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Abstract

In this paper, we adopt general-sum stochas-
tic games as a framework for multiagent re-
inforcement learning. Our work extends pre-
vious work by Littman on zero-sum stochas-
tic games to a broader framework. We de-
sign a multiagent Q-learning method under
this framework, and prove that it converges
to a Nash equilibrium under speci�ed condi-
tions. This algorithm is useful for �nding the
optimal strategy when there exists a unique
Nash equilibrium in the game. When there
exist multiple Nash equilibria in the game,
this algorithm should be combined with other
learning techniques to �nd optimal strategies.

1 Introduction

Reinforcement learning has gained attention and ex-
tensive study in recent years [5, 12]. As a learning
method that does not need a model of its environment
and can be used online, reinforcement learning is well-
suited for multiagent systems, where agents know lit-
tle about other agents, and the environment changes
during learning. Applications of reinforcement learn-
ing in multiagent systems include soccer [1], pursuit
games [14, 3] and coordination games [2]. In most
of these systems, single-agent reinforcement learning
methods are applied without much modi�cation. Such
approach treats other agents in the system as a part
of the environment, ignoring the di�erence between re-
sponsive agents and passive environment. In this pa-
per, we propose that a multiagent reinforcement learn-
ing method should explicitly take other agents into
account. We also propose that a new framework is
needed for multiagent reinforcement learning.

The framework we adopt is stochastic games (also
called Markov games) [4, 15], which are the general-
ization of the Markov decision processes to the case of
two or more controllers. Stochastic games are de�ned
as non-cooperative games, where agents pursue their
self-interests and choose their actions independently.

Littman [6] has introduced 2-player zero-sum stochas-
tic games for multiagent reinforcement learning. In
zero-sum games, one agent's gain is always the other
agent's loss, thus agents have strictly opposite in-
terests. In this paper, we adopt the framework of
general-sum stochastic games, in which agents need
no longer have opposite interests. General-sum games
include zero-sum games as special cases. In general-
sum games, the notions of \optimality" loses its mean-
ing since each agent's payo� depends on other agents'
choices. The solution concept Nash equilibrium [8] is
adopted. In a Nash equilibrium, each agent's choice is
the best response to the other agents' choices. Thus,
no agent can gain by unilateral deviation.

we are interested in the Nash equilibrium solution be-
cause we want to design learning agent for noncoopera-
tive multiagent systems. In such systems, every agent
pursues its own goal and there is no communication
among agents. A Nash equilibrium is more plausible
and self-enforcing than any other solution concept in
such systems.

If the payo� structure and state transition probabil-
ities are known to all the agents, we can solve for
an Nash equilibrium strategy using a nonlinear pro-
gramming method proposed by Filar and Vrieze [4].
In this paper, we are interested in situations where
agents have incomplete information of other agents'
payo� functions and the state transition probabilities.
We show that an multiagent Q-learning algorithm can
be designed, and it converges to the Nash equilibrium
Q values under certain restrictions of the game. Our



algorithm is designed for 2-player general-sum stochas-
tic games, but can be extended to n-player general-sum
games.

Our learning algorithm guarantees that an agent can
learn a Nash equilibrium. But it does not say whether
the other agent will learn the same Nash equilibrium.
When there exist only one Nash equilibrium in the
game, our learning algorithm works e�ectively. How-
ever, a game can have multiple Nash equilibria. In that
case, our learning algorithm needs to be combined with
empirical estimation of the action choices of the other
agent.

2 Some preliminaries

We state some basic game theory concepts in this sec-
tion. All concepts here refer to single-state (static)
games. In later sections, we will see how the concepts
here are connected to multi-state stochastic games.

For zero-sum games, the payo� matrices of two players
can be described as (M;�M), since one player's payo�
is always the negative of the other. It is su�cient to
simplify the game by eitherM or �M . Thus, 2-player
zero-sum games are also called matrix games. For 2-
player general-sum games, the agents' payo� matrices
M1 and M2 are unrelated. The solutions of the game
depend on both M1 and M2. Such games are called
bimatrix games.

