
State Agnostic Planning Graphs: Deterministic,
Non-Deterministic, and Probabilistic Planning

Daniel Bryce, aWilliam Cushing, band Subbarao Kambhampati b

a Utah State University, Department of Computer Science
4205 Old Main Hill, Logan, UT 84341

b Arizona State University, Department of Computer Science and Engineering
Brickyard Suite 501, 699 South Mill Avenue, Tempe, AZ 85281

Abstract

Planning graphs have been shown to be a rich source of heuristic information for many
kinds of planners. In many cases, planners must compute a planning graph for each ele-
ment of a set of states, and the naive technique enumerates the graphs individually. This is
equivalent to solving a multiple-source shortest path problem by iterating a single-source
algorithm over each source.

We introduce a data-structure, the state agnostic planning graph, that directly solves the
multiple-source problem for the relaxation introduced by planning graphs. The technique
can also be characterized as exploiting the overlap present in sets of planning graphs. For
the purpose of exposition, we first present the technique in deterministic planning to capture
a set of planning graphs used in forward chaining search. A more prominent application of
this technique is in belief state space planning, where each search node utilizes a set of
planning graphs; an optimization to exploit state overlap between belief states collapses the
set of sets of planning graphs to a single set. We describe another extension in probabilistic
planning that reuses planning graph samples of probabilistic action outcomes across search
nodes to otherwise curb the inherent prediction cost associated with handling probabilistic
actions. Our experimental evaluation (using many existing International Planning Competi-
tion problems) quantifies each of these performance boosts, and demonstrates that heuristic
belief state space progression planning using our technique is competitive with the state of
the art.

Key words: Planning, Heuristics

1 Introduction

Heuristics derived from planning graphs [4] are widespread in planning [19,22,43,33,8].
A planning graph represents a relaxed look-ahead of the state space that identifies

Preprint submitted to Artificial Intelligence 19 January 2009

P = {at(L1), at(L2), have(I1), comm(I1)}
A = { drive(L1, L2) = ({at(L1)}, ({at(L2)}, {at(L1)})),

drive(L2, L1) = ({at(L2)}, ({at(L1)}, {at(L2)})),
sample(I1, L2) = ({at(L2)}, ({have(I1)}, {})),
commun(I1) = ({have(I1)}, ({comm(I1)}, {}))}

I = {at(L1)}
G = {comm(I1)}

Fig. 1. Classical Planning Problem Example.

propositions reachable at different depths. Planning graphs are typically layered
graphs of vertices (P0,A0, P1,A1, ..., Ak−1,Pk), where each level t contains a
proposition layer Pt and an action layer At. Edges between the layers denote the
propositions in action preconditions (from Pt to At) and effects (from At−1 to Pt).

In many cases, heuristics are derived from a set of planning graphs. In determin-
istic (classical) planning, progression planners typically compute a planning graph
for every search state in order to derive a heuristic cost to reach a goal state. (The
same situation arises in planning under uncertainty when calculating the heuristic
for a belief state.) A set of planning graphs for related states can be highly redun-
dant. That is, any two planning graphs often overlap significantly. As an extreme
example, the planning graph for a child state is a sub-graph of the planning graph
of the parent, left-shifted by one step [44]. Computing a set of planning graphs by
enumerating its members is, therefore, inherently redundant.

Consider progression planning in a classical planning formulation (P,A, I,G) of a
Rovers domain, described in Figure 1. The formulation (discussed in more detail in
the next section) defines sets P of propositions, A of actions, I of initial state propo-
sitions, G of goal propositions. In the problem, there are two locations, L1 and L2,
and an image I1 can be taken at L2. The goal is to achieve comm(I1), hav-
ing communicated the image back to a lander. There are four actions drive(L1,
L2), drive(L2, L1), sample(I1, L2), and commun(I1). The rover can
use the plan: (drive(L1, L2), sample(I1, L2), commun(I1)) to achieve
the goal. The state sequence corresponding to this plan is:

sI = {at(L1)}

s1 = {at(L2)}

s2 = {at(L2), have(I1)}

s3 = {at(L2), have(I1), commun(I1)}

Notice that s1 ⊂ s2 ⊂ s3, meaning that the planning graphs for each state will
have initial proposition layers where P0(s1) ⊂ P0(s2) ⊂ P0(s3). Further, many

2

at(L1) at(L2)drive(L1, L2) at(L2)
have(I1)

sample(I1, L2) at(L2)
have(I1)
comm(I1)

commun(I1)

at(L1)
drive(L1, L2)

at(L1)

at(L2)
drive(L1, L2)

at(L1)

at(L2)
drive(L2, L1)

sample(I1, L2)
have(I1)

commun(I1) comm(I1)

drive(L1, L2)
at(L1)

at(L2)
drive(L2, L1)

sample(I1, L2)
have(I1)

A1A0 A2P1P0 P2 P3

at(L1)
drive(L2, L1) at(L1)

have(I1)

drive(L2, L1)

commun(I1)

at(L1)

commun(I1)

at(L2)

commun(I1)

at(L1)

sample(I1, L2)

at(L2)
have(I1)

at(L2)

at(L1)

at(L2)
drive(L2, L1)

sample(I1, L2)
have(I1)

commun(I1) comm(I1)

drive(L1, L2)
at(L1)

at(L2)
drive(L2, L1)

sample(I1, L2)
have(I1)

A1A0 P1P0 P2

at(L2)

have(I1)
commun(I1) comm(I1)

at(L1)
at(L2)

drive(L2, L1)

sample(I1, L2)
have(I1)

A0 P1P0

sI s1
s2 s3

s4

s2

sI

sI

sI s1

PG(sI)

PG(s1)

PG(s2)

Fig. 2. Planning graphs and state space projection tree.

of the same actions appear in the first action layer of the planning graph for each
state. Figure 2 (described in detail below) depicts the search tree (top) and planning
graphs for several states (bottom).

State Agnostic Planning Graphs: Avoiding the redundant construction and repre-
sentation of search heuristics as much as possible can improve planner scalability.
Our answer to avoiding redundancy is a generalization of the planning graph called
the State Agnostic Graph (SAG). The general technique (of which we will describe
several variations) is to implicitly represent several planning graphs by a single
planning graph skeleton that captures action and proposition connectivity (for pre-
conditions and effects) and use propositional sentences, called labels, to annotate
which portions of the skeleton relate to which of the explicit planning graphs. That
is, any explicit planning graph from the set can be recovered by inspecting the la-
beled planning graph skeleton. Moreover, when the need to reason about sets of
planning graphs arises, it is possible to perform the reasoning symbolically with-
out materializing each of the explicit graphs. Our techniques are related to work
on assumption based truth maintenance systems [15], where the intent is to capture
common assumptions made in multiple contexts. The contributions of this work are
to identify several extensions of this idea to reachability heuristics across a set of

3

Deterministic (Classical)
Planning

Non-Deterministic
Planning

(Incomplete Initial State)

Probabilistic Planning
(Probabilistic Initial State,

Probabilistic Actions)

Planning Graph
(PG)

Labeled
Planning Graph

Monte Carlo
Labeled

Planning Graph
Traditional

(PG) g p
(LUG) Planning Graph

(McLUG)
Relaxed Plan

Conformant Probabilistic

(Per Search
Node)

Planning
Conformant
Relaxed Plan

Probabilistic
Conformant
Relaxed Plan

Graph

State Agnostic
Planning Graph

State Agnostic
Labeled

Monte Carlo
State Agnostic

Labeled
(SAG) Planning Graph

(SLUG)

Labeled
Planning Graph

(McSLUG)
State

Agnostic
(Per Instance)

State Agnostic
Relaxed Plan

State Agnostic
Relaxed Plan

State Agnostic
Relaxed Plan

(Per Instance)
Planning

Graph

Relaxed Plan Conformant
Relaxed Plan

Probabilistic
Conformant
Relaxed Plan

Fig. 3. Taxonomy of Planning Graphs and Relaxed Plans.

planning problems.

From a graph-theoretic perspective, it is possible to view the planning graph as ex-
actly solving a single-source shortest path problem, for a relaxed planning problem.
The levels of the graph efficiently represent a breadth-first sweep from the single
source. In the context of progression planning, the planner will end up calculat-
ing a heuristic for many different sources. Iterating a single-source algorithm over
each source (building a planning graph per search node) is a naive solution to the
multiple-source shortest path problem. We develop the SAG under the following in-
tuition: directly solving the multiple-source shortest path problem is more efficient
than iterating a single source algorithm.

The exact form of the SAG depends upon the underlying properties (mutexes, cost,
time, . . .) of the planning graphs being represented. The main insight to the tech-
nique is to identify the individual planning graphs by propositional models and
represent the propagation rules of the planning graphs as the composition of propo-
sitional sentences (labels). Composing these sentences via boolean algebra yields a
symbolic approach for building the set of planning graphs without explicitly enu-
merating its elements. The labels exploit redundant sub-structure, and can help
boost empirical performance.

Figure 3 outlines the SAG techniques discussed in this work. The first row shows

4

the types of planning graphs and heuristics computed when using a traditional non-
SAG approach that constructs a new planning graph or set of planning graphs at
each search node. The second row shows the type of SAG and techniques for com-
puting heuristics in each of the three problem classes. In each problem class, the
corresponding version of the SAG represents a set of all traditional planning graphs
required for a given problem instance. In deterministic (a.k.a. classical) planning
the SAG captures a set of planning graphs; in non-deterministic (a.k.a. confor-
mant) planning, a set of labeled planning graphs (LUG) [9]; and in probabilistic
(a.k.a. probabilistic conformant) planning, a set of Monte Carlo labeled planning
graphs (McLUG) [10] . 1 We overload the term SAG to refer to both the specific
generalization of the planning graph used in deterministic planning and the gen-
eral technique of representing all planning graphs for a given instance with a single
data structure. The SAG approach applied to non-deterministic planning results in
a data-structure called the state agnostic LUG (SLUG) and applied to probabilistic
planning, the Monte Carlo state agnostic LUG (McSLUG). In all types of prob-
lems there are two approaches to computing relaxed plan heuristics from the SAG:
extracting a relaxed plan for each search node, or prior to search extracting a state
agnostic relaxed plan (representing all relaxed plans) and then for each node ex-
tracting a relaxed plan from the state agnostic relaxed plan.

Labels are propositional sentences whose models refer to individual planning graphs.
That is, a labeled planning graph element would be in the explicit planning graph
corresponding to each model of the label. In deterministic planning, each planning
graph is uniquely identified by the source state from which it is built; thus, each
label model corresponds to a state. In non-deterministic planning, each LUG is
uniquely identified by the source belief state from which it is built; however, the
LUG itself is a set of planning graphs, one for each state in a belief state. Instead
of representing a set of LUG, the SLUG represents the union of planning graphs
present in each LUG. The SLUG labels, like the SAG for deterministic planning,
have models that correspond to states. In probabilistic planning, where actions with
probabilistic effects are the challenge, theMcLUG represents a set of determinis-
tic planning graphs, each obtained by sampling the action outcomes in each level.
The McSLUG represents a set of McLUG, and each label model refers to both
a state and a set of sampled action outcomes. The McSLUG uses an additional
optimization that reuses action outcome samples among planning graphs built for
different states to keep the number of action outcome samples independent of the
number of states.

The idea to represent a set of planning graphs symbolically via labeling originally
appears in our work on the LUG [9]. The idea of sampling a set of planning graphs

1 Our discussion is mainly focussed on planning problems with sequential (non-
conditional) plans, but the heuristics discussed have been successfully applied to the analo-
gous non-deterministic and probabilistic conditional planning problems [7,6,9]. The focus
of this paper is on how to compute the heuristics more efficiently with the SAG.

5

(and representing them with labels) in probabilistic planning originally appears in
our work on theMcLUG [11]. The work described herein reinterprets the use of
labels to compute the planning graphs for all search nodes (states or belief states),
not just a set of planning graphs needed to compute the heuristic for a single search
node. The important issues addressed by this work (beyond those of the previous
work) are: i) defining a semantics for labels that support heuristic computation
for all search nodes and ii) evaluating whether precomputing all required planning
graphs is more effective than computing the planning graphs for individual search
nodes. The SAG was also previously described in a preliminary version of this work
[13], and the primary contributions described herein relate to i) extending the SAG
to the probabilistic setting, ii) introducing a new method to compute relaxed plans
by symbolically pre-extracting a relaxed plan from each planning graph represented
by a SAG (collectively called the SAG relaxed plan) and iii) presenting additional
empirical evaluation, including International Planning Competition (IPC) results.

In addition to the IPC results, our empirical evaluation internally evaluates the per-
formance of our planner POND while using traditional planning graphs, versus
the SAG and the SAG relaxed plan to compute relaxed plan heuristics. Additional
external evaluations compare POND to the following state-of-the-art planners:
Conformant FF [21], t0 [35], BBSP [39], KACMBP [1], MBP [2], CPplan [25],
and Probabilistic FF [16].

Layout: Our presentation describes traditional planning graphs and their gener-
alization to state agnostic planning graphs for deterministic planning (Section 2),
non-deterministic planning (Section 3), and probabilistic planning (Section 4). In
Section 5 we explore a generalization of relaxed plan heuristics that follows directly
from the SAG, namely, the state agnostic relaxed plan, which captures the relaxed
plan for every state. From there, the experimental evaluation (Section 6.2) begins by
comparing these strategies internally. We then conduct an external comparison in
Section 6.3 with several belief state space planners to demonstrate that our planner
POND is competitive with the state of the art in both non-deterministic planning
and probabilistic planning. We finish with a discussion of related work in Section
7 and a conclusion in Section 8.

2 Deterministic Planning

This section provides a brief background on deterministic (classical) planning, an
introduction to deterministic planning graphs, and a first discussion of state agnos-
tic graphs.

6

2.1 Problem Definition

As previously stated, the classical planning problem defines the tuple (P,A, I,G),
where P is a set of propositions, A is a set of actions, I is a set of initial state
propositions, and G is a set of goal propositions. A state s is a proper subset
of the propositions P , where every proposition p ∈ s is said to be true (or to
hold) in the state s. Any proposition p �∈ s is false in s. The set of states S is
the power set of P , such that S = 2P . The initial state sI is specified by a set
of propositions I ⊆ P known to be true and the goal is a set of propositions
G ⊆ P that must be made true in a goal state. Each action a ∈ A is described
by (ρe(a), (ε+(a), ε−(a))), where the execution precondition ρe(a) is the set of
propositions, and (ε+(a), ε−(a)) is an effect where ε+(a) is the set of propositions
that a causes to become true and ε−(a) is a set of propositions a causes to become
false. An action a is applicable appl(a, s) to a state s if each precondition proposi-
tion holds in the state, ρe(a) ⊆ s. The successor state s′ is the result of executing
an applicable action a in state s, where s′ = exec(a, s) = s\ε−(a) ∪ ε+(a). A se-
quence of actions (a1, ..., am), executed in state s, results in a state s′, where s′ =
exec((a1, ..., am), s) = exec(am, exec(am−1, ... exec(a1, s) ...)) and each action
is applicable in the appropriate state. A valid plan is a sequence of actions that is
applicable in sI and results in a goal state. The number of actions is the cost of
the plan. Our discussion below will make use of the equivalence between set and
propositional logic representations of states. Namely, a state s = {p1, ..., pn} ⊆ P
represented in set notation is equivalent to a logical state ŝ = p1∧ ...∧pn∧¬pn+1∧
... ∧ ¬pm, where P\s = {pn+1, ..., pm}.

