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Abstract

Work in partial satisfaction planning (PSP) has hither to as-
sumed that goals are independent. This implies that that indi-
vidual goals have additive utility values. In many real-world
problems we cannot make this assumption and thus goal util-
ity is not additive. In this paper, we motivate the need for rep-
resenting and handling goal utility dependencies in PSP and
we provide a framework for representing them using the Gen-
eral Additive Independence (GAI) model (Bacchus & Grove
1995). We then present an algorithm based on forward heuris-
tic planning to solve this problem using heuristics derived
from the planning graph. To show the effectiveness of our
framework, we provide empirical results on benchmark plan-
ning domains.

Introduction
Classical planning aims at finding a plan that achieves
a set of conjunctive goals. Partial satisfaction (or over-
subscription) planning relaxes this all-or-nothing constraint,
focusing on finding a plan to achieve the “best” subset of
goals (i.e. the plan that gives the maximum tradeoff be-
tween total achieved goal utilities and total incurred action
cost). The process of selecting the set of goals on which
to focus is complicated by two types of dependencies be-
tween goals: (i) A set of goals may havecost dependencies
in that there are dependencies among the actions to achieve
them (making the cost of achieving them together signifi-
cantly more or less than the sum of costs of achieving them
in isolation) (ii) A set of goals may haveutility dependencies
in that achieving the goals together may lead to utility thatis
significantly different from the sum of utilities of achieving
each goal in isolation. Both cost and utility dependencies are
common in many real world applications such as NASA’s
data collection domains.

Although some recent work in partial satisfaction plan-
ning (van den Brielet al. 2004) has begun to handle cost de-
pendencies between goals, there has not yet been any work
on handling utility dependencies. The primary contribu-
tion of our paper is a systematic approach for handling cost
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and utility dependencies together in PSP. The main techni-
cal challenges here include developing a model where goal
utility dependencies can be compactly represented and us-
ing utility interactions with cost interactions to find a high
net benefit plan. Our approach builds upon the methods
for handling utility dependencies from decision theory (c.f.
(Bacchus & Grove 1995; Boutilier et. al. 2001)) and combi-
natorial auctions (c.f. (Nisan 2005)).

We start with a brief overview of two types of utility de-
pendencies that need to be handled:

1. Mutual dependency:Utility of the set of goals is different
from the summation of the utility of each individual goal.
Thus, forS ⊆ G, u(S) 6= Σg∈Sug. Examples: (1) while
the utility of having either a left or right shoe alone is
zero, utility of having both of them is much higher (i.e.
the goals “complement” each other); (2) utility of having
two cars is smaller than the summation of the individual
utilities of having each of them (i.e. the goals “substitute”
each other).

2. Conditional dependency:The utility of a goal or set of
goals depend on whether or not another goal or set of
goals are already achieved. Examples: (1) the utility of
having a hotel reserved in Hawaii depends on whether or
not we have a ticket to Hawaii; (2) in the logistics domain,
packages containing parts of a machine that need to be de-
livered to a given location are only useful in the presence
of other parts in the same group.

In this paper, we develop an approach for representing
these utility dependencies between planning goals using the
Generalized Additive Independence (GAI)model (Bacchus
& Grove 1995) and describe a planning algorithm based on
forward search that solves this extended PSP problem. The
algorithm is based on the forward heuristic search used in
theSapaPS planner (van den Brielet al. 2004). To guide
the heuristic search algorithm, we introduce two different
heuristics based on the planning graph structure. The first
one is admissible and can be used to find optimal solutions.
The second one is inadmissible but is more effective in find-
ing good quality solutions in less time. The main innovation
of our heuristic approach is its ability to take into account
both goal utility and goal achievement cost dependencies.
Our heuristic framework combines both (1) a greedy search
for low-cost relaxed plans that handle cost interactions be-



tween goals, and (2) a declarative Integer Linear Program-
ming (ILP) encoding that captures both mutual goal achieve-
ment cost and goal utility dependencies to select the best
subset of goals. The solution of this latter ILP encoding is
used to guide an anytime best-first search algorithm that re-
turns higher net benefit solutions.

