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Abstract
Most of current works on planning community assume the
completeness of the physical dynamics or the user prefer-
ence model. Unfortunately, many domains in the real-world
are complicated enough so that modeling simply can not be
done completely. As a result, there has been some initial ef-
forts to shift the research in the field towards dealing with
domains with approximate or even shallow models (Kamb-
hampati 2007). In this paper, we take that view point in the
context of Sapa (Do and Kambhampati 2004) planner and
consider the scenario in which the exact trade-off between
objective functions time and cost of the plan is unknown to
the planner. We propose an approach using heuristic search
to find a set of plans which shows the usefulness in supporting
the user’s decision.

Introduction
Current research in planning community concentrates to find
a plan possibly optimizing some particular metric function.
However, in many planning situations, the quality of a plan
is determined by various objective functions, for instance
some quantitative features such as time, cost, fuel, or quali-
tative features such as preferring to visit some place during a
travel plan. Combining all objective functions the user is in-
terested in, as most of the works do, gives a simple approach
which will lessen the hardness of solving the problem, but
is not natural since the user preference is complicated and
incomplete, i.e. they do not know exactly how to combine
all of their interested objectives of the plans into one single
value function.

To address planning problems optimizing various criteria,
methods to deal with them need to be considered. The ma-
jority of solution approaches in multi-objective optimization
can be divided into three categories. In a priori, the users
preference information is assumed to be obtained before
solving the problem. The second approaches is interactive,
in which the system and user interact with each other during
the solving process, and based on the critics from the users,
the system will eventually give a solution the user wants. In
the third approach, called a posteriori, the complete pref-
erence information is not considered in advance, but the in-
complete trade-off information among various kinds of pref-
erence is considered so that the users can select one solution
among the set found by the system.
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In this work, we will tackle planning problems with in-
complete user preference model in the context of Sapa plan-
ner (Do and Kambhampati 2004), where the user is assumed
to be interested in time and cost of the plans. However, un-
like Sapa, which can be considered as using a priori ap-
proach with the pre-defined trade-off α between two objec-
tives, we will assume the distribution of α. The motivation
of our approach is that normally, quantitative features as time
and cost are considered linearly trade-off by the users, but
extracting the distribution of trade-off value is more feasi-
ble, for instance by statistic on people used the system, than
fixing the trade-off value.

The paper is organized as follows: the next section dis-
cusses about Integrated Preference Function (Carlyle et al.
2003) which will be used as the measure to evaluate our
set of plans, followed by its special case Integrated Con-
vex Preference. We then formalize our problem description
and the assumption for our work, and the solution approach
using hill-climbing method. After the proposed model for
testing the approach, we conclude the work with some ex-
tensions for the future.

Integrated Preference Function (IPF)
In order to support the user using a posteriori approach, we
need a measure to determine the quality of a set of solutions.
One of the characteristic for a good solution set X is that it
contains a desired solution satisfying the user hidden pref-
erence model, or approximates X as close as possible, so
that the user eventually can select her desired solution x∗ or
one very close to it. Integrated Preference Function (IPF)
(Carlyle et al. 2003) aiming to measure the expected value
function of a solution set has been shown to evaluate ro-
bustly how well a set of solutions approximates the true set
of ideal solutions (Fowler et al. 2005).

Formalization of IPF measure
The general form of IPF measure assumes that the user pref-
erence model can be represented with two factors: (1) a dis-
tribution of parameter vector α, and (2) a combination of
various objective functions into a scalar value g(x; α). An
example of a convex combination value function of a solu-
tion x with two objective functions f1 and f2 is g(x; α) =
α1f1 + α2f2, in which α = (α1, α2) and α1 + α2 = 1.

Formally, given a set of solutions X and a distribution
function of parameter vector α over its domain A: h : A →



R+ such that
∫

α∈A
h(α) dα = 1, the IPF measure of X is

defined as follows:

IPF (X) =
∫

α∈A

h(α)g(xg(α); α) dα (1)

in which xg(α) is the optimal solution with respect to the
value function g and parameter vector α.

For each parameter vector α, let xg(α) =
argminx∈Xg(x; α), and x−1

g (α) be its inverse func-
tion. As xg(α) is a piecewise constant over the domain A,
the value IPF(X) can be computed by decomposing it into
several value functions on each portion x−1

g (α) of A on
which a particular solution x is optimal:

IPF (X) =
∑

x∈X

[
∫

α∈x−1
g (α)

h(α)g(x;α) dα] (2)

This equation can be interpreted as the expected value of
X with respect to the value function g(x, α). Therefore,
the set of solutions with minimum IPF value contains the
desired solutions that the user wants in infinite numbers of
transactions.

