
Partial Satisfaction (Over-Subscription) Planning as
Heuristic Search

Minh B. Do & Subbarao Kambhampati ∗

Department of Computer Science and Engineering
Arizona State University, Tempe AZ 85287-5406

Abstract

Many planning problems can be characterized as over-subscription problems in that goals have dif-
ferent utilities, actions have different costs and the planning system must choose a subset that will
provide the greatest net benefit. This type of problems can not be solved by existing planning sys-
tems, where goals are assumed to have uniform utility, and the planner can terminate only whenall of
the goals are achieved. Existing methods for such problems use greedy approaches, which pre-select
a subset of goals based on their estimated utility, and solve for those goals. Unfortunately, greedy
methods, while efficient, can produce plans of arbitrarily low quality. In this paper, we introduce
a more sophisticated heuristic search framework for over-subscription planning problems. In our
framework, top-level goals are treated assoft-constraintsand the search is guided by a relaxed-plan
based heuristic that estimates the most beneficial set of goals from a given state. We implement
this search framework in the context ofSapa, a forward state-space planner. We provide prelimi-
nary empirical results that demonstrate the effectiveness of our approach in comparison to a greedy
approach.

1 Introduction

Many planning problems can be characterized as over-subscription problems (c.f. Smith(2003; 2004)) in that
goals have different values and the planning system must choose a subset that can be achieved within the time
and resource limits. Examples of the over-subscription problems include many of NASA planning problems
such as planning for telescopes like Hubble[Kramer & Giuliano, 1997], SIRTF[Kramer, 2000], Landsat 7
Satellite[Potter & Gasch, 1998]; and planning science for Mars rover[Smith, 2003]. Often, given the resource
and time limits, not all goals can be accomplished, and thus the planner needs to focus on a subset of goals that
have highest total value given those constraints. In this paper, we consider a subclass of the over-subscription

∗Minh Do’s current address is: Palo Alto Research Center, Room 1530; 3333 Coyote Hill Road; Palo Alto CA 94304-
1314. We thank Romeo Sanchez, Menkes van den Briel, Will Cushing and David Smith for many helpful comments. This
research is supported in part by the NSF grant IIS-0308139 and the NASA grants NCC2-1225 and NAG2-1461.



problem where goals have different utility (or values) and actions incur different execution costs. The objective
is to find the bestbeneficialplan, that is the plan with the best tradeoff between the total benefit of achieved
goals and the total execution cost of actions in the plan. We refer to this subclass of the over-subscription
problems as partial-satisfaction planning (PSP) problems (since not all the goals need to be satisfied by the
final plan), and illustrate it with an example:

Disneyland

San Jose

San Francisco

Las Vegas

G1: AAAI(SJ)

U(G1) = 300

G3: HaveFun(SF)

U(G3) = 100

G2: HaveFun(DL)

U(G2) = 100

C: 20

C: 70

C: 230

C: 80

C: 90

C: 200

C: 200

C: 100

San Diego

G4: SeeZoo(SD)

U(G4) = 50

C: 40

C: 110

Figure 1: The travel example

Example: In Figure 1, we show the travel example that we will
use throughout the paper. In this example, a student living in
Las Vegas (LV) needs to go to San Jose (SJ) to present a AAAI
paper. The cost for traveling isC(travel(LV, SJ)) = 230
(airfare + hotel). To simplify the problem, we assume that if
the student arrives at San Jose, he automatically achieves the
goalg1 = Attended AAAI with utility U(g1) = 300 (equals
to the AAAI’s student scholarship). The student also wants to
go to Disneyland (DL) and San Francisco (SF) to have some
fun and to San Diego (SD) to see the zoo. The utilities of
having fun in those three places (U(g2 = HaveFun(DL)),
U(g3 = HaveFun(SF )), U(g4 = SeeZoo(SD))) and the
cost of traveling between different places are shown in Fig-
ure 1. The student needs to find a traveling plan that gives him the best tradeoff between the utilities of being
at different places and the traveling cost (transportation, hotel, entrance ticket etc.). In this example, the best
plan isP = {travel(LV, DL), travel(DL, SJ), travel(SJ, SF )} that achieves the first three goalsg1, g2, g3

and ignores the last goalg4 = SeeZoo(SD).

