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Goal

♦ Learn probabilistic theories of the world from experience

♦ We focus on the learning of Bayesian networks

♦ More specifically, input data (or evidence), learn probabilistic theories
of the world (or hypotheses)
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Outline

♦ Bayesian learning ⇐

♦ Approximate Bayesian learning
– Maximum a posteriori learning (MAP)
– Maximum likelihood learning (ML)

♦ Parameter learning with complete data
– ML parameter learning with complete data in discrete models
– ML parameter learning with complete data in continuous models

(linear regression)
– Naive Bayes models
– Bayesian parameter learning

♦ Learning Bayes net structure with complete data

(If time allows)

♦ Learning with hidden variables or incomplete data (EM algorithm)
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Full Bayesian learning

View learning as Bayesian updating of a probability distribution
over the hypothesis space

H is the hypothesis variable, values h1, h2, . . ., prior P(H)

jth observation dj gives the outcome of random variable Dj

training data d= d1, . . . , dN

Given the data so far, each hypothesis has a posterior probability:

P (hi|d) = αP (d|hi)P (hi)

where P (d|hi) is called the likelihood

Predictions use a likelihood-weighted average over all hypotheses:

P(X|d) = Σi P(X|d, hi)P (hi|d) = Σi P(X|hi)P (hi|d)

No need to pick one best-guess hypothesis!

Chapter 20 of “AI: a Modern Approach”, Sections 1–3Presented by: Jicheng Zhao 4



Example

Suppose there are five kinds of bags of candies:
10% are h1: 100% cherry candies
20% are h2: 75% cherry candies + 25% lime candies
40% are h3: 50% cherry candies + 50% lime candies
20% are h4: 25% cherry candies + 75% lime candies
10% are h5: 100% lime candies

Then we observe candies drawn from some bag:

What kind of bag is it? What flavour will the next candy be?
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Posterior probability of hypotheses
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Prediction probability
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Properties of full Bayesian learning

1. The true hypothesis eventually dominates the Bayesian prediction given
that the true hypothesis is in the prior

2. The Bayesian prediction is optimal, whether the data set be small or large
[?]

On the other hand

1. The hypothesis space is usually very large or infinite
summing over the hypothesis space is often intractable
(e.g., 18,446,744,073,709,551,616 Boolean functions of 6 attributes)
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MAP approximation

Maximum a posteriori (MAP) learning: choose hMAP maximizing P (hi|d)
instead of calculating P (hi|d) for all hypothesis hi

I.e., maximize P (d|hi)P (hi) or log P (d|hi) + log P (hi)

Overfitting in MAP and Bayesian learning

• Overfitting when the hypothesis space is too expressive such that some
hypotheses fit the date set well.

• Use prior to penalize complexity

Log terms can be viewed as (negative of)
bits to encode data given hypothesis + bits to encode hypothesis

This is the basic idea of minimum description length (MDL) learning

For deterministic hypotheses (simplest), P (d|hi) is 1 if consistent, 0 other-
wise

⇒ MAP = simplest hypothesis that is consistent with the data
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ML approximation

For large data sets, prior becomes irrelevant

Maximum likelihood (ML) learning: choose hML maximizing P (d|hi)

I.e., simply get the best fit to the data; identical to MAP for uniform prior
(which is reasonable if all hypotheses are of the same complexity)

ML is the “standard” (non-Bayesian) statistical learning method

1. Researchers distrust the subjective nature of hypotheses priors

2. Hypotheses are of the same complexity

3. Hypotheses priors is of less important when date set is large

4. Huge space of the hypotheses
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Outline

♦ Bayesian learning

♦ Approximate Bayesian learning
– Maximum a posteriori learning (MAP)
– Maximum likelihood learning (ML)

♦ Parameter learning with complete data ⇐
– ML parameter learning with complete data in discrete models
– ML parameter learning with complete data in continuous models

(linear regression)
– Naive Bayes models
– Bayesian parameter learning

♦ Learning Bayes net structure with complete data

(If time allows)

♦ Learning with hidden variables or incomplete data (EM algorithm)
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ML parameter learning in Bayes nets

Bag from a new manufacturer; fraction θ of cherry candies?

Flavor

P F=cherry( )

θAny θ is possible: continuum of hypotheses hθ

θ is a parameter for this simple (binomial) family of models

We assume all hypotheses are equally possible a priori
⇒ ML approach

Suppose we unwrap N candies, c cherries and ` = N − c limes
These are i.i.d. (independent, identically distributed) observations, so

P (d|hθ) =
N
∏

j = 1
P (dj|hθ) = θc · (1 − θ)`

Maximize this w.r.t. θ—which is easier for the log-likelihood:

L(d|hθ) = log P (d|hθ) =
N
∑

j = 1
log P (dj|hθ) = c log θ + ` log(1 − θ)

dL(d|hθ)

dθ
=

c

θ
− `

1 − θ
= 0 ⇒ θ =

c

c + `
=

c

N
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Seems sensible, but causes problems with 0 counts!

This means that if the data set is small enough that some events have not
yet been observed, the ML hypotheses assigns zero to those events. - tricks
in dealing with this including initialize the counts for each event to 1 instead
of 0.