De�nition 1 A pair of matrices (M1;M2) consti-
tutes a bimatrix game, where M1 and M2 are of the
same size. The payo� rk(a1; a2) to player k can be
found in the corresponding entry of the matrix Mk,
k = 1; 2. The rows of Mk correspond to actions of
player 1, a1 2 A1. The columns of Mk correspond to
actions of player 2, a2 2 A2. A1 and A2 are the sets
of discrete actions of players 1 and 2 respectively.

Next, we state some solution concepts for bimatrix
games. The main concept is Nash equilibrium [9]. In
a Nash equilibrium, each agent's action is the best
response to other agents' choices.

De�nition 2 A pure strategy Nash equilibrium for
bimatrix game G is an action pro�le (a1

�
; a2
�
) such that

r1(a1
�
; a2
�
) � r1(a1; a2

�
) for all a1 2 A1

r2(a1
�
; a2
�
) � r2(a1

�
; a2) for all a2 2 A2

An example of a bimatrix game can be seen in Figure
1, in which the strategy pair (a11; a

2
1) constitutes a pure

strategy Nash equilibrium.
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Figure 1: A bimatrix game example

De�nition 3 A mixed strategy Nash equilibrium for
bimatrix game G is a pair of vectors (�1

�
; �2
�
), such that

�1
�
M1�2

�
� �1M1�2

�
for all �1 2 �(A1)

�1
�
M2�2

�
� �1

�
M2�2 for all �2 2 �(A2)

where �(Ak) is the set of probability distributions over
action space Ak, such that for any �k 2 �(Ak),P

a2Ak �k(a) = 1.1

�1M1�2 =
P

a1

P
a2 �

1(a1)r1(a1; a2)�2(a2) is the ex-
pected payo� of agent 1 under the situation that
player1 and player 2 adopt their mixed strategies �1

and �2 respectively.

The reason we are interested in mixed strategies is
that an arbitrary bimatrix game may not have a pure
strategy Nash equilibrium, but it always has a mixed
strategy Nash equilibrium.

Theorem 1 (Nash, 1951) There exists a mixed strat-
egy Nash equilibrium for any �nite bimatrix game.

A mixed strategy Nash equilibrium for any bimatrix
game can be found by Mangasarian-Stone algorithm
[7], which is a quadratic programming algorithm.

3 Markov Decision Process and

reinforcement learning

For comparison purpose, we state the framework of
Markov decision process here. Later we can see how
the stochastic game framework is related to Markov
decision process.

De�nition 4 A Markov Decision Process is a tuple
< S;A; r; p >, where S is the discrete state space, A
is the discrete action space, r : S � A ! R is the
reward function of the agent, and p : S�A! � is the
transition function, where � is the set of probability
distributions over state space S.

1We abuse the notation a little here. �1�M
1�2� should be

(�1�)
0M1�2�, where �

1
� is transposed before being multiplied

to the matrix M1.



In a Markov decision process, the objective of the
agent is to �nd a strategy (policy) � so as to maxi-
mize the expected sum of discounted rewards,

v(s; �) =
1X
t=0

�tE(rtj�; s0 = s) (1)

where s0 is the initial state, rt is the reward at time t,
and � 2 [0; 1) is the discount factor. We can rewrite
Equation (1) as

v(s; �) = r(s; a�) + �
X
s0

p(s0js; a�)v(s
0; �) (2)

where a� is action determined by policy �. It has been
proved that there exists an optimal policy �� such that
for any s 2 S, the following Bellman equation holds:

v(s; ��) = max
a

n
r(s; a) + �

X
s0

p(s0js; a)v(s0; ��)
o
;

(3)
where v(s; ��) is called the optimal value for state s.

If the agent knows the reward function and the state
transition function, it can solve for �� by some iter-
ative searching methods [10]. The learning problem
arises when the agent does not know the reward func-
tion or the state transition probabilities. Now the
agent needs to interact with the environment to �nd
out its optimal policy. The agent can learn about
the reward function and the state transition function,
and then solve for its optimal policy using Equation
(3). Such approach is called model-based reinforce-
ment learning. The agent can also directly learn about
its optimal policy without knowing the reward func-
tion or the state transition function. Such approach
is called model-free reinforcement learning. One of
the model-free reinforcement learning methods is Q-
learning [16].