Current planning systems are not designed to solve the over-subscription or PSP problems. Most of them
expect a set of conjunctive goals of equal value and the planning process does not terminate until all the
goals are achieved. Extending the traditional planning techniques to solve the over-subscription problem poses
several challenges:

• The termination criteria for the planning process change because there is no fixed set of conjunctive goals
to satisfy.

• Heuristic guidance in the traditional planning systems are designed to guide the planners to achieve a fixed
set of goals. They can not be used directly in the over-subscription problem.

• Plan quality should take into account not only action costs but also the values of goals achieved by the
final plan.

Over-subscription problems have received some attention in scheduling, using the “greedy” approaches. Straight-
forward adaptation to planning would involve considering goals in the decreasing order of their values. How-
ever, goals with higher values may also be more expensive to achieve and thus may give the cost vs. benefit
tradeoff that is far from optimal. Moreover, interactions between goals may make the cost/benefit to achieve
a set of goals quite different from the value of individual goals. Recently, Smith (2004) and van den Briel et.
al (2004) proposed two approaches for solving partial satisfaction planning problems by heuristically select-
ing a subsetS of goals that appear to be the most beneficial and then use the normal planning search to find
the least cost solution that achieve all goals inS. If there aren goals then this approach would essentially
involves selecting the most beneficial subset of goals among a total of2n choices. While this type of approach



Classical Planning PSP

Potential solutions Feasible plans: achieve all goals Beneficial plans: +ve net benefit
Termination Any plan achieving all goals Plan with the highest net benefit.

g value Num. actions in the current plan Net benefit of the current plan
h value Num. additional actions needed Additional net benefit that can be achieved

Figure 2: Comparing the A* models of normal and PSP planning problems

is less susceptible to inoptimal plans compared to the naive greedy approach, it too is overly dependent on
the informedness of the initial goal-set selection heuristic. If the heuristic is not informed, then there can be
beneficial goals left out andS may contain unbeneficial goals.

In this paper, we discuss a heuristic search framework for solving the PSP problems that involves treating the
top-level goals assoft-constraints. The search framework does not concentrate on achieving a particular subset
of goals, but rather decides what is the best solution for each node in a search tree. The evaluations of theg
andh values of nodes in the A* search tree are based on the subset of goals achieved in the current search
node and the best potential beneficial plan from the current state to achieve a subset of the remaining goals. We
implement this technique over theSapaplanner[Do & Kambhampati, 2003] and show that it can produce high
quality plans compared to the greedy approach.

The rest of the paper is organized as follows: in the next two sections, we discuss a general A* search model
partial satisfaction planning problem and how heuristic guidance measures are calculated. We then provide
some empirical results and conclude the paper with discussions on the related and future work.

2 Handling Partial Satisfaction Planning Problems with A* Search

Most of the current successful heuristic planners[Bonet & Geffner, 1997; Hoffmann & Nebel, 2001; Do &
Kambhampati, 2003; Nguyen et. al., 2001; Edelkamp, 2003] use weighted A* search with heuristic guidances
extracted from solving the relaxed problem ignoring the delete list. In the heuristic formulaf = g + w ∗ h
guiding the weighted A* search, theg value is measured by the total cost of actions leading to the current state
and theh value is the estimated total action cost to achieve all goals from the current state (forward planner) or
to reach the current state from the initial state (backward planner).

Compared to the traditional planning problem, PSP problem has several new requirements: (i) goals have
different utility values; (ii) not all the goals need to be accomplished in the final plan; (iii) the plan quality is
not measured by the total action cost but the tradeoff between the total achieved goals’ utilities and the total
action cost. Therefore, in order to employ the A* search, we need to modify the way each search node is
evaluated as well as the criteria used to terminate the search process (see Figure 2). To keep the discussion
simple, in this paper we will consider search in the context of a forward planner; the model can however be
easily extended to regression planning.

