
Relevance and Overlap Aware Text Collection Selection

Thomas Hernandez & John (Wes) Dyer & Subbarao Kambhampati ∗

Department of Computer Science and Engineering
Arizona State University

Tempe, AZ 85282
Paper Id: 3012

ABSTRACT
In an environment of distributed text collections, the first
step in the information retrieval process is to identify which
of all available collections are more relevant to a given query
and should thus be accessed to answer the query. Collection
selection is difficult due to the varying relevance of sources as
well as the overlap between these sources. Previous collec-
tion selection methods have considered relevance of the col-
lections but have ignored overlap among collections. They
thus make the unrealistic assumption that the collections are
all effectively disjoint. In this paper, we describe ROSCO,
an approach for collection selection which handles collec-
tion relevance as well as overlap. We start by developing
methods for estimating the statistics concerning size, rele-
vance, and overlap that are necessary to support collection
selection. We then explain how ROSCO selects text collec-
tions based upon these statistics. Finally, we demonstrate
the effectiveness of ROSCO by comparing it to major text
collection selection algorithms (CORI and ReDDE) under a
variety of scenarios.

1. INTRODUCTION
Traditional information retrieval techniques concentrate

on solving the problem of finding which documents within
a source could be relevant to a user query. A slightly more
complicated scenario occurs when a user wishes to query
several collections simultaneously (e.g. news meta-searchers
and bibliography search engines). Here, in addition to the
standard information retrieval issues, we have the additional
challenge of deciding which collections to access. Unless the
retrieval system intends to search every information source
at hand – which of course would not be particularly effi-
cient – it must decide which collection or subset of collections
to call to answer a given query. This particular process is
generally referred to as collection selection or resource selec-
tion. Effective solution for this problem is particularly im-
portant because redundant or irrelevant calls are expensive
in terms of query execution cost and post-query processing
(i.e. duplicate removal and results merging), network load,
source load, etc.

∗This research is supported in part by ASU Prop 301 grant
ECR A601. The authors would like to thank Ullas Nambiar,
Hemal Khatri, Bhaumik Chokshi and Yi Chen for the many
helpful discussions about this research.

Copyright is held by the author/owner(s).
WWW2006, May 22–26, 2006, Edinburgh, UK.
.

Most existing approaches for collection selection try to
create a representative for each collection based on term
and document frequency information, and then use that in-
formation at query-time to determine which collections are
most promising for the incoming query (c.f. [15]). This
general strategy works fairly well when the collections do
not overlap. Perhaps not surprisingly, all published eval-
uations of collection selection focus on disjoint collections
[15]. However, many real world collections have significant
overlap. For example, multiple bibliography collections (e.g.
ACMDL, IEEE XPlore, DBLP etc.) may store some of
the same papers, and multiple news archives (e.g. New
York Times, Washington Post etc.) may store very simi-
lar news stories. Since the existing approaches fail to take
into account overlap between collections when determining
their collection order, they may decide to call a collection
which has no new documents when considering the docu-
ments which have already been retrieved at that point in
time (e.g. in the case of two mirror collections). This leads
to significant loss of performance in query processing.

Our objective in this paper is to design a system that
accesses collections in the order of estimated relevant and
new (previously unseen) results they are likely to provide.
To do so, our system must be capable of making two types
of predictions:

• How likely is it that a given collection has documents
relevant to the query, and

• Whether a collection will provide novel results given
the ones already selected.

Our intent is to be able to determine, for a given user
query, which collections are more relevant (i.e. which col-
lections contain the most relevant results) and which set of
collections is most likely to offer the largest variety of results
(i.e. which collections are likely to have least overlap among
their relevant results). Intuitively, we would want to call the
most relevant collection first, and then iteratively choose the
most relevant remaining collections that have least overlap
with the already selected collection(s).

In this paper, we present an algorithm called ROSCO
that is sensitive to both relevance and overlap among collec-
tions. Figure 1 shows the schematic architecture of ROSCO.
ROSCO builds on ReDDE [16], a state of the art relevance-
based collection selection algorithm. Like ReDDE [16], ROSCO
uses query-based random sampling of collections, to esti-
mate their relevance with respect to a given query. Specif-
ically, it builds a representative of each collection via query
sampling, and uses such a sampling to estimate the size of

a. Online Component

Gather overlap

information for

past queries

Map the query to

frequent item sets

Determine

collection order for

query

Identify frequent

item sets among

queries

Compute statistics

for the frequent

item sets

Overlap

Statistics

Compute

relevance, overlap

and size statistics

for the query using

mapped item sets

b. Offline Component

User query

Collection

Order

1. ……

2. ……

 .