The basic idea of Q-learning is that we can de�ne the
right-hand side of Equation (3) as

Q�(s; a) = r(s; a) + �
X
s0

p(s0js; a)v(s0; ��) (4)

By this de�nition, Q�(s; a) is the total discounted re-
ward attained by taking action a in state s and then
following the optimal policy thereafter. Then by Equa-
tion (3),

v(s; ��) = max
a

Q�(s; a): (5)

If we know Q�(s; a), then the optimal policy �� can
be found, which is alway taking an action so as to
maximize Q�(s; a) under any state s.

In Q-learning, the agent starts with arbitrary initial
values of Q(s; a) for all s 2 S; a 2 A. At each time
t, the agent choose an action and observes its reward
rt. The agent then updates its Q-values based on the
following Equation:

Qt+1(s; a) = (1��t)Qt(s; a)+�t[rt+�max
b

Qt(s
0; b)]:

(6)
where �t 2 [0; 1) is the learning rate. The learning rate
�t needs to decay over time in order for the learning
algorithm to converge. Watkins and Dayan [16] proved
that sequence (6) converges to the optimal Q�(s; a).

4 The stochastic game framework

Markov decision process (MDP) is a single agent de-
cision problem. A natural extension of MDP to mul-
tiagent systems is stochastic games, which essentially
are n-agent Markov decision processes. In this paper,
we focus on 2-player stochastic games since they have
been well studied.

4.1 De�nition of stochastic games

De�nition 5 A 2-player stochastic game � is a 6-
tuple < S;A1; A2; r1; r2; p >, where S is the discrete
state space, Ak is the discrete action space of player
k for k = 1; 2, rk : S � A1 � A2 ! R is the payo�
function for player k, p : S�A1�A2 ! � is the tran-
sition probability map, where � is the set of probability
distributions over state space S.

To have a closer look at a stochastic game, consider
a process that is observable at discrete time points
t = 0; 1; 2; : : :. At each time point t, the state of
the process is denoted by st. Assume st takes on
values from the set S. The process is controlled
by 2 decision makers, referred to as player 1 and
player 2, respectively. In state s, each player inde-
pendently chooses actions a1 2 A1; a2 2 A2 and re-
ceives rewards r1(s; a1; a2) and r2(s; a1; a2), respec-
tively. When r1(s; a1; a2) + r2(s; a1; a2) = 0 for all
s; a1; a2, the game is called zero sum. When the sum
is not restricted to 0 or any constant, the game is called
a general-sum game.

It is assumed that for every s; s0 2 S, the transition
from s to s0 given that the players take actions a1 2 A1

and a2 2 A2, is independent of time. That is, there
exist stationary transition probabilities p(s0js; a1; a2)



for all t = 0; 1; 2; : : : , satisfying the constraint

mX
s0=1

p(s0js; a1; a2) = 1; (7)

The objective of each player is to maximize a dis-
counted sum of rewards. Let � 2 [0; 1) be the discount
factor, let �1 and �2 be the strategies of players 1 and 2
respectively. For a given initial state s, the two players
receive the following values from the game:

v1(s; �1; �2) =

1X
t=0

�tE(r1t j�
1; �2; s0 = s) (8)

v2(s; �1; �2) =

1X
t=0

�tE(r2t j�
1; �2; s0 = s) (9)

A strategy � = (�0; : : : ; �t; : : :) is de�ned over the
whole course of the game. �t is called the decision rule
at time t. A strategy � is called a stationary strategy
if �t = �� for all t, where the decision rule is �xed over
time. � is called a behavior strategy if �t = f(ht),
where ht is the history up to time t,

ht = (s0; a
1
0; a

2
0; s1; a

1
1; a

2
1; : : : ; a

1
t�1; a

2
t�1; st): (10)

A stationary strategy is a special case of behavior
strategy when ht = �.