In the forward planners, applicable actions are applied to the current state to generate new states. Generated
nodes are sorted in the queue by theirf values. The search stops when the first node taken from the queue satis-
fies all the pre-defined conjunctive goals. In our ongoing example, at the initial stateSinit = {at(LV )}, there
are four applicable actionsA1 = travel(LV, DL), A2 = travel(LV, SJ), A3 = travel(LV, SF ) andA4 =
travel(LV, SD) that lead to four statesS1 = {at(DL), g2}, S2 = {at(SJ), g1}, S3 = {at(SF ), g3}, and
S4 = {at(SD), g4}. Assume that we pick stateS1 from the queue, then applying actionA5 = travel(DL, SF )



to S1 would lead to stateS5 = {at(SF ), g2, g3}. For a given stateS, let partial planPP (S) and goal setG(S)
be the plan leading from the initial stateSinit to S and the set of goals accomplished inS. Theg value in the
formulaf = g + w ∗h guiding the weighted A* search for solving PSP problem is calculated as the difference
between the cumulative utility of the goals covered, and the cumulative cost of the actions used:

g value: g(S) = U(G(S))− C(PP (S))
Thus, for stateS5, the total accumulated utility and cost values are:U(G(S5)) = U(g2)+U(g3) = 100+100 =
200, andC(PP (S5)) = C(A1) + C(A5) = 90 + 100 = 190.

For a given stateS, let PR be a plan segment that is applicable inS (i.e., it can be executed starting atS),
andS′ = Apply(PR, S) is a state resulting from applyingPR to S. Like PP (S), the cost ofPR is the sum of
the costs of all actions inPR. The utility of the (partial) planPR according to stateS is defined as follows:
U(Apply(PR, S)) = U(G(S′))− U(G(S)).

Best beneficial remaining plan:For a given stateS, the best beneficial remaining planPB
S is a plan applicable

in S and there is no other planP applicable inS such that:U(Apply(P, S))−C(P ) > U(Apply(PB
S , S))−

C(PB
S )

The optimalutility-to-goof a given state is calculated as follows:

h∗ value: h∗(S) = U(Apply(PB
S , S))− C(PB

S )

Notice that since the empty planP∅ containing no actions is applicable in all states, andU(Apply(P∅, S)) =
C(P∅) = 0, U(Apply(PB

S , S))− C(PB
S ) ≥ 0 for any stateS.

In our ongoing example, from stateS1, the most beneficial plan isPB
S1

= {travel(DL,SJ), travel(SJ, SF )},
andU(Apply(PB

S1
, S1)) = U({g1, g2, g3})−U({g2}) = 300+100+100−100 = 400, C(PB

S1
) = 200+20 =

220, and thush∗(S1) = 400−220 = 180. Computingh∗(S) value directly is impractical as we need to search
for PB

S in the space of all potential plans fromS′. In the next section, we will discuss a heuristic approach to
approximate theh∗ value of a given search nodeS using anh function that involves approximatingPB

S using
a relaxed plan for going fromS to G.

The general search algorithm, which uses the valuef = g +w ∗h to sort the nodes in the queue in a decreasing
order, is described in Figure 3. In this algorithm, search nodes are categorized as follows:

Beneficial Node:S is a beneficial node ifg(S) > 0.

Thus, beneficial nodesS are nodes that give positive net benefit even if no more actions are applied toS. In our
ongoing example, all five nodesS1, S2, S3, S4, S5 are beneficial nodes. If we decide to extendS1 by applying
the actionA6 = travel(DL, LV ) then we will get stateS6 = {at(LV ),HaveFun(DL)}, which is not a
beneficial node (g(S6) = 100− 180 = −80).

Termination Node: ST is a termination node if: (i)h(ST ) = 0, (ii) g(ST ) > 0, and (iii) ∀S : g(ST ) > f(S).