The example problem description in Figure 1 lists four actions, in terms of their ex-
ecution precondition and effects; the drive(L1, L2) action has the execution
precondition at(L1), causes at(L2) to become true, and causes at(L1) to be-
come false. Executing drive(L1, L2) in the initial state (which is state sI , in
the example) results in the state: s1 = exec(drive(L1, L2), sI) = {at(L2)}.
The state s1 can be represented as the logical state ŝ1 = ¬at(L1) ∧ at(L2) ∧
¬have(I1) ∧ ¬comm(I1). In the following, we drop the distinction between
set (s) and logic notation (ŝ) because the context will dictate the appropriate repre-
sentation.

One of the most popular state space search formulations, progression, creates a
projection tree (Figure 2) rooted at the initial state sI by applying actions to leaf
nodes (representing states) to generate child nodes. Each path from the root to a leaf
node corresponds to a plan prefix, and expanding a leaf node generates all single
step extensions of the prefix. A heuristic estimates the cost to reach a goal state
from each state to focus effort on expanding the least cost leaf nodes.

7

2.2 Planning Graphs

One effective technique to compute reachability heuristics is through planning graph
analysis. Traditionally, progression search uses a different planning graph to com-
pute the reachability heuristic for each state s (see Figure 2). A planning graph
PG(s, A) constructed for the state s (referred to as the source state) and the action
set A is a leveled graph, captured by layers of vertices (P0(s),A0(s), P1(s),A1(s),
..., Ak−1(s),Pk(s)), where each level t consists of a proposition layer Pt(s) and
an action layer At(s). In the following, we simplify the notation for a planning
graph to PG(s), assuming that the entire set of actions A is always used. The no-
tation (unless otherwise stated) for action layers At and proposition layers Pt also
assumes that the state s is implicit. The specific type of planning graph that we
discuss is the relaxed planning graph [22]; in the remainder of this work we drop
the terminology “relaxed”, because all planning graphs discussed are relaxed.

A planning graph, PG(s), built for a single source s, satisfies the following:

(1) p ∈ P0 iff p ∈ s
(2) a ∈ At iff p ∈ Pt, for every p ∈ ρe(a)
(3) p ∈ Pt+1 iff p ∈ ε+(a) and a ∈ At

The first proposition layer, P0, is defined as the set of propositions in the state s. An
action layerAt consists of all actions that have all of their precondition propositions
in Pt. A proposition layer Pt, t > 0, is the set all propositions given by the positive
effect of an action in At−1. It is common to use implicit actions for proposition
persistence (a.k.a. noop actions) to ensure that propositions in Pt persist to Pt+1. A
noop action ap for proposition p is defined as ρe(ap) = ε+(ap) = p. Planning graph
construction continues until the goal is reachable (i.e., every goal proposition is
present in a proposition layer) or the graph reaches level-off (two proposition layers
are identical). (The index of the level where the goal is reachable can be used as an
admissible heuristic, called the level heuristic.)

Figure 2 shows three examples of planning graphs for different states encountered
within the projection tree. For example, PG(sI) has at(L1) in its initial propo-
sition layer. The at(L1) proposition is connected to the i) drive(L1, L2)
action because it is a precondition, and ii) connected to a persistence action (shown
as a dashed line). The drive(L1, L2) action is connected to at(L2) because
it is a positive effect of the action.

Consider one of the most popular and effective heuristics, which is based on relaxed
plans [22]. Through a simple back-chaining algorithm (Figure 4) called relaxed
plan extraction, it is possible to identify actions in each level that are needed to
causally support the goals. Relaxed plans are subgraphs (PRP

0 ,ARP
0 ,PRP

1 , ...,ARP
k−1,PRP

k)
of the planning graph, where each layer corresponds to a set of vertices. A relaxed
plan captures the causal chains involved in supporting the goals, but ignores how

8

RPExtract(PG(s), G)

1: Let k be the index of the last level of PG(s)
2: for all p ∈ G ∩ Pk do {Initialize Goals}
3: PRP

k ← PRP
k ∪ p

4: end for
5: for t = k...1 do
6: for all p ∈ PRP

t do {Find Supporting Actions}
7: Find a ∈ At−1 such that p ∈ ε+(a)
8: ARP

t−1 ← ARP
t−1 ∪ a

9: end for
10: for all a ∈ ARP

t−1, p ∈ ρe(a) do {Insert Preconditions}
11: PRP

t−1 ← PRP
t−1 ∪ p

12: end for
13: end for
14: return (PRP

0 ,ARP
0 ,PRP

1 , ...,ARP
k−1,PRP

k)

Fig. 4. Relaxed Plan Extraction Algorithm.

actions may conflict.

Figure 4 lists the algorithm used to extract relaxed plans. Lines 2-4 initialize the re-
laxed plan with the goal propositions. Lines 5-13 are the main extraction algorithm
that starts at the last level of the planning graph k and proceeds to level 1. Lines
6-9 find an action to support each proposition in a level. Line 7 is the most critical
step in the algorithm that selects an action to support a proposition. It is common
to prefer noop actions for supporting a proposition (if possible) because the relaxed
plan is likely to include fewer extraneous actions. For instance, a proposition may
support actions in multiple levels of the relaxed plan; by supporting the proposition
at the earliest possible level, it can persist to later levels. It also possible to select
actions based on other criterion, such as the index of the first action layer where
they appear. Lines 10-12 insert the preconditions of chosen actions into the relaxed
plan. The algorithm ends by returning the relaxed plan, which is used to compute a
heuristic as the total number of non-noop actions in the action layers.

Figure 2 depicts relaxed plans in bold for each of the states. The relaxed plan for sI

has three actions, giving the state an h-value of three. Likewise, s1 has a h-value of
two, and s2, one.

2.3 State Agnostic Planning Graphs

We generalize the planning graph to the SAG, by associating a label �t(·) with each
action and proposition at each level of the graph. A label tracks the set of sources
reaching the associated action or proposition at level t. That is, if the planning graph

9

built from a source includes a proposition at level t, then the SAG also includes the
proposition at level t and labels it to denote it is reachable from the source. Each la-
bel is a propositional sentence over state propositions P whose models correspond
to source states (i.e., exactly those source states reaching the labeled element). In-
tuitively, a source state s reaches a graph element x if s |= �t(x), the state is a
model of the label at level t. The set of possible sources is defined by the scope of
the SAG, denoted S, that is also a propositional sentence. Each SAG element label
�t(x) denotes a subset of the scope, meaning that �t(x) |= S. A conservative scope
S =
 would result in a SAG built for all states (each state is a model of logical
true).

The graph SAG(S) = 〈(P0,A0, ...,Ak−1,Pk), �〉 is defined similar to a planning
graph, but additionally defines a label function � and is constructed with respect to
a scope S. For each source state s where s |= S, the SAG satisfies:

(1) s |= �0(p) iff p ∈ s
(2) s |= �t(a) iff s |= �t(p) for every p ∈ ρe(a)
(3) s |= �t+1(p) iff s |= �t(a) and p ∈ ε+(a)

This definition resembles that of the planning graph, with the exception that labels
dictate which propositions and actions are included in various levels.

There are several ways to construct the SAG to satisfy the definition above. An ex-
plicit (naive) approach might enumerate the source states, build a planning graph
for each, and define the label function for each graph vertex as the disjunction of all
states whose planning graph contains the vertex (i.e., �t(p) =

∨
p∈Pt(s) s). Enumer-

ating the states to construct the SAG is clearly worse than building a planning graph
for each state. A more practical approach would not enumerate the states (and their
corresponding planning graphs) to construct the SAG. We use the intuition that ac-
tions appear in all planning graph action layers where all of their preconditions hold
in the preceding proposition layer (a conjunction, see 2. below), and that proposi-
tions appear in all planning graph proposition layers where there exists an action
giving it as an effect in the previous action layer (a disjunction, see 3. below). It is
possible to implicitly define the SAG, using the following rules:

(1) �0(p) = S ∧ p
(2) �t(a) =

∧
p∈ρe(a)

�t(p)

(3) �t(p) =
∨

a:p∈ε+(a)
�t−1(a),

(4) k = minimum level t such that (Pt = Pt+1) and �t(p) = �t+1(p), p ∈ Pt

Figure 5 depicts the SAG for the example (Figure 1), where S =
 (the set
of all states is represented by the logical true
). The figure denotes the labels
by propositional formulas in italics above actions and propositions. By the third
level, the goal proposition comm(I1) is labeled �3(comm(I1)) = at(L1) ∨

10

at(L1)

drive(L1, L2)

at(L1)

at(L2)

drive(L1, L2)

at(L1)

at(L2)

drive(L2, L1)

sample(I1, L2)

have(I1)

commun(I1)

comm(I1)

drive(L1, L2)

at(L1)

at(L2)

drive(L2, L1)

sample(I1, L2)

have(I1)

A1A0 A2P1P0 P2 P3

at(L2)

drive(L2, L1)

sample(I1, L2)

have(I1)have(I1)

comm(I1)comm(I1)comm(I1)

commun(I1)commun(I1)

at(L2)

at(L1)

have(I1)

comm(I1)

at(L2)

at(L1)

at(L2)

have(I1)

at(L1)Çat(L2)

at(L1)Çat(L2)

at(L2)Çhave(I1)

have(I1) Çcomm(I1)

at(L1)Çat(L2)

at(L1)Çat(L2)

at(L2)Çhave(I1)

at(L1)Çat(L2)

at(L1)Çat(L2)

at(L1)Çat(L2)

at(L1)Çat(L2)Ç
have(I1)

at(L2)Çhave(I1)Ç
comm(I1)

at(L1)Çat(L2)Ç
have(I1) Çcomm(I1)

at(L1)Çat(L2)Ç
have(I1)

at(L1)Çat(L2)

at(L1)Çat(L2)

at(L1)Çat(L2)

at(L1)Çat(L2)Ç
have(I1)

at(L1)Çat(L2)

at(L1)Çat(L2)

Fig. 5. SAG for rover example.

at(L2) ∨ have(I1) ∨ comm(I1). The goal is reachable by every state, ex-
cept s = ¬at(L1) ∧ ¬at(L2) ∧ ¬have(I1) ∧ ¬comm(I1) because s �|=
�3(comm(I1)). The state s will never reach the goal because level three is identi-
cal to level four (not shown) and s �|= �4(comm(I1)), meaning the heuristic value
for s is provably∞. Otherwise, the heuristic value for each state s (where s |= S)
is at least min0≤t≤k t where s |= �t(p)) for each p ∈ G. This lower bound is known
as the level heuristic.

Extracting the relaxed plan for a state s from the SAG is almost identical to extract-
ing a relaxed plan from a planning graph built for state s. The primary difference
is that while a proposition in some SAG layer Pt may have supporting actions in
the preceding action layer At−1, not just any action can be selected for the relaxed
plan. We require that s |= �t−1(a) to guarantee that the action would appear in
At−1 in the planning graph built for state s. For example, to evaluate the relaxed
plan heuristic for state s1 = ¬at(L1)∧at(L2)∧¬have(I1)∧¬comm(I1),
we may mistakenly try to support comm(I1) in P1 with commun(I1) in A0

without noticing that commun(I1) does not appear until action layer A1 for state

11

s1 (i.e., s1 �|= �0(comm(I1)), but s1 |= �1(comm(I1))). Ensuring that support-
ing actions have the appropriate state represented by their label guarantees that the
relaxed plan extracted from the SAG is identical to the relaxed plan extracted from
a normal planning graph. The change to the relaxed plan extraction procedure (in
Figure 4) replaces line 7 with:

“Find a ∈ At−1 such that p ∈ ε+(a) and s |= �t−1(a)”,

adding the underlined portion.

Sharing: The graph, SAG(S), is built once for a set of states represented by
S. For any s such that s |= S, computing the heuristic for s reuses the shared
graph SAG(S). For example, it is possible to compute the level heuristic for every
state in the rover problem, by finding the first level t where the state is a model
of �t(comm(I1)). Any state s where comm(I1) ∈ s has a level heuristic of
zero because �0(comm(I1)) = comm(I1). Any state s, where comm(I1) ∈
s or have(I1) ∈ s, has a level heuristic of one because �1(comm(I1)) =
comm(I1) ∨ have(I1), and so on for states modeling the labels of the goal
proposition in levels two and three. It is possible to compute the heuristic val-
ues a priori, or on-demand during search. In Section 5 we will discuss various
points along the continuum between computing all heuristic values before search
and computing the heuristic at each search node.

The search tree for the rover problem has a total of six unique states. By construct-
ing a planning graph for each state, the total number of planning graph vertices (for
propositions and actions) that must be allocated is 56. Constructing the equivalent
SAG, while representing the planning graphs for extra states, requires only 28 plan-
ning graph vertices. There are a total of 10 unique propositional sentences, with at
most four propositions per function. To answer the question of whether the SAG is
more efficient than building individual planning graphs, we must consider the cost
of manipulating labels. Representing labels as boolean functions (e.g., with BDDs)
significantly reduces both the size and cost of reasoning with labels, making the
SAG a better choice in some cases. We must also consider whether the SAG is used
enough by the search: it may be too costly to build the SAG for all states if we only
evaluate the heuristic for relatively few states. We will address these issues em-
pirically in the evaluation section, but first consider the SAG for non-deterministic
planning.

3 Non-Deterministic Planning

This section extends the deterministic planning model to consider non-deterministic
planning with an incomplete initial state, deterministic actions, and no observabil-

12

ity. 2 The section follows with an approach to planning graph heuristics for search
in belief state space, and ends with a SAG generalization of the planning graph
heuristics.

3.1 Problem Definition

The non-deterministic planning problem is given by (P,A, bI , G) where, as in clas-
sical planning, P is a set of propositions, A is a set of actions, and G is a goal
description. Extending the classical model, the initial state is replaced by an initial
belief state bI . Belief states capture incomplete information by representing a set
of all states consistent with the information. A non-deterministic belief state de-
scribes a boolean function b : S → {0, 1}, where b(s) = 1 if s ∈ b and b(s) = 0
if s �∈ b. For example, the problem in Figure 6 indicates that there are two states in
bI , denoting that it is unknown if have(I1) holds. We also make use of a logical
representation of belief states, where a state ŝ is in a belief state b̂ if ŝ |= b̂. From
the example, b̂I = at(L1) ∧ ¬at(L2) ∧ ¬comm(I1). As with states, we drop
the distinction between the set and logic representation because the context dictates
the representation.