Integrated Convex Preference (ICP)
Extracting the correct preference model is very difficult, so
one of the most frequently used model is the convex combi-
nation of objective functions, and in this case the Integrated
Preference Function is called Integrated Convex Preference
(ICP). In this section, we consider this special form of value
function in bi-objective optimization problems, the exact
computation of ICP value and its geometric meaning.

Consider a set of solutions X = {x1, x2, ..., xn}, and let
f1i, f2i be two objective functions of each solution xi ∈ X .
The convex combination value function of a solution xi with
parameter vector α = (w, 1− w) is defined as:

g(xi, w)
def
= g(xi, α) = wf1i +(1−w)f2i(w ∈ [0, 1]) (3)

Comparing solutions in X to each other with respect to
the value function g, we have the following properties.

Property 1: Given xi, xj ∈ X(i 6= j), if xi is dominated
by xj

1 then g(xi, w) ≤ g(xj , w).
Property 2: Given xi, xj ∈ X(i 6= j) such that f1i <

f1j , f2i > f2j . Then ∀xk ∈ X such that f1i < f1k < f1j ,
f2i < f2k < f2j and (f2i − f2j)f1k + (f1j − f1i)f2k > 0:
g(xi, w) < g(xk, w) ∨ g(xj , w) < g(xk, w), ∀w ∈ [0, 1].

Figure 1 illustrates the meaning of this property. Solution
xk (mentioned in property 2) inside the upper right triangle
with the hypotenuse created by (f1i, f2i) and (f1j , f2j) is
worse than either xi or xj in term of value function g be-
cause for any w ∈ [0, 1], we can draw a line crossing either
xi or xj parallel with but below the line crossing xk with the
same slope −w

1−w .
According to these properties, only extreme point solu-

tions in X , which can be found with well-known convex-
hull algorithm, contribute to the computation of ICP(X) and

1xi is dominated by xj iff f1i ≤ f1j , f2i ≤ f2j , and
(f1i, f2i) 6= (f1j , f2j).

Figure 1: This is caption

should be considered by the user. The exact computation of
ICP(X) includes three steps:

• Find the set of extreme point solution in X , called EX =
{xe1 , xe2 , ..., xem

}.

• For each xei ∈ EX , find the portion [wi−1, wi] (0 ≤
wi−1 < wi ≤ 1) on which xei is optimal using linear
inequalities:
(wf1ei

+ (1 − w)f2ei
) − (wf1ej

+ (1 − w)f2ej
) ≤ 0

∀xej
∈ K(xei

)
where K(xei

) is set of adjacent extreme point solutions of
xei

. The two linear inequalities give the lower and upper
bound for the value w, except for the two tail solutions on
the convex-hull which have 0 and 1 as one of the bound.

• The exact value of ICP(X) is computed based on the equa-
tion (2). For instance, the exact formula of ICP(X) with
uniform distribution function is:
IPF(X) =

∑m
i=1[

∫ wi

wi−1
g(xei ;w) dw] =

∫ w1

0
(wf1e1 +(1−

w)f2e1) dw +
∫ w2

w1
(wf1e2 + (1 − w)f2e2) dw + ... +∫ 1

wm−1
(wf1em + (1− w)f2em) dw

Figure 2 shows an example with X = {x1, x2, ..., x7} and
EX = {x1, x2, x3}. Each extreme solution xi (i = 1, 2, 3)
is optimal on the range [wi−1, wi].

The following property illustrates the relationship be-
tween two set of solutions with respect to ICP value.

Property 3: Given S1, S2 ⊆ X . If ∀x ∈ S1, ∃y ∈ S2

such that x is dominated by y, then ICP(S2) ≤ ICP(S1).
The property implies that ICP(EX ) ≤ S, ∀S ⊆ X . As an

example, let S1 = {x4, x5, x7} and S2 = {x1, x4, x5, x6}
in Figure 2, we have: ICP (EX) < ICP (S2) < ICP (S1).

As a consequence of this property, the following corollary
can be considered the basis for the belief of the success for
our hill-climbing approach to find a good set of plans in the
next section.