Termination nodeST is thebestbeneficial node in the queue. Moreover, becauseh(ST ) = 0, there is no benefit
of extendingST and therefore we can terminate the search atST . Notice that if the heuristic isadmissibleand
we usedf = g + h,1 then the set of actions leading toST is guaranteed to be anoptimal solutionfor the PSP

1In this case, a heuristic is admissible ifh(S) over-estimates (higher than or equal to) theU(Apply(P B
S , S))−C(P B

S )



0

Cost

Time52.5 3.5

300

180

90

Travel(SJ,DL)

Travel(SF,DL)

Travel(LV,DL)

Disneyland

San Jose

San Francisco

Las Vegas
G1(U:300)

G3(U:100)

G2(U:100)

A1(C=90)

[G1,G2,G3] A2(C=200)

[G1]

A3(C=100)

[G3]

Figure 4: Samples of a cost function (of goalAt(DL)) and the relaxed plan.

problem.

Unpromising Node: S is a unpromising node iff(S) ≤ 0.

01. State Queue:SQ={Sinit}
02. Best beneficial node:NB = ∅
03. Best benefit:BB = 0
04. while SQ6={}
05. S:= Dequeue(SQ)
06. if (g(S) > 0) ∧ (h(S) = 0) then
07. Terminate Search;
08. Nondeterministically selectA applicable inS
09. S’ := Apply(A,S)
10. if g(S′) > BB then
11. PrintBestBeneficialNode(S′)
12. NB ← S′; BB ← g(S′)
13. if f(S) ≤ 0 then /*unpromising*/
14. Discard(S)
15. elseEnqueue(S’,SQ)
16. end while;

Figure 3: Anytime A* search algorithm for PSP prob-
lems.

Unpromising nodes are not only not beneficial cur-
rently (i.e., g(S) ≤ 0), but none of their de-
scendant nodes are expected to have positive util-
ity. For example, if we take stateS2 and ex-
tend it by applying actionA7 = travel(SJ,LV )
(going back to LV) then we get to stateS7 =
{at(LV ), Attended AAAI} with U(S7) = 300,
C(S7) = 460. h∗(S7) = 20 (PB

S7
=

travel(LV, SF )) is positive but not enough to bal-
ance the total cost and thusS7 is a unpromising
node.2

As described in Figure 3, the search algorithm
starts with the initial stateSinit and keeps dequeu-
ing the best promising nodeS (i.e. highestf
value). If S is a termination node, then we stop
the search. IfS is not, then we extendS by apply-
ing applicable actionsA to S. If the newly gener-
ated nodeS′ = Apply(A,S) is a beneficial node
and has a betterg(S′) value than the best beneficial
node visited so far, then we print the plan leading
from Sinit to S′. Finally, if S′ is not a unpromising node, then we will put it in the search queueSQ sorted in
the decreasing order off values.

Notice that because we keep outputting the best beneficial nodes while conducting search, this is an anytime
algorithm. Thus, we can impose the time or search node limit on the algorithm and try to find the best plan
within those limits. To demonstrate the anytime search framework, let’s assume that the nodesS1, S2, S3, S4

value.
2Note that if a given node is not abeneficial nodethen it does not mean that it’s aunpromising node. A given nodeS

can have valueg(S) < 0 but f(S) = g(S) + h(S) > 0 and is still promising to be extended to reach a beneficial node
later.



are generated in that order when we extendSinit. Starting with the best benefit value ofBB = 0, the planner
will first output the planP1 = PP (S1) = A1 leading toS1 and change the value ofBB to BB = g(S1) =
100 − 90 = 10. Then, whenS2 is generated, becauseg(S2) = 70 > BB = 10, the planner outputsP2 =
PP (S2) = A2 as the new best plan. NodesS3 andS4 are less beneficial and are just put back inSQ. Assuming
a perfect heuristic (the optimal plan for this example is given in the first section), the planner will pickS1

to extend. By applying actionA7 = travel(DL, SJ) to S1, we get to stateS7 that is more beneficial than
the best state visited (g(S7) = 400 − 290 = 110 > BB = 70) and thus we will outputP3 = PP (S7) =
{travel(LV, DL), travel(DL,SJ)}. The algorithm continues until we reach the termination nodeS8 =
Apply(travel(SJ, SF ), S7).

