Evaluating Temporal Planning Domains

Juraj Dzifcak

Arizona state university
School of Computing and Informatics
699 S. Mill Avenue
Tempe, AZ 85281-8809, U.S.A.

April 29th, 2008
Many international planning competition domains do not require concurrency

Some theoretical work already present

Knowing if the domain does require concurrency might be very useful

Various concurrency based planning results
Challenges

- Translating theoretical results into algorithms,
- Deciding if a domain requires concurrency or not is hard
- Combining the results
- Implementation
- Evaluation
Any repeatable action is either a weakly conditional action, a null action or a null effect action.

If two instances of a simple durative action, can execute concurrently, then either a is either a deadlocking, pseudo-durative or purely state-preserving action, or else A_e is weakly conditional.

If a domain forbids temporal gap, the domain is inherently sequential.

If every action in the domain is AT START causally independent or AT END causally independent then the domain is inherently sequential.
Decidability?

- Deciding if the domain can be solved without concurrency seems to be most helpful.
- Deciding if the domain cannot be solved without concurrency seems to be hard.
- On which domains should we test it?
Results

Selected results

<table>
<thead>
<tr>
<th>Test no</th>
<th>Domain</th>
<th>Sequential?</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Depots</td>
<td>Yes</td>
<td>N/C</td>
</tr>
<tr>
<td>2</td>
<td>DriverLog</td>
<td>Yes</td>
<td>N/C</td>
</tr>
<tr>
<td>3</td>
<td>ZenoTravel</td>
<td>Yes</td>
<td>N/C</td>
</tr>
<tr>
<td>4</td>
<td>Light and match 1</td>
<td>Unknown</td>
<td>N/C</td>
</tr>
<tr>
<td>5</td>
<td>Light and match 2</td>
<td>Unknown</td>
<td>N/C</td>
</tr>
</tbody>
</table>

Results are in line with the theory

Time variation does not yield conclusive evidence on usefulness, however for the given domains the required time was very short (≤ 0.1s)
High level implementation overview

1. Parse the domain
2. Check for temporal gaps and print out the actions with them. If no gaps are found, the domain must be inherently sequential.
3. Check for At Start and At End causal independence. If every action is found to be independent, the domain must be inherently sequential.
4. Check for action concurrency. If an action cannot occur concurrently with itself report this action.
5. Based on the above points, classify the domain as either inherently sequential or unknown.
Conclusions

- Translating results into algorithms
- First step in implementing the theoretical advances
- Several types of ’checkers’
- Optimization
Thank you for your attention.