Collection Selection System

Collection Samples

& Size Statistics

(ReDDE)

Figure 1: Architecture of ROSCO our collection selection system.

the collection and provide a basis upon which to estimate
the relevance of a collection with respect to a query.

The main extension in ROSCO is that it also computes
and uses overlap statistics. The challenges lie in effectively
defining, efficiently computing, gathering, and then ade-
quately using the overlap information. ROSCO stores over-
lap statistics with respect to queries. Doing so ensures that
when a new query comes in, the system is able to find statis-
tics relevant to that particular query. However, since it
is infeasible to keep statistics with respect to every query,
ROSCO stores them with respect to query classes instead.
Query classes are defined in terms of frequent keyword sets,
which are identified using itemset mining techniques [1] from
among past queries for which we have coverage and overlap
statistics. Any new query could then be mapped to a set
of known keyword sets. The benefit of using frequent key-
word sets in place of exact queries is that previously unseen
queries can also be mapped to some item sets.

Once we have overlap statistics, the next challenge is com-
bining them appropriately with relevance estimates. For this
purpose, ROSCO uses the notion of residual relevance of a
collection, given a set of collections that have already been
selected. We will show how residual relevance is defined
computed using the relevance estimates (a la ReDDE) and
overlap statistics.

We present a systematic evaluation of the effectiveness
of ROSCO in comparison to the existing techniques. Our
evaluation is done on eight testbeds consisting of 100 text
collections each. These testbeds, drawn from online sci-
entific bibliographic sources such as ACMDL, vary across
three fundamental attributes: relevance, overlap, and size.
The testbeds thus allow a collection selection method to be
tested under a variety of conditions, thereby providing an
understanding of the effect that these factors have on the
method’s performance. Using these testbeds, we present a
detailed experimental evaluation of ROSCO as well as two
other major methods–CORI [3] and ReDDE [16]. Our ex-
periments demonstrate that ROSCO outperforms existing
methods in the testbeds that have overlapping collections,
while being competitive in the others.
Organization: The rest of the paper is organized as fol-
lows. Existing work related to the particular problems pre-
sented above is discussed in Section 3. The ROSCO ap-
proach for computing and using collection overlap statistics

is presented in Section 4 and Section 5. In Section 6, we
discuss how the overlap statistics are integrated into the
relevance-based approach used by ReDDE. The main point
of departure here is that once the first collection is chosen
based on relevance, overlap statistics are used to estimate
residual relevance of the remaining collections. The experi-
mental setup is described in Section 7, followed by the results
in Section 8. Finally, we conclude in Section 9.

2. COLLECTION SELECTION: THE PROB-
LEM

The text collection selection problem that that we address
in this paper can be stated formally as follows. Given a set
Sn of n text collections with unknown and possibly over-
lapping document contents, a keyword query Q, and two
integers c and k, pick a subset Sc of size c from Sn such
that accessing the collections in Sc will result in the highest
percentage recall of top-k relevant documents for the query
Q. The set of top-k relevant documents is taken to be the k
most relevant documents that would have been returned if
the query Q was applied to a single collection that contained
the union of all documents in Sn. We denote this set DK.
If the collections in Sc each return the document sets Di,
then the percentage recall provided by Sc is defined as:

R∗Sc
= 100× |(∪iDi) ∩ DK|

k
(1)

There are several points worth noting about this formu-
lation:

First, we note that the effectiveness of collection selec-
tion approach is measured against the retrieval performance
that could have been achieved if the query was processed
against a single database that contained the union of all the
collections.

Second, we note that the formula considers the intersec-
tion between the union of all results Di and the set of top-k
results DK. Thus, returning same results multiple times (as
might be done when the collections are overlapping) doesn’t
increase the percentage recall R∗.

The third point to note is that the percentage recall, as de-
fined above, is normative. To optimize with respect to R∗, in
practice we need to estimate statistics about the distribution
of relevant documents across collections. Such estimates are

often made through statistical sampling and representations
of the collections.

