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Abstract

In this research paper, we discuss Sapa, a domain-independent heuristic forward chain-
ing planner that can handle durative actions, metric resource constraints, and deadline goals.
It is designed to be capable of handling the multi-objective nature of the metric temporal
planning. Our technical contributions include discussion of (i) various objective functions
for planning and the multi-objective search framework (ii) a planning-graph based method
for deriving heuristics that are sensitive to both cost and makespan (iii) an easy way of ad-
justing the heuristic estimates to take the metric resource limitations into account and (iv) a
linear time greedy post-processing technique to improve the solution’s execution flexibility
and quality according to given criteria. An implementation of Sapa using a subset of the
techniques presented in this paper was one of the best domain independent planners for do-
mains with metric and temporal constraints in the third International Planning Competition,
held at AIPS-02. We describe the technical details of extracting the heuristics and present
an empirical evaluation of the current implementation of Sapa.

1 Introduction

The success of the Deep Space Remote Agent experiment has demonstrated the promise and
importance of scalable metric temporal planning for NASA applications. HSTS/RAX, the plan-
ner used in the remote agent experiment, was predicated on the availability of domain- and
planner-dependent control knowledge, the collection and maintenance of which is admittedly a
laborious and error-prone activity. An obvious question of course is whether it will be possible
to develop domain-independent metric temporal planners that are capable of scaling up to such
domains. The past experience has not particularly been encouraging. Although there have been
some ambitious attempts–including IxTeT [18] and Zeno [32], their performance has not been
particularly satisfactory.

Some encouraging signs however are the recent successes of domain-independent heuristic
planning techniques in classical planning (c.f. AltAlt [29] HSP [4] and FF [20]). Our research is
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aimed at building on these successes to develop a scalable metric temporal planner. At first blush
search control for metric temporal planners would seem to be a very simple matter of adapting
the work in heuristic planners in classical planning [4, 29, 20]. The adaptation however does
pose several challenges:

• Metric temporal planners tend to have significantly larger search spaces than classical
planners. After all, the problem of planning in the presence of durative actions and metric
resources subsumes both the classical planning and scheduling problems.

• Compared to classical planners, which only have to handle the logical constraints between
actions, metric temporal planners have to deal with many additional types of constraints
that involve time and continuous functions representing different aspects of resource.

• In contrast to classical planning, where the only objective is to find shortest length plans,
metric temporal planning is multi-objective. The user may be interested in improving
either temporal quality of the plan (e.g. makespan) or its cost (e.g. cumulative action cost,
cost of resources consumed etc.), or more generally, a combination there of. Consequently,
effective plan synthesis requires heuristics that are able to track both these aspects in an
evolving plan. Things are further complicated by the fact that these aspects are often inter-
dependent. For example, it is often possible to find a “cheaper” plan for achieving goals,
if we are allowed more time to achieve them.

In this paper, we present Sapa, a heuristic metric temporal planner that we are currently
developing, to overcome these challenges. Sapa is a forward chaining metric temporal planner,
which searches in the space of time-stamped states (see below [1]). Sapa handles durative actions
as well as actions consuming continuous resources. Our main focus has been on the development
of heuristics for focusing Sapa’s multi-objective search. These heuristics are derived from the
optimistic reachability information encoded in the planning graphs. Unlike classical planning
heuristics (c.f. AltAlt [29]), which need only estimate the “length” of the plan needed to achieve
a set of goals, Sapa’s heuristics need to be sensitive to both the cost and length (“makespan”) of
the plans for achieving the goals. Our contributions include:

• We present a novel framework for tracking the cost of literals (goals) as a function of
time. These “cost functions” are then used to derive heuristics that are capable of driving
the search towards plans that satisfy any type of cost-makespan tradeoffs.

• Sapa generalizes the notion of “phased” relaxation used in deriving heuristics in planners
such as AltAlt and FF [29, 20]. Specifically, the heuristics are first derived from a relax-
ation that ignores the delete effects and metric resource constraints, and are then adjusted
subsequently to better account for both negative interactions and resource constraints.

• While Sapa’s forward-chaining search in the time-stamped states results in position-constrained
plans, it improves the temporal flexibility of the solution plans by post-processing the
position-constrained plans to produce equivalent “precedence-constrained” plans. This
way, Sapa is able to exploit both the ease of resource reasoning offered by the position-
constrained plans and the execution flexibility offered by the precedence-constrained plans.
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We discuss and implement the linear time greedy approach to generate an o.c plan of better
or equal makespan value compare to the original p.c plan. This approach can be thought
of as a specific variable and value ordering for the CSOP encoding discussed in [10].

A version of Sapa using a subset of the techniques discussed in this paper was one of the
best domain independent planners for domains with metric and temporal constraints in the third
International Planning Competition, held at AIPS 2002[13]. In fact, it is the best planner in terms
of solution quality and number of problems solved in the highest level of PDDL2.1 used in the
competition for the domains Satellite and Rovers. These domains are both inspired by NASA
applications.

The paper is organized as follows: in Section 2 we discuss the forward state space search
algorithm to produce concurrent metric temporal plans with durative actions. In that section,
Section 2.1 is used to describe the action representation and constraints; and Section 2.2 con-
centrates on the forward chaining algorithm. Next, in Section 3, we discuss the problem of
how to build a temporal planning graph and use it to propagate the time and cost information
(time-sensitive cost functions). Section 4 shows how the propagated information can be used
to estimate the cost of achieving the goals from a given state. We also discuss in that section
how the ignored mutual exclusion relations and resource information help improve the heuristic
estimation. To improve the quality of the solution, Section 5 discusses our greedy approach of
building the order constrained plan (aka. partial order plan) from parallel position constrained
plans returned by Sapa. Section 6 discusses the implementation of Sapa, presents some empir-
ical results of Sapa in producing plans with tradeoff for cost and makespan, and analyzes its
performance in the international planning competition. We conclude the paper with a discussion
on related work in Section 7 and on the conclusion in Section 8.

2 Handling concurrent actions in a forward state space planner

Sapa addresses planning problems that involve durative actions, metric resources, and deadline
goals. In this section, we describe how such planning problems are represented and solved in
Sapa. We first describe the action representation, and will then present the forward chaining state
search algorithm used by Sapa.

2.1 Action Representation & Constraints

Planning is the problem of finding a set of actions and their respective execution times to satisfy
all causal, metric, and resource constraints. Therefore, action representation has influences on
the representation of the plans and on the planning algorithm. In this section, we will briefly
describe the PDDL2.1 Level 3 action representation, which is the highest level (in terms of
the expressiveness of temporal and metric resource constraints) used in the third international
competition. Sapa is able to solve problems in PDDL2.1 Level 3 and was one of the best of such
planners in the competition.1

1The original action representation used in Sapa is slightly different from the PDDL2.1 Level 3. However, we
will commit to the standard action representation from now on.
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Figure 1: The travel example

Unlike actions in classical planning, in planning problems with temporal and resource con-
straints, actions are not instantaneous but have durations. Each action A has a duration DA,
starting time SA, and end time (EA = SA + DA). The value of DA can be statically defined for
a domain, statically defined for a particular planning problem, or can be dynamically decided at
the time of execution.2 An action A can have preconditions Pre(A) that may be required either
to be instantaneously true at the time point SA, or required to be true starting at SA and remain
true for some duration d ≤ DA. The logical effects Eff(A) of A will be divided into two sets
Es(A), and Ee(A) containing, respectively, the instantaneous effects at time points SA, and EA.

Actions can also consume or produce metric resources and their preconditions may also
depend on the value of the corresponding resource. For resource related preconditions, we allow
several types of equality or inequality checking including ==, <, >, <=, >=. For resource-
related effects, we allow the following types of change (update): assignment(=), increment(+=),
decrement(-=), multiplication(*=), and division(/=).

We shall now illustrate the action representation in a simple temporal planning problem.
This problem will be used as the running example through out the rest of the paper. Figure 1
shows graphically the problem description. In this problem, a group of students in Tucson need
to go to Los Angeles (LA). Between two options of renting a car, if the students rent a faster but
more expensive car (Car1), they can only go to Phoenix (PHX) or Las Vegas (LV). However,
if they decide to rent a slower but cheaper Car2, then they can use it to drive to Phoenix or
directly to LA. Moreover, to reach LA, the students can also take a train from LV or a flight
from PHX. In total, there are 6 movement actions in the domain: drive-car1-tucson-phoenix
(Dc1

t→p, Dur = 1.0, Cost = 2.0), drive-car1-tucson-lv (Dc1
t→lv , Dur = 3.5, Cost = 3.0), drive-

car2-tucson-phoenix (Dc2
t→p, Dur = 1.5, Cost = 1.5), drive-car2-tucson-la (Dc2

t→la),Dur = 7.0,
Cost = 6.0, fly-airplane-phoenix-la (Fp→la, Dur = 1.5, Cost = 6.0), and use-train-lv-la (Tlv→la,
Dur = 2.5, Cost = 2.5). Each move (by car/airplane/train) action A between two cities X and
Y requires the precondition that the students be at X (at(X))at the beginning of A. There are

2For example, in the traveling domain discussed in this section, we can decide that boarding a passenger always
takes 10 minutes for all problems in this domain. Duration of the action of flying an airplane between two cities will
depend on the distance between these two cities and the speed of the airplane. Because the distance between two
cities will not change over time, the duration of a particular flying action will be totally specified once we parse the
planning problem. However, refueling an airplane may have a duration that depends on the current fuel level of that
airplane. We may only be able to calculate the duration of a given refueling action according to the fuel level at the
exact time instant when we execute that action.
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also two temporal effects: ¬at(X) occurs at the starting time point of A and at(Y ) at the end
time point of A. Driving and flying actions also consume different types of resource (e.g fuel)
at different rates depending on the specific car or airplane used. In addition, there are refueling
actions for cars and airplanes. The durations of the refueling actions depend on the amount of
fuel remaining in the vehicle and the refueling rate. The summaries of action specifications for
this example are shown on the right side of Figure 1.

In this example, the costs of moving by train or airplane are the respective ticket prices, and
the costs of moving by rental cars include the rental fees and gas (resource) costs.

2.2 A Forward Chaining Search Algorithm for metric temporal planning

Even though variations of the action representation scheme described in the previous section
have been used in the partial order temporal planners such as IxTeT[18] and Zeno[32] before,
Bacchus and Ady [1] are the first to propose a forward chaining algorithm capable of using this
type of action representation allowing concurrent execution of actions in the plan. We adapt their
search algorithm in Sapa.

Sapa’s search is conducted through the space of time stamped states. We define a time
stamped state S as a tuple S = (P,M,Π, Q, t) consisting of the following structure:

• P = (〈pi, ti〉 | ti < t) is a set of predicates pi that are true at t and the last time instant ti
at which they are achieved.

• M is a set of values for all continuous functions, which may change over the course of
planning. Functions are used to represent the metric-resources and other continuous val-
ues. Examples of functions are the fuel levels of vehicles.

• Π is a set of persistent conditions, such as durative preconditions, that need to be protected
during a specific period of time.

• Q is an event queue containing a set of updates each scheduled to occur at a specified time
in the future. An event e can do one of three things: (1) change the True/False value of
some predicate, (2) update the value of some function representing a metric-resource, or
(3) end the persistence of some condition.