A decision rule assigns mixed strategies to di�erent
states. A decision rule of a stationary strategy has the
following form: �� = (��(s1); : : : ; ��(sm)), wherem is the
maximal number of states. ��(s) is a mixed strategy
under state s.

A Nash equilibrium for stochastic games is de�ned as
following, assuming that the players have complete in-
formation about the payo� functions of both players.

De�nition 6 In stochastic game �, a Nash equilib-
rium point is a pair of strategies (�1

�
; �2
�
) such that for

all s 2 S

v1(s; �1
�
; �2
�
) � v1(s; �1; �2

�
) 8�1 2 �1

and

v2(s; �1
�
; �2
�
) � v2(s; �1

�
; �2) 8�2 2 �2

The de�nition of Nash equilibrium requires that each
agent's strategy is a best response to the other's strat-
egy. Such de�nition of Nash equilibrium is similar as
in other games. The strategies that constitute a Nash
equilibrium can be behavior strategies, Markov strate-
gies, or stationary strategies. In this paper, we are

r1(s) r2(s)

r1(s1) r2(s1)

r1(s2) r2(s2)

r1(sm) r2(sm)

P(s1|s,a1,a2)

P(s2|s,a1,a2)

P(sm|s,a1,a2)

t=0 t=1

Figure 2: Stochastic games and bimatrix games

interested in stationary strategies, which are the most
simple strategies. The following theorem shows that
there always exist a Nash equilibrium in stationary
strategies for any stochastic game.

Theorem 2 (Filar and Vrieze [4], Theorem 4.6.4)
Every general-sum discounted stochastic game pos-
sesses at least one equilibrium point in stationary
strategies.

4.2 Stochastic games and bimatrix games

We can view each stage of a stochastic game as a bi-
matrix game, as in Figure 2.

At each time period of a stochastic game, under state
s, agent 1 and 2 choose their actions independently and
receive their payo�s according to the bimatrix game
(r1(s); r2(s)). Repeated games can be seen as a de-
generate case of stochastic games when there is only
one state. For example, let �s be the index of the only
state, a repeated game will always have the bimatrix
game (r1(�s); r2(�s)) at each time period.

5 Multiagent reinforcement learning

We want to extend traditional reinforcement learning
method based on Markov decision process to stochas-
tic games. We assume that our games have incomplete



but perfect information, meaning agents do not know
other agents' payo� functions but they can observe
other agents' immediate payo�s and actions taken pre-
viously.

5.1 Issues in designing a multiagent

Q-learning algorithm

The target of our Q-learning is the optimal Q-values,
which we de�ne as the following:

Q1
�
(s; a1; a2) =

r1(s; a1; a2) + �

NX
s0=1

p(s0js; a1; a2)v1(s0; �1; �2) (11)

Q2
�
(s; a1; a2) =

r2(s; a1; a2) + �

NX
s0=1

p(s0js; a1; a2)v2(s0; �1; �2) (12)

The optimal Q-value of state s and action pair (a1; a2)
is the total discounted reward received by an agent
when both agents execute actions (a1; a2) in state s
and follow their Nash equilibrium strategies (�1; �2)
thereafter.

To learn about these Q-values, an agent needs to main-
tain m Q-tables for its own Q-values, where m is the
total number of states. For each agent k, k = 1; 2, a
Q-table Qk(s) has its rows corresponding to a1 2 A1,
columns corresponding to a2 2 A2, and each entry
as Qk(s; a1; a2), k = 1; 2. The total number of en-
tries agent k needs to learn is m � jA1j � jA2j, where
jA1j and jA2j are the sizes of action spaces A1 and
A2. Assuming jA1j = jA2j = jAj, then space require-
ment is m�jAj2. For n agents, the space requirement
is m � jAjn, which is exponential in the number of
agents. Thus for large number of agents, we need to
�nd some compact representation of action space.

