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Abstract

Many real world planning problems require goals with deadlines and durative actions that consume
resources. In this paper, we presentSapa, a domain-independent heuristic forward chaining planner that can
handle durative actions, metric resource constraints, and deadline goals. The main innovation ofSapais the
set of distance based heuristics it employs to control its search. We consider both optimizing and satisficing
search. For the former, we identify admissible heuristics for objective functions based on makespan and
slack. For satisficing search, our heuristics are aimed at scalability with reasonable plan quality. Our
heuristics are derived from the “relaxed temporal planning graph” structure, which is a generalization of
planning graphs to temporal domains. We also provide techniques for adjusting the heuristic values to
account for resource constraints. Our experimental results indicate thatSapareturns good quality solutions
for complex planning problems in reasonable time.

1 Introduction

For most real world planning problems, the STRIPS model of classical planning with instantaneous actions is
inadequate. We normally need plans with durative actions that execute concurrently. Moreover, actions may
consume resources and the plans may need to achieve goals within given deadlines. While there have been
efforts aimed at building metric temporal planners that can handle different types of constraints beyond the
classical planning specifications [14, 9, 11], most such planners either scale up poorly or need hand-coded
domain control knowledge to guide their search. The biggest problem faced by existing temporal planners is
thus the control of search (c.f. [17]). Accordingly, in this paper, we address the issues of domain independent
heuristic control for metric temporal planners.

At first blush search control for metric temporal planners would seem to be a very simple matter of
adapting the work in heuristic planners in classical planning [3, 12, 7]. The adaptation however does pose
several challenges. To begin with, metric temporal planners tend to have significantly larger search spaces
than classical planners. After all, the problem of planning in the presence of durative actions and metric
resources subsumes both the classical planning and scheduling problems. Secondly, the objective of planning
may not be limited to simple goal satisfaction, and may also include optimization of the associated schedule
(such as maximum lateness, weighted tardiness, weighted completion time, resource consumption etc. [15]).
Finally, the presence of metric and temporal constraints, in addition to subgoal interactions, opens up many
more potential avenues for extracting heuristics (based on problem relaxation). Thus, the question of which
relaxations provide best heuristics has to be carefully investigated.

In this paper, we presentSapa, a heuristic metric temporal planner that we are currently developing.Sapa
is a forward chaining metric temporal planner, whose basic search routines are adapted from Bacchus and
Ady’s[1] recent work on temporal TLPlan. We consider a forward chaining planner because of the advantages
offered by the complete state information in handling metric resources [17]. Unlike temporal TLPlan, which
relies on hand-coded control knowledge to guide the planner, the primary focus of our work is on developing
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distance based heuristics to guide the search. InSapa, we estimate the heuristic values by doing a phased
relaxation: we first derived heuristics from a relaxation that ignores the delete effects and metric resource
constraints, and then adjust these heuristics to better account for resource constraints. In the first phase, we
use a generalization of the planning graphs [2], called relaxed temporal planning graphs (RTPG), as the basis
for deriving the heuristics. Our use of planning graphs is inspired by (and can be seen as an adaptation of)
the recent work onAltAlt [12] and FF [7]. We consider both optimizing and satisficing search scenarios.
For the former, we develop admissible heuristics for objective functions based on makespan or slack. For the
latter, we develop very effective heuristics that use the characteristics of a “relaxed” plan derived from the
planning graphs. Finally, we present a way of improving the informedness of our heuristics by accounting
for the resource constraints (which are ignored in constructing the relaxed planning graphs).

Sapais implemented in Java. Our empirical studies indicate thatSapacan solve planning problems
with complex temporal and resource constraints quite efficiently.Sapaalso returns good quality solutions
with short makespans and very few irrelevant actions. This is particularly encouraging given that tempo-
ral TLPlan, the leading contender ofSapathat uses hand-coded control knowledge, tends to output many
irrelevant actions.

The rest of this paper describes the development and evaluation ofSapa. We start in Section 2 with a
discussion of action representation and the general search algorithm used inSapa. In Section 3, we present
the relaxed planning graph structure and discuss different heuristics extracted from it. We also describe how
to adjust the heuristic values based on the metric resource constraints. We present empirical results in Section
4 and conclude the paper with a discussion of related work and future work in Sections 5 and 6.

2 Handling concurrent actions in a forward state space planner

Sapaaddresses planning problems that involve durative actions, metric resources, and deadline goals. In this
section, we describe how such planning problems are represented and solved inSapa. We will first describe
the action representation, and will then present the forward chaining state search algorithm used bySapa.

To illustrate the representation and the search algorithm used inSapa, we will use a small example from
the flying domain discussed in [14]. In this domain, which we callzeno-flying, airplanes move passengers
between cities. An airplane can choose between “slow flying” and “fast flying” actions. “Slow flying” travels
at 400 miles/hr and consumes 1 gallon of fuel for every 3 miles. “Fast flying” travels at 600 miles/hr and
consumes 1 gallon of fuel every 2 miles. Passengers can beboardedin 30 minutes anddeplanedin 20
minutes. The fuel capacity of the airplane is 750 gallons and it takes 60 minutes torefuelit. Figure 1 shows a
simple problem from this domain that we will use as a running example throughout the paper. In this problem,
Person1 and the Airplane are at cityA, Person2 is at cityB and the plane has 500 gallons of fuel in the initial
state. The goals are to get both Person1 and Person2 to cityC in 6.5 hours. One solution for this problem,
shown in the lower half of Figure 1, involves firstboardingPerson1 at cityA, and thenslow-flyingto cityB.
While boardingPerson2 at cityB, we canrefuel the plane concurrently. After finishing refueling, the plane
will have enough fuel tofast-flyto cityC anddeplanethe two passengers.
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(:action BOARD
:parameters
(?person - person ?airplane - plane ?city - city)
:duration (st, + st 30)
:precondition
(and (at ?person ?city) - (st,st)