3 Heuristic Estimation (Estimating PB
S using cost-sensitive relaxed plans)

For a given stateS, while calculating theg(S) value is trivial, estimating theh∗(S) value is not an easy task as
we have to first guess the planPB

S . If all the goals are reachable, the actions have uniform cost and the goals
have substantially higher utilities than action costs, then finding the least cost solution for a traditional planning
problem is a special case of findingPB

Sinit
for the PSP problem. To get around this, we approximatePB

S in
terms of a relaxed plan for going fromS to the goal state. There are two challenges even with this (1) we need
to make relaxed plans sensitive to action costs and (2) we need to take into account the fact that not all goals in
the goal state need be achieved (in other words, the relaxed plan may need only focus on a subset of the goals).

To make the relaxed plan extraction sensitive to costs, we use the cost-sensitive temporal planning graph used
in Sapa[Do & Kambhampati, 2003]. We first build the time-sensitive cost functions for facts in the planning
graph until the estimated costs to achieve the individual goals are stabilized. Assume that the student can only
go toSJ andSF from LV by airplane, which take respectively 1.0 and 1.5 hour. He can also travel by car
from LV , SJ , andSF to DL in 5.0, 1.5 and 2.0 hours, respectively. On the left side of Figure 4, we show the
cost function for goalg2 = At(DL), which indicates that the earliest time to achieveg2 is at 2.5 (hour) with
the lowest cost of 300 (route:LV → SJ → DL). The lowest cost to achieveg2 reduces to 180 att = 3.5
(route:LV → SF → DL) and again att = 5.0 to 90 (direct path:LV → DL).

To handle the fact that not all goals need be supported by the relaxed plan, we start with a relaxed plan sup-
porting all the goals and “whittle” it down by not supporting goals which are “expensive” (in that the actions
needed to support the goal cost more than the utility provided by the goal).3

Specifically, using the cost functions for goals and other facts in the problem, we first heuristically extract the
least cost plan that achieves the remaining goals. For example, if we need to find a supporting action to support
goalg2 at timet = 4, then the least cost action isA = travel(SF, DL) (Figure 4). Starting with the top level
goals, if we choose an actionA to satisfy goalg, then we add the preconditions ofA to the set of goals to be
achieved. In our ongoing example, if we selectA = travel(DL, SF ) to satisfyg3 = HaveFun(SF ), then
the goalg = at(DL) is added to the current set of subgoals. The process terminates when all the subgoals
are satisfied by the initial state. We then use a second scan through the extracted relaxed plan to remove
goals that do not offset the cost of the actions supporting them (along with the actions that contribute solely
to the achievement of those goals). To do this purpose, we build thesupported-goalslist GS for each action
A and factP starting from the top level goals as follows:GS(A) =

⋃
GS(P ) : P ∈ Effect(A) and

GS(P ) =
⋃

GS(A) : P ∈ Precond(A).

3Notice that another way of handling this would have been to interleave the goal selection and relaxed plan construction
process. This is what is done byAltAltps [van den Briel et. al., 2004].



Assume that our algorithm extracts the relaxed planP = RP (Sinit) = {A1 : travel(LV,DL), A2 :
travel(DL, SJ), A3 : travel(DL,SF )}4. On the right side of Figure 4, we show this relaxed plan along
with goals each action supports. We build the supported-goals set for each action by going backward from
the top level goals. For example, actionA2 andA3 support onlyg1 andg3 so the goal support list for those
two actions will beGS(A2) = {g1} andGS(A3) = {g3}. The precondition of those two actions,At(DL),
would in turn contribute to both these goalsGS(At(DL)) = {g1, g3}. Finally, becauseA1 supports bothg2

andAt(DL), GS(A1) = GS(g2) ∪GS(At(DL)) = {g1, g2, g3}.