In classical planning it is often sufficient to describe actions by their execution
precondition and positive and negative effects. With incomplete information, it is
convenient to describe actions that have context-dependent (conditional) effects.
(Our notation also allows for multiple action outcomes, which we will adopt when
discussing probabilistic planning. We do not consider actions with uncertain effects
in non-deterministic planning.) In non-deterministic planning, an action a ∈ A
is a tuple (ρe(a), Φ(a)), where ρe(a) is an enabling precondition and Φ(a) is a
set of causative outcomes (in this case there is only one outcome). The enabling
precondition ρe(a) is a set of propositions that determines the states in which an
action is applicable. An action a is applicable appl(a, s) to state s if ρe(a) ⊆ s,
and it is applicable appl(a, b) to a belief state b if for each state s ∈ b the action is
applicable.

Each causative outcome Φi(a) ∈ Φ(a) is a set of conditional effects. Each condi-
tional effect ϕij(a) ∈ Φi(a) is of the form ρij(a) → (ε+

ij(a), ε−ij(a)) where both
the antecedent (secondary precondition) ρij(a), the positive consequent ε+

ij(a), and
the negative consequent ε−ij(a) are a set of propositions. Actions are assumed to
be consistent, meaning that for each Φi(a) ∈ Φ(a) each pair of conditional effects
ϕij(a) and ϕij′(a) have consequents such that ε+

ij(a)∩ ε−ij′(a) = ∅ if there is a state
s where both may execute (i.e., ρij(a) ⊆ s and ρij′(a) ⊆ s). In other words, no two

2 With minor changes in notation, the heuristics described in this section apply to unre-
stricted non-deterministic planning (i.e., non-deterministic actions and partial observabil-
ity), but only under the relaxation that all non-deterministic action outcomes occur and
observations are ignored.

13

P = {at(L1), at(L2), have(I1), comm(I1)}
A = { drive(L1, L2) = ({at(L1)}, {({{} → ({at(L2)}, {at(L1)})})}),

drive(L2, L1) = ({at(L2)}, {({{} → ({at(L1)}, {at(L2)})})}),
sample(I1, L2) = ({at(L2))}, {({{} → ({have(I1)}, {})})}),
commun(I1) = ({}, {({{have(I1)} → ({comm(I1)}, {})})})}

bI = {{at(L1),have(I1)}, {at(L1)}}
G = {comm(I1)}

Fig. 6. Non-Deterministic Planning Problem Example.

conditional effects of the same outcome can have consequents that disagree on a
proposition if both effects are applicable. This representation of effects follows the
1ND normal form [38]. For example, the commun(I1) action in Figure 6 has a
single outcome with a single conditional effect {have(I1)} → ({comm(I1)},
{}). The commun(I1) action is applicable in bI , and its conditional effect occurs
only if have(I1) is true.

It is possible to use the effects of every action to derive a state transition function
T (s, a, s′) that defines a possibility that executing a in state s will result in state s′.
With deterministic actions, executing action a in state s will result in a single state
s′:

s′ = exec(Φi(a), s) = s ∪
(⋃

j:ρij⊆s
ε+

ij(a)

)
\
(⋃

j:ρij⊆s
ε−ij(a)

)

This defines the possibility of transitioning from state s to s′ by executing a as
T (s, a, s′) = 1 if there exists an outcome Φi(a) where s′ = exec(Φi(a), s), and
T (s, a, s′) = 0, otherwise.

Executing action a in belief state b, denoted exec(a, b) = ba, defines the successor
belief state ba as ba(s

′) = maxs∈b b(s)T (s, a, s′). Executing commun(I1) in bI

results in the belief state {{at(L1), have(I1), comm(I1)}, {at(L1)}},
indicating that the goal is satisfied in one of the states, assuming have(I1) was
true before execution.

The result b′ of executing a sequence of actions (a1, ..., am) in belief state bI is
defined as b′ = exec((a1, ..., am), bI) = exec(am, ...exec(a2, exec(a1, bI))...). A
sequence of actions is a strong plan if every state in the resulting belief state is
a goal state, ∀s∈b′G ⊆ s. Another way to state the strong plan criterion is to say
that the plan will guarantee goal satisfaction irrespective of the initial state (i.e.,
for each s ∈ bI , let b′ = exec((a1, ..., am), {s}), then ∀s′∈b′G ⊆ s′). Under this
second view of strong plans, it becomes apparent how one might derive planning
graph heuristics: use a deterministic planning graph to compute the cost to reach
the goal from each state in a belief state and then aggregate the costs [9]. As we
will see, surmounting the possibly exponential number of states in a belief state is

14

at(L1)
drive(L1, L2)

at(L1)
at(L2)

drive(L1, L2)
at(L1)
at(L2)

drive(L2, L1)
drive(L1, L2)

at(L1)
at(L2)

drive(L2, L1)

A1A0 A2P1P0 P2 P3

at(L1) at(L1) at(L1)
sample(I1, L2)

have(I1)
commun(I1) comm(I1)

at(L1)
sample(I1, L2)

have(I1)

d i (L1 L2)
at(L2)

d i (L1 L2)
at(L2)

drive(L2, L1)
d i (L1 L2)

at(L2)
drive(L2, L1)

at(L1)
drive(L1, L2)

at(L1)
()

drive(L1, L2)
at(L1)

()

sample(I1, L2)
have(I1)

commun(I1)
comm(I1)

drive(L1, L2)
at(L1)
()

sample(I1, L2)
have(I1)have(I1)

commun(I1)
comm(I1)

have(I1)
commun(I1)

comm(I1)

at(L2) at(L2)
drive(L2, L1)

at(L2)
drive(L2, L1)

at(L1)Æ¬ at(L2)Æ

at(L1)Æ¬ at(L2)Æ
¬comm(I1)

at(L1)Æ¬ at(L2)Æ

at(L1)Æ¬ at(L2)Æ
¬comm(I1)

at(L1)Æ¬ at(L2)Æ
¬have(I1)Æ¬comm(I1)

at(L1)Æ¬ at(L2)Æ
¬comm(I1) at(L1)Æ¬ at(L2)Æ

¬comm(I1)

at(L1)Æ¬ at(L2)Æ
¬comm(I1) at(L1)Æ¬ at(L2)Æ

¬comm(I1)

at(L1)Æ¬ at(L2)Æ at(L1)Æ¬ at(L2)Æ

at(L1)

drive(L1, L2)

at(L1)

drive(L1, L2)

at(L1)

drive(L1, L2)

at(L1)

() ()
¬comm(I1)

at(L1)Æ¬ at(L2)Æ
¬have(I1)Æ¬comm(I1)

() ()
¬have(I1)Æ¬comm(I1)

at(L1)Æ¬ at(L2)Æ
¬comm(I1)

() ()
¬comm(I1)

at(L1)Æ¬ at(L2)Æ
¬comm(I1)

() ()
¬comm(I1)

at(L1)Æ¬ at(L2)Æ
¬comm(I1)

at(L1)Æ¬ at(L2)Æ
¬comm(I1)

at(L1)Æ¬ at(L2)Æ
¬comm(I1)at(L1)Æ¬ at(L2)Æ

sample(I1, L2)
have(I1)

sample(I1, L2)
have(I1)have(I1) have(I1)

at(L1)Æ¬ at(L2)Æ
have(I1)Æ¬comm(I1)

at(L1)Æ¬ at(L2)Æ
have(I1)Æ¬comm(I1)

at(L1)Æ¬ at(L2)Æ
have(I1)Æ¬comm(I1)

(L1) (L2)

at(L1)Æ¬ at(L2)Æ
have(I1)Æ¬comm(I1)

()
at(L1)Æ¬ at(L2)Æ

¬have(I1)Æ¬comm(I1)

()at(L1)Æ¬ at(L2)Æ
¬comm(I1)

at(L1)Æ¬ at(L2)Æ
¬have(I1)Æ¬comm(I1)

at(L1)Æ¬ at(L2)Æ
¬comm(I1)

(L1) (L2)

at(L1)Æ¬ at(L2)Æ
¬comm(I1)

commun(I1)
comm(I1)

commun(I1)
comm(I1)

commun(I1)
comm(I1)

at(L1)Æ¬ at(L2)Æ
have(I1)Æ¬comm(I1)

at(L1)Æ¬ at(L2)Æ
have(I1)Æ¬comm(I1)

at(L1)Æ¬ at(L2)Æ
have(I1)Æ¬comm(I1)

at(L1)Æ¬ at(L2)Æ
have(I1)Æ¬comm(I1)

at(L1)Æ¬ at(L2)Æ
have(I1)Æ¬comm(I1)

at(L1)Æ¬ at(L2)Æ
have(I1)Æ¬comm(I1)

comm(I1)
at(L1)Æ¬ at(L2)Æ

¬have(I1)Æ¬comm(I1)
at(L1)Æ¬ at(L2)Æ
¬comm(I1)

at(L1)Æ¬ at(L2)Æ
¬comm(I1)

Fig. 7. Multiple planning graphs and LUG.

the challenge to deriving such a heuristic.

3.2 Planning Graphs

It is possible to compute a heuristic for a belief state by constructing a planning
graph for each state in the belief state, extracting a relaxed plan from each plan-
ning graph, and aggregating the heuristic values [9]. For example, the top portion
of Figure 7 shows two planning graphs, each built for a different state in bI of our
example. The bold subgraphs indicate the relaxed plans, which can be aggregated
to compute a heuristic. While this multiple planning graph approach can provide
informed heuristics, it can be quite costly when there are several states in the belief
state; plus, there is a lot of repeated planning graph structure among the multi-
ple planning graphs. Using multiple planning graphs for search in the belief state
space exacerbates the problems faced in state space (classical) planning; not only
is there planning graph structure repetition between search nodes, but also among
the planning graphs used for a single search node.

The solution to repetition within a search node is addressed with the labeled (un-
certainty) planning graph (LUG). The LUG represents a search node’s multiple
explicit planning graphs implicitly. The planning graph at the bottom of Figure 7

15

shows the labeled planning graph representation of the multiple planning graphs at
the top. The LUG uses labels, much like the SAG in deterministic planning. The
difference between the LUG and the SAG is that the LUG is used to compute the
heuristic for a single search node (that has multiple states) and the SAG is used to
compute the heuristics for multiple search nodes (each a state). The construction
semantics is almost identical, but the heuristic computation is somewhat different.

The LUG is based on the IPP [27] planning graph, in order to explicitly cap-
ture conditional effects, and extends it to represent multiple state causal support (as
present in multiple graphs) by adding labels to actions, effects, and propositions. 3

The LUG, built for a belief state b (similar to a deterministic SAG with scope S =
b), is a set of vertices and a label function: LUG(b) = 〈(P0,A0, E0, ...,Ak−1, Ek−1,Pk), �〉.
A label �t(·) denotes a set of states (a subset of the states in belief state b) from
which a graph vertex is reachable. In other words, the explicit planning graph for
each state represented in the label would contain the vertex at the same level. A
proposition p is reachable from all states in b after t levels if b |= �t(p) (i.e., each
state model of the belief state is a model of the label).

For every s ∈ b, the following holds:

(1) s |= �0(p) iff p ∈ s
(2) s |= �t(a) iff s |= �t(p) for every p ∈ ρe(a)
(3) s |= �t(ϕij(a)) iff s |= �t(a) ∧ �t(p) for every p ∈ ρij(a)
(4) s |= �t+1(p) iff p ∈ ε+

ij(a) and s |= �t(ϕ
+
ij(a))

Similar to the intuition for the SAG in deterministic planning, the following rules
can be used to construct the LUG:

(1) �0(p) = b ∧ p
(2) �t(a) =

∧
p∈ρe(a)

�t(p)

(3) �t(ϕij(a)) = �t(a) ∧
(∧

p∈ρij(a)
�t(p)

)

(4) �t(p) =
∨

a:p∈ε+
ij(a)

�t−1(ϕij(a)),

(5) k = minimum level t where b |=
(∧

p∈G
�t(p)

)

For the sake of illustration, Figure 7 depicts a LUG without the effect layers. Each
of the actions in the example problem have only one effect, so the figure only de-
picts actions if they have an enabled effect (i.e., both the execution precondition and
secondary precondition are reachable from some state s ∈ b). In the figure, there are

3 Like the deterministic planning graph, the LUG includes noop actions. Using the nota-
tion for conditional effects, the noop action ap for a proposition p is defined as ρe(ap) =
ρ00(ap) = ε+

00(ap) = p.

16

RPExtract(LUG(b), G)

1: Let k be the index of the last level of LUG(b)
2: for all p ∈ G ∩ Pk do {Initialize Goals}
3: PRP

k ← PRP
k ∪ p

4: �RP
k (p)← ∧

p′∈G
�k(p

′)

5: end for
6: for t = k...1 do
7: for all p ∈ PRP

t do {Support Each Proposition}
8: �← �RP

t (p) {Initialize Possible Worlds to Cover}
9: while � �=⊥ do {Cover Label}

10: Find ϕij(a) ∈ Et−1 such that p ∈ ε+
ij(a) and (�k(ϕij(a))∧�) �=⊥

11: ERP
t−1 ← ERP

t−1 ∪ ϕij(a)
12: �RP

t (ϕij(a))← �RP
t (ϕij(a)) ∨ (�t(ϕij(a)) ∧ �)

13: ARP
t−1 ← ARP

t−1 ∪ a
14: �RP

t (a)← �RP
t (a) ∨ (�t(ϕij(a)) ∧ �)

15: �← � ∧ ¬�t(ϕij(a))
16: end while
17: end for
18: for all a ∈ ARP

t−1, p ∈ ρe(a) do {Insert Action Preconditions}
19: PRP

t−1 ← PRP
t−1 ∪ p

20: �RP
t−1(p)← �RP

t−1(p) ∧ �RP
t−1(a)

21: end for
22: for all ϕij(a) ∈ ERP

t−1, p ∈ ρij(a) do {Insert Effect Preconditions}
23: PRP

t−1 ← PRP
t−1 ∪ p

24: �RP
t−1(p)← �RP

t−1(p) ∧ �RP
t−1(ϕij(a))

25: end for
26: end for
27: return 〈(PRP

0 ,ARP
0 , ERP

0 ,PRP
1 , ...,ARP

k−1, ERP
k−1,PRP

k), �RP 〉

Fig. 8. Labeled Relaxed Plan Extraction Algorithm.

potentially two labels for each part of the graph: the un-bolded label found during
graph construction, and the bolded label associated with the relaxed plan (described
below).

The heuristic value of a belief state is most informed if it accounts for all possible
states, but the benefit of using the LUG is lost if we compute and then aggregate the
relaxed plan for each state. Instead, we can extract a labeled relaxed plan to avoid
enumeration by manipulating labels. The labeled relaxed plan 〈(PRP

0 ,ARP
0 , ERP

0 ,
...,ARP

k−1, ERP
k−1,PRP

k), �RP 〉 is a subgraph of the LUG that uses labels to ensure that
chosen actions are used to support the goals from all states in the source belief state
(a conformant relaxed plan). For example, in Figure 7, to support comm(I1) in
level three we use the labels to determine that persistence can support the goal from
s2 ={at(L1), have(I1)} in level two and support the goal from s1 ={at(L1)}

17

with commun(I1) in level two. The relaxed plan extraction is based on ensuring
a goal proposition’s label is covered by the labels of chosen supporting actions. To
cover a label, we use intuition from the set cover problem, and the fact that a label
denotes a set of source states. That is, a proposition’s label denotes a set of states
Sp and each action’s label denotes a set of states Sa; the disjunction of labels of
chosen supporting actions Ap denotes a set of states (∪a∈ApSa) that must contain
all states denoted by the supported proposition label (Sp ⊆ ∪a∈ApSa).