Corollary 1: If x is a solution not dominated by any exist-
ing solution in X , then adding x into X never increases the
value of ICP(X). In other words, ICP(X) is monotonically
nonincreasing over increasing sequences of solution set.

Problem description and assumption
In this paper, we are interested in supporting the user to se-
lect their desired plan using a posteriori approach, based on
the following assumptions:

• The user concerns about two objective functions time and
cost of executing a plan.



Figure 2: Extreme solutions x1, x2, x3 of the set X =
{x1, ..., x7} are optimal on their own range [wi−1, wi], and
contribute to the computation of ICP(X).

• The user will evaluate a plan x using a convex com-
bination value function of time and cost: g(x;w) =
wtime(x)+(1−w)cost(x), where w ∈ [0, 1] is the fixed
value of a particular user but is unknown to the system.

• The system is given a distribution of w over the range
[0, 1]. For instance, if the user does not have any prefer-
ence on the trade-off between time and cost of the plan,
the distribution is the uniform function.

Given the trade-off preference between two objectives, or a
particular w value, the best plan is one in the extreme plan
set dominating all others on the portion [a, b] 3 w. There-
fore, the ideal set of plans returned to the user must be the
set of extreme plans EX , whose ICP value is minimal (ac-
cording to property 3). However, finding exactly EX is too
costly, and we will seek an approach to approximate it with
a set of plans having as low ICP value as possible.

Solution Approach
We propose an approach working on Sapa planner to find
our desired set of plans. Unlike Sapa, however, we will not
incorporate each search node with one scalar function cor-
responding to a particular w value, but a set of (time, cost)
vectors, each of which represents a path from initial node to
a goal node. This extension on the search of Sapa leads us
to considering Multi-objective A* (Stewart and White 1991)
which can find the set of all Pareto-optimal 2 plans with ad-
missible heuristic. Our approach will control the search of
Multi-objective A* so that we will stop with a desired set of
plans, i.e. the one with as low ICP value as possible.

Multi-objective A*
Unlike original A* search algorithm, in Multi-objective A*,
each node n in the search tree is associated with the follow-
ing information:
• G(n): set of non-dominated (time, cost) vectors, each

of which represents time and cost of the path from initial
node to node n.
2A plan is Pareto-optimal if it is not dominated by any other

plan.

• H(n): set of (time, cost) vectors, each of which repre-
sents estimated time and cost of the path from node n to
one of the nodes satisfying goal condition.

• F (n): set of (time, cost) vectors, each of which is the
summation of one vector from G(n) and one from H(n).

Note that as we are comparing plans with respect to two
objectives, there may be more than one path from initial
node to some node n and none of them is dominated by an-
other. Also, many paths may exist from current node n to
goal nodes. These are why we need to keep in G(n) and
H(n) set of (time, cost) vectors.
The main steps of Multi-objective A* is summarized below:

1. X = ∅ (set of solution plans)

2. Initialize the OPEN list with the node s0 corresponding
to the initial state.

3. Find the set of nodes ND ⊆ OPEN such that there ex-
ists v ∈ F (n) non-dominated by (time, cost) vector of
any solution path found and any node in OPEN .

4. If ND = ∅ then terminate.
Otherwise:

(a) Choose a node n ∈ ND, taking goals first, if any.
(b) Move n from OPEN to CLOSED.

5. If n is a goal node:

• Remove any solution path found so far dominated by
any new path from s0 to n.

• Add into X all solution paths from s0 to n.
• Go to step 3.

Otherwise:

(a) Expand n.
(b) For each successor node n′ of n: compute its non-

dominated G(n′), H(n′), F (n′) and move it to
OPEN .

6. Go to step 3.

Incorporating ICP measure into Multi-objective
A*
Given that Multi-objective A* eventually finds the whole set
of Pareto-optimal plans if admissible heuristic is used, and
due to its costly computation, we propose a hill-climbing
approach to put a heuristic function on top of it to prioritize
nodes to be selected. We will start the set X with two plans:
one with the least time and one with the least cost, called
xt and xc respectively, and the step 3 of Multi-objective A*
will be modified to select non-dominated nodes such that
we can decrease the ICP(X) value. And when the selected
node n is a goal node not dominated by any solution in X ,
the corresponding solution plan will be added into X . The
modified algorithm is shown below:

1. Invoke Sapa to find plans with the least time (xt) and with
the least cost (xc). Initialize X with these two plans: X =
{xt, xc}

2. Initialize the OPEN list with the node s0 corresponding
to the initial state.



3. Find the set of nodes ND ⊆ OPEN such that there ex-
ists v ∈ F (n) satisfying the following conditions:

• v is non-dominated by (time, cost) vector of any solu-
tion path found and any node in OPEN .