Using the supported-goals sets, for each subsetSG of goals, we can identify the subsetSA(S) of actions that
contribute only to the goals inSG. If the cost of those actions exceeds the sum of utilities of goals inSG, then
we can removeSG andSA(SG) from the relaxed plan. In our example, actionA3 is the only one that solely
contributes to the achievement ofg3. SinceC(A3) ≥ U(g3), we can removeA3 andg3 from consideration.
The other two actionsA1, A2 and goalsg1, g2 all appear beneficial. In our current implementation, we consider
all subsets of goals of size 1 or 2 for possible removal. After removing unbeneficial goals and actions (solely)
supporting them, the cost of the remaining relaxed plan and the utility of the goals that it achieves will be used
to compute theh value. Thus, in our ongoing example,h(S) = (U(g1) + U(g2)) − (C(A1) + C(A2)) =
(100 + 300)− (90 + 200) = 110.

We note that the current heuristic used inSapaPS is not admissible, this is because: (i) a pruned unpromising
node may actually be promising (i.e. extendible to reach nodeS with g(S) > BB); and (ii) a termination node
may not be the best beneficial node. In our implementation, even though weightw = 1 is used in equation
f = g + w ∗ h to sort nodes in the queue, a different valuew = 2 is used for pruning (unpromising) nodes
with f = g + w ∗ h ≤ BB . Thus, only nodesS with estimated heuristic valueh(S) ≤ 1

w × h∗(S) are pruned.
For the second issue, we can continue the search for a better beneficial nodes after a termination node is found
until some resource limits are reached (e.g. reached certain number of search node limit).

4 Empirical Evaluation

We have implemented the heuristic search algorithm for PSP problems discussed in this paper on top of theSapa
planner. We call the new plannerSapaPS . We tested our planner on a set of randomly-generated problems
for the two set of problems (ZenoTravelandSatellite) used in the Third International Planning Competition
(IPC3) and compared it with a greedy algorithm representative of other existing approaches (see below). All
tests were run in the Cygwin environment using a Pentium IV 1.4GHz with 768MB RAM machine with 1200
seconds time limit. In this section, we first discuss the benchmark problems and then the experimental results.

Generating Test Problems: Given that in general, a given action cost is decided by the amount of metric
resources consumed and/or the time spent by that action, we decided to generate the PSP Net Benefit problems
from the set of metric temporal planning problems used in IPC3. In particular, we generated the PSP versions
of the problems in the ZenoTravel and Satellite domains as follows:

Domain File: We modify the domain files by adding the cost field to each action description. Each action cost
is represented as a formula involving metric functions that exist in the original problem descriptions and also
new functions that we add to the domain description file. The cost field utilizes both the functions representing
metric quantities in the original problem descriptions, and the newly introduced cost-related functions used to

4This is not a legal plan becauseA2 andA3 are mutually exclusive. However, we relaxed negative interactions, and
thus it appears valid.



ZenoTravel Time PSP

0

5000

10000

15000

20000

25000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Problems

T
o

ta
l 
B

e
n

e
fi

t

Greedy Search

SapaPS

Satellite Complex

0

20000

40000

60000

80000

100000

120000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
 Problems

T
o

ta
l 
B

e
n

e
fi

t

Greedy Search

SapaPS

Figure 5: Comparing solution quality betweenSapaPS and greedy search.

convert the temporal and resource consumption aspects of each action into a uniform plan benefit represented
by the amount of money spent (e.g. ZenoTravel domain) or energy consumed (e.g. Satellite domain).5

Problem File:For each domain, we write a Java program that parses the problem files used in the IPC3 in each
domain and generates the PSP version of that problem with cost-related function values randomly generated
within appropriate upper and lower bounds. Like the metric functions related to the action costs, the goal
utilities are also randomly generated within different upper/lower bounds.6

Greedy Search:To evaluate theSapaPS algorithm, we compare it with a greedy search strategy on the two
domains discussed above. The greedy search algorithm that we implemented is called “static greedy” because
it decides a static order of goals to achieve according to the decreasing order of goal utilities. Starting from the
initial state, we try to first find a lowest cost plan that one goal at a time and try to find lowest cost plan that
satisfies that single goaland does not delete any of the achieved goals. If there is no plan found that has less
cost than the utility of the goal that it achieves, then we will skip that goal and move on to the next highest
utility goal. This process continues until there is no goal left.