As in single-agent Q-learning, the learning agent in
multiagent systems updates its Q tables for a given
state after it observes the state, actions taken by both
agents, and the rewards received by agents. The dif-
ference is in the updating rule. In single-agent Q-
learning, the Q-values are updated as following,

Qt+1(s; a) = (1� �t)Qt(s; a) + �t[rt + �max
b

Qt(s
0; b)]:

In multiagent Q-learning, we cannot just maximize our
own Q-values since the Q-values depend on the action
of the other agent.

If it is a zero-sum game, we can minimize over the other
agent's actions, and then choose our own maximal af-
ter that. This is the minimax-Q learning algorithm in

upda te
     at

2     rt
2        Q s a at t t

2 1 2( , , )     at+1
2

      st at
1         rt

1 st +1   Q s a at t t
1 1 2( , , )      at+1

1

       t                  t+1 t ime

Figure 3: Time line of actions

Littman [6]. For general-sum games, we cannot use
mini-max algorithm because the two agent's payo�s
are not the opposite of each other. We propose that
an agent adopt a Nash strategy to update its Q-values,
and this is the best an agent can do in a general-sum
game.

5.2 A multiagent Q-learning algorithm

Our Q-learning agent, say agent 1, updates its Q-
values according to the following rule:

Q
1
t+1(s; a

1
; a
2) =

(1� �t)Q
1
t (s; a

1; a2) + �t[r
1
t + ��1(s0)Q1

t (s
0)�2(s0)](13)

where (�1(s0); �2(s0)) is a mixed strategy Nash equi-
librium for the bimatrix game (Q1

t (s
0); Q2

t (s
0)). In or-

der to �nd out �2(s0), agent 1 needs to learn about
Q2
t (s

0) in the game. The learning is as following:

Q
2
t+1(s; a

1
; a
2) =

(1� �t)Q
2
t (s; a

1; a2) + �t[r
2
t + ��1(s0)Q2

t (s
0)�2(s0)](14)

Therefore, a learning agent maintains two Q-tables
for each state, one for its own Q-values and one for
the other agent's. This is possible since we assume an
agent can observe the other agent's immediate rewards
and previous actions during learning.

The detail of our Q-learning algorithm is stated in Ta-
ble 1.

When the game is zero-sum, Q1(s; a1; a2) =
�Q2(s; a1; a2) = Q(s; a1; a2). Thus agent 1 needs to
learn only one Q-table for every state. Our Q-learning
algorithm becomes,

Qt+1(s; a
1; a2) =

(1� �t)Qt(s; a
1; a2) + �t[rt + � max

�1(s0)2�(A1)

min
�2(s0)2�(A2)

�1(s0)Qt(s
0)�2(s0)]

This is di�erent from Littman's minimax-Q learning
algorithm where Q-value is updated as

Qt+1(s; a
1; a2) =

(1� �t)Qt(s; a
1; a2) + �t[rt + � max

�1(s0)2�(A1)

min
a22A2

�1(s0)Qt(s
0; a2)]



Table 1: Multiagent Q-learning algorithm for Agent 1

Initialize:
Let t = 0,
For all s in S, a1 in A1, and a2 in A2,
let Q1

t (s; a
1; a2) = 1; Q2

t (s; a
1; a2) = 1

initialize s0
Loop
Choose action a1t based on �1(st), which is a

mixed strategy Nash equilibrium solution of the
bimatrix game (Q1(st); Q

2(st)).
Observe r1t ; r

2
t ; a

2
t , and st+1

Update Q1, and Q2 such that
Q1
t+1(s; a

1; a2) = (1� �t)Q
1
t (s; a

1; a2) + �t[r
1
t+

��1(st+1)Q
1
t (st+1)�

2(st+1)]
Q2
t+1(s; a

1; a2) = (1� �t)Q
2
t (s; a

1; a2) + �t[r
1
t+

��1(st+1)Q
2
t (st+1)�

2(st+1)]
where (�1(st+1); �

2(st+1)) are mixed strategy
Nash solutions of the bimatrix game (Q1(st+1),
Q2(st+1))
Let t := t+ 1

In Littman's Q-learning algorithm, it is assumed that
the other agent will always choose a pure Nash equi-
librium strategy instead of a mixed strategy.