The procedure for LUG relaxed plan extraction is shown in Figure 8. Much like the
algorithm for relaxed plan extraction from classical planning graphs, LUG relaxed
plan extraction supports propositions at each time step (lines 7-17), and includes
the supporting actions in the relaxed plan (lines 18-25). The significant difference
with deterministic planning is with respect to the required label manipulation, and
to a lesser extent, reasoning about actions and their effects separately. The algo-
rithm starts by initializing the set of goal propositions PRP

k at time k and associ-
ating a label �RP

k (p) with each to denote the states in b from which they must be
supported (lines 2-5). 4 For each time step (lines 6-26), the algorithm determines
how to support propositions and what propositions must be supported at the pre-
ceding time step. Supporting an individual proposition at time t from the states
represented by �RP

k (p) (lines 7-17) is the key decision point of the algorithm, em-
bodied in line 10. First, we initialize a variable � with the remaining states in which
to support the proposition (line 8). Until there are no remaining states, we choose
effects and their associated actions (lines 9-16). Those effects that i) have the propo-
sition as a positive effect and ii) support from states that need to be covered (i.e.,
�k(ϕij(a)) ∧ � �=⊥) are potential choices. In line 10, one of these effects is chosen.
We store the effect (line 11) and the states from which it supports (line 12), as well
as the associated action (line 13) and the states where its effect is used (line 14). The
states left to support are those not covered by the chosen effect (line 15). After se-
lecting the necessary actions and effects in a level, we examine their preconditions
and antecedents to determine the propositions we must support next (lines 18-25);
the states from which to support each proposition are simply the union of the states
where an action or effect is needed (lines 20 and 24). The extraction ends by re-
turning the labeled subgraph of the LUG that is needed to support the goals from
all possible states (line 27). The heuristic is the sum of the number of non-noop
actions in each action layer of the relaxed plan.

4 Notice that the relaxed plan label of each goal proposition is defined identically in terms
of the labels of all goal propositions (p′ ∈ G); we define relaxed plan labels in this fashion,
even though (in the LUG) each goal proposition label should be equivalent to b at the last
level, because later extensions of this algorithm for use in the SAG must deal with goal
proposition with different labels.

18

3.3 State Agnostic Planning Graphs

A naive generalization of the LUG to its SAG version has a larger worst case com-
plexity over the SAG version of the deterministic planing graph. Recall that the
SAG represents a set of planning graphs, and in this case, a set of LUG (each rep-
resenting a set of planning graphs). Each LUG may represent O(2|P |) planning
graphs, making a set of all LUG represent O(22|P |

) graphs. However, we describe
an equivalent SAG generalization of the LUG, the State Agnostic Labeled Uncer-
tainty Graph (SLUG), whose worst-case complexity is identical to the LUG and the
deterministic SAG– an exponential savings over the naive SAG generalization. The
intuition is that the LUG labels represent a set of states, and the naive SAG gen-
eralization labels would represent a set of sets of states. However, by representing
the union of these sets of states and modifying the heuristic extraction, the SLUG
manages to retain the complexity of the LUG.

As stated, the LUG is a kind of SAG. The LUG is an efficient representation of
a set of planning graphs built for deterministic planning with conditional effects.
We introduced Figure 5 as an example of the SAG for deterministic planning; it is
possible to re-interpret it as an example of the LUG. The graph depicted in Figure
5 is built for the belief state b =
 that contains every state in the rover example. It
is possible to use this graph to compute a heuristic for b =
, but it is not yet clear
how to compute the heuristic for some other belief state using the same graph.
The contribution made with the SLUG , described below, is to reuse the labeling
technique described for the LUG, and provide a modification to the relaxed plan
extraction algorithm to compute the relaxed plan for any belief state.

SLUG: The SLUG(B) represents each LUG required to compute the heuristic for
any belief state in a given set B. Each LUG represents a set of planning graphs, and
the SLUG simply represents the union of all planning graphs used in each LUG.
Thus, we can construct a SLUG with scope B by constructing an equivalent LUG
for the belief state b∗ =

∨
b∈B b =

∨
b∈B

∨
s∈b s (if B contains all belief states, then

b∗ = S =
). Representing the union leads to an exponential savings because oth-
erwise the LUG(b) and LUG(b′) built for belief states b and b′ represent redundant
planning graphs if there is a state s that is in both b and b′. This is an additional
savings not realized in the deterministic SAG because no two search nodes (states)
use the same planning graph to compute a heuristic. However, like the determin-
istic SAG, the constituent planning graphs share the savings of using a common
planning graph skeleton.

Computing the heuristic for a belief state using the SLUG involves identifying the
planning graphs that would be present in LUG(b). By constructing the LUG(b), the
appropriate planning graphs are readily available. However, with the SLUG , we
need to modify heuristic extraction to “cut away” the irrelevant planning graphs;
the same was true when we discussed the deterministic SAG. In the deterministic

19

SAG, it was sufficient to check that the state is a model of a label, s |= �t(·), to
determine if the element is in the planning graph for the state. In the SLUG , we can
also check that each state in the belief state is a model of a label, or that all states
in the belief state are models by the entailment check b |= �t(·). For example, the
level heuristic for a belief state is t if t is the minimum level where b |= ∧

p∈G �t(p)
– all goal propositions are in level t of the planning graph for each state s ∈ b.

Extending relaxed plan extraction for a belief state b to the SLUG is straight-
forward, given the existing labeled relaxed plan procedure in Figure 8. Recall that
extracting a labeled relaxed plan for the LUG involves finding causal support for
the goals from all states in a belief state. Each goal proposition is given a label in the
relaxed plan that is equal to b, and actions are chosen to cover the label (find support
from each state). In the SLUG , the labels of the goal propositions may include state
models that are not relevant to computing the heuristic for b. The sole modification
we make to the algorithm is to restrict which state models must support each goal.
The change replaces line 4 of Figure 8 with:

“�RP
k (p)← ∧

p′∈G
�k(p

′) ∧ b ”,

the conjunction of each goal proposition label with b (the underlined addition).
By performing this conjunction, the relaxed plan extraction algorithm commits to
supporting the goal from only states represented in b. Without the conjunction, the
relaxed plan would support the goal from every state in some b′ ∈ B, which would
likely be a poor heuristic estimate (effectively computing the same value for each
b ∈ B).

4 Probabilistic Planning

Probabilistic planning involves extensions to handle actions with stochastic out-
comes, which affect the underlying planning model, planning graphs, and state ag-
nostic planning graphs. We consider only conformant probabilistic planning in this
section, but as in non-deterministic planning, conditional planning can be addressed
by ignoring observations in the heuristics.

4.1 Problem Definition

The probabilistic planning problem is defined by (P,A, bI , G, τ), where everything
is defined as the non-deterministic problem, except that each a ∈ A has proba-
bilistic outcomes, bI is a probability distribution over states, and τ is the minimum
probability that the plan must satisfy the goal.

20

P = {at(L1), at(L2), have(I1), comm(I1)}
A = { drive(L1, L2) = ({at(L1)}, {(1.0, {{} → ({at(L2)}, {at(L1)})})}),

drive(L2, L1) = ({at(L2)}, {(1.0, {{} → ({at(L1)}, {at(L2)})})}),
sample(I1, L2) = ({at(L2))}, {(0.9, {{} → ({have(I1)}, {})})}),
commun(I1) = ({}, {(0.8, {{have(I1)} → ({comm(I1)}, {})})})}

bI = {(0.9, {at(L1),have(I1)}), (0.1, {at(L1)})}
G = {comm(I1)}

Fig. 9. Probabilistic Planning Problem Example.

A probabilistic belief state b is a probability distribution over states, describing a
function b : S → [0, 1], such that

∑
s∈S b(s) = 1.0. While every state is involved in

the probability distribution, many are often assigned zero probability. To maintain
consistency with non-deterministic belief states, those states with non-zero proba-
bility are referred to as states in the belief state, s ∈ b, if b(s) > 0.

Like non-deterministic planning, an action a ∈ A is a tuple (ρe(a), Φ(a)), where
ρe(a) is an enabling precondition and Φ(a) is a set of causative outcomes. Each
causative outcome Φi(a) ∈ Φ(a) is a set of conditional effects. In probabilistic
models, there is a weight 0 < wi(a) ≤ 1 indicating the probability of each out-
come i being realized, such that

∑
i wi(a) = 1. We redefine the transition relation

T (s, a, s′) as the sum of the weight of each outcome where s′ = exec(Φi(a), s),
such that:

T (s, a, s′) =
∑

i:s′=exec(Φi(a),s) wi(a)

Executing action a in belief state b, denoted exec(a, b) = ba, defines the successor
belief state ba such that ba(s

′) =
∑

s∈b b(s)T (s, a, s′). We define the belief state b′

reached by a sequence of actions (a1, a2, ..., am) as b′ = exec((a1, a2, ...am), b) =
exec(am, ...exec(a2, exec(a1, b))...). The cost of the plan is equal to the number of
actions in the plan.

4.2 Planning Graphs

Recall that the LUG represents a planning graph for each state in a belief state
– enumerating the possibilities. When actions have uncertain outcomes, it is also
possible to enumerate the possibilities. Prior work on Conformant GraphPlan [40],
enumerates both the possibilities due to belief state uncertainty and action outcome
uncertainty by constructing a planning graph for each initial state and set of action
outcomes. However, because each execution of an action may have a different out-
come, the possible outcomes at each level of the planning graph must be enumer-
ated. Thus, we can describe each of the enumerated planning graphs in terms of the
random variables (Xb, Xa,0, ..., Xa′,0, ..., Xa,k−1, ..., Xa′,k−1). Each planning graph

21

at(L1)

drive(L1, L2)

at(L1)

at(L2)

drive(L1, L2)

at(L1)

at(L2)
drive(L2, L1)

sample(I1, L2)

have(I1)

A1A0 P1P0 P2

have(I1)have(I1)

comm(I1)comm(I1)
commun(I1)commun(I1)

A2 P3

drive(L1, L2)

at(L1)

at(L2)
drive(L2, L1)

sample(I1, L2)

have(I1)

comm(I1)
commun(I1)

>
y0Æ¬y1

y0
y0Æ¬y1

y1
y1

>
y0Æ¬y1

>
y0Æ¬y1

>

y1
y0Æ y1

>
¬y0Æy1

¬y0Æy1
¬y0Æy1

¬y0Æy1
¬y0Æy1

>

>

>

>

>

> >

>

>
y0Æ¬y1

>
y0Æ¬y1 >

y0Æ¬y1

>
y0Æ¬y1

>

>

¬y0Ç¬y1

>
y0Æy1

y1
y0Æy1

y1
y1

y0Çy1
y0Çy1

y(x0) = ¬y0Æ¬y1, y(x1) = y0Æ¬y1, y(x2) = ¬y0Æy1, y(x3) = y0Æy1

Fig. 10. Monte Carlo labeled uncertainty graph.

is a different assignment of values to the random variables, where Xb is distributed
over the states in the source belief state b, and (Xa,t, ..., Xa′,t) are distributed over
the action outcomes in action layer t.

In the probabilistic setting, each planning graph has a probability defined in terms
of the source belief state and action outcome weights. It is possible to extend the
LUG to handle probabilities and actions with uncertain outcomes by defining a
unique label model for each planning graph and associating with it a probability
[11]. However, the labels become quite large because each model is a unique as-
signment to (Xb, Xa,0, ..., Xa′,0, ..., Xa,k−1, ..., Xa′,k−1). With deterministic actions,
labels only capture uncertainty about the source belief state (Xb) and the size of the
labels is bounded (there is a finite number of states in a belief state). With uncertain
actions, labels must capture uncertainty about the belief state and each uncertain
action at each level of the planning graph. Naturally, as the number of levels and
actions increase, the labels used to exactly represent this distribution become expo-
nentially larger and quite costly to propagate for the purpose of heuristics. We note
that it does not make sense to exactly compute a probability distribution within a
relaxed planning problem. Monte Carlo techniques are a viable option for approx-
imating the distribution (amounting to sampling a set of planning graphs).

The Monte Carlo LUG (McLUG) represents a set of sampled planning graphs
using the labeling technique developed in the LUG. TheMcLUG is a set of ver-
tices and a label function:McLUG(b) = 〈(P0,A0, E0, ...,Ak−1, Ek−1,Pk), �〉. The
McLUG represents a set of N planning graphs. The nth planning graph, n =
0, ..., N − 1, is identified by a set xn of sampled values for the random variables
xn = {Xb = s,Xa,0 = Φi(a), ..., Xa′,0 = Φi(a

′), ..., Xa,k−1 = Φi(a), ..., Xa′,k−1 =
Φi(a

′)}, corresponding to the state in the belief state and the action outcomes at

22

different levels. In the following, we denote the nth sampled value v of random
variable X by P (X)

n∼ v.

McLUG Labels: Recall that without probabilistic action outcomes, a single plan-
ning graph is uniquely identified by its source state, and the LUG or SAG define
labels in terms of these states (each model of a label is a state). TheMcLUG is dif-
ferent, in that each unique planning graph is identified by a different set of sampled
values of random variables (states and action outcomes). In defining the labels for
theMcLUG, we could require that each model of a label refers to a state and a set
of level-specific action outcomes; the label would be expressed as a sentence over
the state propositions P and a set of propositions denoting the level-specific action
outcomes. However, we note that the number of propositions required to express
the k levels of level-specific action outcomes is O(log2(|Φ(a)|)|A|k). Under this
scheme, a label could have O(2|P ||Φ(a)||A|k) models, of which only N are actu-
ally used in theMcLUG. It often holds in practice that N << O(2|P ||Φ(a)||A|k).

The McLUG uses an alternative representation of labels where the number of
label models is much closer to N . Each planning graph n is assigned a unique
boolean formula y(xn) (a model, or more appropriately, a bit vector), defined over
the propositions (y0, ..., y�log2(N)�−1). For example, when N = 4 two propositions
y0 and y1 are needed, and we obtain the following models: y(x0) = ¬y0 ∧ ¬y1,
y(x1) = y0 ∧ ¬y1, y(x2) = ¬y0 ∧ y1, and y(x3) = y0 ∧ y1. TheMcLUG depicted
in Figure 10, uses N = 4 samples for the initial belief state of the probabilis-
tic Rovers problem in Figure 9. The non-bold labels above each graph vertex are
boolean formulas defined over y0 and y1 that denote which of the sampled planning
graphs n = 0, .., 3 contain the vertex. The bolded labels (described below) denote
the relaxed plan labels.