Figure 5 shows the comparisons between theSapaPS algorithm discussed in this chapter and the greedy search
algorithm discussed above for the first 15 problems of the twoZenoTravel(Timesetting) andSatellite(Complex
setting) domains. All results were collected using a Pentium IV 1.4GHz machine with running time limit of
1200 seconds. Both domains and problem sets are taken from the third IPC, and the procedure to make the PSP
variations out of them was described above. The results show that in most cases,SapaPS produces plans which
have significantly higher total benefit values than the greedy search. In the ZenoTravel domain, the average
quality improvement over problems that both approaches can find beneficial solutions is 1.8x. Moreover, there
are 5 instances for whichSapaPS can find beneficial solutions while the greedy approach can not find any.
Thus, in those problems, there seem to be no beneficial plan that achieves a single goal but only plans that
sharing actions to achieve multiple goals can be beneficial. For theSatellitedomain, the average improvement
is 6.1x. The size of the plans in the two domains are quite large, with the largest plans found in theSatellite
domain containing around 300 actions. Figure 6 shows the running time comparison (in milliseconds) between

5For example, the extended cost field in PDDL2.1 for the “BOARD” action in the ZenoTravel domain could be:
(+ (* (boarding-time ?c) (labor-cost ?c)) (airport-fee ?c)) (where ?C is the city).

6Since many benchmark problems start out with very few goals, we increase their difficulty by augmenting them with
additional goals. For example, if there is a person that is declared in the initial state of ZenoTravel problem but his/her
location is not specified as one of the goals, then we will add a goal with the person’s final location randomly chosen.



ZenoTravel Time

1

10

100

1000

10000

100000

1000000

1 2 3 4 5 6 7

Problems

S
o

lv
in

g
 T

im
e
 (

m
s
)

GreedySearch

SapaPS: Best

SapaPS: Better

Satellite Complex

1

10

100

1000

10000

100000

1000000

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Problems

S
o

lv
in

g
 T

im
e

 (
m

s
)

Figure 6: Running time comparison betweenSapaPS and greedy search.

SapaPS and the greedy search algorithm for the problems solved by both planners. Given thatSapaPS runs
in anytimefashion and returns multiple solutions, we show both the time needed forSapaPS to find the best
solution and the time it needs to find the solution with equal or higher quality than the solution returned by
the greedy search algorithm. The results show that whileSapaPS in general takes more time than the greedy
search algorithm to find its best solution, it takes less time than the greedy search to find a solution of equal
or better quality. This happens because the greedy search algorithm orders goals according to the decreasing
order of utility values and thus can be forced to find a plan for a hard to satisfy goal, whileSapaPS is more
flexible on the goal set and may find beneficial solutions for a set of easy to achieve goals very fast.

Although space restrictions preclude their inclusion, we have also comparedSapaPS to two other recent over-
subscription plannersOptiPlanandAltAltPS . Since these other planners are unable to handle temporal plan-
ning problems, our comparison was done in terms of the classical problem sets generated by van den Briel et.
al. [van den Briel et. al., 2004]. Results reported there show thatSapaPS , while slightly slower thanAltAltPS

in general, is able to generate a higher number of better quality solutions.

5 Related Work

Two recent approaches to PSP planning problems work by selecting a subset of goals and using normal planning
techniques to support them[Smith, 2004; van den Briel et. al., 2004]. The specific techniques used by these
planners to select the subgoals differ. The advantage of these approaches is that after committing to a subset of
goals, the overall problem is simplified to the planning problem of finding the least cost plan to achieve all the
goals. The disadvantage of this type of approach is that if the heuristics do not select the right set of goals, then
we can not switch to another subset during search. Moreover, if there is an unachievable goal selected, then the
planner will return failure. In contrastSapaPS avoids relying on any pre-defined subset of goals. It lets the A*
framework decide which goals are the most beneficial for a given node during search. Therefore, it can partially
correct the mistakes in heuristically selecting subset of goals at each search node as we go deeper in the search
tree.SapaPS also works in ananytimefashion and keeps on improving its solution quality given more search
time. Nevertheless, the two types of planners can complement each other. Specifically, as mentioned earlier,
we could use theAltAltPS technique of interleaving subgoal selection and relaxed plan computation for our
heuristic estimation (rather than a 2-phase construction we use).