Various methods in the literature focus on different ap-
proximations of R∗ (see Section 3). Most existing methods
assume that the collections are non-overlapping (i.e. dis-
joint), and thus |(∪iDi)| is equal to

∑
i |Di|, and thus focus

exclusively on relevance. In this paper, we are interested
in relaxing this assumption. We present ROSCO, which
combines the overlap statistics with relevance statistics. In
terms of our discussion above, ROSCO accounts for the
overlap between collections (i.e., it recognizes that |(∪iDi)|
may not be equal to

∑
i |Di|).

3. RELATED WORK
As mentioned by Powell and French in their systematic

comparison of collection selection algorithms [15], the main
idea in existing systems is to try to create a representative
for each collection based on term and document frequency
information, and then use that information at query-time
to determine which collections are most promising for the
incoming query. This is the case for gGlOSS [7], the CVV
ranking method [21], CORI [3], SavvySearch [10], and many
other approaches [20, 13, 19, 11, 12, 5]. In their survey,
Powell and French [15] show that CORI is among the most
effective of these approaches, but that it tends to be sensitive
to the size of the collections–picking larger collections over
smaller ones. A recent system called ReDDE [16], is not
as susceptible to variations in size. Furthermore, ReDDE
seeks to select the collections that give top-k documents that
would have returned by the same query had it been run
on the union of all collections. This is a stronger form of
relevance based ranking.

Most of these methods seek to approximate a relevance
based ranking of the collections and assume that the col-
lections are all non-overlapping. In contrast, ROSCO ap-
proach explicitly takes collection overlaps into account. As
we mentioned, ROSCO adapts ReDDE techniques for rel-
evance estimation, and extends them to consider collection
overlap. ROSCO also builds on COSCO [9], an earlier sys-
tem from our group. The main difference between ROSCOand
COSCO is that the former focuses solely on overlap, while
ROSCO combines relevance and overlap. Contemporaneous
with our work, the work of Bender et. al. [17] also argues
for using overlap statistics to collection selection. Their fo-
cus is however on peer to peer scenarios, and on efficiently
disseminating the statistics between peers using bloom fil-
ters.

The work by Zhang et. al. [22] focuses on filtering redun-
dant (overlapping) document results from a retrieved docu-
ment stream. Our work is complementary to theirs in that
we focus on the “collection selection” phase and thus can
effectively reduce the number of redundant results in the
retrieved document stream (thus reducing the need for fil-
tering). Like us however, they too argue that considerations
of document relevance and document redundancy (overlap)
need to be independently modeled and combined for effec-
tive retrieval.

Using coverage and overlap statistics for source selection
has been explored by Nie and Kambhampati [14]. Our
work, while inspired by theirs, differs in many significant
ways. Their approach addresses the relational data model,
in which overlap can be identified among tuples in a much
more straightforward way. They use a large set of past

queries with their associated coverage and overlap statistics
and cluster them based on these statistics and the frequency
of the training queries. Unlike in a relational environment,
there are no attributes to classify queries on in a text col-
lection environment. Finally, while relational databases use
a binary notion of relevance (i.e., a tuple either is or is not
an answer for a query), text collections have to use the non-
binary notion of “relevance” [15].

4. GATHERING AND STORING OVERLAP
STATISTICS

Given a keyword query Q, and a set of collections C1, C2 · · ·Ci−1

that have already been selected for access, our aim is to es-
timate the amount of overlap a collection Ci is expected to
have with the results already returned by C1 · · ·Ci−1. An-
swering this in general requires estimates of overlap between
Ci and the already accessed collections with respect to the
query Q. In particular, we need pairwise overlaps of the
form ovlp(Ci, Cj), as well as the higher order overlaps of the
form ovlp(Ci, C1 · · ·Ck). Although such overlap statistics
have been used in the context of structured databases (in
particular our own work in [14]), adapting such techniques
to collection selection problem presents several challenges.
In the following, we discuss these challenges, and our solu-
tions.

4.1 Defining Collection Overlap
Need for Query Specific Overlap: We start by noting
that the overlap between two collections needs to be char-
acterized in the context of specific queries. It is possible for
two collections to have very low overlap, when they are taken
as a whole, but still have a significant overlap in terms of
their results to a specific query. Consequently, in our work,
we use query-specific overlap between collections. Specifi-
cally, ROSCO assumes the availability of a log of previous
queries, and learns statistics with respect to them. The idea
of learning statistics with respect to query logs has been
shown to be effective in prior work in data integration (c.f.
[14]).
Overlap in terms of duplicates vs. highly similar
documents: The second issue is whether overlap between
collections is defined in terms of “duplicates” or in terms of
“highly similar” documents. Both types of overlap defini-
tions are appropriate depending on the context. For exam-
ple, in bibliography collections, where the same article may
be present in multiple collections, overlap is best defined in
terms of duplicates. In contrast, in the context of news col-
lections, where “similar” but not identical news stories are
reported by multiple news sources, overlap is best defined in
terms of highly similar documents. Accordingly, our frame-
work supports both types of overlap assessment (c.f. [8, 9]).