For each planning graph n and corresponding set of sampled values xn, n = 0...N−
1, theMcLUG satisfies:

(1) y(xn) |= �0(p) and Xb = s ∈ xn iff P (Xb)
n∼ s and p ∈ s

(2) y(xn) |= �t(a) iff y(xn) |= �t(p) for every p ∈ ρe(a)
(3) y(xn) |= �t(ϕij(a)) and Xa,t = Φi(a) ∈ xn iff P (Xa,t)

n∼ Φi(a) and y(xn) |=
�t(a) ∧ �t(p) for every p ∈ ρij(a)

(4) y(xn) |= �t+1(p) iff p ∈ ε+
ij(a) and y(xn) |= �t(ϕij(a))

Notice that the primary difference between the LUG andMcLUG is that theMcLUG
records a set of sampled random variable assignments for each planning graph in
the set xn and ensures the model y(xn) entails the corresponding graph element
label. In reality, each set xn is maintained implicitly through theMcLUG labels.

The following label rules can be used to construct theMcLUG:

(1) If P (Xb)
n∼ s, then Xb = s ∈ xn, n = 0, ..., N − 1

23

(2) �0(p) =
∨

p∈s:Xb=s∈xn
y(xn)

(3) �t(a) =
∧

p∈ρe(a)
�t(p)

(4) If P (Xa,t)
n∼ Φi(a), then Xa,t = Φi(a) ∈ xn, n = 0, ..., N − 1

(5) �t(ϕij(a)) = �t(a) ∧
(∧

p∈ρij(a)
�t(p)

)
∧
(∨

xn:Xa,t=Φi(a)∈xn
y(xn)

)

(6) �t(p) =
∨

ϕij(a)∈Et−1:p∈ε+
ij(a)

�t−1(ϕij(a))

(7) k = minimum t such that
N−1∑
n=0

δ(n)/N ≥ τ , where δ(n) = 1 if y(xn) |=∧
p∈G

�t(p), and δ(n) = 0, otherwise.

TheMcLUG label construction starts by sampling N states from the belief state b
and associating each of the nth sampled states with a planning graph n (1, above).
In the example, the state {at(L1)} is sampled first and second, and associated
with the sets x0 and x1, and likewise, state {at(L1),have(I1)} is sampled
and associated with x2 and x3. Initial layer proposition labels denote all samples
of states where the propositions hold (2, above). The labels in the example are
calculated as follows, �0(at(L1)) = y(x0) ∨ y(x1) ∨ y(x2) ∨ y(x3) =
 because
at(L1) holds in every state sample and �0(have(I1)) = y(x2) ∨ y(x3) = y1

because have(I1) holds in two of the state samples. Action labels denote all
planning graphs where all of their preconditions are supported (3, above), as in the
LUG and SAG. At each level, each action outcome is sampled by each planning
graph n (4, above). In the example, the outcomes of commun(I1) in level zero
are sampled as follows:

P (Xcommun(I1),0)
0∼ Φ0(commun(I1)),

P (Xcommun(I1),0)
1∼ Φ0(commun(I1)),

P (Xcommun(I1),0)
2∼ Φ0(commun(I1)),

P (Xcommun(I1),0)
3∼ Φ1(commun(I1)).

Each effect is labeled to denote the planning graphs where it is supported and its
outcome is sampled (5, above). While the outcome Φ0(commun(I1)) is sampled
the first three times, the effect ϕ00(commun(I1)) is only supported when n = 2
because its antecedent have(I1) is only supported when n = 2 and n = 3.
The label is calculated as follows (via rule 5, above): �0(ϕ00(commun(I1))) =
�0(commun(I1))∧ �0(have(I1))∧ (y(x0)∨y(x1)∨y(x2)) =
∧y1∧ ((¬y1∧
¬y2) ∨ (¬y1 ∧ y2) ∨ (y1 ∧ ¬y2)) = y1 ∧ ¬y2. Each proposition is labeled to denote
planning graphs where it is supported by some effect (6, above), as in the LUG
and SAG. The last level k (which can be used as the level heuristic) is defined as
the level where a proportion of planning graphs where all goal propositions are

24

reachable is no less than τ . A planning graph reaches the goal if its label is a model
of the conjunction of goal proposition labels. In the example, one planning graph
reaches the goal comm(I1) at level one (its label has one model); two, at level
two; and three, at level three. The relaxed plan shown in bold, supports the goal (in
the relaxed planning space) with probability 0.75 because it supports the goal in
three of four sampled planning graphs.

Labeled relaxed plan extraction in the McLUG is identical to the LUG, as de-
scribed in the previous section. However, the interpretation of procedure’s seman-
tics does change slightly. We pass aMcLUG for a given belief state b to the proce-
dure, instead of a LUG. The labels for goal propositions (line 4) represent sampled
planning graphs, and via theMcLUG termination criterion, we do not require goal
propositions to be reached by all planning graphs – only a proportion no less than
τ .

In the example, the goal comm(I1) is reached in three planning graphs because
its label at level three is y0 ∨ y1 = y(x1) ∨ y(x2) ∨ y(x3). The planning graphs
associated with sample sets x2, x3 support the goal by ϕ00(comm(I1)p), and the
planning graph with sample set x1 supports the goal by ϕ00(commun(I1)), so
we include both in the relaxed plan. For each action we subgoal on the antecedent
of the chosen conditional effect as well as its enabling precondition. The relaxed
plan contains three invocations of commun(I1) (reflecting how action repetition
is needed when actions have uncertain outcomes), and the drive(L1, L2) and
sample(L1, L2) actions. The value of the relaxed plan is five because it uses
five non-persistence actions.

4.3 State Agnostic Planning Graphs

A state agnostic generalization of the McLUG should be able to compute the
heuristic for all probabilistic belief states (of which there an infinite number). Fol-
lowing our intuitions from theMcLUG, we would sample N states from a belief
state, and expect that the state agnostic McLUG already represents a planning
graph for each. However, this is not enough, we should also expect that each of
these N planning graphs uses a different set of sampled action outcomes. For ex-
ample, if each of the N sampled states is identical and all planning graphs built for
this state use identical action outcome samples, we might compute a poor heuristic
(essentially ignoring the fact that effects are probabilistic).

In order to precompute N planning graphs (using different action outcome sam-
ples) for each sampled state, we could construct N copies of the SLUG , each built
for a different set of sampled action outcomes xn = {Xa,0 = Φi(a), ..., Xa′,0 =
Φi(a

′), ..., Xa,k−1 = Φi(a), ..., Xa′,k−1 = Φi(a
′)}. We refer to the nth SLUG by

SLUG(xn). To compute a heuristic, we sample N states from a belief state and

25

lookup the planning graph for each of the nth sampled states in the corresponding
SLUG(xn). In this manner, we can obtain different sets of action outcome samples
even if the same state is sampled twice. We note, however, that a set of SLUG is
highly redundant, and clashes with our initial motivations for studying state agnos-
tic planning graphs. Since the set of SLUG is essentially a set of planning graphs,
the contribution of this section is showing how to extend the label semantics to cap-
ture a set of SLUG built with different action outcomes in a single data structure,
which we call theMcSLUG . Prior to discussing theMcSLUG labels, we explore
some important differences between theMcLUG and theMcSLUG .

Comparison withMcLUG: Both theMcLUG andMcSLUG sample N states
from a belief state, and use a planning graph with a different set of action out-
come samples for each state. However, the McLUG generates a new set of ac-
tion outcomes for each state sampled from each belief state, where, instead, the
McSLUG reuses an existing set of action outcomes for each state (depending on
which SLUG is used for the state). TheMcSLUG introduces potential correlation
between the heuristics computed for different belief states because it is possible
that the same state is sampled from each belief state and that state’s planning graph
is obtained from the same SLUG . TheMcLUG is often more robust because even
if the same state is sampled twice from different belief states it is unlikely that the
set of sampled action outcomes is identical. As discussed in the empirical results,
theMcSLUG can degrade the heuristic informedness, and hence planner perfor-
mance, in some problems. However, in other problems the heuristic degradation is
offset by improved speed of computing the heuristic with theMcSLUG .

McSLUG: The McSLUG is a set of action, effect, and proposition vertex lay-
ers and a label function:McSLUG(S, N) = 〈(P0,A0, E0, ...,Ak−1, Ek−1,Pk), �〉.
The McSLUG label semantics involves combining McLUG labels and SLUG
labels. Recall that the McLUG uses a unique model y(xn) for each set of sam-
pled outcomes xn (which correspond to a deterministic planning graph) and that
the SLUG uses models of the state propositions. The McSLUG represents a set
{SLUG(xn) |n = 0...N − 1}, where we distinguish each SLUG(xn) by a unique
formula y(xn) and distinguish the planning graph for state s in SLUG(xn) by the
formula s ∧ y(xn). Thus,McSLUG labels have models of the form s ∧ y(xn), de-
fined over the propositions in P , referring to states, and y0, ..., ylog2(N)−1, referring
to a particular SLUG built for a set of action outcome samples.

For each s |= S and n = 0...N − 1, theMcSLUG satisfies:

(1) s ∧ y(xn) |= �0(p) iff p ∈ s
(2) s ∧ y(xn) |= �t(a) iff s ∧ y(xn) |= �t(p) for every p ∈ ρe(a)
(3) s ∧ y(xn) |= �t(ϕij(a)) and Xa,t = Φi(a) ∈ xn iff P (Xa,t)

n∼ Φi(a) and
s ∧ y(xn) |= �t(p) for every p ∈ ρij(a)

(4) s ∧ y(xn) |= �t+1(p) iff p ∈ ε+
ij(a) and s ∧ y(xn) |= �t(ϕij(a))

26

The following rules can be used to construct theMcSLUG :

(1) �0(p) = S ∧ p ∧
(∨

n=0..N−1
y(xn)

)

(2) �t(a) =
∧

p∈ρe(a)
�t(p)

(3) If P (Xa,t)
n∼ Φi(a), then Xa,t = Φi(a) ∈ xn, n = 0, ..., N − 1

(4) �t(ϕij(a)) = �t(a) ∧
(∧

p∈ρij(a)
�t(p)

)
∧
(∨

xn:Xa,t=Φi(a)∈xn
y(xn)

)

(5) �t(p) =
∨

ϕij(a)∈Et−1:p∈ε+
ij(a)

�t−1(ϕij(a))

(6) k = minimum t such thatPt+1 = Pt, �t+1(p) = �t(p), p ∈ P , and
N−1∑
n=0

δ(n)/N =

1.0, where δ(n) = 1 if S ∧ y(xn) |= ∧
p∈G

�t(p), and δ(n) = 0, otherwise.

The initial layer propositions are labeled (1, above) to denote the states in the
scope where they hold (S ∧ p) and the sets of action outcome samples where they
hold (∨n=0..N−1y(xn)) – if an initial layer proposition holds in a planning graph,
it holds regardless of which action outcomes are sampled. Figure 11 depicts the
McSLUG for the rovers example, where the scope is S =
 and N = 4. The initial
proposition layer label for comm(I1) is computed as follows: �0(comm(I1)) =

 ∧ comm(I1) ∧ (∨n=0..3y(xn)) =
 ∧ comm(I1) ∧
 = comm(I1). Ac-
tion labels denote the planning graphs where their preconditions are all reachable
(2, above), as in theMcLUG. N samples of each action’s outcome (one for each
SLUG) are drawn in each level and the outcome’s effects are labeled (3, above) .
Each effect label (4, above) denotes the planning graphs i) that contain the effect’s
outcome and ii) where the effect is reachable (its action and secondary precondi-
tions are reachable), as in theMcLUG. Each proposition label denotes the planning
graphs where it is given by some effect (5, above), as in theMcLUG. The last level
k is defined by the level where proposition layers and labels are identical and all
planning graphs satisfy the goal (6, above).

The termination criterion for the McSLUG requires some additional discussion.
Unlike, theMcLUG, where at least τ proportion of the planning graphs must sat-
isfy the goal, we require that all planning graphs satisfy the goal in theMcSLUG
– which has several implications. First, it may not be possible to satisfy the goal in
all of the planning graphs; however, i) this problem also affects theMcLUG, and
because iia) the planning graphs are relaxed and iib) most problems contain actions
whose outcome distributions are skewed towards favorable outcomes, it is often
possible to reach the goal in every planning graph. Second, because theMcSLUG
heuristics use N planning graphs where the goal is reachable, the heuristic esti-
mates the cost to achieve the goal with 1.0 probability (which may be an overes-
timate when τ << 1.0). Third, despite the first two points, it is unclear in which
planning graphs it is acceptable to not achieve the goal; until states are sampled
from belief states during search, we will not know which planning graphs will be

27

A1A0 P1P0 P2
A2 P3

at(L1)

drive(L1, L2)

at(L1)

at(L2)

drive(L1, L2)

at(L1)

at(L2)

drive(L2, L1)

sample(I1, L2)

have(I1)

commun(I1)

comm(I1)

drive(L1, L2)

at(L1)

at(L2)

drive(L2, L1)

sample(I1, L2)

have(I1)

at(L2)

drive(L2, L1)

sample(I1, L2)

have(I1)have(I1)

comm(I1)comm(I1)comm(I1)

commun(I1)commun(I1)

at(L2)

at(L1)

have(I1)

comm(I1)

at(L2)

>

at(L1)

>

at(L1) Ç
at(L2)

at(L1) Ç
at(L2)

at(L1) Ç
at(L2)

at(L1) Ç
at(L2)

at(L1) Ç
at(L2)

at(L1) Ç
at(L2)

at(L1) Ç
at(L2)

at(L1) Ç
at(L2)

at(L1) Ç
at(L2)

at(L1) Ç
at(L2)

>

>

>

>

have(I1) Ç
((¬y0Ç¬y1)Æat(L2))

comm(I1) Ç
(y0Æhave(I1))

y0Çy1
have(I1)Ç
at(L2)Ç
((y0Çy1)Æat(L1))

y0Ç¬y1 comm(I1) Ç
(¬y1Æat(L2)) Ç
((y0Ç¬y1)Æ
have(I1))

¬y0Ç¬y1

have(I1)Ç
at(L2)Ç
at(L1)

have(I1)Ç
at(L2)Ç
at(L1)Ç
comm(I1)

¬y0Çy1

¬y0Ç¬y1

y0

y(x0) = ¬y0Æ¬y1, y(x1) = y0Æ¬y1, y(x2) = ¬y0Æy1, y(x3) = y0Æy1

Fig. 11. Graph structure of aMcSLUG .

used. The net effect is that search will seek out highly probable plans, which still
solve the problem of exceeding the goal satisfaction threshold.

Computing Heuristics: Using theMcSLUG to evaluate the heuristic for a belief
state b is relatively similar to using theMcLUG. We sample N states from b, and
associate each state with a SLUG(xn). If s is the nth state sample, P (Xb)

n∼ s, then
we use the planning graph whose label model is s ∧ y(xn). The set of N planning
graphs thus sampled is denoted by the boolean formula �N(b), where

�N(b) =
∨

n:P (Xb)
n∼s,n=0...N−1

s ∧ y(xn)

The level heuristic is the first level t where the proportion of the N planning graphs
that satisfy the goal exceeds the threshold τ . The nth planning graph satisfies the
goal in level t if s ∧ y(xn) |= ∧

p∈G �t(p). We compute the proportion of the N
planning graphs satisfying the goal by counting the number of models of the for-
mula �N(b) ∧ ∧p∈G �t(p), denoting the subset of the N sampled planning graphs

28

that satisfy the goal in level t.