(in-city ?airplane ?city) - (st,et))
:effect
(and (not (at ?person ?city)) - st

(in ?person ?airplane) - et))

(:action SLOW-FLYING
:parameters
(?airplane - plane ?city1 - city ?city2 - city)
:duration
(st, + st (/ (distance ?city1 ?city2)

(slow-speed ?airplane)))
:precondition
(and (in-city ?airplane ?city1) - (st,st)

(> (fuel ?airplane) 0) - (st,et))
:effect
(and (not (in-city ?airplane ?city1)) - st

(in-city ?airplane ?city2) - et
(-= (fuel ?airplane)

(* #t (sf-fuel-cons-rate ?airplane))) - #t))

Figure 2: Examples of action descriptions inSapa

2.1 Action representation

Planning is the problem of finding a set of actions and their respective execution times to satisfy all causal,
metric, and resource constraints. Therefore, action representation has influences on the representation of
the plans and on the planning algorithm. In this section, we will discuss the action representation used in
Sapa. Our representation is influenced by the PDDL+ language proposal[4] and the representations used in
Zeno[14] and LPSAT[19] planners.

Unlike actions in classical planning, in planning problems with temporal and resource constraints, actions
are not instantaneous but have durations. Their preconditions may either be instantaneous or durative and
their effects may occur at any time point during their execution. Each actionA has a durationDA, starting
time SA, and end timeEA (= SA + DA). The value ofDA can be statically defined for a domain, statically
defined for a particular planning problem, or can be dynamically decided at the time of execution.1 Action
A have preconditionsPre(A) that may be required either to be instantaneously true at the time pointSA, or
required to be true starting atSA and remain true for some durationd ≤ DA. The logical effectsEff(A) of
A will be divided into three setsEs(A), Ee(A), andEm(A, d) containing respectively instantaneous effects
at time pointsSA, EA andSA + d (0 < d < DA). Figure 2 illustrates the actual representations used
in Sapafor actionsboardingandslow-flyingin the zeno-flying domain. Here,st andet denote the starting
and ending time points of an action, while#t represents a time instant betweenst andet. While the action
boarding(person, airplane, city) requires a person to be at the locationcity only at its starting time point
st, it requires an airplane to stay there the duration of its execution. This action causes an instant effect
(not(at(?person, ?city))) at the starting time pointst and the delayed effectin(?person, ?airplane) at the
ending time pointet.

Actions can also consume or produce metric resources and their preconditions may also well depend
on the value of the corresponding resource. For resource related preconditions, we allow several types of
equality or inequality checking including ==,<, >, <=, >=. For resource-related effects, we allow the
following types of change (update): assignment(=), increment(+=), decrement(-=), multiplication(*=), and
division(/=). In Figure 2, the actionslow-flyingrequires the fuel level to be greater than zero over the entire
duration of execution and consumes the fuel at a constant rate while executing.

Currently we only model and test domains in which effects occur at the start or end time points, and
preconditions are required to be true at the starting point or should hold true throughout the duration of that
action. Nevertheless, the search algorithm and the domain representation schema used inSapaare general
enough to represent and handle actions with effects occurring at any time point during their durations and
preconditions that are required to hold true for any arbitrary duration between the start and end time points
of an action. In the near future, we intend to test our planner in domains that have more flexible temporal
constraints on the preconditions and effects of actions.

1For example, in the zeno-flying domain discussed earlier, we can decide that boarding a passenger always takes 10 minutes for all
problems in this domain. Duration of the action of flying an airplane between two cities will depend on the distance between these
two cities. Because the distance between two cities will not change over time, the duration of a particular flying action will be totally
specified once we parse the planning problem. However,refuelingan airplane may have a duration that depends on the current fuel level
of that airplane. We may only be able to calculate the duration of a givenrefuelingaction according to the fuel level at the exact time
instant when we execute that action.
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2.2 A forward chaining search algorithm

Even though variations of the action representation scheme described in the previous section have been used
in the partial order temporal planners such as IxTeT[9] and Zeno[14] before, Bacchus and Ady [1] are the
first to propose a forward chaining algorithm capable of using this type of action representation and allow
concurrent execution of actions in the plan. We adapt their search algorithm inSapa.

Before going into the details of the search algorithm, we need to describe some major data structures that
are used.Sapa’s search is conducted through the space of time stamped states. We define a time stamped
stateS as a tupleS = (P,M, Π, Q, t) consisting of the following structure:

• P = (〈pi, ti〉 | ti < t) is a set of predicatespi that are true att and the last time instantti at which they
are achieved.2

• M is a set of values of all functions representing all the metric-resources in the planning problem.
Because the continuous values of resource levels may change over the course of planning, we use
functionsto represent the resource values.

• Π is a set of persistent conditions, such as action preconditions, that need to be protected during a
period of time.

• Q is an event queue containing a set of updates each scheduled to occur at a specified time in the future.
An eventecan do one of three things: (1) change the True/False value of some predicate, (2) update the
value of some function representing a metric-resource, or (3) end the persistence of some condition.

• t is the time stamp ofS

In this paper, unless noted otherwise, when we say “state” we mean a time stamped state. It should be
obvious that time stamped states do not just describe world states (or snap shots of the world at a given point
of time) as done in classical progression planners, but rather describe both the state of the world and the state
of the planner’s search.

The initial stateSinit is stamped at time 0 and has an empty event queue and empty set of persistent
conditions. However, it is completely specified in terms of function and predicate values. In contrast, the goals
do not have to be totally specified. The goals are represented by a set ofn 2-tuplesG = (〈p1, t1〉...〈pn, tn〉)
wherepi is theith goal andti is the time instant by whichpi needs to be achieved.
Goal Satisfaction: The stateS = (P, M, Π, Q, t) subsumes(entails) the goalG if for each 〈pi, ti〉 ∈ G
either:

1. ∃〈pi, tj〉 ∈ P , tj < ti and there is no event inQ that deletespi.