For the rest of this paper, we will first formalize the prob-
lem of goal utility dependency. After that we will introduce
the GAI model (Bacchus & Grove 1995) and then describe
the important steps of the main heuristic search framework.
We finish the paper with empirical results showing the effec-
tiveness of our approach and the related and future work.

Problem Formulation
A classical planning problem is a 4-tuple〈F, I, G, A〉
where: F is a set of predicate symbols representing state
facts;I is the initial state, completely defined by predicates
in F ; G is a goal state, which is partially defined by a set
of predicates inF ; A is a set of actions witha ∈ A defined
by pre- and post-conditionsPrecond(a), Effect(a) ⊆ F .
A plan P is a sequence of actions fromA such that, when
executed fromI, P will result in a state that achieves all
g ∈ G.

In partial satisfaction planning (PSP) (Smith 2004; van
den Briel et al. 2004), goalsg ∈ G have utility values
ug ≥ 0, representing how much each goal is worth to a user,
and each actiona ∈ A has an associated positive execution
costca, which represents the resources spent executing each
action. Moreover, not all goals inG need to be achieved.
Let P be the lowest-cost plan that achieves a subsetG′ ⊆ G
of those goals, the objective is to maximize the tradeoff be-
tween total utilityu(G′) of G′ and total cost of all actions
a ∈ P :

maximizeG′⊆G u(G′)−
∑

a∈P

ca (1)

Work on PSP has until now assumed that goals have
no utility dependencies and thus their utilities are additive:
u(G′) = Σg∈G′ug. As we showed in the previous sec-
tion, there are many scenarios in which this assumption is
not true. To represent the goal utility dependencies as dis-
cussed, we adopt theGeneralized Additive Independence
(GAI) model (Bacchus & Grove 1995). Specifically, we as-
sume that the utility of the goal setG can be represented by
k local utility functionsfu(g[k]) ∈ R over setsg[k] ⊆ G of
goals whereg[k] may contain a single goal thereby captur-
ing the utility of that goal. For any subsetG′ ⊆ G the utility
of G′ is:

u(G′) =
∑

g[k]⊆G′

fu(g[k]) (2)

For the rest of this paper, we name the newPSP
problem with utility dependencies represented by GAI
model PSPUD . If there are|G| local functionsfk(g[k])
and eachg[k] contains a single goal then there are no utility
dependencies and thusPSPUD reduces to the original
PSP problem. We chose the GAI model because it is
simple, intuitive, expressive and it is more general than
other commonly used models such as UCP-Net (Boutilier

et. al. 2001). To facilitate the discussion on the GAI
model for PSPUD , we will use the following exam-
ple in the Mars Rover domain (Smith 2004).

Example: In the Mars Rover domain, a Rover needs to
travel between different locations. It then collects the sam-
ples and takes either high or low resolution pictures at dif-
ferent locations. Achievement of each goal gives a utility
value. We havegl

1 = sample(l), gl
2 = high res(l), gl

3 =
low res(l) with the utility valuesu(gl

1) = 200, u(gl
2) =

150 andu(gl
3) = 100 for all locationsl of interest. There

are also utility dependencies between combinations of goals
such as:

• complementrelation: Utility of having samples at re-
lated locationsl1 and l2 will give additional utility (e.g.
u({sample(l1), sample(l2)}) = u(gl1

1 ) + u(gl2
1 ) + 50).

• substituterelation: Taking both low and high resolution
images of the same location will reduce the overall utility
(e.g.u({gl

2, g
l
3}) = u(gl

2) + u(gl
3)− 80).

• conditionalrelation: Finally, if we already have a picture
of a given locationl, then the utility of taking a sample
at l increases, due to the available information to aid fu-
ture analysis (e.g. ifgl

2 then u(gl
1) += 100, if gl

3 then
u(gl

1) += 50 and if gl
2 ∧ gl

3 thenu(gl
1) += 110).

