
Learning Probabilistic Hierarchical Task Networks from Plan Examples to
Capture User Preference

Nan Li
Advisor: Subbarao Kambhampati and Sungwook Yoon

School of Computing and Informatics
Arizona State University

Tempe, Arizona 85281 USA

Abstract
Hierarchical task networks provide an efficient way to en-
code user prescriptions about what constitute good plans us-
ing component methods. However, manual construction of
these methods is complex and time consuming. In this pa-
per, we propose a novel approach to learning probabilistic
hierarchical task networks that capture the user preference
by examining user-produced plans given no prior informa-
tion about the methods. We introduce a theoretical basis to
formally state the schema learning problem. We then make
the connection between probabilistic grammar induction and
probabilistic hierarchical task network learning, and propose
a learning algorithm that shares ideas with probabilistic gram-
mar induction.

Introduction
In recent years, planning systems have been widely used in
practical applications ranging from autonomous space vehi-
cles (Muscettola, Nayak, Pell, and Williams, 1998) to robot
control (Ghallab & Lauruelle, 1994) to computer bridge
(Smith, Nau, & Throop, 1998). Besides generating valid
plans, one important requirement to such systems is to gen-
erate plans that meet user preference. Hierarchical task net-
works (HTN) (Nau et al., 1999; Wilkins & desJardins, 2001)
have received increased attention for providing a flexible
way of encoding user intent to control planning. However,
generating hierarchical task networks by hand is often dif-
ficult and time consuming. Even for the same task, hierar-
chical task networks need modifications for different users.
Although there has been a growing body of work on learning
in this framework (Ilghami et al., 2002; Langley and Choi,
2006), to the best of our knowledge, none of them have fo-
cused on capturing user preference.

In this paper, we propose an approach that constructs user-
oriented probabilistic hierarchical task networks from user-
produced plan examples. We assume that all plan examples
have the same goal and are generated by users that share the
same preference. Each plan consists of a sequence of ground
actions. Unlike most of the other learning mechanisms, we
assume that hierarchical task networks are completely un-
known to the system, which is, unfortunately, usually true
in real life. Our objective is to reconstruct the hierarchical

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

task networks associated with the probabilities of being cho-
sen based on the plans provided. Having realized the con-
nection between probabilistic grammar induction and proba-
bilistic hierarchical task networks learning, we developed an
expectation-maximization (EM) algorithm inspired by ideas
from probabilistic grammar induction systems.

The main contributions of this paper are: 1) We intro-
duce a theoretical basis for formally defining algorithms that
learn user-oriented probabilistic hierarchical task networks;
2) We describe the close ties between HTN learning and
probabilistic grammar induction; 3) We present a learning
mechanism for constructing probabilistic hierarchical task
networks.

In the following sections, we begin by briefly reviewing
HTN planning and extend classical hierarchical task net-
works to probabilistic hierarchical task networks to support
better encoding of user preference. We then formally define
the learning task and state the assumptions we made. Next,
we discuss the relations between probabilistic grammar in-
duction and HTN learning. After that, we present an algo-
rithm that acquires user-oriented probabilistic hierarchical
task networks. Finally, we examine how our approach re-
lates to earlier work and discuss future research directions.

Background
Hierarchical task networks planning is a generalization to
classical planning (Kambhampati et. al, 1998). In addition
to primitive actions, a domain description also includes non-
primitive actions and a set of reduction schemas, which en-
code a user’s prescriptions by specifying how to reduce non-
primitive actions into other actions and/or non-primitive ac-
tions. In other words, a plan is acceptable if it is not only
able to achieve the goal, but also able to be parsed by the
reduction schemas (Barett & Weld, 1994).