2. There is an evente ∈ Q that addspi at time instantte < ti.

Action Application: An action A isapplicablein stateS = (P, M, Π, Q, t) if:

1. All instantaneous preconditions ofA are satisfied byP andM.

2. A’s effects do not interfere with any persistent condition inΠ and any event inQ.

3. No event inQ interferes with persistent preconditions ofA.

When we apply an actionA to a stateS = (P, M, Π, Q, t), all instantaneous effects ofA will be imme-
diately used to update the predicate listP and metric resources databaseM of S. A’s persistent preconditions
and delayed effects will be put into the persistent condition setΠ and event queueQ of S. For example, if we
apply actionBoard(P1,airplane)to the initial state of our running example in Figure 1, then the components
of resulting stateSwill becomeP = {〈At(airplane, A), t0〉, 〈In(P1, airplane), t0〉, 〈At(P2, B), t0〉}, M
= {Fuel(airplane)=500}, Π = {〈At(airplane,A), t1〉}, andQ = {〈In(P1, airplane), t1〉}.

Besides the normal actions, we will have one special action calledadvance-time3 which we use to ad-
vance the time stamp ofS to the time instantte of the earliest evente in the event queueQ of S. The

2For example, at time instantt1 in Figure 1,P = {〈At(airplane, A), t0〉, 〈At(Person2, B), t0〉, 〈In(Person1, t1)〉}
3Advance-timeis calledunqueue-eventin [1]
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State Queue:SQ={Sinit}
while SQ6={}

S:= Dequeue(SQ)
Nondeterministically selectA

applicable inS
S’ := Apply(A,S)
if S’|= G then

PrintSolution
elseEnqueue(S’,SQ)

end while;

Figure 3: Main search algorithm

advance-time action will be applicable in any stateS that has a non-empty event queue. Upon applying this
action, we update stateSaccording to all the events in the event queue that are scheduled to occur atte.

Notice that we do not consider actionA to be applicable if it causes some evente that interferes with an
evente′ in the event queue, even ife ande′ occur at different time points. We believe that even though an
event has instant effect, there should be some underlying process that leads to that effect.4 Therefore, we
feel that if two actions cause instant events that are contradicting with each other, then even if the events
occur at different time points, the underlying processes supporting these two events may contradict each
other. Thus, these two actions are not allowed to execute concurrently. Our approach can be considered as
having ahold process [5] extending from the starting point of an action to the time point at which an event
occurs. The hold process protects that predicate from violations by conflicting events from other actions.
This also means that even though an effect of a given actionA appears to change the value of a predicate at a
single time pointt, we implicitly need a duration from the starting pointst of A to t for it to happen. We are
currently investigating approaches to represent constraints to protect a predicate or resource more explicitly
and flexibly. Additionally, in handling metric resource interactions between two actions,Sapafollows an
approach similar to the ones used by Zeno[14] and RIPP[8]: it does not allow two actions that access the
same metric resource to overlap with each other. By not allowing two actions affecting the same resource
to overlap, we can safely change the resource condition that needs to be preserved during an action to be
an instantaneous condition or an update at the start or end point of that action. For example, the condition
that the fuel level of an airplane should be higher than 0 while flying between two cities, can be changed
to a check to see if the level of fuel it has at the beginning of the action is higher than the amount that will
be consumed during the course of that action. This helps in simplifying the search algorithm. In future, we
intend to investigate other ways to relax this type of resource interaction constraints.
Search algorithm: The basic algorithm for searching in the space of time stamped states is shown in Figure 3.
We proceed by applying all applicable actions to the current state and put the result states into the sorted queue
using theEnqueue() function. TheDequeue() function is used to take out the first state from the state queue.
Currently,Sapaemploys the A* search. Thus, the state queue is sorted according to some heuristic function
that measures the difficulty of reaching the goals from the current state. The rest of the paper discusses the
design of heuristic functions.

3 Heuristic control

For any type of planner to work well, it needs to be armed with good heuristics to guide the search in the right
direction and to prune the bad branches early. Compared with heuristic forward chaining planners in classical
planning,Sapahas many more branching possibilities. Thus, it is even more critical forSapato have good
heuristic guidance.

Normally, the design of the heuristics depends on the objective function that we want to optimize; some
heuristics may work well for a specific objective function but not others. In a classical planning scenario,
where actions are instantaneous and do not consume resources, the quality metrics are limited to a mere
count of actions or the parallel execution time of the plan. When we extend the classical planning framework
to handle durative actions that may consume resources, the objective functions need to take into account

4For example, theboardingaction will cause the event of the passenger being inside the plane at the end of that action. However,
there is an underlying process of taking the passenger from the gate to inside the plane that we are not mentioning about.
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Heuristic Objective Function Basis Adm. Use res-infor
Max-span minimize makespan RTPG Yes No
Min-slack maximize minimum slack RTPG Yes No
Max-slack maximize maximum slack RTPG Yes No
Sum-slack maximize sum-slack RTPG Yes No
Sum-action minimize number of actions relaxed plan No No

Sum-duration minimize sum of action durations relaxed plan No No
Adj. sum-act. minimize number of actions relaxed plan No Yes
Adj. sum-dur. minimize sum of action durations relaxed plan No Yes

Table 1: Different heuristics investigated inSapa. Columns titled “objective function”, “basis”, “adm” and
“use res-infor” show respectively the objective function addressed by each heuristic, the basis to derive the
heuristic values, the admissibility of the heuristic, and whether or not resource-related information is used in
calculating the heuristic values.

other quality metrics such as the makespan, the amount of slack in the plan and the amount of resource
consumption. Heuristics that focus on these richer objective functions will in effect be guiding both planning
and scheduling aspects. Specifically, they need to control both action selection and the action execution time.5

In this paper, we consider both satisficing and optimizing search scenarios. In the former, our focus is on
efficiently finding a reasonable quality plan. In the later, we are interested in the optimization of objective
functions based on makespan, or slack values. We will develop heuristics for guiding both types of search.
Table 1 provides a high level characterization of the different heuristics investigated in this paper, in terms of
the objective functions that they are aimed at, and the knowledge used in deriving them.