For example, the level heuristic for the initial belief state {0.1 : sI , 0.9 : s4} to
reach the goal of the example is computed as follows. If N = 4, we may draw the
following sequence of state samples from the initial belief state (sI , s4, s4, s4) to
define

�N(bI) = (sI ∧ y(x0)) ∨ (s4 ∧ y(x1)) ∨ (s4 ∧ y(x2)) ∨ (s4 ∧ y(x3))

= (sI ∧ ¬y0 ∧ ¬y1) ∨ (s4 ∧ y0 ∧ ¬y1) ∨ (s4 ∧ ¬y0 ∧ y1) ∨ (s4 ∧ y0 ∧ y1)

= (sI ∧ ¬y0 ∧ ¬y1) ∨ (s4 ∧ (y0 ∨ y1))

= (at(L1) ∧ ¬at(L2) ∧ ¬have(I1) ∧ ¬comm(I1) ∧ ¬y0 ∧ ¬y1)∨
(at(L1) ∧ ¬at(L2) ∧ have(I1) ∧ ¬comm(I1) ∧ (y0 ∨ y1))

We compute the level heuristic by computing the conjunction �N(b) ∧ ∧p∈G �t(p),
noted above, at each level t until the proportion of models is no less than τ . At level
zero, the conjunction of �N(bI) and the label of the goal proposition comm(I1) is

�N(bI) ∧ �0(comm(I1)) = �N(b) ∧ comm(I1) =⊥,

meaning that the goal is satisfied with zero probability at level zero. At level one
we obtain

�N(bI) ∧ �1(comm(I1)) = �N(bI) ∧ (comm(I1) ∨ (y0 ∧ have(I1)))

= at(L1) ∧ ¬at(L2) ∧ have(I1) ∧ ¬comm(I1) ∧ y0,

meaning that the goal is satisfied with 0.5 probability at level one, because two of
the sampled planning graph label models at(L1)∧¬at(L2)∧have(I1)∧¬comm(I1)∧
y0 ∧¬y1 and at(L1)∧¬at(L2)∧ have(I1)∧¬comm(I1)∧ y0 ∧ y1 are models of the
conjunction above. At level two we obtain

�N(bI) ∧ �2(comm(I1)) = �N(bI) ∧ (comm(I1) ∨ (¬y1 ∧ at(L2)) ∨ ((y0 ∨ ¬y1) ∧ have(I1)))

= at(L1) ∧ ¬at(L2) ∧ have(I1) ∧ ¬comm(I1) ∧ y0

meaning that the goal is satisfied with 0.5 probability at level two because we obtain
the same two label models as level one. At level three we obtain

�N(bI) ∧ �2(comm(I1)) = �N(bI) ∧ (have(I1) ∨ at(L2) ∨ at(L1) ∨ comm(I1))

meaning that the goal is satisfied with probability 1.0 because there are four models
of the formula above.

Thus, the probability of reaching the goal is 0/4 = 0 at level zero, 2/4 = 0.5 at level

29

one, 2/4 = 0.5 at level two, and 4/4 = 1.0 at level three.

Relaxed plan extraction for theMcSLUG is identical to relaxed plan extraction for
the SLUG , with the exception that the conjunction in line 4 of Figure 8 replaces the
belief state b with the formula representing the set of sampled label models, such
that line 4 becomes:

“�RP
k (p)← ∧

p′∈G
�k(p

′)∧�N(b)”

adding the underlined portion. The addition to relaxed plan extraction enforces that
the relaxed plan supports the goal in only those planning graphs sampled to com-
pute the heuristic.

5 State Agnostic Relaxed Plans

There two fundamental techniques that we identify for extracting relaxed plans
from state agnostic planning graphs to guide POND’s search. As previously de-
scribed, the first, simply called a relaxed plan, extracts relaxed plans from the state
agnostic graph during search upon generating each search node. The second, called
a state agnostic relaxed plan (SAGRP), extracts a relaxed plan from every planning
graph represented by the SAG. The set of relaxed plans are represented implicitly
by a single labeled relaxed plan, and extracted as such.

For example, the state agnostic relaxed plan extracted from the SLUG would cor-
respond to the labeled relaxed plan for a belief state containing all states. Then,
to compute the heuristic for a single belief state, we check the label of each ac-
tion of the state agnostic relaxed plan. If any state in the belief state is a model
of the label, then the action is in the labeled relaxed plan for the belief state. The
number of such non-noop actions is used as the conformant relaxed plan heuris-
tic. In this manner, evaluating the heuristic for a search node (aside from the one-
time-per-problem-instance state agnostic relaxed plan extraction) involves no non-
deterministic choices and only simple model checking.

The trade-off between traditional relaxed plans and the state agnostic relaxed plan,
is very similar to the trade-off between using a planning graph and a SAG: a priori
construction cost must be amortized over search node expansions. However, there
is another subtle difference between the relaxed plans computed between the two
techniques. Relaxed plan extraction is guided by a simple heuristic that prefers
to support propositions with supporters that contribute support in more planning
graphs. In the traditional relaxed plan, this set of planning graphs contains exactly
those planning graphs that are needed to evaluate a search node. In the state agnostic
relaxed plan, the set of planning graphs used to choose supporters may be much
larger than the set used to evaluate any given search node. By delaying the relaxed

30

plan extraction to customize it to each search node (e.g., by exploiting positive
interactions), the traditional relaxed plan can be more informed. By committing
to a state agnostic relaxed plan before search (without knowledge of the actual
search nodes), the heuristic may make poor choices in relaxed plan extraction and
be less informed. Despite the possibility of poor relaxed plans, the state agnostic
relaxed plan is quite efficient to compute for every search node (modulo the higher
extraction cost).

6 Empirical Evaluation

In this section, we evaluate several aspects of state agnostic planning graphs to
answer the following questions:

• Is the cost of pre-computing all planning graphs with the SAG effectively amor-
tized over a search episode in order to improve planner scalability?
• Will using state agnostic relaxed plans improve planner performance over using

traditional relaxed plans?
• How will using the SAG compare to other state of the art approaches?

To answer these questions, this section is divided into three subsections. The first
subsection describes the setup (POND implementation, other planners, domains,
and environments) used for evaluation. The last two subsections discuss the first
two questions in an internal evaluation and the last question in an external evalu-
ation, respectively. We use a number of planning domains and problems that span
deterministic, non-deterministic, and probabilistic planning. Where possible, we
supplement domains from the literature with domains used in several International
Planning Competitions (i.e., deterministic and non-deterministic tracks). In the case
of non-deterministic planning, we discuss actual competition results (where our
planner competed using SAG techniques) in addition to our own experiments.

6.1 Evaluation Setup

This subsection describes the implementation of our planner, other planners, do-
mains, and environments that we use to evaluate our approach.

Implementation: POND is implemented in C++ and makes use of some notable
existing technologies: the CUDD BDD package [41] and the IPP planning graph
[27]. POND uses ADDs and BDDs to represent belief states, actions, and planning
graph labels. In this work, we describe two of the search algorithms implemented
in POND: enforced hill-climbing [22] and weighted A* search (with a heuristic
weight of five). Briefly, enforced hill-climbing interleaves local search with system-

31

atic search by locally committing to action that lead to search nodes with decreased
the heuristic value and using breadth first search if it cannot immediately find a
better search node.

The choice of OBDDs to represent labels (aside from parsimony with the action and
belief state representation) requires some explanation, as there are a number of al-
ternatives. The primary operations required for label reasoning are model checking
and entailment, which take polynomial time in the worst case when using OBDDs
[14]. While the size of the BDDs can become exponentially large through the re-
peated disjunctions and conjunctions during label propagation, the size does not
become prohibitive in practice.

A final implementation consideration is the choice of scope (set of states) used to
construct the SAG. In preliminary evaluations, we found that using a scope con-
sisting of all 2|P | states is always dominated by an approach using the estimated
reachable states. We estimate the reachable states by constructing a planning graph
whose initial proposition layer consists of propositions holding in some initial state
(or state in the initial belief state) and assuming that all outcomes of probabilistic
actions occur. The estimated reachable states are those containing propositions in
the last proposition layer of this “unioned” planning graph.

Planners: We compare our planner POND with several other planners. In non-
deterministic planning, we compare with Conformant FF (CFF) [21] and t0 [35].
CFF is an extension of the FF planner [22] to handle initial state uncertainty. CFF
is similar to POND in terms of using forward chaining search with a relaxed
plan heuristic; however, CFF differs in how it implicitly represents belief states and
computes relaxed plan heuristics by using a SAT solver. The t0 planner is based on
a translation from conformant planning to classical planning, where it uses the FF
planner [22].

In probabilistic planning, we compare with Probabilistic FF (PFF) [16] and CPplan
[24]. PFF further generalizes CFF to use a weighted SAT solver and techniques
to encode probabilistic effects of actions. PFF computes relaxed plan heuristics by
encoding them as a type of Bayesian inference, where the weighted SAT solver
computes the answer. CPplan is based on a CSP encoding of the entire planning
problem. CPplan is an optimal planner that finds the maximum probability of sat-
isfying the goal in a k-step plan; by increasing k incrementally, it is possible to
find a plan that exceeds a given probability of goal satisfaction threshold. We omit
comparison with COMPlan, a successor to CPplan that also finds optimal bounded
length plans, because the results presented by [23] are not as competitive as with
PFF. However, we do note that while COMPlan is over an order of magnitude
slower than POND or PFF, it does have better scalability than CPplan.

Domains: We use deterministic, non-deterministic, and probabilistic planning do-

32

mains that appear either in the literature or past IPCs. In classical planning, we use
domains from the first three IPCs, including Logistics, Rovers, Blocksworld, Zeno-
travel, Driverlog, Towers of Hanoi, and Satellite [31]. In non-deterministic plan-
ning, we use Rovers [9], Logistics [9], Ring [2], and Cube [2], and Blocksworld,
Coins, Communication, Universal Traversal sequences, Adder Circuits, and Sorting
Networks from the Fifth IPC conformant planning track [18]. All non-deterministic
domains use only deterministic actions and a incomplete initial state, and all prob-
abilistic domains use probabilistic actions. In probabilistic planning we use the
Logistics, Grid, Slippery Gripper, and Sand Castle [25] domains. We include two
versions of each probabilistic Logistics instance that have different initial belief
states and goals in order to maintain consistency with results previously presented
[25,16]. We do not use probabilistic problems with deterministic actions [16], be-
cause these problems can be seen as easier forms of the corresponding non-deterministic
problems with deterministic actions where the plan need not satisfy the goal with
1.0 probability.

Environments: In all models, the measurement for each problem is the total run
time of the planner (including SAG construction in POND), from invocation to
exit, and the resulting plan length. We have only modified the manner in which the
heuristic is computed; despite this, we report total time to motivate the importance
of optimizing heuristic computation. It should be clear, given that we achieve large
factors of improvement, that time spent calculating heuristics is dominating time
spent searching.

All tests, with the exception of the classical planning domains, the Fifth IPC do-
mains, and PFF solving the probabilistic planning domains, were run on a 1.86GHz
P4 Linux machine with 1GB memory and a 20 minute time limit. There are several
hundred problems in the classical planning IPC test sets, so we imposed relatively
tight limits on the execution (5 minutes on a P4 at 3.06 GHz with 900 MB of RAM)
of any single problem. We exclude failures due to these limits from the figures. In
addition, we sparsely sampled these failures with relaxed limits to ensure that my
conclusions were not overly sensitive to the choice of limits. Up until the point
where physical memory is exhausted, the trends remain the same. The Fifth IPC
was run on a single Linux machine, where competitors were given 24 hours to at-
tempt all problems in all domains, but no limit was placed on any single problem.
We were unable to run PFF on the same machine used for other probabilistic plan-
ning problems. We used a significantly faster machine, but report the results without
scaling because the speed of the machine did not give PFF an unfair advantage in
scalability. In the probabilistic domains, the results presented are the average of five
runs, with only the successful runs reported in the average.

33

6.2 Internal Evaluation

We describe several sets of results that address whether using the SAG is rea-
sonable and how computing different types of relaxed plans effects planner per-
formance. The results include deterministic, non-deterministic, and probabilistic
planning problems. In every model we present results to describe scalability im-
provements due to the SAG, where we extract a relaxed plan at each search node.
Finally, upon noticing that the SAG is most beneficial in probabilistic models, we
concentrate on how computing the relaxed plan differently (either at each search
node or via the SAGRP) affects performance.

Amortization: The primary issue that we address is whether it makes sense to use
the SAG at all. The trade-off is between efficiently capturing common structure
among a set of planning graphs and potentially wasting effort on computing unnec-
essary, albeit implicit, planning graphs. If the heuristic computation cost per search
node is decreased (without degrading the heuristic), then the SAG is beneficial.

We start by presenting results in Figure 12 that compare the SAG with the plan-
ning graph (PG) in classical planning in the classical IPC domains. The top graph
is a scatter-plot of the total running times for approximately 500 instances for the
first three IPCs. The line “y=x” is plotted, which plots identical performance. The
middle graph in each figure plots the number of problems that each approach has
solved by a given deadline. The bottom graph in each figure offers one final per-
spective, plotting the ratio of the total running times. We see that the SAG produces
an improvement on average. While the scatter-plots reveal that performance can
degrade, it is still the case that average time is improved: mostly due to the fact that
as problems become more difficult, the savings become larger.

In light of this, we have made a investigation in comparing SAG to state of the art
implementations of classical planning graphs. In particular, FF [22] goes to great
lengths to build classical planning graphs as quickly as possible, and subsequently
extract a relaxed plan. We compete against that implementation with a straightfor-
ward implementation of SAG within FF. We ran trials of greedy best-first search
using the FF relaxed plan heuristic against using the same heuristic as the SAG
strategy. Total performance was improved, sometimes doubled, for the Rovers do-
main; however, in most other benchmark problems, the relative closeness of the
goal and the poor estimate of reachability prohibited any improvement. Of course,
per-node heuristic extraction time (i.e. ignoring the time it takes to build the SAG)
was always improved, which motivates an investigation into more sophisticated
graph-building strategies than SAG.