• t is the time stamp of S

In this paper, unless noted otherwise, when we say “state” we mean a time stamped state. It
should be obvious that time stamped states do not just describe world states (or snap shots of the
world at a given point of time) as done in classical progression planners, but rather describe both
the current state of the world and the state of the planner’s search (set of events/changes that are
guaranteed to occur given the actions in the current plan).

The initial state Sinit is stamped at time 0 and has an empty event queue and empty set
of persistent conditions. It is completely specified in terms of function and predicate values.
The goals are represented by a set of 2-tuples G = (〈p1, t1〉...〈pn, tn〉) where pi is the ith goal
and ti is the time instant by which pi needs to be achieved. Note that PDDL2.1 still does not
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allow the specification of goal deadline constraints. Therefore, we currently use our original
representation for problems requiring goal deadline constraints. We intend to extend PDDL2.1
in the near future to include goal deadlines and other types of temporal constraints.
Goal Satisfaction: The state S = (P,M,Π, Q, t) subsumes (entails) the goal G if for each
〈pi, ti〉 ∈ G either:

1. ∃〈pi, tj〉 ∈ P , tj < ti and there is no event in Q that deletes pi.

2. ∃e ∈ Q that adds pi at time instant te < ti.

Action Application: An action A is applicable in state S = (P,M,Π, Q, t) if:

1. All logical (pre)conditions of A are satisfied by P.

2. All metric resource conditions of A are satisfied by M.3

3. A’s effects do not interfere with any persistent condition in Π and any event in Q.

4. � ∃e ∈ Q interferes with persistent preconditions of A.

The interference relation between action A’s effects, event queue Q, and the persistent con-
dition Π follow the interference rules defined in PDDL2.1. In short, they are:

• If A deletes a proposition p and there is an event e in Q that adds p, then A can not delete
P at the same time instant at which that event occurs (epsilon or higher duration should
separate two events).

• If A deletes p and p is protected in Π until time point tp, then A should not delete p before
tp.

• If A has a persistent precondition p, and there is an event that gives ¬p, then that event
should occur after A terminates.

• A should not change the value of any function (representing a resource) which is used to
satisfy a (pre)condition of another unterminated action4. Moreover, if A has a precondition
that depends on the value of some function that is changed as an effect of an unterminated
action A′, then A also interferes with that action (and is not applicable at the current state).

When we apply an action A to a state S = (P,M,Π, Q, t), all instantaneous effects of A
will be immediately used to update the predicate list P and metric resources database M of S. A’s
persistent preconditions and delayed effects will be put into the persistent condition set Π and
event queue Q of S.

3For example, if the condition to execute an action A = move(truck, A, B) is fuel(truck) > 500 then A is
executable in S if the value v of fuel(truck) in M satisfy v > 500.

4Unterminated actions are the ones that started before the time point t of the current state S but have not yet
finished at t.
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State Queue: SQ={Sinit}
while SQ�={}

S:= Dequeue(SQ)
Nondeterministically select A applicable in S

S’ := Apply(A,S)
if S’ satisfies G then PrintSolution
else Enqueue(S’,SQ)

end while;

Figure 2: Main search algorithm

Besides the normal actions, we will have a special action called advance-time5 which we
use to advance the time stamp of S to the time instant te of the earliest event e in the event queue
Q of S. The advance-time action will be applicable in any state S that has a non-empty event
queue. Upon applying this action, the state S gets updated according to all the events in the event
queue that are scheduled to occur at te.
Search algorithm: The basic algorithm for searching in the space of time stamped states is
shown in Figure 2. We proceed by applying all applicable actions to the current state and put
the result states into the sorted queue using the Enqueue() function. The Dequeue() function
is used to take out the first state from the state queue. Currently, Sapa employs the A* search.
Thus, the state queue is sorted according to some heuristic function that measures the difficulty
of reaching the goals from the current state. The rest of the paper discusses the design of such
heuristic functions.

3 Propagating time-sensitive cost functions using the temporal plan-
ning graphs

In this section, we discuss the issue of deriving heuristics, that are sensitive to both time and
cost, to guide Sapa’s search algorithm. An important challenge in finding heuristics to support
multi-objective search, as illustrated by the example below, is that the cost and temporal aspects
of a plan are often inter-dependent. Therefore, in this section, we introduce the approach to track
the cost of achieving goals and execute actions in the plan as the functions of time. Then, the
propagated cost functions can be used to derive the heuristic values to guide the search in Sapa.
Example: Let’s take a simpler version of our ongoing example. Suppose that we need to go
from Tucson to Los Angeles. The two common options are: (i) rent a car and drive from Tucson
to Los Angeles in one day for $100 or (ii) take a shuttle to the Phoenix airport and fly to Los
Angeles in 3 hours for $200. The first option takes more time (higher makespan) but less money,
while the second one clearly takes less time but is more expensive. Depending on the specific
weights the user gives to each criterion, she may prefer the first option over the second or vice
versa. Moreover, the user’s decision may also be influenced by other constraints on time and
cost that are imposed over the final plan. For example, if she needs to be in Los Angeles in six

5Advance-time is called unqueue-event in [1]
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hours, then she may be forced to choose the second option. However, if she has plenty of time
but limited budget, then she may choose the first option.

The simple example above shows that makespan and execution cost, while nominally inde-
pendent of each other, are nevertheless related in terms of the overall objectives of the user and
the constraints on a given planning problem. More specifically, for a given makespan threshold
(e.g. to be in LA within six hours), there is a certain estimated solution cost tied to it (shuttle fee
and ticket price to LA) and vice versa. Thus, in order to find plans that are good with respect to
both cost and makespan, we need to develop heuristics that track cost of a set of (sub)goals as a
function of time.

Given that the planning graph is an excellent structure to represent the relation between facts
and actions, we will use the temporal planning graph structure (TGP[35]) as a substrate for
propagating the cost information. For the rest of this section, we start with a brief discussion
of the data structures used for the cost propagation process in Section 3.1. We then continue
with the details of the propagation process in Section 3.2, and the criteria used to terminate the
propagation in Section 3.3.

3.1 The Temporal Planning Graph Structure

We now adapt the notion of temporal planning graphs, introduced in [35] to our action repre-
sentation. The temporal planning graph for a given problem is a bi-level graph, with one level
containing all facts, and the other containing all actions in the planning problem. Each fact links
to all actions supporting it, and each action links to all facts that belong to its precondition and
effect lists.6 Actions are durative and their effects are represented as events that occur at some
time between the action’s start and end time points. As we will see in more detail in the later
parts of this section, we build the temporal planning graph by incrementally increasing the time
(makespan value) of the graph. At a given time point t, an action A is activated if all precon-
ditions of A can be achieved at t. To support the delayed effects of the activated actions (i.e.,
effects that occur at the future time points beyond t), for the whole graph, we also maintain an
event queue Q = {e1, e2, ...en} sorted in the increasing order of event time. The event queue
discussed in this section is slightly different from the one discussed in the previous section. In
short, the event queue:

• Is associated with the whole planning graph (rather than single actions).

• Only contains the positive events (add predicate)

• Has an event cost associated with it.

Each event is a 4-tuple e = 〈f, t, c, A〉 in which: (1) f is the fact that e will add; (2) t is the
time point at which the event will occur; and (3) c is the cost incurred to enable the execution
of action A which causes e. For each action A, we introduce a cost function C(A, t) = v to

6The bi-level representation has been used in the classical planning to save time and space, but as Smith &
Weld[35] showed, it makes even more sense in the temporal planning domains because there is actually no notion of
level. All we have are a set of facts/action nodes, each one encoding information such as the earliest time point at
which the fact/action can be achieved/executed, and the lowest cost incurred to achieve them etc.
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specify the estimated cost v that we incur to enable A’s execution at time point t. In other words,
C(A, t) is the estimate of the cost incurred to achieve all of A’s preconditions at time point t.
Moreover, each action will also have an execution cost (Cexec(A)), which is the cost incurred in
executing A (e.g ticket price for fly action, gas cost for driving a car). For each fact f , a similar
cost function C(f, t) = v specifies the estimated cost v incurred to achieve f at time point t.
We also need one additional function SA(f, t) = Af to specify the action Af that can be used
to support f with cost v at time point t. Due to the fact that actions have different durations,
we will show later that the values of the cost functions C(A, t), C(f, t) monotonically decrease
over time. The temporal planning graph of the ongoing example, with each action is at its earliest
starting time, is shown in the left side of Figure 4.

In the original Graphplan algorithm[3], there is a process of propagating mutex information,
which captures the negative interactions between different propositions and actions occurring
at the same time (level). To simplify the discussion, in this paper we will neglect the mutex
propagation and will discuss the propagation process in the context of the relaxed problem in
which the delete effects of actions, which cause the mutex relations, are ignored. In Section 4.2.1,
we will discuss how the temporal mutex relations such as the ones discussed in TGP[35] can be
used to improve the cost propagation and heuristic estimation processes.

3.2 Cost propagation procedure

As mentioned above, our general approach is to propagate the estimated costs incurred to achieve
facts and actions from the initial state. As a first step, we need to initialize the cost functions
C(A, t) and C(f, t) for all facts and actions. For a given initial state Sinit, let F = {f1, f2...fn}
be the set of facts that are true at time point tinit and {(f ′

1, t1), ...(f
′
m, tm)}, 7 be a set of out-

standing positive events which specify the addition of facts f′i at time points ti > tinit. We
introduce a dummy action Ainit to represent Sinit where Ainit (i) requires no preconditions; (ii)
has cost Cexec(Ainit) = 0 and (iii) causes the events of adding all fi at tinit and f ′

i at time points
ti. At the beginning (t = 0), the event queue Q is empty, the cost functions for all facts and
actions are initialized as: C(A, t) =∞, C(f, t) =∞, ∀0 ≤ t <∞, and Ainit is the only action
that is applicable.

Figure 3 summarizes the steps in the cost propagation algorithm. The main algorithm con-
tains two interleaved parts: one for applying an action and the other for activating an event
representing the action’s effect.
Applying an action: When an action A is applied, we (1) augment the event queue Q with
events corresponding to all of A’s effects, and (2) update the cost function C(A, t) of A.
Activating an event: When an event e = 〈fe, te, Ce, Ae〉, which represents an effect of Ae

occurring at time point te and adding a fact fe with cost Ce is activated, the cost function of
the fact fe is updated if Ce < C(fe, te). Moreover, if the newly improved cost of fe leads
to a reduction in the cost functions of an action A that fe supports (as decided by function
CostAggregate(A, t) in line 11 of Figure 3) then we will (re)apply A to propagate fe’s new
cost of achievement to the cost functions of A and its effects.