Assessing overlap in terms of duplicates is reasonably straight-
forward – we take the intersection of the set of documents
returned by individual collections in response to a query (c.f.
[14]).. Specifically, if Riq and Rjq are the result sets from
two collections Ci and Cj for a keyword query q, then, the
overlap ovlpq(Ci, Cj) is defined as |Riq ∩Rjq|.

It is trickier to define overlap so it takes into account
highly similar rather than just duplicate documents. There
are two issues here: (i) how do we determine highly similar
documents and (ii) how do we avoid doing many pair-wise
similarity comparisons between the results sets of two col-

lections. For the purposes of the first, the work by Zhang et.
al. [22] shows that the standard document similarity met-
rics (such as cosine similarity) are effective. We still have to
generalize this to collections. To avoid costly comparisons
between all pairs of documents across collections, we use an
overlap approximation which amounts to considering the set
of result documents for a keyword query over a particular
collection as a single document. Overlap between two col-
lections for a particular keyword query would thus be calcu-
lated as the intersection between the bag union of the results
of the two collections for that query. Specifically, if Riq and
Rjq are the result sets from two collections Ci and Cj for
a keyword query q, we start by first making the union of
the bags corresponding to the individual documents1 in the
result sets, B(Riq) and B(Rjq). The overlap ovlpq(Ci, Cj)
is defined as the bag intersection |B(Riq) ∩B B(Riq)|2.

ROSCO supports both the duplicate and similarity based
overlap assessments, and the rest of the development in the
paper is largely independendent of which overlap assessment
is chosen. We should mention however that in our evalua-
tions we used duplicate based overlap assessments, as these
were most appropriate for our testbeds comprising biblio-
graphic documents.
Pairwise vs. higher-order overlap statistics: The
third issue in defining collection overlap is that of handling
overlap between more than two collections with respect to
a query. This will be needed when we are trying to com-
pute how many novel results are likely to be given by a
collection Ci given that we have already selected collections
C1 · · ·Ci−1. In theory, this assessment can be done if we
have access to overlap statistics for every subset of collec-
tions w.r.t. the query. In practice however, such an ap-
proach will lead to storing exponential number of overlap
statistics with respect to every query. Furthermore, even
computing overlap over more than two collections presents
technical difficulties when we are interested in similarity-
based (rather than duplicate based) overlap. For these rea-
sons, we compute store statistics for overlaps between pairs
of collections only. The online component will approximate
the overlap between several collections using only these pair-
wise overlaps.

4.2 Storing Overlap Statistics w.r.t. Query
Classes

Once we decide the method of overlap assessment, for each
individual past query in the query log, we store a vector of

overlap statistics
−−−→
ovlpq where the components of the vector

are ovlpq(Ci, Cj) for all i, j from 1 to n, with i < j. In
addition to these overlap statistics, we also keep track of
the result sizes, Riq for each query q and collection i.

Keeping statistics with respect to each individual query
would not only be costly, but also of limited use since the
statistics could only be used for the exact same query. A
better approach (c.f. [14]) is to store statistics w.r.t. query
classes (i.e., sets of related queries). For the case of key-
word queries, query classes can also be defined in terms of
keyword sets. A keyword query kikj corresponds to a query

1The bag representation of a document consists of a set of
(term, occurrence) pairs).
2Recall that the intersection D1 ∩B D2 between two bags of
words D1 and D2 is simply a bag containing each word and
its minimum frequency across D1 and D2. The union in de-
fined analogously, with “maximum” replacing “minimum”.

class which contains all the queries kikjk1 · · · kl for all key-
words k1 · · · kl. Of particular interest are query classes that
correspond to frequently occurring keyword sets among pre-
viously asked queries.