For any type of objective function, heuristics are generally derived from relaxed problems, with the un-
derstanding that the more constraints we relax, the less informed the heuristic becomes [13]. Exploiting this
insight to control a metric temporal planner brings up the question of what constraints to relax. In classi-
cal planning, the “relaxation” essentially involves ignoring precondition/effect interactions between actions
[3, 7]. In metric-temporal planning, we can not only relax the logical interactions, but also the metric resource
constraints, and temporal duration constraints.

In Sapa, we estimate the heuristic values by doing a phased relaxation: we first relax the delete effects and
metric resource constraints to compute the heuristic values, and then modify these values to better account
for resource constraints. In the first phase we use a generalization of the planning graphs [2], called relaxed
temporal planning graphs (RTPG), as the basis for deriving the heuristics. Our use of planning graphs is
inspired by (and can be seen as an adaptation of) the recent work onAltAlt [12] and FF [7]. The RTPG struc-
tures are described in Section 3.1, and Sections 3.2 and 3.3 describe the extraction of admissible and effective
heuristics from the RTPG. Finally, in Section 3.4, we discuss a technique for improving the informedness of
our heuristics by adjusting the heuristic values to account for the resource constraints (which are ignored in
the RTPG).

3.1 Building the relaxed temporal planning graph

All our heuristics are based on the relaxed temporal planning graph structure (RTPG). This is a Graphplan-
style[2] bi-level planning graph generalized to temporal domains. Given a stateS = (P, M, Π, Q, t), the
RTPG is built fromS using the set of relaxed actions, which are generated from original actions by elim-
inating all effects which (1) delete some fact (predicate) or (2) reduce the level of some resource. Since
delete effects are ignored, RTPG will not contain any mutex relations, which considerably reduces the cost
of constructing RTPG. The algorithm to build the RTPG structure is summarized in Figure 4. To build the
RTPG, we need three main datastructures: a fact level, an action level, and an unexecuted event queue.6 Each
fact f or actionA is markedin, and appears in the RTPG’s fact/action level at time instanttf /tA if it can be
achieved/executed attf /tA. In the beginning, only facts which appear inP are markedin at t, the action level
is empty, and the event queue holds all the unexecuted events inQ that add new predicates. ActionA will be
markedin if (1) A is not already markedin and (2) all ofA’s preconditions are markedin. When actionA is

5In [17], Smith et. al. discuss the importance of the choice of actions as well as the ordering between them in solving complicated
real world planning problems involving temporal and resource constraints.

6Unlike the initial state, the event queue of the stateS from which we build the RTPG may be.
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while(true)
forall A 6=advance-timeapplicable in S

S := Apply(A,S)
if S |= G then Terminate{solution}

S’ := Apply(advance-time,S)
if ∃ 〈pi, ti〉∈G such that

ti < Time(S’) and pi /∈S then
Terminate{non-solution}

elseS := S’
end while;

Figure 4: Algorithm to build the relaxed temporal planning graph structure.

in, then all ofA’s unmarked instant add effects will also be markedin at t. Any delayed effecteof A that adds
fact f is put into the event queueQ if (1) f is not markedin and (2) there is no evente′ in Q that is scheduled
to happen beforee and which also addsf. Moreover, when an evente is added toQ, we will take out fromQ
any evente′ which is scheduled to occur aftereand also addsf.

When there are no more unmarked applicable actions inS, we will stop and returnno-solutionif either
(1) Q is empty or (2) there exists some unmarked goal with a deadline that is smaller than the time of the
earliest event inQ. If none of the situations above occurs, then we will applyadvance-timeaction toSand
activate all events at time pointte′ of the earliest evente’ in Q. The process above will be repeated until all
the goals are markedin or one of the conditions indicatingnon-solutionoccurs. Figure 5 shows the RTPG for
the stateSat time pointt1 (refer to Figure 1) after we apply actionBoard(P1)to the initial state andadvance
the clock fromt0 to t1.

In Sapa, the RTPG is used to:

• Prune the states that can not lead to any solution.

• Use the time points at which goals appear in the RTPG as the lower bounds on their time of achieve-
ments in the real plans.

• Build a relaxed plan that achieves the goals, which can then be used as a basis to estimate the distance
from S to the goals.

For the first task, we will prune a state if there is some goal〈pi, ti〉 such thatpi does not appear in the
RTPG before time pointti.
Proposition 1: Pruning a state according to the relaxed temporal planning graph (RTPG) preserves the
completeness of the planning algorithm.

The proof is quite straight forward. Since we relaxed the delete effects and resource related constraints
of all the actions when building the graph structure, and applied all applicable actions to each state, the
time instant at which each predicate appears in the RTPG is alower boundon its real time of achievement.
Therefore, if we can not achieve some goal on time in the relaxed problem, then we definitely will not be able
to achieve that goal with the full set of constraints.

In the next several sections, we will discuss the second task, that of deriving different heuristic functions
from the RTPG structure.

3.2 Admissible heuristics based on action durations and deadlines

In this section, we will discuss how several admissible heuristic functions can be derived from the RTPG.
First, from the observation that all predicates appear at the earliest possible time in the relaxed plan graph, we
can derive an admissible heuristic which can be used tooptimize the makespanof the solution. The heuristic
is defined as follows:
Max-span heuristic: Distance from a state to the goals is equal to the length of the duration between the
time-instant of that state and the time the last goal appears in the RTPG.