7In temporal planning, because actions may have non-uniform duration, at any given time point, the state may not
only consist of facts which are true, but also events representing delayed effects of a selected action that occurs in the
future.
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Function Propagate Cost
Current time: tc = 0;
Apply(Ainit, 0);
while Termination-Criteria �= true

Get earliest event e = 〈fe, te, ce, Ae〉 from Q;
tc = te;
if ce < C(f, tc) then
Update: C(f, t) = ce

for all action A: f ∈ Precondition(A)
NewCostA = CostAggregate(A, tc);
if NewCostA < C(A, tc) then

Update: C(A, t) = NewCost(A), tc ≤ t <∞;
Apply(A, tc);

End Propagate Cost;

Function Apply(A, t)
For all A’s effect that add f at SA + d do

Q = Q
⋃{e = 〈f, t + d, C(A, t) + Cexec(A), A〉};

End Apply(A, t);

Figure 3: Main cost propagation algorithm

At any given time point t, C(A, t) is an aggregated cost (returned by function CostAggregate(A, t))
to achieve all of its preconditions. The aggregation can be done in different ways:

1. Max-propagation:
C(A, t) = Max{C(f, t) : f ∈ Precond(A)} or

2. Sum-propagation:
C(A, t) =

∑{C(f, t) : f ∈ Precond(A)} or

3. Combo:
C(A, t) = 0.5 ∗ (Max{C(f, t) : f ∈ Precond(A)}) + 0.5 ∗ (

∑{C(f, t) : f ∈
Precond(A)})

The first method assumes that all preconditions of an action depend on each other and the
cost to achieve all of them is equal to the cost to achieve the costliest one. This rule leads
to the underestimation of C(A, t) and the value of C(A, t) is admissible. The second method
(sum-propagation) assumes that all facts are independent. Although clearly inadmissible, it has
been shown (c.f.[29, 4]) to be more effective than the max-propagation for the case of makespan
propagation. The last method combines the two and basically tries to account for the dependency
between different facts in the sum-propagation.

When the cost function of one of the preconditions of a given action is updated (lowered),
the CostAggregate(A, t) function is called and it uses one of the methods described above

10



Figure 4: Cost functions for facts and actions in the travel example.

to calculate if the cost required to execute an action has improved (reduced).8 If C(A, t) has
improved, then we will re-apply A (line 12-14 in Figure 3) to propagate the improved cost
C(A, t) to the cost functions C(f, t) of its effects.

Notice that the way we update the cost functions of facts and actions in the planning domains
described above shows the challenges in heuristic estimation in temporal planning domains.
Because action’s effects do not occur instantaneously at the action’s starting time, concurrent
actions overlap in many possible ways and thus the cost functions, which represent the difficulty
of achieving facts and actions are time-sensitive. Finally, the only remaining issue in the main
algorithm illustrated in Figure 3 is the termination criteria for the propagation, which will be
discussed in detail in Section 3.3.

Before demonstrating the cost propagation process in our ongoing example, following are
some observations of our propagated cost function discussed in this section:
Observation 1: The propagated cost functions of facts and actions are non-increasing over time.
Observation 2: Because we increase time in step jump by going through events in the event
queue, the cost functions for all facts and actions will appear as step-functions, even though
time is measured continuously.

Due to the first observation, the estimated cheapest cost of achieving a given goal g at time
point tg is C(g, tg). Thus, we do not need to look at the value of C(g, t) at time point t < tg.
Moreover, to evaluate the heuristic value for an objective function f involving both time and
cost, the second observation helps us to concentrate on computing f at only time points at which
the cost function of some fact or action changes. We will comeback to the details of the heuristic
estimation routines in the next section (Section 4).

Coming back to our running example, the left side of Figure 4 shows graphically the time
points at which each action can be applied (C(A, t) < ∞) and the right side shows how
the cost function of facts/actions change as the time increases. Here is an outline of the up-
date process in this example: at time point t = 0, four actions can be applied. They are
Dc1

t→p, Dc2
t→p, Dc1

t→lv, Dc2
t→la. These actions add 4 events into the event queue Q = {e1 =

〈at phx, t = 1.0, c = 2.0,Dc1
t→p〉, e2 = 〈at phx, 1.5, 1.5,Dc2

t→p〉, e3 = 〈at lv, 3.5, 3.0,Dc1
t→lv〉,

e4 = 〈at la, 7.0, 6.0,Dc2
t→la〉}. After we advance the time to t = 1.0, the first event e1 is ac-

tivated and C(at phx, t) is updated. Moreover, because at phx is a precondition of Fp→la, we

8Propagation rule (2) and (3) will improve (lower) the value of C(A, t) when the cost function of one of A’s
preconditions is improved. However, for rule (1), the value of C(A, t) is improved only when the cost function of its
costliest precondition is updated.
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also update C(Fp→la, t) at te = 1.0 from∞ to 2.0 and put an event e = 〈at la, 2.5, 8.0, Fp→la〉,
which represents Fp→la’s effect, into Q. We then go on with the second event 〈at phx, 1.5, 1.5,Dc2

t→p〉
and lower the cost of the fact at phx and action Fp→la. Event e = 〈at la, 3.0, 7.5, Fp→la〉 is
added as a result of the newly improved cost of Fp→la. Continuing the process, we update
the cost function of at la once at time point t = 2.5, and again at t = 3.0 as the delayed ef-
fects of actions Fp→la occur. At time point t = 3.5, we update the cost value of at lv and
action Tlv→la and introduce the event e = 〈at la, 6.0, 5.5, Tlv→la〉. Notice that the final event
e′ = 〈at la, 7.0, 6.0,Dc2

t→la〉 representing a delayed effect of action Dc2
t→la applied at t = 0

will not cause any update. This is because the cost function of at la has been updated to value
c = 5.5 < ce′ at time t = 6.0 < te′ = 7.0.

Besides the values of the cost functions, Figure 4 also shows the supporting actions (SA(f, t))
for the fact (goal) at la. We can see that action Tlv→la gives the best cost of C(at la, t) = 5.5
for t ≥ 6.0 and action Fp→la gives best cost C(at la, t) = 7.5 for 3.0 ≤ t < 5.5 and
C(at la, t) = 8.0 for 2.5 ≤ t < 3.0. The right most graph in Figure 4 shows similar cost
functions for the actions in this example. We only show the cost functions of actions Tlv→la and
Fp→la because the other four actions are already applicable at time point tinit = 0 and thus their
cost functions stabilize at 0.

3.3 Termination criteria for the cost propagation process

In this section, we discuss the issue of when we should terminate the cost propagation process.
The first thing to note is that cost propagation is in some ways inherently more complex than
makespan propagation. For example, once a set of literals enter the planning graph (and are not
mutually exclusive), the estimate of the makespan of the shortest plan for achieving them does
not change as we continue to expand the planning graph. In contrast, the estimate of the cost
of the cheapest plan for achieving them can change until the planning graph levels off. This is
why we need to carefully consider the effect of different criteria for stopping the expansion of
the planning graph on the accuracy of the cost estimates. The first intuition is that we should not
stop the propagation when there exist top level goals for which the cost of achievement is still
infinite (unreached goal). On the other hand, given our objective function of finding the cheapest
way to achieve the goals, we need not continue the propagation when there is no chance that we
can improve the cost of achieving the goals. From those intuitions, following are several rules
that constrain the termination:
Deadline termination: The propagation should stop at time point t if: (1) ∀ goal G : Deadline(G) ≤
t, or (2) ∃ goal G : (Deadline(G) < t) ∧ (C(G, t) =∞).

The first rule governs the hard constraints on the goal deadlines. It implies that we should
not propagate beyond the latest goal deadline (because any cost estimation beyond that point is
useless), or we can not achieve some goal by its deadline.

With the observation that the propagated costs can change only if we still have some events
left in the queue that can possibly change the cost functions of a specific propositions, we have
the second general termination rule regarding the propagation:
Fix-point termination: The propagation should stop when there are no more events that can
decrease the cost of any proposition.
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The second rule is a qualification for reaching the fix-point in which there is no gain on the
cost function of any fact or action. It is analogous to the idea of growing the planning graph until
it levels-off in classical planning.

Stopping the propagation according to the two general rules above leads us to the best (lowest
value) achievable cost estimation for all propositions given a specific initial state. However,
there are several situations in which we may want to stop the propagation process earlier. First,
propagation until the fix-point, where there is no gain on the cost function of any fact or action,
may be costly.9 Second, the cost functions of the goals may reach the fix-point long before the
full propagation process is terminated according to the general rules discussed above, where the
costs of all propositions and actions stabilize.

Given the above motivations, we introduce several different criteria to stop the propagation
earlier than is entailed by the fix-point computation:
Zero-lookahead approximation: Stop the propagation at the earliest time point t where all the
goals are reachable (C(G, t) <∞).
One-lookahead approximation: At the earliest time point t where all the goals are reachable,
execute all the remaining events in the event queue and stop the propagation.

One-lookahead approximation looks ahead one step in the (future) event queues when one
path to achieve all the goals under the relaxed assumption is guaranteed and hopes that executing
all those events would explicate some cheaper path to achieve all goals.10

Zero and one-lookahead are examples of a more general k-lookahead approximation, in
which extracting the heuristic value as soon as all the goals are reachable corresponds to zero-
lookahead and continuing to propagate until the fix-point corresponds to the infinite (full) looka-
head. The rationale behind the k-lookahead approximation is that when all the goals appear,
which is an indication that there exists at least one (relaxed) solution, then we will look ahead
one or more steps to see if we can achieve some extra improvement in the cost of achieving the
goals (and thus lead to lower cost solution).11

Coming back to our travel example, zero-lookahead stops the propagation process at the
time point t = 2.5 and the goal cost is C(in la, 2.5) = 8.0. The action chain giving that cost
is {(Dc1

t→p, Fp→la}. With one-lookahead, we find the lowest cost for achieving the goal in la is
C(in la, 7.0) = 6.0 and it is given by the action (Dc2

t→la). With two-lookahead approximation,
the lowest cost for in la is C(in la, 6.0) = 5.5 and it is achieved by cost propagation through
the action set {(Dc1

t→lv , Tlv→la)}. In this example, two-lookahead has the same effect as the
fix-point propagation (infinite lookahead) if the deadline to achieve in la is later than t = 6.0.
If it is earlier, say Deadline(in la) = 5.5, then the one-lookahead will have the same effect
as the infinite-lookahead option and gives the cost of C(in la, 3.0) = 7.5 for the action chain
{Dc2

t→phx, Fphx→la}.
9It has been pointed out in AltAlt[29] that growing the classical planning graph until it levels-off is very costly in

many problems.
10Note that even if none of those events is directly related to the goals, their executions can still lead to better

(cheaper) path to reach all the goals.
11For backward planners where we only need to run the propagation one time, infinite-lookahead or higher levels

of lookahead may pay off, while in forward planners where we need to evaluate the cost of goals for each single
search state, lower values of k may be more appropriate.
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4 Heuristics based on propagated cost functions

Once the propagation process terminates, the time-sensitive cost functions contain sufficient in-
formation to estimate the heuristic value of any given state. Specifically, suppose the planning
graph is grown from a state S. Then the cost functions for the set of goals G = {(g1, t1), (g2, t2)...(gn, tn)},
ti = Deadline(gi) can be used to derive the following estimates:

• The minimum makespan estimate for a plan starting from S, T (PS) is given by the earliest
time point τ0 at which all goals are reached with finite cost C(g, t) <∞.

• The minimum/maximum/summation estimate of slack(s) for a plan starting from S, Slack(PS)
is given by the minimum/maximum/summation of the distance between the time point at
which a goal appears in the temporal planning graph and the deadline of that goal.