For our GAI model, the local functions for these relations
in this example would be:f(gl

1) = 200, f(gl
2) = 150,

f(gl
3) = 100, f({gl1

1 , gl2
1 }) = 50, f({gl

2, g
l
3}) = −80,

f({gl
1, g

l
2}) = 100, f({gl

1, g
l
3}) = 50 andf({gl

1, g
l
2, g

l
3}) =

110−(100+50) = −40. At first glance, it may seem strange
to have the local functionf({gl

1, g
l
2, g

l
3}) having negative

value even though those three goals have a complement re-
lation. That’s because the formulation to calculate the util-
ity of {gl

1, g
l
2, g

l
3} includes two other complement functions

for {gl
1, g

l
2} and{gl

1, g
l
3}. Using GAI functions, the utility

of a set of goals can be calculated as:U({gl
1, g

l
2, g

l
3}) =

f(gl
1) + f(gl

2) + f(gl
3) + f({gl

1, g
l
3}) + f({gl

1, g
l
2}) +

f({gl
1, g

l
2, g

l
3}) = 200 + 150 + 100 + 50 + 100− 40 = 560

Search Algorithm
There are several approaches to solve the PSP problems such
as selecting the subset of goals up-front, compilation to ILP,
or adapting theA∗ search algorithm to PSP (Smith 2004;
van den Brielet al. 2004). We choose to extend the best-
first search framework inSapaPS to handlePSPUD , which
uses anA∗ based search algorithm. With this framework we
can analyze the action cost and utility dependencies at each
search node.

The search algorithm, which we callA∗
PSP is sketched in

Figure 1. It starts with the initial stateSinit and continues
to dequeue the most promising nodeS (i.e. highestf(S) =
g(S) + h(S) value). For each search nodeS, let PC be the
partial plan leading fromSinit to S, let GS be the set of
goals satisfied inS, U(S) = Σg∈GS

ug be the utility ofS,
and letc(S) = c(PC) = Σa∈PC

ca be the total cost to visit
S. We haveg(S) = u(S) − c(S). Let PR be the plan that,
when we apply inS, will lead toS′ such thatPR maximizes
h(S) = (U(S′)− U(S))− c(PR). While calculatingg(S)



Open State Queue:SQ={Sinit}
Best achieved benefit:BB = U(Sinit)
while SQ6={}

S:= Dequeue(SQ)
if (g(S) > 0) ∧ (h(S) = 0) then

Terminate Search;
forall a applicable inS

S’ := Apply(a,S)
if g(S′) > BB then

Print BestBeneficialNode(S′)
BB ← g(S′)

if f(S′) = g(S′) + h(S′) ≤ BB then
Discard(S)

elseEnqueue(S’,SQ)
end while;

Figure 1: A* search with negative edges for PSP problems.

is trivial, having a good estimate ofh(S) is hard and is the
key to the success of best-first search algorithms.

Definition ST is a termination node if: h(ST ) = 0,
g(ST ) > 0, and∀S : g(ST ) > f(S).

If a stateS is a termination node, we stop the search. If
not, we generate children ofS by applying applicable ac-
tionsa to S. If the newly generated nodeS′ = Apply(a, S)
is a beneficial node (i.e.g(S′) > 0) and has a betterg(S′)
value than the best beneficial node visited so far, then
we print the plan leading fromSinit to S′. Finally, if S′

is a promising node (i.e.f(S′) > BB where f(S′) is
the f value of stateS′ andBB is the g value of the best
beneficial node found so far), then we will put it in the
search queueSQ sorted in the decreasing order off values.
Notice that because we keep outputting the best beneficial
plans while conducting search (until a terminal node is
found), the algorithm has an “anytime” property. Thus, it
can quickly return some beneficial plan. It also can continue
to return plans with better net benefit1.

Proposition If h(S) is admissible (over-estimates the
achievable benefit), thenA∗

PSP returns an optimal solution.