For example, in a travel domain as shown in Figure 1,
the domain description consists of primitive actions, Getin,
Buyticket, Getout, and Hitch-hike, as well as non-primitive
actions, Gobybus, Gobytrain, and Travel. The reduction
schemas state that Travel can be reduced to either Goby-
bus or Gobytrain. Gobybus and Gobytrain can be further
reduced to primitive actions. Note that Hitch-hike is also a
way to travel. However, since there is no schema to reduce
Travel to Hitch-hike, the plan Hitch-hike will not be consid-
ered as a valid plan.

Figure 1: Hierarchical task networks in a travel domain. (Kambhampati et. al, 1998)

The parsability of a plan in hierarchical task networks is
deterministic. A plan is either acceptable or not. However,
user preference is usually blurry. For instance, although both
Gobybus and Gobytrain are acceptable plans from the above
hierarchical task networks. The user may still prefer travel-
ing by train rather than traveling by bus. He/She may take
a train 80% of the time, while taking a bus the rest of the
time. To capture this kind of preferences, we extend hier-
archical task networks to probabilistic hierarchical task net-
works, where each reduction schema is associated with a
probability stating the possibility to get chosen when appli-
cable. In the next section, we will present a formal defi-
nition of a constrained version of probabilistic hierarchical
task networks.

Problem Definition
In this paper, we focus on a constrained form of proba-
bilistic hierarchical task networks, ordered probabilistic hi-
erarchical task networks (ordered probabilistic HTN). We
model an ordered probabilistic HTN domain by a 3-tuple,
〈A,NA, S〉, where A is a set of primitive actions, NA is a set
of non-primitive actions, and S is a set of reduction schemas
indexed by non-primitive actions. Each primitive action ai

is a 3-tuple, 〈PC, OP,EF 〉, where PC (precondition) and
EF (effects) are first-order boolean formulae, and OP is a
operator. Each non-primitive action nai is associated with
a set of reduction schemas. Each reduction schema sj can
be seen as a 5-tuple, 〈NA,DEC,PC, B, P 〉, where NA is
a non-primitive action, DEC is an ordered list of primitive or
non-primitive actions, PC (the preconditions) is a first-order
boolean formula, B is a set of binding constraints on the vari-
ables appearing in DEC and PC, and P (na → dec | h) is a
decomposition distribution that represents the probability of
decomposing na to dec.

A probabilistic HTN planning problem is a 3-tuple,
〈I, G,H〉, where I is the complete description of an initial
state, G is the description of the goal state, H is an ordered
probabilistic HTN domain description described above. An
action sequence S is a valid solution to a planning problem
if and only if S can be executed from I, the resulting state
implies G, and S can generated from G following the reduc-
tion schemas in H. An ordered probabilistic HTN domain

Table 1: Ordered probabilistic hierarchical task networks in
the travel domain

Primitive actions: Buyticket, Getin,Getout, Hitchhike;
Non-primitive actions: Travel,Gobybus, Gobytrain;
Travel → 0.2, Gobybus
Travel → 0.8, Gobytrain
Gobybus → 1.0, Getin Buyticket Getout
Gobytrain → 1.0, Buyticket Getin Getout

is said to successfully capture user preference if the distri-
bution of the valid plans generated from the ordered prob-
abilistic HTN forms the same distribution of the user pro-
duced plans.

Given the definition stated above, we are ready to describe
the input and output specifications. The input of the learning
system is a set of plan examples, O, generated by users shar-
ing the same preference. Each plan example oi is a 2-tuple,
〈S,G〉, where S is an action sequence, and G is a goal that
the plan achieved. The goals of all the plans share the same
predicate. The objective of our learning algorithm is to con-
struct an ordered probabilistic HTN domain H that captures
user preference based on plan examples o, that is,

argmaxH p (O |H) (1)

Due to the hardness of learning hierarchical task net-
works, we first simplified the learning task by ignoring the
parameters in the plan traces. This assumption is reason-
able in domains such as the travel domain, but does not work
with domains like Blocks World, where the action sequences
are differentiated between each other by bindings. Second,
our algorithm assumes total executability among all actions,
which means a plan is an acceptable solution as long as it
can be parsed by the reduction schemas. This assumption
enables us to focus on learning the structural knowledge em-
bedded in hierarchical task networks.