The max-span heuristic is admissible and can be used to find the smallest makespan solution for the plan-
ning problem. The proof of admissibility is based on the same observation made in the proof of Proposition
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1. Because all the goals appear in the RTPG at the time instants that arelower boundson the their real time
of achievements, the time instant at which the last goal appears in the RTPG will be the lower bound on the
actual time point at which we can achieve all the goals. Thus, it is a lower bound on the makespan of the
solution.

The max-span heuristic discussed so far can be thought of as a generalized version of the max-action
heuristic used in HSP [3] or max-level heuristic in AltAlt [12]. One of the assumptions in classical plan-
ning is that the goals have no deadlines and they need only be achieved by the end of the plan. Therefore,
all heuristics concentrate on measuring how far the current state is to the point by whichall the goals are
achieved. However, in temporal planning with deadline goals, we can also measure the ‘slack’ values for the
goals as another plan quality measurement (where slack is the difference in time between when the goal was
achieved in the paln, and the deadline specified for its achievement). The slack values for a given set of goals
can also be a good indication on how hard it is to achieve those goals, and thus, how hard it is to solve a
planning problem from a given state. Moreover, slack-based objective functions are common in scheduling.

We will consider objective functions to maximize the minimum, maximum, or summation of slack values
of all the goals for the temporal planning problems. In our case, the slack value for a given goalg is estimated
from the RTPG by taking the difference between the time instant at whichg appears in the RTPG and its
deadline. We now present admissible heuristics for these three slack based objective functions.
Min-slack heuristic: Distance from a state to the goals is equal to the minimum of the slack estimates of all
individual goals.7

Max-slack heuristic: Distance from a state to the goals is equal to the maximum of slack estimates of all
individual goals.
Sum-slack heuristic: Distance from a state to the goals is equal to the summation of slack estimates for all
individual goals.

The min-slack, max-slack, and sum-slack heuristics target the objective functions of maximizing the
minimum slack, maximum slack, and the summation of all slack values. The admissibility of the three
heuristics for the respective objective functions can be proven using the same argument we made for the
max-span heuristic. Specifically, we use the observation that all goals appear in the RTPG at time instants
earlier than the actual time instants at which they can be achieved, to prove that the slack estimated calculated
using the RTPG for any goal will be theupper boundon its actual slack value for the non-relaxed problem.

3.3 Heuristics for efficient satisficing search

We now focus on efficiently finding reasonable quality plans. In the last section, we discussed several admis-
sible heuristics which can be used to find optimal solution according to some objective functions. However,
admissible heuristics such as max-span and slack-based heuristics are only concerned about the time points
at which goals are achieved, and not the length of the eventual plan. In classical planning, heuristics that use
an estimate on the length of the plan have been shown to be more effective in controlling search [7, 12]. To

7If all the goals have the same deadlines, then maximizing the minimum slack is equal to minimizing the makespan of the plan and
the two heuristic values (max-span and min-slack) can be used interchangably.
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estimate the length of the solution, these planners typically use a valid plan extracted from the relaxed plan-
ning graph (the relaxation typically involves ignoring negative interactions). We can use a similar heuristic
for temporal planning.
Sum-action heuristic: Distance from a state to the goals is equal to the number of actions in the relaxed
plan.

The relaxed plan can be built backward from the goals in a manner nearly identical to the procedure used
in Graphplan algorithm[2] in classical planning. We first start with the goals and add actions that support
them to the solution. If we add an action to the solution, then its preconditions are also added to the set of
current goals. The search continues until we “reach” the initial state (i.e the goals are entailed by the initial
state). In our continuing example, the shaded actions in Figure 5 are the ones that appear in the relaxed plan
when we search backward.

Finally, since actions have different durations, the sum of the durations of actions in the relaxed plan is
another way to measure the difficulty in achieving the goals.
Sum-duration heuristic: Distance from a state to the goals is equal to the sum of durations of actions in the
relaxed plan.

If all actions have the same durations, then the sum of durations of all actions in the relaxed plan will
be equivalent to taking the number of actions in the plan. Thus, in this case, sum-action and sum-duration
will perform exactly the same. Neither of these heuristics are admissible; searches using the sum-action or
sum-duration heuristics do not guarantee to return the solutions with smallest number of actions, or solutions
with smallest summation of action durations. The reason is that these two heuristics have their values based
on afirst (relaxed) plan found. There is no guarantee that that first relaxed plan will be smaller than the
smallest real (non-relaxed) plan in terms of number of actions, or summation of durations of actions in the
plan.

3.4 Using metric resource constraints to adjust heuristic values

The heuristics discussed in the last two sections have used the knowledge about durations of actions and
deadline goals but not about resource consumption. By ignoring the resource related effects when building
the relaxed plan, we may miss counting actions whose only purpose is to give sufficient resource-related
conditions to other actions.8 Consequently, ignoring resource constraints may reduce the quality of heuristic
estimate based on the relaxed plan. We are thus interested in adjusting the heuristic values discussed in the
last two sections to account for the resource constraints.