• ICP (X + xv) < ICP (X), where xv is a plan whose
(time, cost) vector is equal to v.

4. If ND = ∅ then terminate.
Otherwise:

(a) Choose a node n ∈ ND, taking goals first, if any.
(b) Move n from OPEN to CLOSED.

5. If n is a goal node:

• Remove any solution path found so far dominated by
any new path from s0 to n.

• Add into X all solution paths from s0 to n.
• Go to step 3.

Otherwise:

(a) Expand n.
(b) For each successor node n′ of n: compute its non-

dominated G(n′), H(n′), F (n′) and move it to
OPEN .

6. Go to step 3.

To find xt and xc, we simply invoke Sapa with the scalar
functions f(x) = time(x) and f(x) = cost(x) respec-
tively. As one of the objectives of xt, xc is minimal, they
are two Pareto-optimal plans. More interestingly, starting
the search with these two plans helps us to narrow down
the feasible plan space significantly. Figure 3 illustrates
the feasible solution region after xt and xc are found. It
also show that in this region, ICP ({xt, x3, x4, x5, xc}) <
ICP ({xt, x6, x7, xc}) according to property 3, and some
dominated plans based on property 1 and 2.

Experiment Results
Given that the distribution of parameter w is known, and
Sapa finds plans using the single scalar function f(x) =
wtime(x) + (1 − w)cost(x) with the fixed value of w, a
natural approach raises to retrieve a set of plans taking into
account the user preference model. The approach is based
on sampling method and is described as follows:

• Generate N values w1, w2, ..., wN based on the distribu-
tion.

• For each wi, invoke Sapa to find a plan with the objective
function f(x) = witime(x) + (1 − wi)cost(x). Let the
resulting plans be P = {p1, p2, ..., pN}.

• Remove any dominated plans from P , and let the resulting
set be P ′.

Let t1 minute(s) be the time Sapa with sampling runs to
find P ′.

Now assuming that our approach runs and find a set of
plans Q = {q1, q2, ..., qM}, and it takes t2 minute(s). We
will compare our method with Sapa with sampling in two
dimensions:

Figure 3: Feasible solution region of the problem.
{xt, x3, x4, x5, xc} approximates the true set of extreme
plans more accurately than {xt, x6, x7, xc} does. x8 is
worse than either xt or xc based on property 2. And while
x9, x11 are dominated by xt, xc respectively, x10 is domi-
nated by both of them.

• How well the two approaches satisfy the user: we simu-
late T transactions between the system and user. For each
transaction, we generate a w value based on the distri-
bution. Sapa with sampling and our approach will return
plans p, q respectively in P ′ and Q optimal corresponding
to the value w. We can check which approach is better by
comparing two values wtime(p) + (1 − w)cost(p) and
wtime(q) + (1− w)cost(q).

• The average time to find one plan in the set: t1
|P ′| v.s t2

|Q| .

Using experimental results, we would like to illustrate the
followings: (1) Sapa with sampling is worse than our ap-
proach in supporting the user with quality plan, and (2) the
average time to find one plan of our approach is faster.

Conclusion and Future works
In this paper, we have proposed an approach based on
heuristic search to find a set of plans supporting user with
incomplete preference model. We extend Sapa to work on
the preference model that is a convex combination of time
and cost of executing a plan, one of the most frequently used
preference model. By putting a heuristic measured by ICP
value on top of Multi-objective A*, we illustrated that our
approach most of the time generates more quality plan to the
user and faster as well than Sapa with sampling, a method
simply using Sapa without improvement to find set of plans.

For future works, we will continue with the following di-
rections:
• Incorporate qualitative preference into the model, for in-

stance the user prefer to visit some place in a travel do-
main.

• From one view point, our work can be consider as an ex-
tension of Over-Subscription Planning which aims to find



plan with the best net-benefit defined as: net−benefit =
utility − cost. In our current work, the utility is fixed to
the utility of all goals, but unlike previous works on this
area, we consider cost as not only the cost but also the
time a user needs to pay for executing actions. There-
fore, a natural extension is that all goals now can not be
achieved. In this case, utility becomes an objective func-
tion of the plan.
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