distributed over the sources. In this sense, we may find a tarlec Note that we consider a range query (for example1990”) as a single
query (conference = “AAAI”) and another querycon ference = distinct value.

“SIGMOD?”) to be similar in as much as the sources having tuples for "For example, ACM only returns 20 answers per page, and ttrereiay
the former also have tuples for the latter. require to navigate through several result pages to reta#ivesults.




B000.0

- average time close to 100ms (i.e. 73ms for DBLP and 107ms for
i o CSB). The second set of sources comprises ACM, SCI, and NET,
which have total response times per tuple approximately between
Broe m 400ms and 700ms.
a0 L When looking at the average total time, the sources are ranked
in the same order of connection response time. Interestingly, even
oo m though either DBLP or CSB often resulted in the highest coverage
000 o for most queries, they both have the lowest overall response time at
1323ms and 1767ms respectively. This means that their connection
oo m speed and simple result page design (hence faster parsing) compen-
10000 L sated for the high number of results they returned. Following DBLP
|_| = and CSB were NET and ACM between 3000ms and 4000ms, and
o DBLP ‘ E | NET ‘ ACM ‘ scl DBLP ‘ csB | NET ‘ ACM ‘ scl far behlnd SCI at 7536rﬁs
average oftotal time pertugle Average cttoal tme Figure 4 shows how some attributes can influence the response
time of the sources. The individual tables contain the average total

time for different types of queries asked BibFinder depending

on the attributes being boutid Figure 4b. summarizes the effect

of having a year range in the query. A range query deteriorates

greatly the response time of SCI, as well as that of DBLP, CSB,

and NET. However it greatly improves the response time of ACM.

. Figure 4c. explores non-range queries based on the bindings of the

hence the overall response time. author attribute. It can be seen that binding the author attribute will

Average Total Time: The average total time gives us anidea of the greatly worsen DBLP’s response time. On the other hand, it will

average time necessary to call, retrieve and parse all the results fromimprove the response times of NET and ACM.

each source, regardless of the actual number of results retrieved.

Unlike the previous response time statistics, the total time takes

into account the case when several pages must be opened from z;)’ USING THE SOURCE STATISTICS

single source for a particular query. In other words the total time  This section discusses how to use the learned statistics in the

adds up as many connection times as were necessary to retrieve alfource selection process. We will start by discussing how to use

results. the learned statistics to estimate the coverage and overlap statistics
These response time statistics must be gathered for each sourcéor a new query, and how these statistics are used to generate query

and every type of query binding. Information about the number plans. We will then discuss how to use coverage and overlap statis-

of results returned by each source must be stored along with thetics in conjunction with response time statistics to further improve

types of response time statistics presented above. Storing the numsource selection.

ber of results allows to estimatepar tupleaverage of the different . ..

response times. As some have shown (c.f. [4]), it is possible that 3.1~ UsSing Coverage and Overlap Statistics

response time is affected by time of day and/or day of week. There- a1y Mapping: Given a queryQ, we need to gets its coverage

fore it is important, when gathering these response time statistics, 4 gverlap statistics. The statistics will naturally depend on what

to take into account the precise time at which the query is asked. query class(es) the query should be seen as belonging to. To de-

Furthermore, since different query types may lead to very different o mine which class(es) the query belongs to, we first get all the

. : Sibstract values from the AV hierarchies corresponding to the bind-
be stored as well. In order to determine which are the factors that ; g values inQ. Both the binding values and the abstract values

influence the response time of each source, each query attribute andyre ysed to map the query into query classes with statistics. For
its impact on response time should be analyzed separately. each attributed, with bindings, we generate a feature gefet 4,