Proof sketch: If f(S) over-estimates the real achievable
benefit, then the discarded nodes (not enqueued) cannot lead
to nodes with higher benefit value than the current best node
(BB). If A∗

PSP finishes with an empty queue then the op-
timal solution should be found because all nodes enqueued
are visited. IfA∗

PSP found a termination nodeST , all nodes
remaining in the queue can lead to solutions with lower total
benefit thanST . ThusST is an optimal solution.

1If we consider heuristic planning search as a graph search
problem, then PSP has some interesting properties (1) the edge
costv = (u(S′) − u(S)) − ca of moving from a stateS to state
S′ = apply(S,a) can be negative; (2) any reachable state can be a
valid goal state. We have not found a cyclic graph search algorithm
dealing with problems having the same properties.

Heuristics for Maximizing Plan Benefit
The main objective of PSP planners, as de-
scribed in Equation 1, is to find the best plan
in terms of total benefit, which is calculated as
benefit = total achieved utility - total action cost. The
key to the success ofA∗

PSP is an effective heuristic function
capable of estimating the remaining achievable benefith(S)
for each generated stateS during forward search. We base
our heuristic routine on the planning graph cost-propagation
framework first used in theSapa planner (Do & Kambham-
pati 2001). We how describe how our heuristic estimates
cost and utility.

Cost-Propagation on the Relaxed Planning-Graph
For PSP problems, the cost-propagation process on the plan-
ning graph is used to estimate the achievement cost for
each individual goal. Starting with the achievement cost of
c(f) = 0 for factsf in the initial stateI andc(f) = c(a) =
∞ for all other facts and all actions, the propagation rules
to estimate costs to achieve different factsp and to execute
actionsa are2:

1. Facts:∀f : c(f) = min (c(a) + ca) : f ∈ Effect(a)

2. Max-prop:∀a ∈ A, f ∈ Precond(a) : c(a) = max c(f)

3. Sum-prop:∀a ∈ A, f ∈ Precond(a) : c(a) = Σc(f)

The update rules are used while extending the (relaxed)
planning graph structure (Blum & Furst 2001) from the
initial state, with eachc(f) or c(a) value updated exactly
once. After the propagation is done, for each individual goal
g ∈ G, the valuec(g) is an estimate on the cost to achieve
g. As shown in (Do & Kambhampati 2001), if we usemax
propagation, thenc(g) will underestimate the cost to achieve
g while there is no such guarantee forsumpropagation. Us-
ing c(g) calculated bymaxpropagation, we can estimate the
achievable benefit value as below:

hmax = maxG′⊆G [u(G′)− (maxg∈G′c(g))] (3)

It’s easy to see thathmax overestimates the real achiev-
able benefit and thusA∗

PSP usinghmax will output an op-
timal solution. One brute force way to estimatehmax is by
enumerating over all (2|G|) possible subsets ofG, which can
be prohibitive for a large goal set. In the following, we will
introduce an approach for estimatinghmax using an Integer
Linear Programming (ILP) encoding.

Relaxed-Plan based Heuristic
Because the cost estimate for each goal using the cost-
propagation on the planning graph can highly under-
estimate the real cost of a set of goals, themax family of
heuristics as inhmax tends to perform badly in practice.
Therefore, we use an alternative approach of utilizing the
relaxed plan employed bySapaPS for partial satisfaction

2ca, which is the execution cost ofa, is different fromc(a),
which is the cost to enable the execution ofa (i.e. cost to achieve
preconditions ofa)



planning3. For each stateS explored in a progression plan-
ner we build the relaxed planning graph and perform a for-
ward cost propagation on the graph. After this we use the
following general procedure to extract a relaxed plan to sup-
port a subset of goalsG′ ⊆ G:

1. Let subgoal setSG = G and the relaxed-planRP = ∅.

2. For eachg ∈ SG \ I select actiona : g ∈ Effect(a).
Add a to RP andp ∈ Precond(a) \ I to SG.

3. Repeat untilSG = ∅.

The planRP is called a “relaxed plan” because we ignore
negative effects of all actions in the planning graph while
extracting it. This relaxation allows a non-backtracking plan
extraction process that findsRP quickly. Ideally, we would
like to extract the relaxed-plan with the highest net bene-
fit. Let RP (G′) be the relaxed-plan with highest net benefit
value among those achievingG′ ⊆ G. The relaxed plan
heuristic forPSPUD is:

hrelax = maxG′⊆G (u(G′)−
∑

a∈RP (G′)

ca) (4)

Extracting the relaxed plan that has the highest net bene-
fit (i.e. utility minus cost), tends to get complex as the set
of goalsG′ we need to focus on depends both on the cost
dependencies as well as their utility dependencies. To ap-
proximatehrelax in previous work, the cost dependencies
were partially handled by biasing the relaxed plan extrac-
tion to: (i) greedily select actions with lowest achievement
cost (c(a) + ca); (ii) reuse actions selected for other goals.
We further extend this approach to approximate the optimal
relaxed plan in the presence of utility dependencies as fol-
lows:

1. Greedily extract the lowest-cost relaxed planRP that
achieves thelargestset of achievable goals. The relaxed
plan extraction is not sensitive to utility dependencies. We
now can search in its neighborhood for a plan that at-
tempts higher net benefit, while taking utility dependen-
cies into account.

2. Capture the achievement cost dependencies between
achievable goals using the causal structure ofRP .

3. Pose the problem of extracting the optimal relaxed plan
within RP that takes both cost and benefit dependencies
into account as an ILP encoding. This encoding is then
solved by an ILP solver, and the solution is used as the
heuristich(S) to guideA∗

PSP .

Alert readers would have noted that if we compile the en-
tire relaxed planning graph (rather than just the greedily ex-
tracted relaxed plan) we can post the entire relaxed plan ex-
traction process (including step 1) as an ILP problem. De-
spite its conceptual elegance, we chose not to follow this
route as the cost of heuristic computation increases quite sig-
nificantly (especially for our progression planner which ex-
tracts relaxed plans at each node). Related to this is whether

3Variants of this approach are also used in several other PSP
planners such asAltAlt ps (van den Brielet al. 2004) and the ori-
enteering planner (Smith 2004).

g2

g3

g4

a1: Move(l1,l2)
a2: Calibrate(camera)
a3: Sample(l2)
a4: Take_high_res(l2)

a5: Take_low_res(l2)
a6: Sample(l1)

At(l1) At(l2) Calibrated
ca1=50

ca2 =20

ca3= 40

ca4=40

ca5=25

g1

ca6=40

Figure 2: Relaxed plan for Mars Rover domain.

we can encode the full general problem as an ILP. While this
is possible, previous work has shown that this approach does
not scale well in even simpler problems (van den Brielet al.
2004).

As another observation, note the possibility of perform-
ing steps 2 and 3 in a greedy procedural form. We found
that such a procedure becomes quite hairy because of the
complex utility dependencies. We also note that because the
relaxed planning graph may not contain the optimal relaxed
plan,hrelax is not guaranteed to be admissible (and can thus
underestimate the achievable net benefit).
Cost Dependencies In our ongoing example, plans consist
of actions for traveling between different locations, calibrat-
ing instruments and carrying out experiments; all have costs
(e.g. in proportion to the amount of energy and time con-
sumed by different actions). Because certain actions con-
tribute to the achievement of multiple goals, there are also
mutual dependencies between the costs of achieving sets of
goals. Those relations can be discovered by using the causal
structure of the extracted relaxed plan.