In real-world problems, most actions consume resources, while there are special actions that increase the
levels of resources. Since checking whether the level of a resource is sufficient for allowing the execution of
an action is similar to checking the predicate preconditions, one obvious approach to adjust the relaxed plan
would be to add actions that provide that resource-related condition to the relaxed plan. For reasons discussed
below, it turns out to be too difficult to decide which actions should be added to the relaxed plan to satisfy the
given resource conditions. First, actions that consume/produce the same metric-resource may overlap over
the RTPG and thus make it hard to reason about the resource level at each time point. In such cases, the best
we can do is to find the upper bound and lower bound values on the value of some specific resource. However,
the bounds may not be very informative in reasoning about the exact value. Second, because we do not know
the values of metric resources at each time point, it is difficult to reason as to whether or not an action needs
another action to support its resource-related preconditions. For example, in Figure 5, when we add the
actionfast-flying(B, C) to the relaxed plan, we know that that action will needfuel(airplane) > 400 as its
precondition. However, without the knowledge about the value (level) offuel(airplane) at that time point,
we can hardly decide whether or not we need to add another action to achieve that precondition. If we reason
that the fuel level at the initial state (fuel(airplane) = 500) is sufficient for that action to execute, then we
already miss one unavoidablerefuel(airplane) action (because most of the fuel in the initial state has been
used for the other flying action,fast-flying(A, B)). A final difficulty is that because of the continuous nature
of the metric resources, it is harder to reason if an actiongivesa resource-related effect to another action and
whether or not it is logically relevant to do so. For example, suppose that we need to fly an airplane from
cityA to cityBand we need to refuel to do so. Actionrefuel(airplane, cityC) gives the fuel that the airplane
needs, but it is totally irrelevant to the plan. Adding that action to the relaxed plan (and its preconditions to

8For example, if we want to drive a truck to some place and the fuel level is low, by totally ignoring the resource related conditions,
we will not realize that we may need torefuelthe truck beforedriving it.
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the goal set) will lead to the addition of irrelevant actions, and thus reduce the quality of heuristic estimates
it provides.

In view of the above complications, we introduce a new way of readjusting the relaxed plan to take into
account the resource constraints as follows: we first preprocess the problem specifications and find for each
resourceR an actionAR that can increase the amount ofR maximally. Let∆R be the amount by whichAR

increasesR, and letDur(AR) be the duration ofAR. Let Init(R) be the level of resourceRat the stateSfor
which we want to compute the relaxed plan, andCon(R), Pro(R) be the total consumption and production
of R by all actions in the relaxed plan. IfCon(R) > Init(R) + Pro(R), we use the following formula to
adjust the heuristic values of the sum-action and sum-duration according to the resource consumption.

Sum-action heuristic value h:

h ← h +
∑

R

⌈
Con(R)− (Init(R) + Pro(R))

∆R

⌉

Sum-duration heuristic value h:

h ← h +
∑

R

Con(R)− (Init(R) + Pro(R))
∆R

∗Dur(AR)

We will call the newly adjusted heuristicsadjusted sum-actionandadjusted sum-duration. The basic
idea is that even though we do not know if an individual resource-consuming action in the relaxed plan needs
another action to support its resource-related preconditions, we can still adjust the number of actions in the
relaxed plan by reasoning about the total resource consumption ofall the actions in the plan. If we know
how much excess amount of a resourceR the relaxed plan consumes and what is the maximum increment
of R that is allowed by any individual action in the domain, then we can infer the minimum number of
resource-increasing actions that we need to add to the relaxed plan to balance the resource consumption.

For example, in the relaxed plan for our sample problem, we realize that the two actionsfast-flying(A,B)
andfast-flying(B,C) consume a total of: 1000/2 + 1200/2 = 1100 units of fuel, which is higher than the initial
fuel level of 500 units. Moreover, we know that the maximum increment for the airplane’s fuel is 750 for the
refuel(airplane)action. Therefore, we can infer that we need to add at leastd(1100−500)/750e = 1 refueling
action to make the relaxed plan consistent with the resource consumption constraints. The experimental
results in Section 4 show that the metric resource related adjustments are quite important in domains which
have many actions consuming different types of resources.

The adjustment approach described above is useful for improving the sum-action and sum-duration
heuristics, but it can not be used for the max-span and slack-based heuristics without sacrificing their ad-
missibility. In future, we intend to investigate the resource constraint-based adjustments for those heuristics
that still preserve their admissibility.

4 Experimental results

We have implementedSapain Java. To date, our implementation ofSapahas been primarily used to test the
performance of different heuristics and we have spent little effort on code optimization. We were primarily
interested in seeing how effective the heuristics were in controlling the search. In the case of heuristics for
satisficing search, we were also interested in evaluating the quality of the solution. We evaluate the perfor-
mance ofSapaon problems from two metric temporal planning domains to see how well it performs in these
complex planning problems. The first one is the zeno-flying domain discussed in Section 2.2 [14]. The sec-
ond is our version of the temporal and metric resource version of the logistics domain. In this domain, trucks
move packages between locations within one city, and planes carry them from one city to another. Different
airplanes and trucks move with different speeds, have different fuel capacities, different fuel-consumption-
rates, and different fuel-fill-rates when refueling. The temporal logistics domain is more complicated than
the zeno-flying domain because it has more types of resource-consuming actions. Moreover, therefuelac-
tion in this domain has a dynamic duration, which is not the case for any action in the zeno-flying domain.
Specifically, the duration of this action depends on the fuel level of the vehicle and can only be decided at the
time we execute that action.

Table 2 and 3 summarize the results of our empirical studies. Before going into the details, we should
mention that among the different types of heuristics discussed in the Section 3, max-span and slack-value

10



sum-act sum-act adjusted sum-dur sum-dur adjusted
prob time (s) node time (s) node time (s) node time (s) node

zeno1 0.272 14/48 0.317 14/48 0.35 20/67 0.229 9/29
zeno2 92.055 304/1951 61.66 188/1303 - - - -
zeno3 23.407 200/996 38.225 250/1221 7.72 60/289 35.757 234/1079
zeno4 - - 37.656 250/1221 7.76 60/289 35.752 234/1079
zeno5 83.122 575/3451 71.759 494/2506 - - - -
zeno6 64.286 659/3787 27.449 271/1291 - - 30.530 424/1375
zeno7 1.34 19/95 1.718 19/95 1.374 19/95 - -
zeno8 1.11 27/87 1.383 27/87 1.163 27/87 1.06 14/60
zeno9 52.82 564/3033 16.310 151/793 130.554 4331/5971 263.911 7959/10266

log p1 2.215 27/159 2.175 27/157 2.632 33/192 2.534 33/190
log p2 165.350 199/1593 164.613 199/1592 37.063 61/505 - -
log p3 - - 20.545 30/215 - - - -
log p4 13.631 21/144 12.837 21/133 - - - -
log p5 - - 28.983 37/300 - - - -
log p6 - - 37.300 47/366 - - - -
log p7 - - 115.368 62/531 - - - -
log p8 - - 470.356 76/788 - - - -
log p9 - - 220.917 91/830 - - - -