Another thing to note is that in our Q-learning algo-
rithm, how an agent chooses its action at each time t
is not important for the convergence of the learning.
But the action choices are important for short-term
performance. In this paper, we have not studied the
issue of action choice, but will explore it in our future
work.

5.3 Convergence of our algorithm

In this section, we prove the convergence of our Q-
learning algorithm under certain assumptions. The
�rst two assumptions are standard ones in Q-learning:

Assumption 1 Every state and action have been vis-
ited in�nitely often.

Assumption 2 the learning rate �t satis�es the fol-
lowing conditions:

1. 0 � �t < 1;
P

1

t=0 �t =1; and
P

1

t=0 �
2
t <1,

2. �t(s; a
1; a2) = 0 if (s; a1; a2) 6= (st; a

1
t ; a

2
t ).

We make further assumptions regarding the structure
of the game:

Assumption 3 A Nash equilibrium (�1(s); �2(s)) for
any bimatrix game (Q1(s); Q2(s)) satis�es one of the
following properties:

1. The Nash equilibrium is global optimal.

�1(s)Qk(s)�2(s) � �̂1(s)Qk(s)�̂2(s) 8�̂1(s) 2
�(A1); �̂2(s) 2 �(A2), and k = 1; 2.

2. If the Nash equilibrium is not a global optimal,
then an agent receives a higher payo� when the
other agent deviates from the Nash equilibrium
strategy.
�1(s)Q1(s)�2(s) � �1(s)Q1(s)�̂2(s) 8�̂2(s) 2
�(A2), and
�1(s)Q2(s)�2(s) � �̂1(s)Q2(s)�2(s) 8�̂1(s) 2
�(A1).

Our convergence proof is based on the following two
Lemmas proved by Szepesv�ari and Littman [13].

Lemma 1 (Conditional Average Lemma) Under As-
sumptions 1-2, the process Qt+1 = (1 � �t)Qt + �twt
converges to E(wtjht; �t), where ht is the history at
time t.

Lemma 2 Under Assumptions 1-2, If the process de-
�ned by Ut+1(x) = (1 � �t(x))Ut(x) + �t(x)[Ptv

�](x)
converges to v� and Pt satis�es k PtV � Ptv

� k� 


k V � v� k +�t for all V , where 0 < 
 < 1 and �t � 0
converges to 0, then the iteration de�ned by

Vt+1(x) = (1� �t(x))Vt(x) + �t(x)[PtVt](x)

converges to v�.

In order to prove that the convergence point of our
Q-learning algorithm is actually the Nash equilibrium
point, we need the following theorem proved by Filar
and Vrieze [4].

Theorem 3 (Filar and Vrieze [4]) The following as-
sertions are equivalent:

1. For each s 2 S, the pair
�
�1(s); �2(s)

�
con-

stitutes an equilibrium point in the static bima-

trix game
�
Q1(s); Q2(s)

�
with equilibrium pay-

o�s
�
v1(s; �1; �2); v2(s; �1; �2)

�
, and for k=1,2

the entry (a1; a2) in Qk(s) equals

Qk(s; a1; a2) =

rk(s; a1; a2) + �

NX
s0=1

p(s0js; a1; a2)vk(s0; �1; �2):



2. (�1; �2) is an equilibrium point in the dis-
counted stochastic game � with equilibrium pay-

o�
�
v
1(�1; �2);v2(�1; �2)

�
, where v

k(�1; �2) =

(vk(s1; �1; �2); � � � ; vk(sm; �1; �2)), k = 1; 2.

The above theorem showed that the Nash solution of
the bimatrix game (Q1(s); Q2(s)) de�ned in Theorem
3 will also be part of the Nash solution for the whole
game. If the sequence in our Q-learning algorithm con-
verges to the Q-values de�ned in Theorem 3, then a
pair of stationary Nash equilibrium strategies (��1; ��2)
can be derived, where ��k = (��k(s1); � � � ; ��k(sm)) for
k = 1; 2. For each state s, ��k(s) is part of a Nash equi-
librium solution of the bimatrix game (Q1(s); Q2(s)).