• The minimum cost estimate of a plan starting from S and achieving a set of goals G,
C(PS , τ∞), can be computed by aggregating the cost estimates for achieving each of the
individual goals at their respective deadlines (C(g, deadline(g))).12 Notice that we use
τ∞ to denote the time point at which the cost propagation process stops. Thus, τ∞ is the
time point at which the cost functions for all individual goals C(f, τ∞) have lowest value.

• For each value t : τ0 < t < τ∞, the cost estimate of a plan C(PS , t), which can achieve
goals within a given makespan limit of t, is the aggregation of the values C(gi, t) of goals
gi.

The makespan and the cost estimates of a state can be used as the basis for deriving heuristics.
The specific way these estimates are combined to compute the heuristic values does of course
depend on what the user’s ultimate objective function is. In the general case, the objective would
be a function f(C(PS), T (PS)) involving both the cost (C(PS)) and makespan (T (PS)) values
of the plan. Suppose that the objective function is a linear combination of cost and makespan:

h(S) = f(C(PS), T (PS)) = α.C(PS) + (1− α).T (PS)

If the user only cares about the makespan value (α = 0), then h(S) = T (PS) = τ0. Similarly,
if the user only cares about the plan cost (α = 1), then h(S) = C(PS , τ∞). In the more
general case, where 0 < α < 1, then we have to find the time point t, τ0 ≤ t ≤ τ∞, such that
ht(S) = f(C(PS , t), t) = α.C(PS , t) + (1− α).t has minimum value.13

In our ongoing example, given our goal of being in Los Angeles (at la), if α = 0, the
heuristic value is h(S) = τ0 = 2.5 which is the earliest time point at which C(at la, t) < ∞.
The heuristic value corresponds to the propagation through action chain (Dc1

t→p, Fp→la). If α =

12If we consider G as the set of preconditions for a dummy action that represents the goal state, then we can use
any of the propagation rules (max/sum/combo) discussed in Section 3.2 to directly estimate the total cost of achieving
the goals from the given initial state.

13Because f(C(PS , t), t) estimates the cost of the (cheapest) plan that achieves all goals with the makespan value
T (PS) = t, the minimum of f(C(PS , t) (τ0 ≤ t ≤ τ∞) estimates the plan P that achieve the goals from state S and
P has a smallest value of f(C(PS), T (PS)). That value would be the heuristic estimation for our objective function
of minimizing f(C(PS), T (PS)).
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1 and Deadline(AtLA) ≥ 6.0, then h(S) = 5.5, which is the cheapest cost we can get at time
point τ∞ = 6.0. This heuristic value represents another solution (Dc1

t→lv, Tlv→la). Finally, if
0 < α < 1, say α = 0.55, then the lowest heuristic value h(S) = α.C(PS , t) + (1 − α).t is
h(S) = 0.55 ∗ 7.5 + 0.45 ∗ 3.0 = 5.47 at time point 2.5 < t = 3.0 < 6.0. For α = 0.55, this
heuristic value h(S) = 5.47 corresponds to yet another solution (Dc2

t→p, Fp→la).
Notice that in the general case where 0 < α < 1, even though time is measured continuously,

we do not need to check every time point t: τ0 < t < τ∞ to find the value where h(S) =
f(C(PS , t), t) is minimal. This is due to the fact that the cost functions for all facts (including
goals) are step functions. Thus, we only need to compute h(S) at the time points where one
of the cost functions C(gi, t) changes value. In our example above, we only need to calculate
values of h(S) at τ0 = 2.5, t = 3.0 and τ∞ = 6.0 to realize that h(S) has minimum value at
time point t = 3.0 for α = 0.55.

Before we end this section, we have to note that when there are multiple goals there are
several possible ways of computing C(PS) from the cost functions of the individual goals. This
is a consequence of the fact that there are multiple rules to propagate the cost, and there are
also interactions between the goals/subgoals. Broadly, there are two different ways to extract
the plan costs. We can either directly use the cost functions of the goals to compute C(PS), or
first extract a relaxed plan from the temporal planning graph using the cost functions, and then
measure C(PS) based on the relaxed plan. We discuss these two approaches below.

4.1 Directly using cost functions to estimate C(PS)

After we terminate the propagation using any of the criteria discussed in Section 3.3, let G =
{(g1, t1), (g2, t2)...(gn, tn)}, ti = Deadline(gi) be a set of goals and CG = {c1, ...cn|ci =
C(gi,Deadline(gi)} be their best possible achievement costs. If we consider G as the set of
preconditions for a dummy action that represents the goal state, then we can use any of the
propagation rules (max/sum/combo) discussed in Section 3.2 to directly estimate the total cost
of achieving the goals from the given initial state. Among all the different combinations of
the propagation rules and the aggregation rules to compute the total cost of the set of goals
G, only the max-max (max-propagation to update C(gi, t), and cost of G is the maximum of
the values of C(gi,Deadline(gi)) is admissible. The sum-sum rule, which assumes the total
independence between all facts, and the other seven combinations are different options to reflect
the dependencies between facts in the planning problem. The tradeoffs between them can only
be evaluated empirically.

4.2 Computing Cost from the relaxed plan

To take into account the positive interactions between facts in planning problems, we can do a
backtrack-free search from the goals to find a relaxed plan. Then, the total execution cost of
actions in the relaxed plan and its makespan can be used for the heuristic estimation. Besides
providing a possibly better heuristic estimate, work on FF[20] shows that actions in the relaxed
plan can also be used, leading to effectively focusing the search on the branches surrounding the
relaxed solution. Moreover, extracting the relaxed solution allows us to use the resource adjust-
ment techniques discussed in Section 4.2.2 to improve the heuristic estimations. The challenge
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Goals: G = {(g1, t1), (g2, t2)...(gn, tn)}
Actions in the relaxed-plan: RP = {}
Supported facts: SF = {f : f ∈ InitialStateS}
While G �= ∅

Select the best action A that support g1

RP = RP + A

tA = t1 −Dur(A)
Update makespan value T (RP ) if tA < T (RP )
For all f ∈ Effect(A) added by A after

duration tf from starting point of A do
SF = SF

⋃{(f, tA + tf )}
For all f ∈ Precondition(A) s.t C(f, tA) > 0 do

G = G
⋃{(f, tA)}

If ∃(gi, ti) ∈ G, (gi, tj) ∈ SF : tj < ti Then
G = G \ {(gi, ti)}

End while;

Figure 5: Procedure to extract the relaxed plan

here is how to use the cost functions to guide the search for the best relaxed plan and we address
this below.

The basic idea is to go backward finding actions to achieve the goals. When an action is
selected, we add its preconditions to the goal list and remove the goals that are achieved by
that action. The partial relaxed plan is the plan containing the selected actions and the causal
structure between them. When all the remaining goals are satisfied by the initial state S, we
have the complete relaxed plan and the extraction process is finished. At each stage, an action
is selected so that the complete relaxed plan that contains the selected actions is likely to have
the lowest estimated objective value f(PS , TS). For a given initial state S and the objective
function h(S) = f(C(PS), T (PS)), Figure 5 describes a greedy procedure to find a relaxed
plan given the temporal planning graph. First, let RP be the set of actions in the relaxed plan,
SF be the set of time-stamped facts (fi, ti) that are currently supported , and G be the set of
current goals. Thus, at the beginning, SF is the collection of facts supported by the initial state
S and the effects of actions in RP , and G is the conjunction of top level goals and the set of
preconditions of actions in RP that are not currently supported by facts in SF . The estimated
heuristic value for the current (partial) relaxed plan and the current goal set is computed as
follows: h(S) = h(RP ) + h(G) in which h(RP ) = f(C(RP ), T (RP )). For the given set of
goals G, h(G) = min f(C(G, t), t) : τ0 < t < τ∞ is calculated according to the approach
discussed in the previous section (Section 4). Finally, C(RP ) =

∑
A∈RP Cexec(A) and T (RP )

is the makespan of RP , where actions in RP are aligned according to their causal relationship.
We will elaborate on this in the example at the later part of this section.

In the beginning, G is the set of top level goals, RP is empty and SF contains facts in
the initial state. Thus C(RP ) = 0, T (RP ) = 0 and h(S) = h(G). We start the extraction
process by going backward searching for the least expensive action A supporting the first goal
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g1. By least expensive, we mean that A contributes the smallest amount to the objective function
h(S) = h(RP ) + h(G) if A is added to the current relaxed plan. Specifically, for each action
A that supports g1, we calculate the value hA(S) = h(RP + A) + h((G \ g1)

⋃
Precond(A))

which estimates the heuristic value if we add A to the relaxed plan. We then choose the action
A that has the smallest hA(S) value. 14

When an action A is chosen, we put its preconditions into the current goal list G, and its
effects into the set of supported facts SF . Moreover, we order A to be executed and finished
before the action that has g1 as its precondition. Using those ordering relations between actions
in RP , we can update the makespan value T (RP ) of the current (partial) relaxed plan.

In our ongoing example, suppose that our objective function is h(S) = f(C(PS), T (PS)) =
α.C(PS) + (1 − α).T (PS), α = 0.55 and the infinite-lookahead criterion is used to stop the
cost propagation process. When we start extracting the relaxed plan, the initial setting is G =
{at la}, RP = ∅ and RF = {at tucson}. Among the three actions Dc2

t→la, Tlv→la and Fp→la

that support the goal at la, we choose action A = Fp→la because if we add it to the relaxed
plan RP , then the estimated value hA(S) = h(RP + A) + h((G \ at la)

⋃
at phx) = (α ∗

Cexec(Fp→la) + (1 − α) ∗ Dur(Fp→la)) + mint(f(C(at phx), t)) = (0.55*6.0 + 0.45*1.5) +
(0.55*1.5 + 0.45*1.5) = 5.475. This is the smallest among the three actions. After we add Fp→la,
we update the goal set to G = {at phx}. It is then easy to compare between two actions Dc2

t→phx

and Dc1
t→phx to see that Dc2

t→phx is cheaper to achieve at-phx given the value α = 0.55. The final
cost C(PS) = 6.0 + 1.5 = 7.5 and makespan of T (PS) = 1.5 + 1.5 = 3 of the final relaxed
plan can be used as the final heuristic estimation h(S) = 0.55 ∗ 7.5 + 0.45 ∗ 3 = 5.475 for the
given planning problem. 15

Notice that in the relaxed-plan extraction procedure, we set the time points for the goal set
to be the goal deadlines, instead of the latest time points, where the cost functions for the goals
stabilized. The reason is that the cost values of facts and actions monotonically decrease and the
costs are time-sensitive. Therefore, the later we set the time points for goals to start searching
for the relaxed plan, the better chance we have of getting the low-cost plan, especially when
we use the k-lookahead approximation approach with k �= ∞. In our ongoing example, if we
use the zero-lookahead algorithm to stop the propagation and found out that the smallest cost
is C(in la) = 8.0 at t = 2.5. If we search back for the relaxed plan with the combination
(in la, 2.5) then we would find a plan P1 = (Dc1

t→p, Fp→la). However, if we search from the
goal deadline, say t = 7.0, then we would realize that the lowest cost for the precondition in phx
of Fp→la at t = 7.0−1.5 = 5.5 is C(in phx, 5.5) = 1.5 (caused by Dc2

t→p at time point t = 2.0)
and thus the final plan is P2 = (Dc2

t→p, Fp→la) which is cheaper than P1.