Table 2: Solution times and explored/generated search nodes forSapain the zeno-flying and temporal lo-
gistics domains with sum-action and sum-duration heuristics with/without resource adjustment technique.
Times are in seconds. All experiments are run on a Sun Ultra 5 machine with 256MB RAM. “-” indicates
that the problem can not be solved in 500 seconds.

based heuristics are admissible. However, they do not scale up to reasonable sized problems. As a matter
of fact, the max-span heuristic can not solve any problems in Table 2 in the allotted time. The sum-slack
heuristic returns an optimal solution (in terms of makespan and sum-slack values) for the problemZeno1in
zeno-flying domain in 7.3 seconds, but can not solve any other problems. However, both are able to solve
smaller problems that are not listed in our result tables. Because of this, most of our remaining discussion is
directed towards sum-action and sum-duration heuristics.

Table 2 shows the running times ofSapafor thesum-actionandsum-durationheuristics with and without
metric resource constraint adjustment technique (refer to Section 3.4) in the two planning domains discussed
above. We tested with 9 problems from each domain. Most of the problems require plans of 10-30 actions,
which are quite big compared to problems solved by previous domain-independent temporal planners re-
ported in the literature. The results show that most of the problems are solved within a reasonable time (e.g
under 500 seconds). More importantly, the number of nodes (time-stamped states) explored, which is the
main criterion used to decide how well a heuristic does in guiding the search, is quite small compared to the
size of the problems. In many cases, the number of nodes explored by the best heuristic is only about 2-3
times the size of the plan.

In general, the sum-action heuristic performs better than the sum-duration heuristic in terms of planning
time, especially in the logistics domain. However, there are several problems in which the sum-duration
heuristic returns better solving times and smaller number of nodes. The metric resource adjustment technique
greatly helps the sum-action heuristic, especially in the logistics domain, where without itSapacan hardly
solve the bigger problems. We still do not have a clear answer as to why the resource-adjustment technique
does not help the sum-duration heuristic.
Plan Quality: Table 3 shows the number of actions in the solution and the duration (makespan) of the
solution for the two heuristics analyzed in Table 2. These categories can be seen as indicative of the problem’s
difficulty, and the quality of the solutions. By closely examining the solutions returned, we found that the
solutions returned bySapahave quite good quality in the sense that they rarely have many irrelevant actions.
The absence of irrelevant actions is critical in the metric temporal planners as it will both save resource
consumption and reduce execution time. It is interesting to note here that the temporal TLPlan[1], whose
search algorithmSapaadapts, usually outputs plans with many more irrelevant actions. Interestingly, Bacchus
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sum-act sum-act adjusted sum-dur sum-dur adjusted
prob #act duration #act duration #act duration #act duration

zeno1 5 320 5 320 5 320 5 320
zeno2 23 1020 23 950 - - - -
zeno3 22 890 13 430 13 450 17 400
zeno4 - - 13 430 13 450 17 400
zeno5 20 640 20 590 - - - -
zeno6 16 670 15 590 - - 14 440
zeno7 10 370 10 370 10 370 - -
zeno8 8 320 8 320 8 320 8 300
zeno9 14 560 13 590 13 460 13 430

log p1 16 10.0 16 10.0 16 10.0 16 10.0
log p2 22 18.875 22 18.875 22 18.875 - -
log p3 - - 12 11.75 - - - -
log p4 12 7.125 12 7.125 - - - -
log p5 - - 16 14.425 - - - -
log p6 - - 21 18.55 - - - -
log p7 - - 27 24.15 - - - -
log p8 - - 27 19.9 - - - -
log p9 - - 32 26.25 - - - -

Table 3: Number of actions and duration (makespan) of the solutions generated bySapain the zeno-flying and
logistics domains with sum-action and sum-duration heuristics with/without resource adjustment technique.

& Ady mention that their solutions are still better than the ones returned by LPSAT[19], which makes our
solutions that much more impressive compared to LPSAT.

The pure sum-action heuristic without resource adjustment normally outputs plans with slightly higher
number of actions, and longer makespans than the sum-duration heuristic. In some cases, the sum-action
heuristic guides the search into paths that lead to very high makespan values, thus violating the deadline
goals. After that, the planner has harder time getting back on the right track. Examples of this are zeno-4 and
log-p3 which cannot be solved with sum-action heuristic if the deadlines are about 2 times smaller than the
optimal makespan (because the search paths keep extending the time beyond the deadlines). The resource
adjustment technique not only improves the sum-action heuristic in solution times, but also generally shortens
the makespan and occasionally reduces the number of actions in the plan as well. As mentioned earlier, the
adjustment technique generally does not help the sum-duration heuristics in solving time, but it does help
reduce the makespan of the solution in most of the cases where solutions can be found. However, the set of
actions in the plan is generally still the same, which suggests that the adjustment technique does not change
the solution, butpushesthe actions up to an earlier part of the plan. Thus, it favors the execution of concurrent
actions instead of using the special actionadvance-timeto advance the clock.