Based on these two assumptions, the output of the learn-
ing algorithm is an ordered probabilistic HTN domain with
all PCs and Bs in the reduction schemas S set to be empty.
We will sometimes use na → p, a1a2 . . . an to denote a
reduction schema, where na is a non-primitive action, and

Table 2: Ordered probabilistic hierarchical task networks of
Chomsky normal form in the travel domain

Primitive actions: Buyticket, Getin,Getout, Hitchhike;
Non-primitive actions: Travel, A1, A2, A3, B1, B2;
Travel → 0.2, A2 B1

Travel → 0.8, A1 B2

B1 → 1.0, A1 A3

B2 → 1.0, A2 A3

A1 → 1.0, Buyticket
A2 → 1.0, Getin
A3 → 1.0, Getout

a1, a2, . . . , an are primitive actions or non-primitive actions.
Besides, since all the plan examples aim to achieve the same
goal (predicate), the start symbol of the reduction schemas is
the goal g. Table 1 shows an example of the ordered proba-
bilistic HTNs in the travel domain. For instance, the schema
Gobybus → 1.0, Getin Buyticket Getout means Gob-
ybus can be reduced to three actions with probability 1.0.
More specifically, the reduction schemas learned will be of
only two forms,

na → p, na1na2 (2)
na → 1.0, a (3)

where na, na1 and na2 are non-primitive actions, a is a
primitive action, and p is the probability of schema 2 getting
selected. Note that ordered probabilistic HTNs of this form
are as expressive as the original ordered probabilistic HTNs.
Table 2 shows the reduction schemas equivalent to table 1 in
the constrained form. More details will be discussed in the
next section.

Relating HTN learning to Probabilistic
Grammar Induction

After formalizing the syntax of ordered probabilistic HTNs,
we realized that the reduction schemas described above form
a probabilistic context free grammar (PCFG), where each
non-primitive action corresponds to a non-terminal symbol,
each primitive action corresponds to a terminal symbol, and
each reduction schema is a grammar rule. As is known to
all, every context free language can be represented by a
context free grammar in Chomsky normal form. It is easy
to prove that, every probabilistic context free language can
also be generated by a probabilistic context free grammar
in Chomsky normal form. Having realized the close con-
nection between HTN and probabilistic context free gram-
mar, we further constrains the format of learned probabilistic
HTNs to be of Chomsky normal form as shown in schema 2
and schema 3.

Moreover, we noticed that learning ordered probabilistic
HTNs is closely related to the field of grammar induction in
probabilistic context free grammar. Grammar induction is
to discover common structures embedded in some sequen-
tial (sentence) or structured data. Grammar induction on
probabilistic context free grammar assumes the embedded

Algorithm 1: learn constructs a set of reduction
schemas, S, from the plan examples, O using an EM
algorithm until convergence.
Input: Plan Example Set O.
S := φ;1
T := φ;2
S := pre-process(O);3
while not-converged do4

forall oi ∈ O do5
T := T + paring(oi, S);6

end7
forall si ∈ S do8

sel := number-of-times-selected(si, T);9
tol := number-of-times-selected(si.na, T);10
si.p := sel / tol;11

end12

end13
return S14

common structure is a PCFG. Comparing with HTN learn-
ing, the input of HTN learning is a set of plan examples,
while the input of grammar induction is a set of sequential
data. In both cases, the inputs are sequences of terminal
symbols. Moreover, both learning tasks aim to discover a
structure embedded in the inputs, and assume the embedded
structure is a probabilistic context-free grammar. Last but
not the least, the notion of user preference also has its coun-
terpart in grammar induction. First, in HTN learning a plan
is acceptable if it can be parsed by HTN schemas, while in
grammar induction a sentence is valid if it it is grammatical
correct. Second, in HTN learning, different users prefer dif-
ferent kinds of plans, while, in grammar induction, various
people have different talking styles.