14Precond(A) is the set of preconditions of action A.
15Notice that because we extract the relaxed plan starting from the goal deadlines, the makespan value is equal to

the latest time point at which one of the cost function of a top level goal is updated. That value is decided by the level
of lookahead that we use to terminate the propagation. Specifically, zero-lookahead guarantees a smallest makespan
for the relaxed plan extracted, and higher levels of lookahead lead to longer makespan values. Nevertheless, regardless
of which termination criterion is used, if we want to extract a relaxed plan with the makespan value smaller or equal to
a specific value T , then we only need to replace all original goal deadlines by T and use the same extraction process
illustrated in Figure 5.
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move(package1,airplane1,A,B)

move(package2,airplane1,A,C)

Relaxed solution with mutex:

move(package1,airplane1,A,B)

Relaxed solution with no mutex:

move(package2,airplane2,A,C)

Figure 6: Example of mutex in the relaxed plan

4.2.1 Improving the relaxed plan heuristic estimation with static mutex relation

When building the relaxed temporal planning graph (RTPG), we ignored the negative interac-
tions between concurrent actions. We now discuss a way of using the static mutex relations to
help improve the heuristic estimation when extracting the relaxed plan. Specifically, our ap-
proach involves the following steps:

1. Find the set of static mutex relations between the ground actions in the planning problem
based on their negative interactions.

2. When extracting the relaxed plan (Section 4.2), besides the orderings between actions
that have causal-effect relationship (i.e one action gives the effect that supports the other
action’s preconditions), we also establish the orderings according to the mutex relations.
Specifically, when a new action is added to the relaxed plan, we use the pre-calculated
static mutexes to establish ordering between mutually exclusive action pairs so that they
can not be executed concurrently. The orderings are selected in such a way that they
violate least number of existing causal links in the relaxed plan.

By using the mutex relations, we can improve the makespan estimation of the relaxed plan,
and thus the heuristic estimation. Moreover, in many cases, the mutex relations can also help
us detect that the relaxed plan is in fact a valid plan, and thus can lead to the early termination
of the search. Let’s take an example of the Logistics domain that is illustrated in Figure 6. In
this example, we need to move two packages from cityA to cityB and cityC and there are two
airplanes (plane1, plane2) at cityA that can be used to move them. Moreover, we assume that
plane1 is 1.5 times faster than plane2 and uses the same amount of resources to fly between two
cities. There are two relaxed plans

P1 = {move(package1, plane1, cityA, cityB),move(package2 , plane1, cityA, cityC)}
P2 = {move(package1, plane1, cityA, cityB),move(package2 , plane2, cityA, cityC)}

that both contain two actions. The first one has shorter makespan if mutexes are ignored. How-
ever, if we consider the mutex constraints, then we know that two actions in P1 can not be exe-
cuted concurrently and thus the makespan of P1 is actually longer than P2. Moreover, the static
mutex relations also show that even if we order the two actions in P1 to be executed sequentially,
there is a violation because the first action cuts off the causal link between the initial state and the
second one. Thus, the mutex information helps us in this simple case to find a better quality (and
consistent) relaxed plan to be used as a heuristic estimation. Here is a sketch of how the relaxed
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plan P2 can be found. After the first action A1 = move(package1, plane1, cityA, cityB) is se-
lected to support the goal at(package1, cityB), the relaxed plan is RP = A1 and the two poten-
tial actions to support the second goal at(package2, cityC) are A2 = move(package2, plane1, cityA, cityC)
and A′

2 = move(package2, plane2, cityA, cityC). With mutex information, we will be able to
choose A′

2 over A2 to include in the final relaxed plan.

4.2.2 Using the resource information to adjust the cost estimates

The heuristics discussed in the last two sections have used the knowledge about durations of ac-
tions and deadline goals but not resource consumption. By ignoring the resource related effects
when building the relaxed plan, we may miss counting actions whose only purpose is to pro-
vide sufficient resource-related conditions to other actions.16 Consequently, ignoring resource
constraints may reduce the quality of heuristic estimate based on the relaxed plan. We are thus
interested in adjusting the heuristic values discussed in the last two sections to account for the
resource constraints.

In real-world problems, most actions consume resources, while there are special actions that
increase the levels of resources. Since checking whether the level of a resource is sufficient
for allowing the execution of an action is similar to checking the predicate preconditions, one
obvious approach to adjust the relaxed plan would be to add actions that provide that resource-
related condition to the relaxed plan. However, for many reasons, it turns out to be too difficult to
decide which actions should be added to the relaxed plan to satisfy the given resource conditions
(for a more elaborate discussion, see [9]). Therefore, we introduce an indirect way of readjusting
the cost of the relaxed plan to take into account the resource constraints as follows: We first pre-
process the problem specifications and find for each resource R an action AR that can increase
the amount of R maximally. Let ∆R be the amount by which AR increases R, and let C(AR) be
the cost value of AR. Let Init(R) be the level of resource R at the state S for which we want to
compute the relaxed plan, and Con(R), Pro(R) be the total consumption and production of R by
all actions in the relaxed plan. If Con(R) > Init(R) + Pro(R), we use the following formula
to adjust the cost component of the heuristic values according to the resource consumption:

C ← C +
∑
R

⌈
(Con(R)− (Init(R) + Pro(R)))

∆R

⌉
∗ C(AR)

We will call the newly adjusted heuristic adjusted cost. The basic idea is that even though
we do not know if an individual resource-consuming action in the relaxed plan needs another
action to support its resource-related preconditions, we can still adjust the number of actions in
the relaxed plan by reasoning about the total resource consumption of all the actions in the plan.
If we know how much excess amount of a resource R the relaxed plan consumes and what is the
maximum increment of R that is allowed by any individual action in the domain, then we can
infer the minimum number of resource-increasing actions that we need to add to the relaxed plan
to balance the resource consumption.

16In our ongoing example, if we want to drive a car from Tucson to LA and the gas level is low, by totally ignoring
the resource related conditions, we will not realize that we need to refuel the car before drive it.
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Figure 7: Examples of p.c. and o.c. plans

5 Post-processing to improve Temporal Flexibility

To improve the makespan and execution flexibility of the plans generated by Sapa, we post-
process and convert them into partially ordered plans. We discuss the details of this process in
this section.
Position and Order constrained plans: A position constrained plan (p.c.) is a plan where the
execution time of each action is fixed to a specific time point. An order constrained (o.c.) plan is
a plan where only the relative orderings between the actions are specified.

Sapa produces position constrained plans and the aim of post-processing is to convert them
into order constrained ones. Figure 7 shows a valid parallel p.c. plan consisting of four actions
A1, A2, A3, A4 with their starting time points fixed to T1, T2, T3, T4 and an o.c plan consisting of
the same set of actions and achieving the same goals. For each action, the shaded regions show
the durations in which each precondition or effect should hold during each action’s execution
time. The darker ones represent the effect and the lighter ones represent preconditions. For
example, action A1 has a precondition Q and effect R; action A3 has no precondition and two
effects ¬R and S. The arrows show the relative orderings between actions. Those ordering
relations represent the o.c plan and thus any execution trace that does not violate those orderings
will be a consistent p.c plan.

While generating a p.c. plan consistent with an o.c. plan is easy enough, we are interested
in the reverse problem–that of generating an o.c. plan given a p.c. plan. Given a p.c plan Ppc,
we discuss a strategy that finds a corresponding o.c plan Poc biased to have a reasonably good
makespan. Specifically, we extend the explanation-based order generation method outlined in
[23] to first compute a causal explanation for the p.c plan and then construct an o.c plan that has
just the number of orderings needed to satisfy that explanation. This strategy depends heavily
on the positions of all the actions in the original p.c. plan. Thus, it works based on the fact
that the alignment of actions in the original p.c. plan guarantees that causation and preservation
constraints are satisfied. To facilitate the discussion below, we use the following notations:

• For each (pre)condition p of action A, we use [stpA, et
p
A] to represent the duration in which

p should hold (stpA = etpA if p is an instant precondition).

• For each effect e of action A, we use eteA to represent the time point at which e occurs.

• For each resource r that is checked for preconditions or used by some action A, we use
[strA, et

r
A] to represent the duration over which r is accessed by A.

• The initial and goal states are represented by two new actions AI and AG. AI starts before
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all other actions in the Ppc, it has no precondition and has effects representing the initial
state. AG starts after all other actions in Ppc, has no effect, and has top-level goals as its
preconditions.

• The symbol ′′ ≺′′ is used through out this section to denote the relative precedence order-
ings between two time points.

Note that the values of stpA, et
p
A, et

e
A, st

r
A, et

r
A are fixed in the p.c plan but are only partially

ordered in the o.c plan. The o.c plan Poc is built from a p.c plan Ppc as follows:
Supporting Actions: For each precondition p of action A, we choose action A′ in the p.c plan
to support p such that:

1. p ∈ Effect(A′) and etpA′ < stpA in the p.c. plan Ppc.

2. There is no action B such that: ¬p ∈ Effect(B) and etpA′ < et¬p
B < stpA in Ppc.

3. There is no other action C that also satisfies the two conditions above and etpC < etpA′ .

When A′ is selected to support p to A, we add the causal link A′ p−→ A between two time points
etpA′ and stpA to the o.c plan. Thus, the ordering etpA′ ≺ stpA is added to Poc.
Interference relations: For each pair of actions A,A′ that interfere with each other, we order
them as follows:

1. If ∃p ∈ Delete(A′)
⋂

Add(A), then add the ordering etpA ≺ et¬p
A′ to Poc if etpA < st¬p

A′ in
Ppc. Otherwise add et¬p

A′ ≺ etpA to Poc.

2. If ∃p ∈ Delete(A′)
⋂

Precond(A), then add the ordering etpA ≺ et¬p
A′ to Poc if etpA <

et¬p
A in Ppc. Otherwise, if et¬p

A′ < stpA in the original plan Ppc then we add the ordering
et¬p

A′ ≺ stpA to the final plan Poc.

Resource relations: For each resource r that is checked as (pre)condition for action A and used
by action A′, based on those action’s fixed starting times in the original p.c plan Ppc, we add the
following orderings to the resulted Poc plan as follows:

• If etrA < strA′ in Ppc, then the ordering relation etrA ≺ strA′ is added to Poc.

• If etrA′ < strA in Ppc, then the ordering relation etrA′ ≺ strA is added to Poc.

This strategy is backtrack-free due to the fact that the original p.c. plan is correct. All
(pre)conditions of all actions in Ppc are satisfied and thus for any precondition p of an action
A, we can always find an action A′ that satisfies the three constraints listed above to support
p. Moreover, one of the temporal constraints that lead to the consistent ordering between two
interfered actions (logical or resource interference) will always be satisfied because the p.c. plan
is consistent and no pair of interfered actions overlap each other in Ppc. Thus, the search is
backtrack-free and we are guaranteed to find an o.c. plan due to the existence of one legal dis-
patch of the final o.c. plan Poc (which is the starting p.c. plan Ppc). The final o.c. plan is valid
because there is a causal-link for every action’s precondition, all causal links are safe, no inter-
fering actions can overlap, and all the resource-related (pre)conditions are satisfied. Moreover,
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this strategy ensures that the orderings on Poc are consistent with the original Ppc. Therefore,
because the p.c plan Ppc is one among multiple p.c plans that are consistent with the o.c plan
Poc, the makespan of Poc is guaranteed to be equal or better than the makespan of Ppc.