Essentially, our method consists in using the Apriori al-
gorithm [1] to discover frequently occurring keyword sets
among previously asked queries. (We assume that we have
access to a query log that maintains the list of previous
queries. Our evaluations are done on top of BibFinder,
which maintains such a query log) For example, the query
“data integration” contains three item sets: {data}, {integration},
and {data, integration}. All, some, or none of these item
sets may be frequent, and statistics will be stored only with
respect to those which are. While keeping the number of
statistics relatively low, this method also improves the odds
of having some partial statistics available for new queries, as
we would possibly be able to map previously unseen queries
to some item sets. Using the previous example, even though
the query “data” may not have been asked as such, the idea
is to use the statistics from the query “data integration” –
if it is frequent enough – to estimate those for “data”. The
purpose of identifying the frequent items sets among the
queries is to avoid having to store statistics for each query,
and instead store statistics with respect to frequently asked
keyword sets, which are more useful for the online compo-
nent, as will be explained in Section 5.

4.3 Computing statistics for frequent item sets
Once the frequent item sets are identified, statistics for

each of them need to be computed. The statistics of an
item set are computed by considering the statistics of all
the queries that contain the item set. Let QIS denote the
set of previously asked queries that contain the item set IS.
The statistics for an item set IS are defined as the weighted
average of the statistics of all the queries in QIS , according
to the following formula:

−−−−→
ovlpIS =

∑
qi∈QIS

freqqi∑
qj∈QIS

freqqj

×−−−→ovlpqi (2)

As apparent in Formula 2, the statistics of the queries
are weighted by the frequency of each query, which was col-

lected in the previous phase in addition to
−−−→
ovlpq. Using

freqq∑
qj∈QIS

freqqj
as the weight ensures that the statistics for

the item set would be closer to those of the most frequent
queries containing the item set. The statistics should thus
be more accurate more often.3

A special case must also be dealt with when computing
the statistics vectors of the frequent item sets, and that is
for the empty item set, ISempty. It is necessary to have
statistics for the empty set in order to have statistics for
entirely new queries (i.e. those which contain none of the
frequent item sets identified by the offline component). The

statistics for the empty set,
−−−−−−−−→
ovlpISempty , are computed after

having obtained all
−−−−→
ovlpIS vectors.

−−−−−−−−→
ovlpISempty is calculated

by averaging the statistics of all frequent item sets. Let us
denote as item sets the set of all frequent item sets. The
formula we use is then:

−−−−−−−−→
ovlpISempty =

∑
IS∈item sets

−−−−→
ovlpIS

|item sets| (3)

3This assumes that the new queries will follow a distribution
close to that of the previously asked queries.

The intuition behind this formula is that the statistics for
the empty set should try to reflect the general coverage and
overlap information of all collections, so that a query that
cannot be mapped to any stored keyword set would be as-
signed some average statistics which are representative of all
collections.

5. USING OVERLAP STATISTICS AT RUN-
TIME

Using the overlap statistics at runtime involves two phases.
First the incoming query is mapped to a set of query classes
(frequent item sets) for which the system has statistics. Sec-
ond, statistics for the query are computed using the statistics
of all mapped item sets.

5.1 Mapping the query to item sets
The system needs to map the user query to a set of item

sets in order to obtain some pre-computed statistics and esti-
mate the coverage and overlap statistics for the query. More
specifically, the goal is to find which group of item sets cov-
ers most, if not all, of the query. When several sets compete
to cover one term, the set(s) with the most terms is(are) cho-
sen. Consider for example the query “data integration min-
ing”, and suppose that only the item sets {{data}, {mining},
{integration}, {data, mining}, {data, integration}} are fre-
quent. In that case, the query will be mapped to the two
frequent two-term sets. Furthermore, if the item set {data,
integration, mining} was frequent, then clearly the query
would only be mapped to this three-term set.

The algorithm used to map the query to its frequent item
sets is given in Algorithm 1. Practically speaking, the query

Algorithm 1 mapQuery(query Q, frequent item sets FIS)
→ ISQ

1: ISQ ← {}
2: freqQTerms ← {}
3: for all terms t ∈ Q such that t ∈ FIS do
4: freqQTerms ← freqQTerms ∪ t
5: ISQ ← PowerSet(freqQTerms)
6: for all ISi ∈ ISQ such that ISi /∈ FIS do
7: Remove ISi from ISQ

8: for all ISi ∈ ISQ do
9: if ISi ⊂ ISj for some ISj ∈ ISQ then

10: Remove ISi from ISQ

11: Return ISQ

q is mapped by first taking all frequent item sets that are
contained in the query (lines 3 to 7). Among these selected
item sets, those that are subsets of another selected item set
are removed (lines 8 to 10) on the grounds that the statistics
of a subset would be less accurate. The resulting set, which
we call ISq, is the set of mapped item sets for the query q.