One way of solving the PSP problems is to model them directly as deterministic MDPs[Boutilier et. al., 1999],
where actions have different costs. The optimal solution to the PSP problem can then be extracted from the



optimal policy of this MDP. In fact,SapaPS can be seen as an efficient way of directly computing the plan
without computing the entire policy. Our preliminary experiments with a state of the art MDP solver show that
while direct MDP approaches can guarantee optimality, they scale very poorly in practice and are unable to
solve even small problems in our test suites.

6 Conclusion and Future work

In this paper, we described a way of modeling the partial-satisfaction planning problem as heuristic search. We
discussed effective techniques for estimating the heuristic values by refining the relaxed plan extracted from
the cost-sensitive planning graph. We implemented this approach on top of theSapaplanner and showed that
the resulting planner,SapaPS , can effectively find high-quality solutions in reasonable time. Although we
focused on the case where all goals are “soft constraints,” it is straightforward to extend our model to handle
a mix of hard and soft goals7. We are also working on improving the informedness ofSapaPS heuristics, and
extending the framework to handle numeric and deadline goals in the PSP framework.

References

[Bonet & Geffner, 1997] Bonet, B., Loerincs, G., and Geffner, H. 1997. A robust and fast action selection mechanism for
planning.Proc AAAI-97

[Boutilier et. al., 1999] Boutilier, C., Dean, T., and Hanks, S. 1999. Decision-Theoretic Planning: Structural Assumptions
and Computational Leverage. InJournal of Artificial Intelligence Research (JAIR), 11 (p.1-94)

[Do & Kambhampati, 2003] Do, M. and Kambhampati, S. 2003. Sapa: a multi-objective metric temporal planer. InJAIR
20 (p.155-194)

[Edelkamp, 2003] Edelkamp, S. 2003. Taming numbers and durations in the model checking integrated planning system.
In JAIR 20 (p.195-238)

[Hoffmann & Nebel, 2001] Hoffmann, J. and Nebel, B. 2001. The FF planning system: Fast plan generation through
heuristic search. InJAIR 14 (p.253-302).

[Kramer & Giuliano, 1997] Kramer, L. and Giuliano, M. 1997. Reasoning About and Scheduling Linked HST Observa-
tions with Spike. InProc. of Int. Workshop on Planning and Scheduling for Space.

[Kramer, 2000] Kramer, L. 2000. Generating a Long Range Plan for a new Class of Astronomical Observatories. InProc.
of 2nd NASA Workshop on Planning and Scheduling for Space.

[Long & Fox, 2003] Long, D. and Fox, M. 2003. The 3rd International Planning Competition: Results and Analysis. In
JAIR 20 (p.1-59).

[Nguyen et. al., 2001] Nguyen, X., Kambhampati, S., and Nigenda, R. 2001. Planning Graph as the Basis for deriving
Heuristics for Plan Synthesis by State Space and CSP Search. InAIJ 135 (p.73-123).

[Potter & Gasch, 1998] Potter, W. and Gasch, J. 1998. A Photo Album of Earth: Scheduling Landsat 7 Mission Daily
Activities. In Proc. of SpaceOps.

[Smith & Weld, 1999] Smith, D. and Weld, D. 1999. Temporal planning with mutual exclusion reasoning. InProc. of
IJCAI-99.

[Smith, 2003] Smith, D. 2003. The Mystery Talk.Plannet Summer School

[Smith, 2004] Smith, D. 2004. Choosing Objectives in Over-Subscription Planning. To appear inICAPS-04.

[van den Briel et. al., 2004] van den Briel, M., Nigenda, R.,Do, M. and Kambhampati, S.: Effective Approaches for Partial
Satisfaction (Over-Subscription) Planning. AAAI 2004: 562-569

7The best beneficial plan may have negative net benefit (since we no longer can assume empty plan is a legal solution);
and the second “minimization” scan of the heuristic must only focus on the soft goals.