The algorithm discussed in this section is a special case of the partialization problem in
metric temporal planning. In [10], we do a systematic study of the general partialization problem
and give CSOP (Constraint Satisfaction Optimization Problem) encodings for solving them. The
current algorithm can be seen as a particular greedy variable/value ordering strategy for the
CSOP encoding.

6 Implementation of Sapa

Sapa system with all the techniques described in this paper has been fully implemented in JAVA.
The search algorithm for metric temporal planning and other techniques have been incorporated
in the current version. Specifically, they include:

1. The forward chaining algorithm (Section 2).

2. The cost sensitive temporal planning graph and the routines to propagate the cost infor-
mation and extract the heuristic value from it (Section 3).

3. The routines to extract and adjust the relaxed plan with neglected mutex and resource
information (Section 4.2).

4. Greedy post-processing routines to extract the causal structure between actions in the plan
(Section 5).

The default options for Sapa are sum-propagation rule, infinite lookahead termination, resource-
adjusted heuristics, and solutions are greedily postprocessed. Beside the techniques described in
this paper, we also wrote a JAVA-based parser for PDDL 2.1 Level 3, which is the highest level
used in the Third International Planning Competition (IPC3).

To visualize the plans returned by Sapa and the relations between actions in the plan (such
as causal links, mutual exclusions, and resource relations), we have developed a Graphical User
Interface (GUI)17 for Sapa. Figure 8 shows the screen shots of the current GUI. It displays the
the time line of the final plan with each action shown with its actual duration and starting time
in the final plan. There are options to display the causal relations between actions (found using
the greedy approach discussed in Section 5), and logical and resource mutexes between actions.
Annotations about the specific times at which individual goals are achieved are also displayed.

Our implementation is publicly available through Sapa homepage (http://rakaposhi.eas.asu.edu/sapa.html).
Given that the planer as well as the GUI are in JAVA, we also provide a web-based interactive
access to the planner.

17The GUI was developed by Dan Bryce
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Figure 8: Screen Shots of Sapa’s GUI

6.1 Empirical evaluation

We have subjected the individual components of the Sapa implementation to systematic em-
pirical evaluation (c.f. [9, 11, 10]). In this section, we will describe the experiments that we
conducted to show that Sapa [9] is capable of satisfying a variety of cost/makespan tradeoffs.
Moreover, we also provide results to show the effectiveness of the heuristic adjustment tech-
niques, the utility of different termination criteria, and the utility of the post-processing. The
experiments in this section were run on the Unix SunBlade machine with 256MB of RAM. The
evaluation of Sapa compared with other systems in the International Planning Competition, with
data provided by the competition committee, are provided in the next section.

Our first test suite for the experiments, which show the ability to produce solutions with
tradeoffs between time and cost quality, consisted of a set of randomly generated temporal lo-
gistics problems provided by Haslum and Geffner [19]. In this set of problems, we need to
move packages between locations in different cities. There are multiple ways to move packages,
and each option has different time and cost requirements. Airplanes are used to move packages
between airports in different cities. Moving by airplanes takes only 3.0 time units, but is ex-
pensive, and costs us 15.0 cost units. Moving packages by trucks between locations in different
cities costs only 4.0 cost units, but takes longer time of 12.0 time units. We can also move pack-
ages between locations inside the same city (e.g. between offices and airports). Driving between
locations in one city will cost us 2.0 units and takes 2.0 time units. Load/unload packages into
truck or airplane takes 1.0 unit of time and cost 1.0 unit.

We tested with the first 20 problems in the set with the objective function specified as a
linear combination of both total execution cost and makespan values of the plan. Specifically,
the objective function is set to

O = α.C(Plan) + (1− α).T (Plan)

We tested with different values of α : 0 ≤ α ≤ 1. Among the techniques discussed in this
paper, we used the sum-propagation rule, infinite look-ahead, and relax-plan extraction using
static mutex relation. Figure 9 shows how the average cost and makespan values of the solution
change according to the variation of the α value. The results show that the total execution cost of
the solution decreases as we increase the α value (thus, giving more weight to the execution cost
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Figure 9: Cost, makespan, and solving time variations according to different weights given to
them in the objective function. Each point in the graph corresponds to an average value over 20
problems.

Relaxed Plan Relaxed Plan with Adjustment

Prob time(s) node #act makespan time(s) node #act makespan

zeno1 0.272 14/48 5 320 0.317 14/48 5 320

zeno2 92.055 304/1951 23 1020 61.66 188/1303 23 950

zeno3 23.407 200/996 22 890 38.225 250/1221 13 430

zeno4 - - - - 37.656 250/1221 13 430

zeno5 83.122 575/3451 20 640 71.759 494/2506 20 590

zeno6 64.286 659/3787 16 670 27.449 271/1291 15 590

zeno7 1.34 19/95 10 370 1.718 19/95 10 370

zeno8 1.11 27/87 8 320 1.383 27/87 8 320

zeno9 52.82 564/3033 14 560 16.310 151/793 13 590

log-p1 2.215 27/159 16 10.0 2.175 27/157 16 10.0

log-p2 165.350 199/1593 22 18.875 164.613 199/1592 22 18.875

log-p3 - - - - 20.545 30/215 12 11.75

log-p4 13.631 21/144 12 7.125 12.837 21/133 12 7.125

log-p5 - - - - 28.983 37/300 16 14.425

log-p6 - - - - 37.300 47/366 21 18.55

log-p7 - - - - 115.368 62/531 27 24.15

log-p8 - - - - 470.356 76/788 27 19.9

log-p9 - - - - 220.917 91/830 32 26.25

Table 1: Solution times, explored/generated nodes, number of actions, and makespan values of
the solutions generated by Sapa in the zeno-flying and logistic domains with/without resource
adjustment technique.
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in the overall objective function). In contrast, when α decreases, thus giving more weight to the
makespan, the final cost of the solution increases and the makespan value decreases. The results
show that our approach indeed produces solutions that are sensitive to the objective functions
that involve both time and cost. The right most graph in the Figure 9 shows the average solution
time for this set of experiments. For all the combinations of {problem,α}, 79% (173/220) are
solvable within our limit cutoff time of 300 seconds. The average solution time is 19.99 seconds
and 78.61% of the instances can be solved within 10 seconds. The solid line shows the average
solution time for different α values. The dashed line shows the average solving time if we take
out the 20 (11%) combinations where the solving time is more than 40 seconds (more than two
times the average value). We can see that while we generally have larger deviations, solving
the multi-objective problems is not significantly costlier than single-objective problems (which
corresponds to the end points of the plots).

Utility of resource adjustment technique: In the second set of experiments, we test the util-
ity of the resource adjustment technique discussed in Section 4.2.2 for heuristics discussed in
Section 4. We evaluate the performance of Sapa on problems from two metric temporal plan-
ning domains. The first one is the zeno-flying domain discussed in [32]. The second is our
version of the temporal and metric resource version of the logistics domain. In this domain,
trucks move packages between locations within one city, and planes carry them from one city to
another. Different airplanes and trucks move with different speeds, have different fuel capaci-
ties, different fuel-consumption-rates, and different fuel-fill-rates when refueling. The temporal
logistics domain is more complicated than the zeno-flying domain because it has more types of
resource-consuming actions. Moreover, the refuel action in this domain has a dynamic duration,
which is not the case for any action in the zeno-flying domain. Specifically, the duration of this
action depends on the fuel level of the vehicle and can only be decided at the time we execute
that action.

Table 1 shows the running times of Sapa for the relaxed-plan heuristic with and without
metric resource constraint adjustment technique (refer to Section 4.2.2) in the two planning
domains discussed above. We tested with 9 problems from each domain. Most of the problems
require plans of 10-30 actions, which are quite big compared to problems solved by previous
domain-independent temporal planners reported in the literature. The results show that most of
the problems are solved within a reasonable time (e.g under 500 seconds). More importantly, the
number of nodes (time-stamped states) explored, which is the main criterion used to decide how
well a heuristic does in guiding the search, is quite small compared to the size of the problems.
In many cases, the number of nodes explored by the best heuristic is only about 2-3 times the size
of the plan. Table 1 also shows the number of actions in the solution and the duration (makespan)
of the solutions. These categories can be seen as indicative of the problem’s difficulty, and the
quality of the solutions. By closely examining the solutions returned, we found that the solutions
returned by Sapa have quite good quality in the sense that they rarely have many irrelevant
actions. The absence of irrelevant actions is critical in the metric temporal planners as it will
both save resource consumption and reduce execution time. It is interesting to note here that the
temporal TLPlan[1], whose search algorithm Sapa adapts, usually outputs plans with irrelevant
actions. Interestingly, Bacchus & Ady mention that their solutions are still better than the ones
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solving time (secs) makespan cost

problem la 0 la 1 la ∞ la 0 la 1 la ∞ la 0 la 1 la ∞
zeno 1 157 0.15 0.16 320 320 320 5 5 5

zeno 2 - 38.40 0.78 - 990 880 - 22 15

zeno 3 1.69 0.31 0.38 650 420 420 17 13 13

zeno 4 - 0.32 0.36 - 420 420 - 13 13

zeno 5 3.25 9.05 2.99 670 690 660 19 20 18

zeno 6 238 0.27 0.33 330 330 330 10 10 10

zeno 7 333 0.27 0.24 450 370 340 10 10 10

zeno 8 177 0.17 0.20 200 200 200 6 6 6

zeno 9 216 0.21 0.24 330 300 300 8 8 8

log 1 424 0.42 0.45 10 10 10 16 16 16

log 2 2.21 171.16 159.12 16.02 19.37 19.37 21 21 21

log 3 - - 0.99 - - 10.82 - - 13

log 4 4.28 0.55 0.62 7.42 7.12 7.12 16 12 12

log 5 - 1.93 2.23 - 12.42 12.42 - 16 16

log 6 2.43 2.28 2.59 16.42 16.42 16.42 21 21 21

log 7 3.64 2.71 34.61 19.32 17.32 26.29 29 27 30

log 8 6.53 3.88 - 17.32 15.32 - 29 27 -

log 9 3.60 3.55 4.01 20.42 20.42 20.42 31 31 31

Table 2: Quality and solving time comparison for different termination criteria.

returned by LPSAT[37], which makes our solutions that much more impressive compared to
LPSAT.

Evaluation of different termination criteria: For the same test suite discussed above (i.e.
metric temporal zeno-flying and logistics domains), one and infinite lookahead options work
similarly and are generally better than zero-lookahead. Table 2 shows the comparison results
for zero, one, and infinite lookahead for the set of metric temporal planning problems discussed
above. For the objective function, we set α = 1, actions costs are 1 unit and action durations are
dependent on the distances between locations. In this test suite, the results show that while one
and infinite lookahead work similar, they are generally better than zero-lookahead, both in term
of solving time and solution quality.