We see that in non-deterministic planning domains (Bomb in Toilet, Cube, Ring
[2], Logistics, and Rovers [9]), depicted in Figure 13 in the same format as the
deterministic planning problems, the scatter-plots reveal that SAG always outper-

34

0

50

100

150

200

250

300

0 50 100 150 200 250 300

PG
 r

un
-t

im
e

(s
)

SAG run-time (s)

(SAG , PG)
Even

0

5

10

15

20

25

30

35

0 20 40 60 80 100 120 140 160 180 200

of

 p
ro

bl
em

s
so

lv
ed

Deadline (s)

SAG
PG

0

5

10

15

20

25

30

0 20 40 60 80 100 120 140 160 180 200

Sp
ee

du
p

PG run-time (s)

PG / SAG
Even

Fig. 12. SAG vs. PG, Classical Problems

0

50

100

150

200

250

300

0 50 100 150 200 250 300

PG
 r

un
-t

im
e

(s
)

SAG run-time (s)

(SAG , PG)
Even

0
20
40
60
80

100
120
140
160
180
200

0 50 100 150 200 250 300

of

 p
ro

bl
em

s
so

lv
ed

Deadline (s)

SAG
PG

0

20

40

60

80

100

120

0 50 100 150 200 250 300

Sp
ee

du
p

PG run-time (s)

PG / SAG
Even

Fig. 13. SLUG vs. LUG, Non-Deterministic
Problems

forms the PG approach. Moreover, the boost in performance is well-removed from
the break-even point. The deadline graphs are similar in purpose to plotting time as
a function of difficulty: rotating the axes reveals the telltale exponential trend. How-
ever, it is difficult to measure difficulty across domains. This method corrects for
that at the cost of losing the ability to compare performance on the same problem.
We observe that, with respect to any deadline, SAG solves a much greater num-
ber of planning problems. Most importantly, the SAG out-scales the PG approach.
When we examine the speedup graphs, we see that the savings grow larger as the
problems become more difficult.

35

0.01

0.1

1

10

100

1000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
im

e
(s

)

Tau

Logistics p2-2-2

NRP-64
SAGRP-64

64
CPplan

PFF
1

10

100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Le
ng

th

Tau

Logistics p2-2-2

NRP-64
SAGRP-64

64
CPplan

PFF

Fig. 14. Run times (s) and Plan lengths vs. τ for CPPlan Logistics p2-2-2

0.01

0.1

1

10

100

1000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
im

e
(s

)

Tau

Logistics p4-2-2

NRP-64
SAGRP-64

64
CPplan

PFF
1

10

100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Le
ng

th

Tau

Logistics p4-2-2

NRP-64
SAGRP-64

64
CPplan

PFF

Fig. 15. Run times (s) and Plan lengths vs. τ for CPPlan Logistics p4-2-2

10

100

1000

10000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
im

e
(s

)

Tau

Logistics p2-2-4

NRP-64
SAGRP-64

64
CPplan

10

20

30

40

50

60

70

80

90

100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Le
ng

th

Tau

Logistics p2-2-4

NRP-64
SAGRP-64

64
CPplan

Fig. 16. Run times (s) and Plan lengths vs. τ for CPPlan Logistics p2-2-4

Figures 14 to 22 show total time in seconds and plan length results for the prob-
abilistic planning problems. The figures compare the relaxed plan extracted from
theMcSLUG (denoted NRP − N , for per-node relaxed plan), the state agnostic
relaxed plan from Section 5 (denoted SAGRP − N), the McLUG (denoted by
N), and CPplan. We discuss the state agnostic relaxed plan later in this subsection
and comparisons to PFF and CPplan in the next subsection. We use N = 16 or 64

36

0.01

0.1

1

10

100

1000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
im

e
(s

)

Tau

Logistics p2-2-2

NRP-64
SAGRP-64

64
PFF

1

10

100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Le
ng

th

Tau

Logistics p2-2-2

NRP-64
SAGRP-64

64
PFF

Fig. 17. Run times (s) and Plan lengths vs. τ for PFF Logistics p2-2-2

0.01

0.1

1

10

100

1000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
im

e
(s

)

Tau

Logistics p4-2-2

NRP-64
SAGRP-64

64
PFF

1

10

100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Le
ng

th

Tau

Logistics p4-2-2

NRP-64
SAGRP-64

64
PFF

Fig. 18. Run times (s) and Plan lengths vs. τ for PFF Logistics p4-2-2

0.1

1

10

100

1000

10000

0 0.1 0.2 0.3 0.4 0.5 0.6

T
im

e
(s

)

Tau

Logistics p2-2-4

NRP-64
SAGRP-64

64
PFF

10

100

1000

0 0.1 0.2 0.3 0.4 0.5 0.6

Le
ng

th

Tau

Logistics p2-2-4

NRP-64
SAGRP-64

64
PFF

Fig. 19. Run times (s) and Plan lengths vs. τ for PFF Logistics p2-2-4

in each McLUG or McSLUG as indicated in the legend of the figures for each
domain, because these numbers proved best in our evaluation.

The probabilistic Logistics instances are named with the convention px-y-z, where
x is the number of possible locations of a package, y is the number of cities, and
z is the number of packages. Figure 14 shows that the McSLUG improves, if

37

0.1

1

10

100

1000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

T
im

e
(s

)

Tau

Grid (0.8)

NRP-16
SAGRP-16

16
CPplan

PFF
10

100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Le
ng

th

Tau

Grid (0.8)

NRP-16
SAGRP-16

16
CPplan

PFF

Fig. 20. Run times (s) and Plan lengths vs. τ for Grid-0.8

10

100

1000

0 0.1 0.2 0.3 0.4 0.5 0.6

T
im

e
(s

)

Tau

Grid (0.5)

NRP-16
SAGRP-16

16
CPplan

10

100

0 0.1 0.2 0.3 0.4 0.5 0.6

Le
ng

th

Tau

Grid (0.5)

NRP-16
SAGRP-16

16
CPplan

Fig. 21. Run times (s) and Plan lengths vs. τ for Grid-0.5

0.01

0.1

1

10

100

0.99 0.992 0.994 0.996 0.998 1

T
im

e
(s

)

Tau

Slippery Gripper

NRP-16
SAGRP-16

16
CPplan

10

0.99 0.992 0.994 0.996 0.998 1

Le
ng

th

Tau

Slippery Gripper

NRP-64
SAGRP-16

16
CPplan

Fig. 22. Run times (s) and Plan lengths vs. τ for Slippery Gripper.

only slightly, upon the McLUG in the CPPlan version of Logistics p2-2-2. Fig-
ure 15 shows similar results for the CPPlan version of Logistics p4-2-2, with the
McSLUG performing considerably better than theMcLUG – solving the problem
where τ = 0.95. Figure 16 shows results for the CPPlan version of Logistics p2-
2-4 that demonstrate the improvements of using theMcSLUG , finding plans for
τ = 0.95, where theMcLUG could only solve instances where τ ≤ 0.25. Overall,

38

0.01

0.1

1

10

0.95 0.955 0.96 0.965 0.97 0.975 0.98 0.985 0.99 0.995

T
im

e
(s

)

Tau

SandCastle67

NRP-16
SAGRP-16

16
CPplan

10

0.95 0.955 0.96 0.965 0.97 0.975 0.98 0.985 0.99 0.995

Le
ng

th

Tau

SandCastle67

NRP-16
SAGRP-16

16
CPplan

Fig. 23. Run times (s) and Plan lengths vs. τ for SandCastle-67.

using theMcSLUG is better than theMcLUG. With respect to the PFF versions
of the Logistics instances, we see that using theMcSLUG , regardless of how the
heuristic is computed, is preferable to using theMcLUG in these instances.

Figure 20 shows results for the Grid-0.8 domain that indicate theMcSLUG greatly
improves total planning time over the McLUG. However, Figure 21 shows the
results are different for Grid-0.5. The McSLUG performs much worse than the
McLUG. A potential explanation is the way in which theMcSLUG shares action
outcome samples among the planning graphs. TheMcLUG is more robust to the
sampling because it re-samples the action outcomes for each belief state, where the
McSLUG re-samples the action outcomes from the pre-sampled pool.

Figures 23 and 22 show results for the respective SandCastle-67 and Slippery Grip-
per domains, where theMcLUG outperforms theMcSLUG . Similar to the Grid-
0.5 domain,McSLUG has an impoverished pool of action outcome samples that
does not plague theMcLUG. Since these problems are relatively small, the cost of
computing theMcLUG pales in comparison to the quality of the heuristic it pro-
vides. Overall, theMcSLUG is useful when it is too costly to compute aMcLUG
for every search node, but it seems to provide less informed heuristics.

Relaxed Plans: In general, the state agnostic relaxed plan performs worse than the
traditional relaxed plan both in terms of time and quality (with the exception of
the PFF versions of Logistics). The heuristic that we use to extract state agnos-
tic relaxed plans is typically very poor because it selects actions that help achieve
the goal in more planning graphs. The problem is that with respect to a given set
of states (needed to evaluate the heuristic for a single belief state), the chosen ac-
tions may be very poor choices. This suggests that an alternative action selection
mechanism for state agnostic relaxed plans could be better, or that individualizing
relaxed plan extraction to each search node is preferred. An alternative, that we
do not explore, examines the continuum between state agnostic relaxed plans and
node-based relaxed plans by extracting a flexible state agnostic relaxed plan that
allows some choice to customize the relaxed plan to a specific search node.

39

 10

 100

 1 3

T
im

e(
s)

Instance

Adder Circuits

CFF
POND

t0

 1

 10

 1 3

Le
ng

th

Instance

Adder Circuits

CFF
POND

t0

Fig. 24. Run times (s) and Plan lengths IPC5 Adder Instances.

 0.01

 0.1

 1

 10

 100

 1 3

T
im

e(
s)

Instance

Blocksworld

CFF
POND

t0

 1

 10

 100

 1000

 1 3

Le
ng

th

Instance

Blocksworld

CFF
POND

t0

Fig. 25. Run times (s) and Plan lengths IPC5 Blocksworld Instances.

6.3 External Evaluation

In addition to internally evaluating the SAG, we evaluate how using the SAG helps
POND compete with contemporary planners. We discuss three groups of results,
the non-deterministic track of the Fifth IPC, a comparison with non-deterministic
planners from the literature, and a comparison with CPplan and PFF in probabilistic
planning.

Non-Deterministic Track of the Fifth IPC: We entered a version of POND in
the non-deterministic track of the IPC that uses an enforced hill-climbing search
algorithm [22], and the SAG to extract a relaxed plan at each search node. The other
planners entered in the competition are Conformant FF (CFF) [21] and t0 [35]. All
planners use a variation of relaxed plan heuristics, but the other planners compute a
type of planning graph at each search node, rather than a SAG. To be precise, CFF
computes a relaxed plan heuristic similar to that described in this work by taking
into account uncertainty in the initial state, whereas t0 transforms the problem to
a classical planning problem solved by FF (which computes relaxed plans at each
search node).

40

 0.01

 0.1

 1

 10

 100

 1000

 1 3 5 7 9 11 13 15 17 19

T
im

e(
s)

Instance

Coins

CFF
POND

t0

 1

 10

 100

 1000

 1 3 5 7 9 11 13 15 17 19

Le
ng

th

Instance

Coins

CFF
POND

t0

Fig. 26. Run times (s) and Plan lengths IPC5 Coins Instances.

 0.01

 0.1

 1

 10

 100

 1000

 1 3 5 7 9 11 13 15 17 19 21 23 25

T
im

e(
s)

Instance

Communication

CFF
POND

t0

 10

 100

 1000

 1 3 5 7 9 11 13 15 17 19 21 23 25

Le
ng

th

Instance

Communication

CFF
POND

t0

Fig. 27. Run times (s) and Plan lengths IPC5 Comm Instances.

 0.01

 0.1

 1

 10

 100

 1000

 1 3 5 7 9 11 13 15

T
im

e(
s)

Instance

Sorting Networks

CFF
POND

t0

 1

 10

 100

 1 3 5 7 9 11 13 15

Le
ng

th

Instance

Sorting Networks

CFF
POND

t0

Fig. 28. Run times (s) and Plan lengths IPC5 Sortnet Instances.

Figures 24 to 29 show total time and plan length results for the six competition
domains. POND is the only planner to solve instances in the adder domain, and
it outperforms all other planners in the blocksworld and sortnet domains. POND
is competitive, but slower in the coins, communication, and universal traversal se-
quences domains. In most domains POND finds the best quality plans. Overall,
POND exhibited good performance across all domains, as a domain-independent
planner should.

41

 0.01

 0.1

 1

 10

 100

 1000

 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

T
im

e(
s)

Instance

Universal Transversal Sequences

CFF
POND

t0

 1

 10

 100

 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Le
ng

th

Instance

Universal Transversal Sequences

CFF
POND

t0

Fig. 29. Run times (s) and Plan lengths IPC5 UTS Instances.

0.01

0.1

1

10

100

600

Rv1 Rv6 L1 L5 C5 C13 R2 R10

T
im

e
(s

)

Instance

Non-Deterministic Conformant Problems

KACMBP
CFF

SLUG

0.01

0.1

1

10

100

600

Rv1 Rv6 L1 L5 C5 C13 R2 R10

T
im

e
(s

)

Instance

Non-Deterministic Conformant Problems

0.01

0.1

1

10

100

600

Rv1 Rv6 L1 L5 C5 C13 R2 R10

T
im

e
(s

)

Instance

Non-Deterministic Conformant Problems

0.01

0.1

1

10

100

600

Rv1 Rv6 L1 L5 C5 C13 R2 R10

T
im

e
(s

)

Instance

Non-Deterministic Conformant Problems

0.01

0.1

1

10

100

600

Rv1 Rv6 L1 L5 C5 C13 R2 R10

T
im

e
(s

)

Instance

Non-Deterministic Conformant Problems

0.01

0.1

1

10

100

600

Rv1 Rv6 L1 L5 M2 M14B10 B80

T
im

e
(s

)

Instance

Non-Deterministic Conditional Problems

BBSP
MBP

SLUG

0.01

0.1

1

10

100

600

Rv1 Rv6 L1 L5 M2 M14B10 B80

T
im

e
(s

)

Instance

Non-Deterministic Conditional Problems

0.01

0.1

1

10

100

600

Rv1 Rv6 L1 L5 M2 M14B10 B80

T
im

e
(s

)

Instance

Non-Deterministic Conditional Problems

0.01

0.1

1

10

100

600

Rv1 Rv6 L1 L5 M2 M14B10 B80

T
im

e
(s

)

Instance

Non-Deterministic Conditional Problems

Fig. 30. Comparison of planners on conformant (left) and conditional (right) domains. Four
domains appear in each plot. The conformant domains include Rovers (Rv1-Rv6), Logistics
(L1-L5), Cube Center (C5-C13), and Ring (R2-R10). The conditional domains are Rovers
(Rv1-Rv6), Logistics (L1-L5), Medical (M2-M14), and BTCS (B10-B80).

Additional Non-Deterministic Domains: We made an additional external com-
parison of POND with several non-deterministic conformant: KACMBP [1] and
CFF [21], and conditional planners: MBP [3] and BBSP [39]. We previously men-
tioned that the conformant relaxed plan heuristic can be used to guide a conditional
planner, which we demonstrate here using weighted AO* [34] search in belief state
space. Based on the results of the internal analysis, we used relaxed plans extracted
from a common SLUG , using the SAG strategy. We denote this mode of POND
as “SLUG” in Figure 30. The tests depicted in Figure 30 were allowed 10 minutes
on a P4 at 2.8 GHz with 1GB of memory. The planners we used for these compar-
isons require descriptions in differing languages. We ensured that each encoding
had an identical state space; this required us to use only boolean propositions in
our encodings.

We used the conformant Rovers and Logistics domains as well as the Cube Cen-
ter and Ring domains [1] for the conformant planner comparison in Figure 30.
These domains exhibit two distinct dimensions of difficulty. The primary difficulty
in Rovers and Logistics problems centers around causing the goal. The Cube Cen-

42

ter and Ring domains, on the other hand, revolve around knowing the goal. The
distinction is made clearer if we consider the presence of an oracle. The former
pair, given complete information, remains difficult. The latter pair, given complete
information, becomes trivial, relatively speaking.