ML appraoch:

1. Write down an expression forthe likelihood of the data as a function of
the parameter(s);

2. Write down the derivative of the log likelihood with respect to each pa-
rameter;

3. Find the parameter values such that the derivatives are zero.
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Multiple parameters

Red/green wrapper depends probabilistically on flavor: P F=cherry( )

Flavor

Wrapper

P( )W=red | FF

cherry

2
lime θ

1θ

θ
Likelihood for, e.g., cherry candy in green wrapper:

P (F = cherry ,W = green |hθ,θ1,θ2)

= P (F = cherry |hθ,θ1,θ2)P (W = green |F = cherry , hθ,θ1,θ2)

= θ · (1 − θ1)

N candies, rc red-wrapped cherry candies, etc.:

P (d|hθ,θ1,θ2) = θc(1 − θ)` · θrc
1 (1 − θ1)

gc · θr`
2 (1 − θ2)

g`

L = [c log θ + ` log(1 − θ)]

+ [rc log θ1 + gc log(1 − θ1)]

+ [r` log θ2 + g` log(1 − θ2)]
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Multiple parameters contd.

Derivatives of L contain only the relevant parameter:

∂L

∂θ
=

c

θ
− `

1 − θ
= 0 ⇒ θ =

c

c + `

∂L

∂θ1
=

rc

θ1
− gc

1 − θ1
= 0 ⇒ θ1 =

rc

rc + gc

∂L

∂θ2
=

r`

θ2
− g`

1 − θ2
= 0 ⇒ θ2 =

r`

r` + g`

With complete data, parameters can be learned separately

Parameters values for a variable only depends on the obser-

vations of itself and its parents
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ML parameter learning (continuous model)

Hypothesis: Learning the parameters (σ and µ) of a Gaussian density func-
tion on a single variable

Data: given data generated from this distrubution: x1, · · · , xN .

P (x) =
1√
2πσ

e
−(x−µ)2

2σ2

The log likelihood is

L =
N
∑

j=1
log

1√
2πσ

e
−(xj−µ)2

2σ2 = N(− log
√

2π − log σ) − N
∑

j=1

(xj − µ)2

2σ2

Setting the derivatives to zero

⇒ µ =
∑

j xj

N

⇒ σ =

√

√

√

√

√

√

∑

j (xj − µ)2

N
(1)
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ML parameter learning (continuous model)
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Maximizing P (y|x) =
1√
2πσ

e
−(y−(θ1x+θ2))2

2σ2 w.r.t. θ1, θ2

= minimizing E =
N
∑

j = 1
(yj − (θ1xj + θ2))

2

That is, minimizing the sum of squared errors gives the ML solution
for a linear fit assuming Gaussian noise of fixed variance
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Naive Bayes models

• Observation: Attributes of one example

• Hypothesis: The class this example belongs to

All attributes are conditionly independent of each other, given the class.

P (C|x1, · · · , xn) = αP (C)
∏

i
P (xi|C).

Choosing the most likely class

• Simple: 2n+1 parameters, no need to search for hML

• Surprisingly well in a wide range of applications

• Can deal with noisy data and can give probabilistic prediction
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Parameter learning in Bayes nets

• Assume prior as beta distributions:

beta[a, b](θ) = αθa−1(1 − θ)b−1

α is the normalization constant

• Full Bayesian learning

Beta distribution:
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• Mean value of the distribution is: a
a+b

• larger values of a suggest a belief that is closer to 1 than to 0

• larger values of a+b make the distribution more peaked (greater certainty
about Θ)

• if the prior of Θ is a beta distribution, after a data point

is observed, the posterior distribution of Θ is also a beta

distribution

P (θ|D1 = cherry) = αP (D1 = cherry|θ)P (θ)

= α′θ · beta[a, b](θ) = α′θ · θa−1(1 − θ)b−1

= α′θa(1 − θ)b−1 = beta[a + 1, b](θ) (2)

The distribution is converging to a narrow peak around the true vale of Θ
as data comes in.

For large data set, Bayesian learning converges to give the same results as
ML learning.
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Parameter learning in Bayes nets (contd.)

P (Θ, Θ1, Θ2) Usually, we assume parameter independence. Each pa-
rameter has its own beta distribution.
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Outline

♦ Bayesian learning

♦ Approximate Bayesian learning
– Maximum a posteriori learning (MAP)
– Maximum likelihood learning (ML)

♦ Parameter learning with complete data
– ML parameter learning with complete data in discrete models
– ML parameter learning with complete data in continuous models

(linear regression)
– Naive Bayes models
– Bayesian parameter learning

♦ Learning Bayes net structure with complete data ⇐

(If time allows)

♦ Learning with hidden variables or incomplete data (EM algorithm)
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Learning Bayes net structures
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Outline

♦ Bayesian learning

♦ Approximate Bayesian learning
– Maximum a posteriori learning (MAP)
– Maximum likelihood learning (ML)

♦ Parameter learning with complete data
– ML parameter learning with complete data in discrete models
– ML parameter learning with complete data in continuous models

(linear regression)
– Naive Bayes models
– Bayesian parameter learning

♦ Learning Bayes net structure with complete data

(If time allows)

♦ Learning with hidden variables or incomplete data (EM algorithm)
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Learning with hidden variables or incompte date
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Summary

Full Bayesian learning gives best possible predictions but is intractable

MAP learning balances complexity with accuracy on training data

Maximum likelihood assumes uniform prior, OK for large data sets

1. Choose a parameterized family of models to describe the data
requires substantial insight and sometimes new models

2. Write down the likelihood of the data as a function of the parameters
may require summing over hidden variables, i.e., inference

3. Write down the derivative of the log likelihood w.r.t. each parameter

4. Find the parameter values such that the derivatives are zero
may be hard/impossible; modern optimization techniques help
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