There has been quite a few work in the area of gram-
mar induction on probabilistic context free grammar (eg.
Wang & Acero, 2002; Collins, 1997; Charniak, 2000; Lari
& Young, 1990). Lari & Young (1990) developed an
expectation-maximization algorithm, the inside-outside al-
gorithm to induce grammar. The algorithm takes all pos-
sible grammar rules of Chomsky normal form into consid-
eration, and uses the selection probabilities associated with
them to compute the probability of generating an observa-
tion sequence given the grammar. Then, the algorithm up-
dates the selection probabilities of the grammar rules by the
computed probabilities. This process operates in an iterative
fashion until convergence.

Learning User-Oriented Probabilistic
Hierarchical Task Networks

Inspired by the inside-outside algorithm, we took an ap-
proach that employs an EM algorithm, but different from
the inside-outside algorithm. The learning algorithm be-
gins by a pre-processing function which constructs an initial
probabilistic HTN domain from the example sequences as
the start point for the EM algorithm. It then iteratively re-
estimates the reduction schemas until convergence. In each

Algorithm 2: pre − process constructs a initial set of
reduction schemas, S, from the plan examples, O.

Input: Plan Example Set O.
S := primitive action reduction schemas;1
forall oi ∈ O do2

if parsable(oi, S) then3
continue;4

else5
S := S + generate-schema(oi, S);6

end7

end8
S = initialize-probabilities(S);9
return S10

iteration, the algorithm constructs the most probable pars-
ing tree for each plan given the current reduction schemas
in the E step. It then updates the estimation of the reduc-
tion schemas based on the parsing trees. In this section, we
first describe the EM algorithm. Next, we introduce a pre-
processing algorithm to provide a better initial estimates. Fi-
nally, we discuss properties of the algorithm.

Probabilistic Hierarchical Task Networks Learner
The HTN schema learner starts by guessing a set of reduc-
tion schemas S that can generate all plan examples as a star-
ing point. This is done by a pre-process algorithm, which
will be discussed in the following section.

Note that for consistency the following constraint must
always be satisfied,

∑

aj ,ak∈NA
ai→aj ak

p (ai → aj ak |H) +
∑

aj∈NA
ai→aj

p (ai → aj |H) = 1

(4)
This constraint simply means that all non-primitive ac-

tions must be either a pair of non-primitive actions or a
single primitive actions. Actually, since we assumed that
each primitive action is associated with only one reduction
schema, a non-primitive action can be reduced to either pairs
of non-primitive actions or a single primitive action, but not
both. That is to say, one of the two terms in the above equa-
tion should be 0.

Since all plan examples can be generated by the target
reduction schemas, each plan should have a parse tree asso-
ciated with it. However, the tree structures of the example
plans T are not provided. Therefore, we consider T as hid-
den variables. We will use T(o, H) to denote the parse tree
of a plan example o given the reduction schemas H . The
algorithm operates iteratively. In each iteration, it involves
two steps, an E step, and an M step.

In the E step, the algorithm estimates the values of the hid-
den variables T , which, in this case, is are the tree structures
associated with each plan example, denoted as

p (T |O, H) (5)
To do this, the algorithm computes the most probable

parse tree for each plan example. Any subtree of a most

probable parse tree is also a most probable parse subtree.
Otherwise, replacing the original subtree with the most
probable parse subtree, we get another parse tree that is of
higher probability than the original most probable parse tree.
Therefore, for each plan example, the algorithm builds the
most probable parse tree in a bottom-up fashion until reach-
ing the start symbol g. For the lowest level, since each prim-
itive action only associates with one reduction schema of the
form na → a, the most probable parse trees for them are di-
rectly recorded with their only associated reduction schemas
of probabilities set to be 1. For higher levels, the most prob-
able parse tree is decided by