We see the SLUG as a middle-ground between KACMBP’s cardinality based heuris-
tic and CFF’s approximate relaxed plan heuristic. In the Logistics and Rovers
domains, CFF dominates, while KACMBP becomes lost. The situation reverses
in Cube Center and Ring: KACMBP easily discovers solutions, while CFF wan-
ders. Meanwhile, by avoiding approximation and eschewing cardinality in favor of
reachability, POND achieves middle-ground performance on all of the problems.

We devised conditional versions of Logistics and Rovers domains by introducing
sensory actions. We also drew conditional domains from the literature: BTCS [42]
and a variant of Medical [36]. Our variant of Medical splits the multi-valued stain
type sensor into several boolean sensors.

The results (Figure 30) show that POND dominates the other conditional planners.
This is not surprising: MBP’s and BBSP’s heuristic is belief state cardinality. Mean-
while, POND employs a strong, yet cheap, estimate of reachability (relaxed plans
extracted from SLUG). MBP employs greedy depth-first search, so the quality of
plans returned can be drastically poor. The best example of this in our results is
instance Rv4 of Rovers, where the max length branch of MBP requires 146 actions
compared to 10 actions for POND.

Probabilistic Planning: In the probabilistic planning problems that we previously
used for internal comparison, we also compare with the PFF and CPplan planners.
As Figures 14 to 23 identify, POND generally out scales CPplan in every domain,
but sacrifices quality. CPplan is an optimal planner that exactly evaluates plan suf-
fixes, where POND estimates the plan suffixes by a heuristic to guide its search.
Moreover, CPplan is a bounded length planner that must be used in a iterative deep-
ening manner to find plans that exceed the goal satisfaction threshold – leading to
much redundant search.

Due to some unresolved implementation issues with the PFF planner relating to
stability, we are only able to present results in the Logistics and Grid domains. For-
tunately, the Logistics and Grid domains are the most revealing in terms of planner
scalability. We see that PFF scales reasonably well in the CPPlan version of Lo-
gistics p2-2-2 (Figure 14), solving instances up to a probability of goal satisfaction
threshold of 0.5 an order of magnitude faster than any other planner. PFF also solves
instances in the CPPlan version of p4-2-2 (Figure 15) much faster, but fails to find
plans for higher goal probability thresholds (τ > 0.25). PFF scales even worse in
the CPPlan version of p2-2-4 (Figure 15) and Grid-0.8 (Figure 20). PFF tends to
scale better in the PFF version of the Logistics instances (Figures 17 to 19), but
in p4-2-2 and p2-2-4 is outscaled by POND using the state agnostic relaxed plan

43

heuristic. When running PFF, it appears to expand search nodes very quickly, indi-
cating it spends relatively little time on heuristic computation. Perhaps, PFF’s poor
scalability in these domains can be attributed to computing too weak of a heuristic
to provide effective search guidance. POND, using the McSLUG , spends rela-
tively more time computing its heuristic and can provide better guidance. It is not
always true that spending more time on heuristic computation will lead to better
scalability, but in this case it appears that the time is well spent.

7 Related Work

The state agnostic planning graph is similar to many previous works that use com-
mon structure of planning problems within planning algorithms, use precomputed
heuristics during search, or speed up the construction or use of planning graphs.

Planning Algorithms: The SAG represents an all pairs relaxation of the planning
problem. The work of [20] describes an all pairs solution to planning, called a uni-
versal plan. The idea implemented in the Warplan planner is to encode the current
goal into the state space so that a universal plan, much like a policy, prescribes
the action to perform in every world state for any current goal. The SAG can be
viewed as solving a related reachability problem (in the relaxed planning space) to
determine which states reach which goals.

Planning Heuristics: As previously noted, forward chaining planners often suffer
from the problem of computing a reachability analysis forward from each search
node, and the SAG is one way to mitigate this cost [13]. Another approach to guid-
ing forward chaining planners is to use relaxed goal regression to compute the
heuristic; work on greedy regression graphs [32] as well as the GRT system [37],
can be understood this way. This backwards reachability analysis (i.e., relevance
analysis) can be framed within planning graphs, avoiding the inefficiencies in re-
peated construction of planning graphs [26]. The main difficulty in applying such
backwards planning graph approaches is the relative low quality of the derived
heuristics. In addition to planning graphs, dynamic programming can be used to
compute similar heuristics, but at each search node, as in HSP [5].

Pattern databases [12] have been used in heuristic search and planning [17] to store
pre-computed heuristic values instead of computing them during search. The SAG
can be thought of as a type of pattern database, where most of the heuristic com-
putation cost is in building the SAG and per search node evaluation is much less
expensive.

Planning Graphs: We have already noted that the SAG is a generalization of the
LUG [9], which efficiently exploits the overlap in the planning graphs of members

44

of a belief state. The SAG inherits many of the properties of the LUG, and one
option, while not explored in this work (for lack of a heuristic that can make use
of mutexes), is the ability to use labels to compute mutexes that exist in common
among multiple planning graphs [9].

Other works on improving heuristic computation, include [29] where the authors
explore issues in speeding up heuristic calculation in HSP. Their approach utilizes
the prior heuristic computation to improve the performance of building the cur-
rent heuristic. We set out to perform work ahead of time in order to save com-
putation later; their approach demonstrates how to boost performance by skipping
re-initialization. Also in that vein, [30] demonstrate techniques for representing a
planning graph that take full advantage of the properties of the planning graph. We
seek to exploit the overlap between different graphs, not different levels. [29] seek
to exploit the overlap between different graphs as well, but limit the scope to graphs
adjacent in time.

The Prottle planner [28] makes use of a single planning graph to compute heuristics
in a forward chaining probabilistic temporal planner. Prottle constructs a planning
graph layer for every time step of the problem, up to a bounded horizon, and then
back propagates numeric reachability estimates from the goals to every action and
proposition in the planning graph. To evaluate a state, Prottle indexes the proposi-
tions and actions active in the state at the current time step, and aggregates their
back-propagated estimates to compute a heuristic. Prottle combines forward reach-
ability analysis with backwards relevance propagation to help to avoid recomputing
the planning graph multiple times.

8 Conclusion

A common task in many planners is to compute a set of planning graphs. The
naive approach fails to take account of the redundant sub-structure of planning
graphs. We developed the SAG as an extension of prior work on the LUG. The
SAG employs a labeling technique which exploits the redundant sub-structure, if
any, of arbitrary sets of planning graphs.

We developed a belief-space progression planner called POND to evaluate the
technique. We improve the use of the LUG within POND by applying our SAG
technique. We found an optimized form, SLUG , of the state agnostic version of
the LUG, and theMcSLUG for theMcLUG. These savings associated with these
optimized forms carry through to the experimental results.

We also compared POND to state of the art planners in non-deterministic and prob-
abilistic planning. We demonstrated that, by using SLUG andMcSLUG , POND is
highly competitive with the state of the art in belief-space planning. Given the pos-

45

itive results in applying SAG, we see promise in applying SAG to other planning
formalisms.

Acknowledgements: This research is supported in part by the NSF grant IIS-
0308139 and an IBM Faculty Award to Subbarao Kambhampati. We thank David
Smith for his contributions to the foundations of our work, in addition, we thank the
members of Yochan for many helpful suggestions. We also thank Nathaniel Hyafil
and Fahiem Bacchus for their support in CPplan comparisons, Carmel Domshlak
and Joerg Hoffmann for their support in PFF comparisons, Jussi Rintanen for help
with BBSP, and Piergiorgio Bertoli for help with MBP.

References

[1] P. Bertoli, A. Cimatti, Improving heuristics for planning as search in belief space, in:
Proceedings of AIPS’02, 2002, pp. 143–152.

[2] P. Bertoli, A. Cimatti, M. Roveri, P. Traverso, Planning in nondeterministic domains
under partial observability via symbolic model checking, in: IJCAI, 2001, pp. 473–
486.

[3] P. Bertoli, A. Cimatti, M. Roveri, P. Traverso, Planning in nondeterministic domains
under partial observability via symbolic model checking, in: Proceedings of IJCAI’01,
2001, pp. 473–478.

[4] A. Blum, M. Furst, Fast planning through planning graph analysis, in: Proceedings of
IJCAI’95, 1995, pp. 1636–1642.

[5] B. Bonet, H. Geffner, Planning as heuristic search: New results, in: Proceedings of
ECP’99, 1999, pp. 360–372.

[6] R. Brafman, J. Hoffmann, Contingent planning via heuristic forward search with
implicit belief states, in: Proceedings of ICAPS’05, 2005.

[7] D. Bryce, W. Cushing, S. Kambhampati, Model-lite planning: Diverse mult-option
plans and dynamic objective functions, in: Proceedings of the 3rd Workshop on
Planning and Plan Execution for Real-World Systems, 2007.

[8] D. Bryce, S. Kambhampati, A tutorial on planning graph based reachability heuristics,
AI Magazine 28 (1) (2007) 47–83.

[9] D. Bryce, S. Kambhampati, D. Smith, Planning graph heuristics for belief space
search, Journal of AI Research 26 (2006) 35–99.

[10] D. Bryce, S. Kambhampati, D. Smith, Sequential monte carlo in probabilistic planning
reachability heuristics, in: Proceedings of ICAPS’06, 2006.

[11] D. Bryce, S. Kambhampati, D. Smith, Sequential monte carlo in probabilistic planning
reachability heuristics, Artificial Intelligence 172(6-7) (2008) 685–715.

46

[12] J. C. Culberson, J. Schaeffer, Pattern databases, Computational Intelligence 14 (3)
(1998) 318–334.

[13] W. Cushing, D. Bryce, State agnostic planning graphs, in: Proceedings of AAAI’05,
2005, pp. 1131–1138.

[14] A. Darwiche, P. Marquis, A knowledge compilation map, Journal of Artificial
Intelligence Research 17 (2002) 229–264.

[15] J. de Kleer, An Assumption-Based TMS, Artificial Intelligence 28 (2) (1986) 127–162.

[16] C. Domshlak, J. Hoffmann, Fast probabilistic planning through weighted model
counting, in: Proceedings of ICAPS’06, 2006, pp. 243–251.

[17] S. Edelkamp, Planning with pattern databases, in: Proceedings of the 6th European
Conference on Planning (ECP-01, 2001, pp. 13–24.

[18] A. Gerevini, B. Bonet, R. Givan (Eds.), 5th International Planning Competition,
Cumbria, UK., 2006.

[19] A. Gerevini, A. Saetti, I. Serina, Planning through stochastic local search and temporal
action graphs in LPG, Journal of Artificial Intelligence Research 20 (2003) 239–290.

[20] E. Harwood, D. Warren, Warplan: A system for generating plans., Tech. Rep.
Memo 76, Computational Logic Dept., School of AI, Univ. of Edinburgh. (1974).

[21] J. Hoffmann, R. Brafman, Conformant planning via heuristic forward search: A new
approach, in: Proceedings of ICAPS’04, 2004, pp. 355–364.

[22] J. Hoffmann, B. Nebel, The FF planning system: Fast plan generation through heuristic
search, Journal of Artificial Intelligence Research 14 (2001) 253–302.

[23] J. Huang, Combining knowledge compilation and search for efficient conformant
probabilistic planning, in: Proceedings of ICAPS’06, 2006, pp. 253–262.

[24] N. Hyafil, F. Bacchus, Conformant probabilistic planning via CSPs, in: Proceedings
of ICAPS’ 03, 2003, pp. 205–214.

[25] N. Hyafil, F. Bacchus, Utilizing structured representations and CSPs in conformant
probabilistic planning, in: Proceedings of ECAI’04, 2004, pp. 1033–1034.

[26] S. Kambhampati, E. Parker, E. Lambrecht, Understanding and extending graphplan.,
in: Proceedings of Fourth European Conference on Planning, 1997, pp. 260–272.

[27] J. Koehler, B. Nebel, J. Hoffmann, Y. Dimopoulos, Extending planning graphs to an
ADL subset, in: Proceedings of Fourth European Conference on Planning, 1997, pp.
273–285.

[28] I. Little, D. Aberdeen, S. Theibaux, Prottle: A probabilistic temporal planner, in: Proc.
of AAAI’05, 2005, pp. 1181–1186.

[29] Y. Liu, S. Koenig, D. Furcy, Speeding up the calculation of heuristics for heuristic
search-based planning., in: Proceedings of the National Conference on Artificial
Intelligence, 2002, pp. 484–491.

47

[30] D. Long, M. Fox, Efficient implementation of the plan graph in stan., Journal of AI
Research 10 (1999) 87–115.

[31] D. Long, M. Fox, The 3rd international planning competition: Results and analysis,
Journal of Artificial Intelligence Research 20 (2003) 1–59.

[32] D. V. McDermott, Using regression-match graphs to control search in planning,
Artificial Intelligence 109 (1-2) (1999) 111–159.
URL citeseer.ist.psu.edu/mcdermott99using.html

[33] X. Nguyen, S. Kambhampati, R. S. Nigenda, Planning graph as the basis for deriving
heuristics for plan synthesis by state space and CSP search, Artificial Intelligence
135 (1-2) (2002) 73–123.

[34] N. Nilsson, Principles of Artificial Intelligence, Morgan Kaufmann, 1980.

[35] H. Palacios, H. Geffner, Compiling uncertainty away: Solving conformant planning
problems using a classical planner (sometimes), in: Proceedings of the National
Conference on Artificial Intelligence, AAAI Press, 2006.

[36] R. Petrick, F. Bacchus, A knowledge-based approach to planning with incomplete
information and sensing, in: Proceedings of AIPS’02, 2002, pp. 212–222.

[37] I. Refanidis, I. Vlahavas, The GRT planning system: Backward heuristic construction
in forward state-space planning, Journal of Artificial Intelligence Research 15 (2001)
115–161.
URL citeseer.ist.psu.edu/refanidis01grt.html

[38] J. Rintanen, Expressive equivalence of formalisms for planning with sensing, in:
Proceedings of ICAPS’03, 2003, pp. 185–194.

[39] J. Rintanen, Conditional planning in the discrete belief space, in: Proceedings of
IJCAI’05, 2005, pp. 1260–1265.

[40] D. Smith, D. Weld, Conformant graphplan, in: Proceedings of AAAI’98, 1998, pp.
889–896.

[41] F. Somenzi, CUDD: CU Decision Diagram Package Release 2.3.0, University of
Colorado at Boulder (1998).

[42] D. Weld, C. Anderson, D. Smith, Extending graphplan to handle uncertainty and
sensing actions, in: Proceedings of AAAI’98, 1998, pp. 897–904.

[43] H. Younes, R. Simmons, Vhpop: Versatile heuristic partial order planner, Journal of
Artificial Intelligence Research 20 (2003) 405–430.

[44] T. Zimmerman, S. Kambhampati, Using memory to transform search on the planning
graph, Journal of AI Research 23 (2005) 533–585.

48