5.2 Computing overlap statistics for the query
Once the incoming user query has been mapped to a set of

frequent item sets, the system computes coverage and over-
lap estimates by using the overlap statistics of each mapped
item set. For example, if ISqnew = {{data, integration},
{mining}} then the system would use the statistics of both
item sets {data, integration} and {mining} for its statistics

estimates. The query statistics for qnew, noted as
−−−−−→
ovlpqnew ,

are calculated by averaging each of the mapped item set
statistics. When the query qnew was not mapped to any
item set (i.e. ISqnew = {} = ISempty), then we approxi-

mate
−−−−−→
ovlpqnew as being equal to

−−−−−−−−→
ovlpISempty . In summary,

we can write the following definition for
−−−−−→
ovlpqnew :

−−−−−→
ovlpqnew =

∑
IS∈ISqnew

−−−−→
ovlpIS

|ISqnew | , if ISqnew 6= ISempty

−−−−−−−−→
ovlpISempty , if ISqnew = ISempty.

(4)

6. COMBINING RELEVANCE AND OVER-
LAP

As mentioned earlier, we adapt the ReDDE approach for
relevance estimation, and extend it to take overlap statistics.
Given a new query, the ReDDE approach involves querying
the collection representatives. Using the results from this
sample index as well as the estimated collection sizes, an
estimate of the number of relevant documents in each col-
lection is made (see below). The collection with the largest
number of relevant documents is selected first. Up to this
point, ROSCO follows the ReDDE methods. It is in se-
lecting the remaining sources that the ROSCO approach
diverges. In particular, ROSCO focuses on estimating the
residual relevance of the remaining sources, given the al-
ready selected sources. It is in this computation that the
overlap statistics are used.

6.1 Gathering Size and Relevance Statistics

6.1.1 Collection Representation through Query Based
Sampling

To construct a sampled representation of each collection
(for use in relevance judgements), a number of random queries
are sent to each collection and a portion of the results are
kept for the sample. The queries that are chosen can easily
be randomly picked from the training queries. It has been
shown that a relatively small number of queries is required
to obtain an accurate representation of each collection [4].
Furthermore, a refinement can be made by using only the
first few queries from the training data and obtaining subse-
quent query terms from the documents which are returned.
During this exploration phase, the documents from each col-
lection are separately stored. An inverted index is built for
each collection sample to provide single source text retrieval
from the sample.

6.1.2 Estimating Collection Size
Once a sample from each collection is available, collection

size estimates are made. ReDDE uses the sample-resample
method [16] to estimate collection size. This involves send-
ing a query to both the collection and its (random) sample,
and using the ratio of the cardinalities of the result sets, and
the (known) size of the collection sample to estimate the size
of the actual collection. Si and Callan showed that when the
mean of several estimates is used, the absolute error ratio of
the size estimate is small [16]. The sample-resample method
however does not allow for overlap and thus requires an ex-
tension. So we modify their approach as follows: Let N̂ be
the sum of the estimated collection sizes, let N̂sample be the

total number of documents sampled, and let N̂ ′
sample be the

total number of distinct documents sampled. Then the size
of the union of all the collections, N̂ ′, can be estimated as

N̂ ′ =
N̂·N̂′sample

N̂sample
. These estimates are stored for each collec-

tion and for the union of the collections. The estimates are
used in the online component for normalization purposes.

Finally, all of the documents that have been sampled are
indexed together while noting from which sources each doc-
ument has been obtained. It cannot be assumed that each
document came from exactly one source, as it may have been
sampled from multiple overlapping sources.

6.2 Answering Queries
When a query is posed to the ROSCO mediator, it will

first use the relevance and size statistics to find the collec-
tion with the most top-k documents. Then the mediator will
combine the relevance, size, and overlap estimates to find the
collections with the most remaining top-k documents. This
continues until the relevance estimates have been exhausted
at which point the result sizes are used instead of top-k rele-
vance estimates. The ROSCO collection selection algorithm
is described in Algorithm 2 and is discussed below.