T (o,H) =argmaxs,i p (s |H) ∗ p (T (o1,H) | o1,H)
∗ p (T (o2,H) | o2,H), (6)

T (o1,H),
T (o2,H).

where o is an action sequence, a1, a2, . . . an, s is a reduc-
tion schema of the form ai → aj ak, i is an integer between
1 to n, o1 is an action sequence, a1, a2, . . . ai, and o2 is an
action sequence, ai+1, . . . an. The probability of that parse
tree is

p(T (o,H)|o,H) = p(T (o1,H)|o1,H)∗p(T (o2,H)|o2,H)
(7)

where o is an action sequence, o1 and o2 are action se-
quences that correspond to the division of o according to the
most probable parse tree. This bottom-up process continues
until it finds out the most probable parse tree for the entire
plan.

After getting the parse trees for all plan example, the al-
gorithm moves on to the M step. In this step, the algorithm
updates the selection probabilities associated with the reduc-
tion schemas by maximize the expected log-likelihood of the
joint event

Hn+1 = argmaxHΣT p (T |O, Hn) log p (O, T |H) (8)

Probabilities of reduction schemas associated to primitive
actions are still 1. For a reduction schema ai → aj ak

associated to non-primitive actions, the new probability of
getting chosen is simply the total number of times ai →
ajak appearing in the parse trees divided by the total number
of times ai appearing in the parse trees.

After finishing the M step, the algorithm starts a new iter-
ation until convergence. The output of the algorithm is a set
of probabilistic reduction schemas.

Pre-process Algorithm
As with standard EM algorithm, the reduction schemas
learned with our algorithm converge toward only local opti-
mum. Moreover, a good starting point for the EM algorithm
requires less iterations to converge. Furthermore, consider-
ing all possible rules may lead to a huge redundancy in the
constructed reduction schemas. Hence, it is essential to find
a good initial estimates.

Therefore, instead of starting with random probability
values, we designed a pre-process algorithm that obtains a

set of reduction schemas S from the example sequences.
The pseudo code of the pre-process algorithm is shown in
algorithm 2. The reduction schema set S is initialized to
contain schemas associated with primitive actions. Then, for
each plan example oi, the algorithm first tries to parse the oi

with the current S. If it succeeds, it will not add any reduc-
tion schema to S and move on to the next plan example. If it
fails, among all the parse forests, which are partial parses of
oi that can not be further parsed, the pre-process algorithm
takes the parse forest that has the fewest number of trees,
and generates a set of reduction schemas for the roots of the
trees. In order to keep the schemas succinct, the reduction
schema generation process prefers to generate balanced and
recursive reduction schemas.

After learning the reduction schemas, the pre-process al-
gorithm assigns the probabilities associated with them. Due
to the rule shown in Equation 4, for each reduction schema
ai → aj ak, p is assigned to 1 divided by the number of re-
duction schemas that have ai as the head. In order to break
the symmetry among all reduction schemas, the algorithm
adds a small random number to each probability and normal-
izes the values again. This pre-process algorithm provides a
redundant set of reduction schemas to the EM algorithm.

Discussion
Having introduced the learning algorithm, we will discuss
several properties of the algorithm in this section. First,
since EM algorithms do not guarantee converge to global
optimal, we may need to run the learning algorithm multiple
times to find reduction schemas of good quality.

Second, the proposed algorithm learns the schema struc-
ture not only in the pre-process step, but also in the EM
step. Although the EM step does not introduce new reduc-
tion schemas, it deletes redundant reduction schema by as-
signing low or zero possibilities to those schemas.

Third, although our algorithm assumes no prior schema
information, it is also capable of acquiring user preference
given full or partial schema knowledge by putting the known
schemas into the initial candidate methods.

Fourth, in the pre-process algorithm, the slightly asym-
metry encoded in the probability values may lead to a large
bias on a subset of the reduction schemas, that is, some re-
duction schemas will be given very small probabilities. A
post-process algorithm can be added so that after learning
the HTN schemas, the post-process algorithm tries to re-
move schemas associated with small probabilities as long as
the remaining schemas can still express all plan examples.