Utility of post-processing: Figure 10 shows the utility of the greedy post-processing tech-
nique discussed in Section 5. The test suite contains the same set of problems discussed ear-
lier (i.e. random generated temporal logistics problem provided with TP4[19], and the metric
temporal logistics problem). These graphs show the comparisons of makespan values of origi-
nal parallel position-constrained (p.c) plans and the order-constrained (o.c) plans returned after
post-processed. In the left side of Figure 10, we show the comparison between four different
makespans for 20 largest problems among the 80 random temporal logistics problems provided
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Figure 10: Utility of the greedy post-processing approach for (left) random temporal logistics
problem, and (right) metric temporal logistic problems.

with TP4[19] planner. The makespan values are: (1) the optimal makespan (as returned by TGP
[35]); (2) the makespan of the plan returned by Sapa; (3) the makespan of the o.c. resulting from
the greedy algorithm for partialization discussed in the last section; and (4) the total duration
of all actions, which would be the makespan value returned by several serial temporal planners
such as AltAlt [29] or GRT [33] if they produce the same solution as Sapa. Notice that the
makespan value of zero for the optimal makespan indicates that the problem is not solvable by
TGP. Compared to the optimal makespan, on the average, the makespan of the serial p.c. plans
(i.e, cumulative action duration) is about 4.34 times larger, the makespan of the plans output by
Sapa is about 3.23 times larger and the Sapa plans after post processing are about 2.61 times
longer (over the set of 75 solvable problems; TGP failed to solve the other 5).

The graph on the right side of Figure 10 shows the utility of the greedy post-processing
approach for the set of 10 metric temporal logistics problem discussed earlier in this section.
Currently, there is no planner that can handle resources and output optimal makespan. Therefore,
we compare only the total duration, the makespan of parallel plans output by Sapa, and the
makespan values after partialization. The results show that on average, the backtrack-free value
ordering strategy improves the makespan value by 22%.

6.2 Sapa in the 2002 International Planning Competition

We entered an implementation of Sapa, using several of the techniques discussed in this paper, in
the recent International Planning Competition. The specific techniques used in the competition
version of Sapa are infinite look-ahead termination of cost propagation (Section 3.3), resource
adjustment (Section 4.2.2), and greedy post-processing (Section 5). In the competition, we fo-
cused solely on the metric/temporal domains. Even though action cost is not part of the standard
PDDL 2.1 language used in the competition, infinite-lookahead unit-cost propagation employed
in Sapa helped it achieve very good performance in problems involving both metric and temporal
constraints. The competition results were collected and distributed by the IPC3’s organizers and
can be found at [13]. Detailed descriptions of domains used in the competition are also available
at the same place.
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The temporal planning domains in the competition come in two sets, one contains two do-
mains Satellite and Rovers, provided by NASA, representing the applications investigated by
them. Figures 11, 12, and 13 show the comparison results in the highest level of PDDL2.1
setting (in terms of the complexities of temporal and metric constraints involved) for the two
domains Satellite and Rovers.

Figure 11 and 12 show that five planners (Sapa, LPG, MIPS, TP4, and TPSYS) submitted
results for the timed setting and only three (Sapa, MIPS, TP4) were able to handle the complex
setting of the Satellite domain. In the timed setting, action durations depend on the setting of
instruments aboard a particular satellite and the directions it needs to turn to. The “complex”
setting is further complicated by the fact that each satellite has a different capacity limitation to
store only a certain amount of image data. Goals involve taking images of different planets and
stars located at different coordinate directions. To achieve the goals, the satellite equipped with
the right set of equipment should turn to the right direction, calibrate and take the image.

For the timed setting of this Satellite domain, Figure 11 shows that among five planners,
Sapa, LPG and MIPS were able to solve 19 of 20 problems while TP4 and TPSYS were able to
solve 2 and 3 problems respectively. For quality comparison, LPG with quality setting was able
to return solutions with the best quality, Sapa was slightly better than LPG with speed setting and
was much better than MIPS. LPG with speed setting is generally fastest, followed by MIPS and
then Sapa and LPG with quality setting. For the complex setting, Figure 12 shows that, among
the three planners, Sapa was able to solve the most number of problems (16), and generated
plans with better quality than MIPS. TP4 produced the best quality solutions, but was able to
solve only three smallest problems. The solving times of Sapa are slightly higher than MIPS,
but are much better than TP4.

The “timed” version of the Rover domain18 requires a set of scientific analysis to be done
using a number of rovers. Each rover carries different set of equipment, and has a different
energy capacity. Moreover, each rover can only recharge its battery at certain points (which may
be unreachable) that are under the sun. Figure 13 shows that only Sapa and MIPS were able to
handle the constraints involved with this problem set. Sapa again solved more problems (11 vs.
9) than MIPS and also returned better or equal quality solutions in all but one case. The solving
time of MIPS is better than Sapa in 6 of 9 problems that it returns the solutions.

In the second set of problems which come with temporal constraints, there are three domains:
Depots, DriverLogistics and Zeno Travel. Sapa participated at the highest level, which is the
“timed” settings for these three domains. Figure 14 shows the comparison between Sapa and
three other planners (LPG, MIPS, and TP4) that submitted the results. In this domain, we need
to move crates (packages) between different places, the loading actions that place the crates into
each truck is complicated by the fact that they need an empty hoist. Thus, the Depot domain looks
like a combination of the original logistics and blockworlds domains. Drive action durations
depend on the distances between locations and the speed of the trucks, time for loading the
crates depends on the power of the hoist that we use. There is no resource consumption in this
highest level. In this domain, Sapa was only able to solve 5 problems, compared to 11 by MIPS
and 18 by LPG. TP4 solved only one problem. For the problem that Sapa was able to solve, the

18In the planning competition, each domain had multiple versions–depending on whether or not the actions had
durations and whether actions use continuous resource.
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Figure 11: Results for the time setting of the Satellite domain (from IPC3 results).
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Figure 12: Results for the complex setting of the Satellite domain (from IPC3 results).
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Figure 13: Results for the time setting of the Rover domain (from IPC3 results).
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Figure 14: Results for the time setting of the Depots domain (from IPC3 results).

0

1000

2000

3000

4000

5000

6000

7000

0 2 4 6 8 10 12 14 16 18 20

Q
ua

lit
y

Problem number

DriverLog-Time

Sapa (14 solved)
LPG (Quality) (20 solved)
LPG (Speed) (20 solved)

MIPS (Plain setting) (16 solved)
TP4 (2 solved)

TPSYS (1 solved)

10

100

1000

10000

100000

1e+06

1e+07

0 2 4 6 8 10 12 14 16 18 20

M
ill

is
ec

on
ds

Problem number

DriverLog-Time

Sapa (14 solved)
LPG (Quality) (20 solved)
LPG (Speed) (20 solved)

MIPS (Plain setting) (16 solved)
TP4 (2 solved)

TPSYS (1 solved)

Figure 15: Results for the time setting of the DriverLog domain (from IPC3 results).
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Figure 16: Results for the time setting of the ZenoTravel domain (from IPC3 results).
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solution quality is as good as other planners. For the speed comparison, LPG with speed setting
is clearly faster than other planners.

Figure 15 shows how Sapa performance compares with other planners in the competition on
the time setting of the DriveLog domain. This is a variation of the original Logistics domain
in which we do not fly airplanes between different cities but only have to drive trucks between
different locations. However, the driver needs to walk between different locations before he can
board the truck. Like the Depot domain, there is no resource consumption. The durations for
walking and driving depend on the specified time-to-walk and time-to-drive between them. In
this domain, Sapa solved 14 problems compared to 20 by LPG, 16 by MIPS and 1 by TP4. The
quality of the solutions by different planners are very similar. For the speed comparison, LPG
with speed setting is fastest, then MIPS, then Sapa and LPG with quality setting.

Finally, Figure 16 shows the performance of Sapa in the ZenoTravel domain with time set-
ting. In this domain, passengers travel between different cities by airplanes. The airplanes can
choose to fly with different speeds (fast/slow), which consuming different amount of fuel for
each trip. Airplanes have different fuel capacity and need to refuel if they do not have enough in
the tank for each trip. In this domain, Sapa and LPG solved 16 problems while MIPS solved 20.
The solution quality of Sapa and MIPS are similar and in general better than LPG with either
speed or quality setting. LPG with speed setting and MIPS solved problems in this domain faster
than Sapa which in turn faster than LPG with quality setting.

In summary, the competition results showed that Sapa is one of the best planners in IPC3 in
solving problems involving both metric and temporal constraints.

7 Related Work and Discussion

Although there have been several recent domain-independent heuristic planners aimed at tempo-
ral domains, most of them have been aimed at makespan optimization, ignoring the cost aspects.
For example, both TGP [35] as well as TP4 [19] focus on makespan optimization and ignore
the cost aspects of the plan. As we have argued in this paper, ultimately metric temporal plan-
ners have to deal with objective functions that are based on both makespan and cost. One recent
research effort that recognizes the multi-objective nature of planning is Refanidis’ MO-GRT sys-
tem [34]. On one hand, the MO-GRT approach is more general than our approach in the sense
that it deals with the set of non-combinable quality metrics. MO-GRT approach however treats
time similar to other consumable resources (with infinite capacity). Temporal constraints on the
planning problems (such as when an effect should occur during the course of action), goal dead-
lines, or the concurrency between actions are ignored to scale down the problem to the classical
planning assumptions. Like GRT, Metric-FF[22] and MIPS[12] are other forward state space
planner that can handle resource constraints. Both of them generate sequential plan. MIPS can
then handle durative actions by putting in the action duration and post-process the sequential p.c
plans. Multi-Pegg [38] is another recent planner that considers cost-time tradeoffs in plan gener-
ation. Multi-Pegg is based on Graphplan approach, and focuses on classical planning problems
with non-uniform cost actions. ASPEN [6] is another planner that recognizes the multi-attribute
nature of plan quality. ASPEN advocates an iterative repair approach for planning, that assumes
the availability of a variety of hand-coded plan repair strategies and their characterization in
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terms of their effects on the various dimensions of plan quality. Along the lines of ASPEN,
LPG[14] is another planner that employs the local search technique over the action-graph. LPG
can handle objective functions that involve cost.

Although we evaluated our cost-sensitive heuristics in the context of Sapa, a forward chain-
ing planner, the heuristics themselves can also be used in other types of planning algorithms.
For example, TGP can be made cost-sensitive by making it propagate the cost functions as part
of planning graph expansion. These cost functions can then be used as a basis for variable and
value ordering heuristics to guide its backward branch-and-bound search. A similar approach in
classical planning has been shown to be successful in [24].

Besides Graphplan-based approaches, our framework can also be used in both forward and
backward (state-space, and partial order planners (POP)) to guide the planning search. It is
possible due to the fact that directional searches (forward/backward) all need to evaluate the
distances between an initial state to the set of temporal goals. In classical planning, works
by Nguyen & Kambhampati in [29, 30] have shown that heuristics derived from the classical
planning graph can help guiding backward state space and partial order classical planners ef-
fectively. Even though the heuristics based on the level information in [29, 30] can not directly
be extended to use in the temporal planning due to the fact that they assume all goals appear at
the same time, our approach is more flexible and does not make such an assumption. The cost
functions for facts and actions are based on the continuous time model and are independent of
each other. Thus, they can be readily used in the backward planners, especially POP planners,
where goals/subgoals are required at different time points.