- et S ich includes the corresponding binding value and abstract val-
2.2.2  Learned Response Time Statistics from BImed%@s for the attribute. The mapped classes will be a subset of the

n orderto obtair_] response time s_tatistics!n BibFinder, the sourceg.andidate class seSet — ftSeta, x ftSeta, x ... x ftSeta,
integrated at the time of the experiments (iBLP, CSB NET, wheren is the number of attributes with bindings in the query. Let
ACM, andSCl) were methodically probed. The experiments were  ;g.; denote all the frequent classes which have learned statistics
run at regular intervals during day and night, and all information gng:m.Set denote all the mapped classes of quéryThen the set

was stored with respect to the time of day it was gathered, as well 4 mapped classes isnSet = cSet — {C|(C' € cSet) N (C ¢

as the specific source and query. Two different query lists were sSet)}—{C|(3C" € (sSetNcSet))(C' C C)}. In other words, to

used for each run. A list of 37 queries was used to probe ACM, qptain the mapped class set we remove all the classes which do not
DBLP, and CSB. A list of 13 queries was used for NET and SCI.  paye any learned statistics as well as the classes which subsume any
The attributes that were bound in the queries varied as well as thec|ass with statistics from the candidate class set. The reason for the
values being bound. Range queries (for the year attribute) were atter js because the statistics of the subsumed class are more spe-

also included. o ] cific to the query. Once we have the relevant class set, we compute
DBLP has the fastest average connection time with close to 485ms, —

compared to SCI which had the worst average with 2420ms. The the estimated coverage and overlap statistics veB(&#|Q) for

average parsing time per answer tuple was below 100ms for everythe new queny using the coverage and overlap statistics vectors

source except NET which had a parsing time of 501ms pertuple o ne mapped class€3(5|C;) and their corresponding tightness
Figure 3 summarizes the total time statistics. When averaging —_— —

the total response time on a tuple per tuple basis, the sources carnformationt(Ci): P(S|Q) = > ¢, Zt(fé)i)P(SICi)- Since the

be divided into two sets. DBLP and CSB are the fastest with an

Figure 3: Average total time per tuple and average total time for each
source (in ms).

%0ne particular year range query increased the averagetitogfor SCI
8The fact that NET returns a single page with the complete sesuits and %Y about 2000ms.

their full abstract may explain the relatively high parsiilge compared to %bue to a lack of space we only show statistics for bindingtattesauthor
other sources. andyear.
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Figure 4: Average total time for queries with specific bindings (all bhdings in a, year range in b, author with no year range in c.

classes with large tightness values are more likely to provide more
accurate statistics, we give more weight to query classes with large

tightness values. 0.95
Using Coverage and Overlap Statistics to rank sourcesOnce 09 7%

we have the coverage and overlap statistics, we can us8itie
ple GreedyandGreedy Seleailgorithms described in [3] to select 0.85 RS

c
sources. Specifically§imple Greedgenerates plans by greedily % 08 860
selecting the togk sources ranked only according to their cover- 8 olbesst
2 .

ages, whileGreedy Selecselects sources with high residual cov- 0.75 X-GS03
erages calculated using both the coverage and overlap statistics
(residual coverage of a sour&g for a query@ w.r.t. sourceS is
P(52|Q) — P(S2 A S|@Q)). An algorithm for efficiently computing 0.65 T
residual coverage using the estimated coverage and overlap statis-
tics is discussed in [8]. Specifically, we only keep overlap statistics
for correlated source sets with sufficient number of overlap tuples,
and assume that source sets without overlap statistics are disjoint
(thus their probability of overlap is zero). If the overlap is zero

for a source sef, we can ignore looking up the overlap statistics Figure 5: Precision for top-3 query plans

for supersets of, since they will all be zero by the anti-monotone
property.

0.7

06 L L L
003 013 023 033 043 053 063 0.73
minfreq (%)

. . . . and so on. Note that except for the selection of the first source,
3.2 Multi-objective query processing the coverage used in both utility functions to choose the next best
By using only coverage and overlap statistics, a data integra- source is actually the residual coverage with respect to the set of
tion system would always call the sources with highest coverage already selected sources.
regardless of their response time, even though there may be a bet-
ter, faster source set to call to achieve the same coverage. In our
current work, we experiment with two different source utility mod- 4. EXPERIMENTS

els which take into account both the coverage statistics and the re- 41 | fC do lap Statisti
sponse time statistics of each source. In both formutas(S;|Q) . mpact of Coverage and Overlap Statistics