When implementing the heuristics, one of the decisions we had to make was whether to recalculate
the heuristic value when we advance the clock, or to use the same value as that of the parent node. On
the surface, this problem looks trivial and the correct way seems to be to recalculate the heuristic values.
However, in practice, keeping the parent node’s heuristic value when we advance the clock always seems
to lead to solutions with equal or slightly better makespan. We can explain the improved makespan by the
fact that recalculating the heuristic value normally favors theadvance-clockaction by outputting a smaller
heuristic value for it than the parent. Using many suchadvance-clockactions will lead to solutions with
higher makespan values. The solving time comparison is somewhat mixed. Keeping the parent heuristics
value speeds up 6 of the 9 problems tested in the logistics domain by average of 2x and slows down about
1.5x in the 3 zeno-flying problems. We do not have a clear answer for the solution time differences between
the two approaches. In the current implementation ofSapa, we keep the parent node’s heuristic value when
we advance the clock.

Although we wanted to compareSapato other planners, there are very few implementations of metric
temporal planners with capabilities comparable toSapathat are publicly available and even they tend to scale
up poorly. For example, although Zeno is a more expressive planner thanSapa, it can not scale up to bigger
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problems. The easiest problem in the zeno-flying domain in Table 2 (Zeno1) is reported in [14] to be solved
by Zeno in several minutes with hand-coded domain control rules.9 IxTeT is another known planner that we
would have like to compare to, but the code is not available and IxTeT’s results reported in the literature have
concentrated on a class of temporal problems that use discrete, but not metric, resources. In the near future,
we intend to compare our planner with TGP[16] and TP4[6] on a simpler set of temporal planning problems
that can be handled by all three of them.

5 Related work

There have been several temporal planning systems in the literature that can handle different types of tem-
poral and resource constraints. Among them, planners such as temporal TLPlan[1], Zeno[14], IxTeT[9],
and HSTS[11] can solve problems that are similar to the one solved bySapa. There are also planners such
as Resource-IPP[8], TP4[6], TGP[16], and LPSAT[19] that can handle a subset of the types of problems
discussed in this paper.

Closest to our work is the temporal TLPlan [1], which originates the algorithm to support concurrent
actions in the forward state space search. The critical difference between this planner andSapais that while
temporal TLPlan is controlled by hand-coded domain-specific control rules,Sapauses domain-independent
heuristics. Experimental results reported in [1] indicate that while Temporal TLPlan is very fast, but it tends
to output plans with many irrelevant actions.

There are several partial order planners that can handle various types of temporal and resource constraints.
Zeno[14] can solve problems with a wide range of constraints, as well as actions with conditional and quanti-
fied effects. However, Zeno lacks heuristic control and scales poorly. IxTeT[9] is another hierarchical partial
order planner that can handle many types of temporal and resource constraints. Most of IxTeT’s interesting
innovations have been aimed at on handling discrete resources such as robots or machines but not on metric
resources. HSTS[11] is a partial order planner that has been used to solve NASA temporal planning prob-
lems. Like TLPlan, HSTS uses hand-coded domain control knowledge to guide its search. parcPlan[10] is a
domain-independent temporal planner using the least-commitment approach. parcPlan claims to be able to
handle a rich set of temporal constraints, but the experiments in [10] do not demonstrate its expressiveness
adequately.

Resource-IPP (RIPP)[8] is an extension of the IPP planner to deal with durative actions that may consume
metric resources. RIPP considers time as another type of resource and solves the temporal planning problem
by assuming that actions are still instantaneous. Like IPP, RIPP is based on Graphplan[2] algorithm. A
limited empirical evaluation of RIPP is reported in [8]. TP4[6] by Haslumn & Geffner is a recent planner that
employs backward chaining state space search with temporal or resource related admissible heuristics. The
results of TP4 are promising in a subset of temporal planning problems where durations are measured in unit
time, and resources decrease monotonically.

There are several planners in the literature that handle either temporal or resource constraints (but not
both). TGP[16] is a temporal planner based on the Graphplan algorithm. TGP extends the notion of mutual
exclusion relations in the Graphplan algorithm to allow constraints between actions and propositions. RTPG
can be seen as a relaxed version of the planning graph that TGP uses. While TGP might provide better bounds
on slacks and times of achievement, it is also costlier to compute. Cost of computation is especially critical as
Sapawould have to compute the planning graph once for each expanded search node. It is nevertheless worth
investigating the overall effectiveness of heuristics derived from TGP’s temporal planning graph. LPSAT[19]
can handle metric resource constraints by combining SAT and linear programming. As noted in Section 4,
LPSAT seems to suffer from poor quality plans.

6 Conclusion and future work

In this paper, we describedSapa, a domain-independent forward chaining heuristic temporal planner that can
handle metric resource constraints, actions with continuous duration, and deadline goals.Sapadoes forward
search in the space of time-stamped states. Our main focus has been on developing effective heuristics to
control the search. We considered both satisficing and optimizing search scenarios and proposed effective

9We tried to run Zeno on the same machine used to testSapawithout control-knowledge for that problem, but Zeno indicated that it
can not solve and returned a partial solution.
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heuristics for both. Our heuristics are based on the relaxed temporal planning graph structure. For optimizing
search, we introduced admissible heuristics for objective functions based on the makespan and slack values.
For satisficing search, we looked at heuristics such as sum-action and sum-duration, that are based on plans
derived from RTPG. These were found to be quite efficient in terms of planning time. We also presented a
novel technique to improve the heuristic values by reasoning about the metric resource constraints. Finally,
we provided an extensive empirical evaluation demonstrating the performance ofSapain several metric
temporal planning domains.

In the near term, we intend to investigate the problem of finding better relaxed plans with regard to the
resource and temporal constraints of actions in the domain. We are interested in how to use the resource
time maps discussed in [8] in constructing the relaxed plan. Moreover, we want to use the binary mutex
information,a la TGP [16] to improve heuristics in both optimizing and satisficing searches. Our longer
term plans include incorporatingSapain a loosely-coupled architecture to integrate planning and scheduling,
which will be the logical continuation of our work with theRealplansystem[18].
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