Lemma 3 Let P k
t Q

k(s) = rkt + ��1(s)Qk(s)�2(s),
k = 1; 2, where (�1(s); �2(s)) is a pair of mixed
Nash equilibrium strategies for the bimatrix game
(Q1(s); Q2(s)). Then Pt = (P 1

t ; P
2
t ) is a contraction

mapping.

Proof. Case 1: P k
t Q

k(s) � P k
t Q̂

k(s) 8k = 1; 2:

We have

0 � P k
t Q

1(s)� P k
t Q̂

1(s)

= �
�
�1(s)Q1(s)�2(s)� �̂1(s)Q̂1(s)�̂2(s)

�

� �
�
�1(s)Q1(s)�2(s)� �1(s)Q̂1(s)�̂2(s)

�
(15)

� �
�
�1(s)Q1(s)�̂2(s)� �1(s)Q̂1(s)�̂2(s)

�
(16)

= �
X
a1

X
a2

�1(s; a1)�̂2(s; a2)(Q1(s; a1; a2)�

Q̂1(s; a1; a2)) (17)

� �
X
a1

X
a2

�1(s; a1)�̂2(s; a2) k Q1(s)� Q̂1(s) k

= � k Q1(s)� Q̂1(s) k;

where k Qk(s) � Q̂k(s) k= maxa1;a2 jQ
k(s; a1; a2) �

Q̂k(s; a1; a2)j. Inequality (15) derives from de�nition
of Nash equilibrium. Inequality (16) is from property
2 of Assumption 2. For cases satisfying property 1 of
Assumption 2, the proof is simpler, and we omit it
here.

k = 2, similar proof as above. Under property 1 of
Assumption 2, we have

0 � P k
t Q

2(s)� P k
t Q̂

2(s)

� �
X
a1

X
a2

�1(s; a1)�2(s; a2) k Q2(s)� Q̂2(s) k

= � k Q2(s)� Q̂2(s) k :

Under property 2 of Assumption 2, we have

0 � P k
t Q

2(s)� P k
t Q̂

2(s)

� �
X
a1

X
a2

�̂1(s; a1)�2(s; a2) k Q2(s)� Q̂2(s) k

= � k Q2(s)� Q̂2(s) k :

Case 2: P k
t Q

k(s) � P k
t Q̂

k(s). Similar proof as in Case
1. For k = 1, under property 2 of Assumption 2, we
have

0 � P k
t Q̂

1(s)� P k
t Q

1(s)

� �
X
a1

X
a2

�̂1(s; a1)�2(s; a2) k Q̂1(s)�Q1(s) k

= � k Q̂1(s)�Q1(s) k :

Therefore we have jP k
t Q

k(s)�P k
t Q̂

k(s)j � � k Qk(s)�
Q̂k(s) k. Since this holds for every state s, we have
k P k

t Q
k � P k

t Q̂
k k� � k Qk � Q̂k k. 2

Now we proceed to prove our main theorem, which
states that the multiagent Q-learning methods con-
verges to the \optimal" (Nash equilibrium) Q values.

Theorem 4 In stochastic game �, under Assump-
tions 1-3, the coupled sequences fQ1

t ; Q
2
tg, updated by

Q
k

t+1(s; a
1
; a
2) =

(1� �t)Q
k

t (s; a
1; a2) + �t[r

k

t + ��1(s0)Qk

t (s
0)�2(s0)](18)

where k = 1; 2, converge to the Nash equilibrium Q
values (Q1

�
; Q2

�
), with Qk

�
de�ned as

Q
k

�(s; a
1
; a
2) =

rk(s; a1; a2) + �
P

N

s0=1
p(s0js; a1; a2)vk(s0; �1

�
; �2

�
); (19)

where (�1(s0); �2(s0)) is a pair of mixed Nash equilib-
rium strategies for the bimatrix game (Q1

t (s
0); Q2

t (s
0)),

function vk is de�ned as in (8) and (9), and (�1
�
; �2
�
)

is a Nash equilibrium solution for stochastic game �.