Our work is also related to other approaches that use planning graphs as the basis for deriv-
ing heuristic estimate such as Graphplan-HSP[24], AltAlt[29], RePOP[30], and FF[20]. In the
context of these efforts, our contribution can be seen as providing a way to track cost as a func-
tion of time on planning graphs. An interesting observation is that cost propagation is in some
ways inherently more complex than makespan propagation. For example, once a set of literals
enter the planning graph (and are not mutually exclusive), the estimate of the makespan of the
shortest plan for achieving them does not change as we continue to expand the planning graph.
In contrast, the estimate of the cost of the cheapest plan for achieving them can change until
the planning graph levels off. This is why we had to carefully consider the effect of different
criteria for stopping the expansion of the planning graph on the accuracy of the cost estimates
(Section 3.3).

Another interesting observation is that within classical planning, there was often a confusion
between the notions of cost and makespan. For example, the “length of a plan in terms of number
of actions” can either be seen as a cost measure (if we assume that actions have unit costs), or a
makespan measure (if we assume that the actions have unit durations). These notions get teased
apart naturally in metric temporal domains.

In this paper, we concentrated on developing heuristics that can be sensitive to multiple
dimensions of plan quality (specifically, makespan and cost). An orthogonal issue in planning
with multiple criteria, that we did not explicitly address here, is how the various dimensions
of plan quality should be combined during optimization. The particular approach we adopted
in our empirical evaluation–viz., considering a linear combination of cost and coverage–is by
no means the only reasonable way. Other approaches involve non-linear combinations of the
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quality criteria, as well as “tiered” objective functions (e.g. rank plans in terms of makespan,
breaking ties using cost). A related issue is how to help the user decide the “weights” or “tiers”
of the different criteria. Often the users may not be able to articulate their preferences between
the various quality dimensions in terms of precise weights. A more standard approach out of
this dilemma involves generating all non-dominated plans19 (the so-called “pareto-set” [7, 31]),
and presenting them to the user (unfortunately, often the set of non-dominated plans can be
exponential (c.f. [31])). The user is then expected to pick the plan that is most palatable to them.
Further, the users may not actually be able to judge the relative desirability of plans when the
problems are complex and the plans are long. Thus, a more practicable approach may involve
resorting to other indirect methods such as preference elicitation techniques (c.f. [5]).

8 Conclusion

In this paper, we presented Sapa, a domain-independent heuristic forward chaining planner that
can handle durative actions, metric resource constraints, and deadline goals. Sapa is a forward-
chaining planner that searches in the space of time-stamped states. It is designed to be capable of
handling the multi-objective nature of the metric temporal planning. Our technical contributions
included (i) a planning-graph based method for deriving heuristics that are sensitive to both cost
and makespan (ii) an easy way of adjusting the heuristic estimates to take the metric resource
limitations into account and (iii) a way of post-processing the solution plans to improve their
execution flexibility. We described the technical details of extracting the heuristics and presented
an empirical evaluation of the current implementation of Sapa. An implementation of Sapa
using a subset of the techniques presented in this paper was one of the best domain independent
planners for domains with metric and temporal constraints in the third International Planning
Competition, held at AIPS-02.

In the future, we intend to extend Sapa in several different directions. First, we want to make
it more expressive in term of handling a richer set of temporal and resource constraints, such
as exogenous events (e.g a rover can not recharge the battery after sunset). Another direction
involves extending our multi-objective search to involve other quality metrics. While we con-
sidered cost of a plan in terms of a single monetary cost associated with each action, in more
complex domains, the cost may be better defined as a vector comprising the different types of
resource consumption. Further, in addition to cost and makespan, we may also be interested
in other measures of plan quality such as robustness and execution flexibility of the plan. Our
longer term goal is to support plan generation that is sensitive to these extended set of tradeoffs.
To this end, we plan to extend our methodology to derive heuristics sensitive to a larger variety of
quality measures. Finally, we also plan to consider the issues of planner-scheduler interactions
in the context of Sapa.

19A plan P is said to be dominated by P ′ if the quality of P ′ is strictly superior to that of P in at least one
dimension, and is better or equal in all other dimensions.

33



References

[1] Bacchus, F. & Ady, M. 2001. Planning with Resources and Concurrency: A Forward
Chaining Approach. In Proc. of Seventeenth International Joint Conference on Artificial
Intelligence.

[2] Backstrom, C. 1998. Computational Aspects of Reordering Plans. In Journal of Artificial
Intelligence Research 9, 99-137.

[3] Blum, A. and Furst, M. 1995. Fast planning throught planning graph analysis. In Proc. of
Fourteenth International Joint Conference on Artificial Intelligence (IJCAI).

[4] Bonet, B., Loerincs, G., and Geffner, H. 1997. A robust and fast action selection mechanism
for planning. In Proc. of Fourteenth National Conference on Artificial Intelligence (AAAI)

[5] U. Chajewska, L. Getoor, J. Norman and Y. Shahar. 1998. Utility Elicitation as a Classifi-
cation Problem. In Proc. of Fourteenth Uncertainty in Artificial Intelligence Conference.

[6] S. Chien, G. Rabideau, R. Knight, R. Sherwood, B. Engelhardt, D.Mutz, T. Estlin, B. Smith,
F. Fisher, T. Barrett, G. Stebbins, D.Tran 2000. ASPEN - Automating Space Mission Opera-
tions using Automated Planning and Scheduling. In Proc. of SpaceOps-2000

[7] P. Dasgupta, P.P. Chakrabarti, and S.C. DeSarkar. Multiobjective Heuristic Search. Vieweg
& Son/Morgan Kaufmann, 2001.

[8] Dechter, R., Meiri, I., and Pearl, J. 1990. Temporal Constraint Network. In Artificial
Intelligence Journal 49.

[9] Do, M. and Kambhampati, S. 2001. Sapa: A domain independent heuristic metric temporal
planner. In Proc. of Sixth European Conference on Planning

[10] Do, M. and Kambhampati, S. 2002. Improving the Temporal Flexibility of Position Con-
strained Metric Temporal Planning. In Temporal Planning Workshop, AIPS-02

[11] Do, M., and Kambhampati, S. 2002. Planning graph-based heuristics for cost-sensitive
temporal planning. In Proc. of Sixth International Conference on Artificial Intelligence Plan-
ning and Scheduling.

[12] Edelkamp, S. 2001. First Solutions to PDDL+ Planning Problems In PlanSIG Workshop.

[13] Fox, M. and Long, D. 2002. Third International Planning Competition.
http://www.dur.ac.uk/d.p.long/competition.html

[14] Gerevini, A. and Serina, I. 2002. LPG: A Planner Based on Local Search for Planning
Graphs. In Proc. of Sixth International Conference on Artificial Planning and Scheduling
(AIPS-02)

[15] Long, D. and Fox, M. 1998 Efficient Implementation of the Plan Graph in STAN. In
Journal of AI Research (JAIR), Volume 10, pages 87-115.

34



[16] Fox, M. and Long, D. 2001. PDDL2.1: An Extension to PDDL for Expressing Temporal
Planning Domains. Technical Report.

[17] Garrido, A., Onaindia, E., and Barber, F. 2001. Time-optimal planning in temporal prob-
lems. In Proc. of European Conference on Planning (ECP-01).

[18] Ghallab, M. and Laruelle, H. 1994. Representation and control in IxTeT, a temporal
planner. In Proc. of Second International Conference on Artificial Intelligence Planning and
Scheduling

[19] Haslum, P. and Geffner, H. 2001. Heuristic Planning with Time and Resources In Proc. of
Sixth European Conference on Planning

[20] Hoffmann, J. & Nebel, B. 2001. The FF Planning System: Fast Plan Generation through
Heuristic Search. In Journal of Artificial Intelligence Research 14:253-302.

[21] Hoffman, J. and Nebel, B. 2001. RIFO Revisited: Detecting Relaxed Irrelevance. In Proc.
of 6th European Conference on Planning.

[22] Hoffmann, J. 2002. Extending FF to Numerical State Variables. In Proc. of 15th European
Conference on Artificial Intelligence.

[23] Kambhampati, S. & Kedar, S. 1994. An unified framework for explanation-based general-
ization of partially ordered and partially instantiated plans. In Artificial Intelligence Journal
67, 29-70.

[24] Kambhampati, S. and Nigenda, R. 2000. Distance based goal ordering heuristics for
Graphplan. In Proc. of Fifth International Conference on Artificial Intelligence Planning and
Scheduling.

[25] Koehler, J. 1998. Planning under Resource Constraints. In Proc. of Eleventh European
Conference on Artificial Intelligence

[26] J. Koehler, B. Nebel, J. Hoffmann, Y. Dimopoulos. Extending Planning Graphs to an ADL
Subset In Proc. of European Conference in Planning.

[27] Laborie, P. and Ghallab, M. Planning with sharable resource constraints. In Proc. of
Fourteenth International Joint Conference on Artificial Intelligence (IJCAI).

[28] Muscettola, N. 1994. Integrating planning and scheduling. Intelligent Scheduling.

[29] Nguyen, X., Kambhampati, S., and Nigenda, R. 2001. Planning Graph as the Basis for de-
riving Heuristics for Plan Synthesis by State Space and CSP Search. In Artificial Intelligence
Journal.

[30] Nguyen, X., and Kambhampati, S., 2001. Reviving Partial Order Plan In Proc. of Seven-
teenth International Joint Conference on Artificial Intelligence (IJCAI).

35



[31] Papadimitriou C. H. and Yannakakis M. Multiobjective Qury Optimization. ACM Confer-
ence on Principles of Database Systems (PODS) 2001.

[32] Penberthy, S. and Well, D. 1994. Temporal Planning with Continuous Change. In Proc. of
11th National Conference on Artificial Intelligence (AAAI).

[33] Refanidis, I. and Vlahavas, I. 2001. The GRT Planner: Backward Heuristic Construction
in Forward State Space Planning. Journal of Artificial Intelligence Research, 15.p:115-161.

[34] Refanidis, I. and Vlahavas, I. 2001. A Framework for Multi-Criteria Plan Evaluation in
Heuristic State-Space Planning Workshop on Planning with Resources, IJCAI-01.

[35] Smith, D. and Weld, D. 1999. Temporal Planning with Mutual Exclusion Reasoning. In
Proc. of 16th International Joint Conference on Artificial Intelligence (IJCAI)

[36] Tsamardinos, I., Muscettola, N. and Morris, P. Fast Transformation of Temporal Plans for
Efficient Execution. In Proc. 15th National Conference on Artificial Intelligence (AAAI).

[37] Wolfman, S. and Weld, D. 1999. The LPSAT system and its Application to Resource
Planning. In Proc. of 16th International Joint Conference on Artificial Intelligence.

[38] Zimmerman, T. 2002. Generating parallel plans satisfying multiple criteria in anytime
fashion. In Workshop on Planning and Scheduling with Multiple criteria, AIPS-2002

36