Algorithm 2 CollectionSelection(query) →
OrderedCollectionList
1: Load Overlap and Result Size statistics for the query
2: Query the total sample collection
3: Count ← 0
4: for all results r in the query results in descending rank

do
5: r.Document.Score ← Count
6: Count ← Count +

mean(r.EstimatedSize/r.SampleSize)
7: for all collections c do
8: c.Score ← 0
9: for all documents d in c do

10: if d.Score < Threshold then
11: c.Score ← c.Score + 1
12: c.Score ← c.Score·c.EstimatedSize

c.SampleSize
13: while exists a collection c with c.Score > 0 do
14: Pick a collection with

argmax{ResidualRelevance(Collection)}
15: while exists a collection c not yet selected do
16: Pick a collection with

argmax{ResidualCoverage(Collection)}
17: Return Order of Collections

As mentioned, ROSCO aims to estimate the relevance
and residual relevance of each individual collection given a
query. The (residual) relevance of a collection is defined as
the fraction of new relevant documents that it is expected to
give (where relevance is measured in terms of top k results
returned by the union database; see Section 2. The idea
of Algorithm 2 is to find the collections with the highest
number of remaining top-k documents first and then find the
collections with the most remaining results. It accomplishes
this by assigning each document a score equal to the number
of documents which are estimated to be more relevant than
itself. Each collection is then assigned a score which is the
estimated number of top-k documents in the collection. The
parameter k is set to a fraction of the total collection size.
Following ReDDE, we set the fraction to be 0.003. Finally,
those collections with the most remaining top-k documents

are chosen and then it selects the rest of the collections by
choosing which collection has the most remaining results.
The algorithm is described in more detail below.

The algorithm begins by computing all non-empty subsets
of the query and finding the corresponding frequent item
sets. If no frequent item sets are found then the empty
set statistics are used. Otherwise, the overlap statistics are
the mean of the statistics of the frequent item sets that are
found (as described in Section 5). The query is then sent
to the complete sample collection, which is the union of the
individual collection samples. The complete sample collec-
tion returns a ranked list of documents which are relevant
to the query. Next, the Count is initialized to zero. This
count indicates the estimated number of relevant documents
encountered thus far.

After this initialization, the algorithm then iterates through
all of the results with the most relevant results being visited
first. The document that corresponds to the result has its
score set to Count which is the number of relevant docu-
ments encountered. Therefore, the score of each document
is the estimated number of documents that are more rele-
vant than it in the entire collection. To see why, note that
Count is incremented by the mean of the ratio of each col-
lection’s estimated size to its sample size. The collections
that are included in this computation are those in which the
result can be found. The mean of this ratio is the number of
documents in the real union of collections that the sample
result is representing.

In the next step, each collection is examined and its score
is initially set to zero. Then for all the documents which
are in the sample collection and have a score less than some
threshold, the collection will receive one more point. The
documents that contribute represent the documents which
are in the top-k documents overall where k is the threshold.
Finally, the collection’s score is scaled by the ratio of the
estimated collection size to the sample size.

At this point, each collection’s score is an estimate of the
number of documents in the top-k documents overall. The
algorithm then proceeds to select the collection with the
highest residual relevance while there exist collections with
a score greater than zero. Thus all of the collections that
originally were thought to contain documents in the top-k
documents are selected before any of the collections thought
to not contain such documents. The equation for computing
residual relevance is included below.

ResidualRelevanceq(C) = C.Score×
(

1− Overlapq(C)

C.EstimatedSize

)

(5)

The overlap component is the number of documents in
the collection that overlap with documents in the previously
selected collections. Therefore, this essentially reduces the
estimated number of relevant documents in the collection.
The overlap equation is:

Overlapq(C) =
∑

ovlpq(C, Ci) (6)

Each Ci is a previously selected collection and the statis-
tics for this have been computed as described in Section 5.

Once all of the collections which probably contain top-
k documents have been selected, ROSCO can either stop
(default), or continue to select additional collections by ex-
panding its notion of relevance to include all results instead
of just top-k documents. In the latter scenario, ROSCO will

Figure 2: Results on testbed 2 (SRD)

switch into a mode where it will continue to pick the collec-
tion with the highest residual coverage until all collections
have been picked. Residual coverage is computed as:

ResidualCoverageq(C) = Riq −
∑

Overlapq(C) (7)

where Riq are the result set size statistics as discussed
in Section 4.2. Now that all of the collections have been
selected then the order in which they were selected is re-
turned.

7. EXPERIMENTAL SETUP
In this section, we begin by describing how performance of

the various methods is measured. We then describe in detail
how the testbeds were created to evaluate performance. A
detailed analysis of these testbeds shows that they do indeed
provide a diverse and substantial array of environments in
which to test the various methods. Each of the tested meth-
ods will be described in detail as well as how the training was
performed. In this section, we focus on how the testbeds are
created and the performance of the algorithms is measured.
The experimental results are described in the next section.