Proof. By Lemma 3, k P k
t Q

k � P k
t Q

k
�
k� � k Qk �

Qk
�
k.

From Lemma 1, the sequence

Qk
t+1(s; a

1; a2) =

(1� �t)Q
k
t (s; a

1; a2) + �t[r
k
t + ��1(s0)Qk(s0)�2(s0)]

converges to

E(rkt + ��1Qk(s0)�2) =
X
s0

P (s0js; a1; a2)

�
rk(s; a1; a2) + ��1(s0)Qk(s0)�2(s0)

�
:



De�ne T k as

(T k
Q
k)(s; a1; a2) =

P
s0
P (s0js; a1; a2)

�
rk(s; a1; a2) + ��1(s0)Qk(s0)�2(s0)

�

From above, the sequence fQk
t g converges to T kQk.

It is easy to show that T k is a contraction map-
ping. To see this is true, rewrite T k as T kQk(s) =P

s0 P (s
0js; a1; a2)PtQ

k(s). Since Pt is a contraction
mapping of Qk and P (s0js; a1; a2) � 0, T k is also a
contraction mapping of Qk. We proceed to show that
Qk
�
de�ned in (19) is the �xed point of T k. From the

de�nition of T k, we have

(T k
Q
k

�
)(s; a1; a2)

=
P

s0
P (s0js; a1; a2)

�
rk(s; a1; a2) + ��1�(s

0)Qk

�(s
0)�2�(s

0)
�

= rk(s; a1; a2) +
P

s0
P (s0js; a1; a2)��1�(s

0)Qk

�(s
0)�2�(s

0)

By Theorem 3, �1
�
(s0)Qk

�
(s0)�2

�
(s0) = vk(s0; �1

�
; �2
�
),

thus Qk
�
= T kQk

�
. Therefore the sequence

Qk
t+1(s; a

1; a2) =

(1� �t)Q
k
t (s; a

1; a2) + �t[r
1
t + ��1

�
Qk
�
(s0)�2

�
] (20)

converges to T kQk
�
= Qk

�
. By Lemma 2, the sequence

(18) converges to Qk
�
. 2

5.4 Discussions

First we want to point out the convergence result does
not depend on the sequence of actions taken by either
agent. The convergence result only requires that every
action has been tried and every state has been visited.
It does not require that agent 1 and agent 2 agree on
the Nash equilibrium of each bimatrix Q-game during
the learning. In fact, agent 1 can learn its optimal
Q-value without any behavior assumption of agent 2,
as long as agent 1 can observe agent 2's immediate
rewards.

Second, the convergence depends on certain restric-
tions on the bimatrix games during learning. This is
required because Nash equilibrium operator is usually
not a contraction operator. However, we can probably
relax the restriction by proving that a Nash equilib-
rium operator is a non-expansion operator. Then by
the theorem in Szepesv�ari and Littman [13], the con-
vergence is guaranteed.

6 Future work

There are several issues we have not addressed in this
paper. The �rst is the equilibrium selection problem.

When there exist multiple Nash equilibria, learning
one Nash equilibrium strategy does not guarantee the
other agent will choose the same Nash equilibrium.
Our future work is to combine empirical estimation of
the other agent's strategy with reinforcement learning
of the Nash equilibrium strategy.

Another issue is related to the action choice during
the learning. Even though the multiagent reinforce-
ment learning method converges, it requires in�nite
trials. During the learning, an agent can choose a
myopic action or other kinds of actions. If the agent
chooses the action to maximize its current Q-value, its
approach is called greedy approach. The drawback of
this greedy approach is that the agent may be trapped
in a local optimal. To avoid this problem, the agent
should explore other possible actions. However, there
is cost associated with exploration. By conducting ex-
ploration, an agent gives up a better current reward.
In our future work, we intend to design an algorithm
that can handle exploration and exploitation tradeo�
in stochastic games.
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