denotes the average total response time of sofifcer queries We conducted an evaluation of the effectiveness of the coverage
with the same binding attributes &s and overlap statistics iBibFindef*. The learned statistics were
Our Discountutility function essentially uses a delay penalty: used in concert witlsimple Greedyand Greedy Selecalgorithms
to selecttop-K sources for any given query. The effectiveness of
utilityp (S;) = P(S|Q) x 4= (5ilQ) the source selection was compared against both a random source

selection algorithm for selectingp-K sources, as well as the ac-
tual top-K sources for the query (as found by sending the query to
all the sources, and usingpast-factoanalysis to figure out the real
top-K sources). Figure 5 shows the comparative results for top-3
sources. The plans using our learned statistics have high precision,
and their precision decreases slowly as we changenth&eqand
utilityw (Si) = & x log(P(Si|Q)) — (1 — &) x cost(S:|Q) minoverlapthresholds (to reduce the amount of stored statistics).
The plot here shows th&@reedy Selectwhich uses overlap statis-
Naturally, the discount facter and the weighd can vary, thereby tics in addition to coverage statistics, does about the sai@ergde
leading to source call plans which can put more or less weight on Greedywhich uses coverage statistics alone. More evaluation re-

The penalty ensures that if the delay to achieve a high coverage
is large, then the utility of that source is reduced considerably,
and faster sources with lower coverage would be preferred. Our
Weighted Sunatility function uses coverage and response time in a
linear combination:

the source response time. In both functions, increasingé will sults are available in [8].
logically give more importance to coverage, while decreasing them . . . L .
favors response time. 4.2 Impact of Multi-Objective Optimization

Both utilityp andutilityw are used in a greedy way when se-

lecting the source plan for a given query: the source with the largest'!a prototype version oBibFinderwhich uses coverage and overlap statis-
utility is added to the plan, then the source with next largest utility, tics has been developed, and is available at http://saghameats.asu.edu




ACM: CSB: DBLP: NET: SCI: Greedy Select Discount plan Weighted Sum
coverage, | coverage, | coverage, | coverage, | coverage, | plan plan
RT RT RT RT RT

ql| 0.11 0.51 0.55 0.0 0.0 DBLP, CSB, ACM DBLP, CSB, ACM DBLP, CSB, ACM
3986ms | 1702ms | 1143ms | 2906ms | 3411lms

g2 | 0.13 0.52 0.49 0.0 0.0 CSB, DBLP, ACM DBLP, CSB, ACM DBLP, CSB, ACM
3986ms | 1702ms | 1143ms | 2906ms | 3411ms

g3 | 0.12 0.35 0.53 0.0 0.15 DBLP, CSB, SCI CSB, ACM, DBLP ACM, CSB, DBLP
1443ms | 2919ms | 4462ms | 4277ms | 30221ms

Table 1: Plans generated for 3 sample queries using different soueautility measures for combining coverage and response time (RT).

Preliminary experiments were also conducted to measure the ef-query by splitting it on attributes that are not bound, on the basis
fectiveness of our multi-objective utility functions. Table 1 shows that, for a particular source, binding specific attributes results in im-
a sample of three queries for which plans were generated usingproved response time and/or coverage. The learned statistics could
Greedy Seledi.e. not taking into account the response time statis- definitely help to determine which attributes should be bound when

tics of the sources), thetilityp function, and theutilityw func- possible.
tion. Both the discounty and the coverage weiglitused in the
utility functions were set to 0.5. 6. REFERENCES
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Even though response time is generally less query-dependent
than coverage, we have seen that the specific bindings of a query
can considerably influence the overall response time of a source.
By keeping more statistics and refining the query analysis to deter-
mine which statistics to use, a better response time estimate could
be obtained. One could for instance use the data from Figure 4
to go one level deeper than in our experiments and have different
statistics for queries that are not range queries and that bind (or
not) the author. Nonetheless, this issue goes back to the traditional
tradeoff issue between number of statistics to gather, store, and use,
and the performance of the system. More experiments are currently
in progress to further determine the impact of our utility functions
given different types of queries.
Another issue raised by these query-dependent response time
statistics is whether we could consider reformulating a selection