Figure 2 shows the relaxed plan for the planning instance
in which the Rover is initially located atl1 and the de-
sired goals are{g2, g3, g4} with g2 = sample(l2), g3 =
high res(l2), andg4 = low res(l2). The relaxed plan con-
tains 5 actions:a1 = move(l1, l2) with costca1

= 50, a2 =
calibrate(camera) with ca2

= 20, a3 = take sample(l2)
that achieve goalg2 with cost ca3

= 40, and two actions
a4, a5 to take the pictures atl2 of different quality with
cost ca4

= 40 and ca5
= 25 respectively. As discussed

above, partial plans achieving different individual goalscan
overlap. For example, the partial plans to achieve individ-
ual goalsg2, g3 andg4 all share actiona1 and plans forg3

andg4 share the actiona2. Thus, the cost to achieve the set
Sg of goals follows thesubstitutedependencies in which the
cost to achieveSg can be smaller than the summation of the
individual costs to achieve eachg ∈ Sg. For example, the
cost to achieve goalg3 is c(g3) = ca1

+ ca2
+ ca4

= 110
and c(g4) = ca1

+ ca2
+ ca5

= 95 while c({g3, g4}) =
ca1

+ ca2
+ ca4

+ ca5
= 135 < c(g3) + c(g4) = 205.

To capture the mutual dependencies between the goal
achievement costs, we find the set of actions shared between
different partial plans achieving different goals. This pro-
cedure utilizes the causal links, each of which specifies the
achievement action for a goal or action precondition, gath-
ered while extracting the relaxed plan.



1. Initialize: ∀a ∈ P : GS(a) = ∅; ∀p ∈
Effect(a)

⋃
Prec(a) : GS(p) = ∅; ∀g ∈ G : GS(g) =

{g}.

2. Backward sweep from goals and update:GS(a) =⋃
GS(p) : p ∈ Effect(a) andGS(p) =

⋃
GS(a) :

p ∈ Precond(a)

Using the update procedure above, for each actiona,
GS(a) contains the set of goalsg to which a contributes.
For example,GS(a1) = {g2, g3, g4}, GS(a2) = {g3, g4}
andGS(a3) = {g2}.

Estimating Achievable Benefit A realistic planning prob-
lem with goal utility dependencies will likely include sev-
eral goals involved in multiple dependencies, considerably
increasing the complexity of the problem. The challenge is
to use the relaxed plan as means of capturing possible goal
combinations while also being informed by the cost of the
relaxed actions involved in achieving these goals.

Given the utility dependencies represented by GAI local
functionsfu and the goal achievement cost dependencies
represented by goal supporting action setGS(a), we set up
an ILP encoding forhrelax:

• Binary Variables:

– ∀a ∈ P : create one binary integer variableXa.
– ∀g ∈ G: create one binary integer variableXg.
– ∀G′ ⊆ G, fu(G′) 6= 0: create one binary integer vari-

ableXG′ .

• Constraints:

– ∀a ∈ P, ∀g ∈ GS(a) : (1−Xg) + Xa ≥ 1

–
∑

g∈G′(1−Xg) + XG′ ≥ 1

– ∀g ∈ G′ : (1−XG′) + Xg ≥ 1

• Objective function:max (Σfu(G′) ∗XG′ − ΣXa ∗ ca)

The purpose of this encoding is to capture the set of goals
G′ ⊆ G that gives the maximum tradeoff between the utility
of G′ and the cost of actions in the relaxed plan supporting
G′.

The first constraint enforces that if a given goal is se-
lected for achievements, then any action that contributes to
the achievement of that goal should be selected too. The
second and third types of constraints ensure that if there is
a GAI local function for a set of goalsG′ ⊆ G, then this
local function (represented by a binary variableXG′) will
be activated (XG′ = 1) if and only if all goalsg ∈ G′ are
selected (Xg = 1). The value we get from solving this ILP
encoding can then be used as an estimate of the achievable
benefit for a given state (h(S) value) for theA∗

PSP search
algorithm outlined in Figure 1.

For hmax we can also setup an ILP encoding which is
simpler than the encoding forhrelax because there is no need
for variables and constraints related to actions and goal sup-
portingGS(a) sets.

• Variables: besidesXg andXG′ , create one variableXCG

representing the cost to achieveG.