Finally, the objective of our learning mechanism is to pro-
duce the probabilistic HTNs that best describe the user pref-
erence. However, this may lead an overfitting problem. By
generating exact reduction schemas for each example plan,
we will get the reduction schemas that produce only the
training example. To solve this problem, we can either limit
the total number of non-primitive actions, or extend our al-
gorithm to take advantage of negative plan examples.

Related Work
The main claim of this paper is learning HTN schemas
to capture user preference without prior knowledge about

schemas. Although there has been considerable work on
HTN learning (Ilghami et al., 2002; Langley and Choi,
2006), to the best of our knowledge, most of them have
not focused on capturing user intent, and usually require
method information given as input. Ilghami et al.’s (2002)
work learns domain knowledge also by analyzing successful
traces, that contain hierarchical structural information, while
the input of our algorithm does not include any structural
information. Langley and Choi’s (2006) work constructs
HTN schemas in the context of problem solving and exe-
cution, but again the proposed mechanism depends on par-
tial information of the hierarchical structure. Nejati et al.’s
(2006) approach constructs HTN schemas from expert traces
based on partial structural information. Moreover, none of
the above works have focused on capturing user preference.
Other works on building action models (Blythe et al., 2001;
Yang et al.,2005; Wang 1995; Oates & Cohen, 1996; Gil,
1994; Shen, 1994; Sablon & Bruynooghe, 1994; Benson,
1995) also learn domain knowledge, but the constructed ac-
tion model will only contain information about primitive ac-
tions. These works essential focus on learning preconditions
and effects of primitive actions.

Our framework also incorporates ideas from other re-
search on grammar induction. For example, the E step in
the algorithm to build the most probable parse trees bears
a clear resemblance to work on parsing algorithm (Collins,
1997; Charniak, 2000). Collin’s parser represents parse trees
using probabilities of dependencies, while our approach uses
reduction schemas to represent parse trees. Charniak’s (200)
work defines a score function to measure the quality of the
parse and returns the parse tree with the highest score. In
contrast, our approach does not use any score function.

Concluding Remarks
In summary, we provided a theoretical basis for the learning
problem, and showed the connection between HTN learning
and grammar induction. We then proposed a probabilistic
HTN learning approach that captures user preference from
user-produced plan examples with no prior information. The
approach employs an expectation-maximization algorithm.
Finally, we discussed properties of the proposed algorithm.

There are many possibilities for improvement of this
work, which is encouraging. First, we need to carry out ex-
periments to better demonstrate and understand the quality
of the learned probabilistic HTNs. We should also compare
our algorithm with other learning algorithms, such as the
inside-outside algorithm. Second, the proposed EM algo-
rithm does not consider minimizing the size of the reduc-
tion schemas. We will extend our algorithm to learn smaller
sized reduction schemas by choosing parse trees that are not
only of the highest probabilities, but also of smaller sizes
in terms of the number of reduction schemas used during
parsing. Third, we made several assumptions to simplify the
learning task. One interesting extension would be to learn
hierarchical task networks with binding information. We
will also extend the HTN learner to take executability into
consideration. We believe that our HTN learner extends nat-
urally in these directions.

References

Barrett, A., & Weld, D. (1994) Task decomposition via plan
parsing. Proceedings of the Twelveth National Conference
on Artificial Intelligence, (pp. 1117-1122). Seattle, WA.

Benson, S. (1995). Inductive learning of reactive action
models. Proceedings of the International Conference on
Machine Learning, (pp. 47C54). San Fracisco, CA.

Blythe, J., Kim, J., Ramachandran, S., & Gil, Y. (2001). An
integrated environment for knowledge acquisition. Proceed-
ings of Intelligent User Interfaces. (pp. 13-20).