• Constraints: besides the second and third types of con-
straints as in the encoding forhrelax above, introduce one
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Figure 3:SPUDSandSapaPS in ZenoTravel domain.

constraint:∀g ∈ G : XCG
−Xg ∗ c(g) ≥ 0 wherec(g)

is calculated during cost propagation on the graph (as in
Equation 3).

• Objective Function:max (Σfu(G′) ∗XG′ −XCG
)

The variableXCG
and the constraint withXg guarantee

that the cost to achieve a set of goalsG′ is the maximum of
the cost to achieve any goalg ∈ G′.

Empirical Results
We have implemented the heuristic search algorithm for
the PSPUD problems discussed in this paper on top of the
SapaPS planner. We call the new plannerSPUDS. We
tested our planner on two sets of randomZenoTraveland
Satelliteproblems, which were generated on top of the prob-
lem sets used in the Third International Planning Competi-
tion (Long & Fox 2003). The ZenoTravel domain involves
moving people by airplanes between different cities and the
Satellite domain involves turning satellites to point at dif-
ferent objects and taking pictures of them. A more detailed
description of these domains can be found at the IPC3 web-
site4.

All tests were run using a Pentium IV 2.66GHz with 1GB
RAM and a 1200 second time limit. BecauseA∗

PSP con-
tinuously finds better solutions given more time (or a ter-
mination node is found), the results reported in this section
represent the plan with highest benefit value found within
the time limit. For solving the ILP encoding, we use the C
version oflp solve version 5.5, a free solver with
a Java wrapper.
Generating Test Problems: Given that in general, action
cost is decided by the amount of resources consumed and/or
the time spent by that action, we decided to automatically
generate thePSPUD problems from a set of metric tempo-
ral planning problems from the ZenoTravel and Satellite do-
mains (used in IPC3) as follows:

• Domain File: We modified the domain files by adding a
cost field to each action description. Action cost is repre-
sented as a mathematical formula involving numeric vari-
ables that exist in the original problem description and

4http://planning.cis.strath.ac.uk/competition/
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Figure 4:SPUDSandSapaPS in Satellite domain.

also new numeric variables that we have added to the do-
main description file. The cost field utilizes both the func-
tions representing numeric quantities in the original prob-
lem descriptions, and the newly introduced cost-related
functions used to convert the temporal and resource con-
sumption aspects of each action into a uniform plan ben-
efit represented by the amount of money spent (as in the
ZenoTravel domain) or energy consumed (as in Satellite
domain).

• Problem File: For each domain, we implemented a Java
program that parses the problem files used in IPC3 and
generates thePSPUD version with cost-related function
values randomly generated within appropriate upper and
lower bounds. The goal utilities are also randomly gener-
ated within different upper and lower bounds. The goals
are randomly selected to be “hard” or “soft”. The set
of goal dependencies along with their utility values are
also randomly generated. Thus, the number of dependen-
cies, size of the dependencies, set of goals involved and
the utility values are all randomly selected within certain
lower and upper bounds (e.g. upper bound on the number
of dependencies is3 ∗ |G|).

Analysis: We ran bothSapaPS andSPUDSon problems
from the two domains. While the latter is sensitive to both
cost and utility dependencies, the former (SapaPS ) only ac-
counts for cost dependencies. Due to poor performance of
hmax in comparison tohrelax in tests5, we focus only on
hrelax in evaluatingSPUDS. The empirical evaluation is de-
signed to test whetherSPUDSis able to solve thePSPUD

problems more effectively (i.e. with higher net benefit). Fig-
ures 3 and 4 show the comparison between those two plan-
ners.

In the ZenoTravel domain,SPUDSis better thanSapaPS

in 10/13 problems. Both planners find the same solutions in
the remaining three problems.