Charniak, E. (2000). A maximum-entropy-inspired parser.
Proceedings of the European Chapter of the Association for
Computational Linguists.

Collins, M. (1997). Three generative, lexicalised models for
statistical parsing. Proceedings of the Thirty-fifty Annual
Meeting of the Association for Computational Linguistics,
San Francisco. Morgan Kaufmman.

Ghallab, M., & Laruelle, H. (1994). Representation and con-
trol in lxTet, a temporal planner. Proceedings of the Second
International Conference on Artificial Intelligence Planning
Systems, Chicago, IL, (pp. 61-67). AAAI Press.

Gil, Y. (1994). Learning by experimentation: Incremental
refinement of incomplete planning domains. Proceedings of
the Eleventh International Conference on Machine Learn-
ing. (pp. 87-95).

Ilghami, O., Nau, D. S., Mu noz-Avila, H., & Aha, D. W.
(2002). CaMeL: Learning method preconditions for HTN
planning. Proceedings of the Sixth International Conference
on AI Planning and Scheduling, (pp. 131-14). Toulouse,
France.

Kambhampati, R., Mali, A., & Srivastava, B. (1998). Hybrid
planning for Partially hierarchical domains. Proceedings of
the Fifteenth National Conference on Artificial Intelligence,
(pp. 882-888). Menlo Park, CA.

Langley, P., & Choi, D. (2006). Learning recursive control
programs from problem solving. Journal of Machine Learn-
ing Research, 7, (pp. 493-518).

Lari, K., Young, S. (1990). The estimation of stochastic con-
text free grammars using the inside-outside algorithm. Com-
puter Speech Language, 4, (pp. 35-56).

Muscettola, N., Nayak, P., Williams, B. (1998). Remote
agent: To boldly go where no AI system has gone before.
Artificial Intelligence, 103(1-2), (pp. 5-47).

Nau, D., Cao, Y., Lotem, A., & Munoz-Avila, H. (1999).
SHOP: A simple hierarchical ordered planner. Proceedings
of the Sixteenth International Joint Conference on Artificial
Intelligence (pp. 968-973).

Nejati, N., Langley, P., & Konik, T. (2006). Learning hier-
archical task networks by observation. Proceedings of the
Twenty-Third International Conference on Machine Learn-
ing (pp. 665-672). Pittsburgh, PA.

Oates, T., & Cohen, P. R. (1996). Searching for planning

operators with context-dependent and probabilistic effects.
Proceedings of the Thirdteenth National Conference on Ar-
tificial Intelligence, (pp. 865-868). Menlo Park, CA.

Sablon, G., & Bruynooghe, M. (1994). Using the event cal-
culus to integrate planning and learning in an intelligent au-
tonomous agent. Proceedings of Current Trends in AI Plan-
ning. (pp. 254-265). IOS Press.

Shen, W. 1994. Autonomous Learning from the Environ-
ment. Computer Science Press, W.H. Freeman and Com-
pany.

Smith, S., Nau, D., & Mitchell, T. (1982). Learning from
solution paths, An approach to the credit assignment prob-
lems. AI Magazine 3(2), (pp. 48-52).

Wang, X. (1995). Learning by observation and practice:
An incremental approach for planning operator acquisition.
Proceedings of Wang, X. 1995. Learning by observation and
practice: An incremental approach for planning operator
acquisition. (pp. 549-557).

Wang, Y., Acero, A. (2002). Evaluation of spoken language
grammar learning in the ATIS domain. Proceedings of Inter-
national Conference on Acoustics, Speech, and Signal Pro-
cessing.

Wilkins, D. E., & desJardins, M. (2001). A call for
knowledge-based planning. AI Magazine, 22, (pp. 99-115).

Yang, Q., Wu, K., & Jiang, Y. (2005). Learning action
models from plan examples with incomplete knowledge.
Proceedings of The International Conference on Automated
Planning and Scheduling.