In the Satellite domain,SPUDSis better in 16/18 prob-
lems, and most of the time is significantly better (up to 16
times better in overall best plan quality). They are equal in1

5In our empirical tests usinghrelax allowed SPUDSto find
plans that were on average 27% better than those found when using
hmax (when usinghmax found a plan at all).
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Figure 5: Example run of planners. (Problem 11 in Zeno-
Travel)

problem andSapaPS is slightly (0.3%) better in 1 problem.
We found that the ILP encoding increases the time spent

per search node by 3 to 200 times with the highest increase
occurring on the larger problems. The advantage gained by
SPUDSin heuristic guidance offsets this additional compu-
tation cost. This behavior is shown in Figure 5 through a plot
of a run on problem 11 of ZenoTravel. For this case,SPUDS
finds a better plan thanSapaPS at533 milliseconds and this
trend continues;SPUDSretains its net benefit superiority.

Of the problems solved bySPUDS, the average number
of actions in the plans was 14.5 for ZenoTravel and 126.2 in
Satellite. For Satellite, this number excludes a single outlier
problem that included 1850 actions. ForSapaPS , the av-
erage number of actions included in ZenoTravel plans was
13.75 and in Satellite plans was 121.1. These averages ex-
clude the same outlier problem in Satellite. Our results un-
derscore the fact thatSPUDSfinds higher net benefit plans
even though shorter plans are found usingSapaPS . In fact,
most of the plans found bySapaPS are shorter because they
achieve fewer goals and therefore lose out on the utility that
those goals give.

In conclusion,SPUDSis significantly better thanSapaPS

in both the ZenoTravel and Satellite domains. This shows
that our declarative heuristic technique of using an ILP en-
coding to extract the best part of the relaxed plan regarding
the utility dependencies pays off despite higher overhead.
We are in the process of more creating test problems based
on other benchmark problem sets. We also hope to enable
other PSP planners such asAltAlt ps andOptiPlan(van den
Briel et al. 2004) to handlePSPUD problems and compare
these withSPUDS.

Related Work
There has been work on PSP problems usingorienteering
to select goal subsets by David Smith (2004). Also, van
den Briel et. al. (2004) introduced several planners such as
AltAlt ps , SapaPS , andOptiP lan that tackle PSP by either
greedily selecting goals up-front, heuristically searching for
solutions, or compiling the problem into ILP. None of those
planners deal with utility dependencies as described in this
paper.



PrefPlan (Brafman & Chernyavsky 2005) can find opti-
mal plans with preferences between goals specified in CP-
Net. Both PSP planners and PrefPlan can handle soft-goals;
however, PSP planners explicitly reason about quantitative
goal utility and action costs, while PrefPlan handles qualita-
tive goal preferences.

Besides the GAI model that we used to represent the util-
ity dependencies, there are several other attractive models
such as UCP-Net (Boutilier et. al. 2001) and the graphi-
cal model (Bacchus & Grove 1995). While both provide a
graphical representation that can make it easier for users to
understand the dependencies, the GAI has advantages in that
it is more general than UCP-Net while still being simple and
intuitive.

In combinatorial auctions, the utility for a set of items up
for bid are normally non-additive and share many similar-
ities with reasoning about sets of goals that are dependent
in PSP. While a bidding process is different from planning,
the bidding language (Nisan 2005) can be used to represent
utility dependencies inPSPUD .

Conclusion & Future Work
In this paper, we discussed a framework of solving partial
satisfaction planning (PSP) problems with utility dependen-
cies. We show how to represent various types of depen-
dencies using the GAI framework. We also introduced an
admissible heuristic,hmax, and an inadmissible heuristic,
hrelax, that when used with theA∗

PSP search algorithm,
will find optimal or inoptimal solutions respectively. We em-
pirically demonstrated the effectiveness of the new heuristic
framework on two benchmark planning domains.

We plan to extend this work to combine both quantita-
tive preferences as in PSP with qualitative preference model
as handled in PrefPlan. To improve the performance, we
plan on investigating more effective admissible heuristics
and more aggressively take into account negative informa-
tion, such as residual cost as described in AltWlt (Sanchez
& Kambhampati 2005) to improve the heuristic quality. We
are also looking at the possibility of converting the utility
dependencies into dummy goals to simplify the problems.
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