A few words of explanation are in order with respect to the
choice of the data comprising our test beds. Unlike some of
the previous work on collection selection that derived their
testbeds from TREC corpus, we used bibliography data.
The primary reason for this was that we had ready access
to user query logs from BibFinder, our own fielded bibli-
ography mediator. Recall that our overlap statistics com-
putation is done with respect to frequently occurring key-
words in the user queries. Although bibliography data does
not have pre-computed relevance judgements, this is not a
problem for our evaluation. As we mentioned in Section 2,
the focus in collection selection algorithms is not on the way
the relevance between query and individual documents is
computed, but rather on how to select collections such that
the retrieval performance will be competitive with the same
retrieval techniques being applied to a centralized “union”
database of all collections. Accordingly, as discussed in Sec-
tion 2, in our evaluation, we compare each collection selec-
tion method with respect to retrieval on the union database
(using the same document retrieval strategy), in terms of
the recall metric R∗.

7.1 Testbed Creation
In order to do an accurate examination of the performance

of the proposed solution in a variety of settings, we followed
the example of ReDDE, and designed a set of testbeds that
vary along different dimensions. The testbeds varied along
three important factors: (i) the variability of the size of
collections (Same or Variable), (ii) the distribution of rele-
vant documents (Randomly distributed or Clustered), and
(iii) the presence or absence of overlap (No duplicates or
Duplicates). The first two factors were considered by the
testbeds used in ReDDE while the third is motivated by our
interest in handling overlap across collections. The first fac-
tor was chosen because it has been shown that some methods
seem to perform poorly when collection sizes differ whereas
others perform well with similar sized collections [15]. The
second factor is important because intuitively some collec-
tions are more relevant on some topics than others. Fur-
thermore, relevance based methods assume that this is the
case. Therefore, the effect of the distribution of relevant
documents should be important to these methods. Finally,
as we argued, most real world collections have overlap and
it is thus necessary to understand the effect of overlap on
the performance. Varying these three factors produces eight
combinations. These combinations form the basis of the
eight testbeds included in the experiments.

In order to form the eight testbeds, a large number of
documents were required. Therefore, 38,323 abstracts were
obtained from various online scientific abstract providers:
ACMDL, ACM Guide, CSB, COMPENDEX, Science
Direct, Citeseer, DBLP, IEEE Xplore and NetBiB.
Each testbed has 100 collections within it. The difference
between the testbeds is how they distribute the abstracts
amongst the collections.

Although we performed experiments with all eight testbeds,
due to space restrictions, we focus mainly on 4 of the testbeds
that have overlap and one testbed which doesn’t . The full
set of results are available in [6].
Testbed 2 (SRD): Same Size, Random Distribution,
Duplicates: This testbed was created by randomly assign-
ing 1000 documents to each collection. The documents were
picked with replacement which leads to overlap, but note
that the collections are the same size and have a random
distribution of relevant documents.
Testbed 4(VRD): Varying Size, Random Distribu-
tion, Duplicates: This testbed randomly picked a size for
each testbed and then randomly picked the documents with
replacement from the total pool of documents. The sizes
were picked in an exponential fashion thereby yielding sig-
nificant differences in size. note that there is overlap in this
testbed. Again, the distribution of relevance is random in
this testbed.
Testbed 6(SCD): Same Size, Clustered Distribution,
Duplicates: This testbed used k-means clustering to create
250 clusters; however, it randomly assigned clusters with
replacement to create 100 collections of nearly identical size.
Therefore, there is overlap as well as clustered distribution
in this testbed.
Testbed 7(VCN): Varying Size, Clustered Distribu-
tion, No Duplicates: To create this testbed, k-means was
used to cluster the documents but only 100 clusters were
created. These clusters became the 100 collections for the
testbed. Thus, there is no overlap and the collection sizes
vary. Also, the collections vary in relevance.

Testbed 8(VCD): Varying Size, Clustered Distribu-
tion, Duplicates: The last testbed was also created using
k-means clustering with 250 clusters. This time though,
each collection was randomly assigned 3 clusters with re-
placement. The sizes of the collections vary quite a bit
and there is overlap between the collections. Also, it is a
clustered distribution so relevance varies from collection to
collection according to the query.

7.2 Tested Methods
The offline component of ROSCO was implemented as de-

scribed previously. A large set of queries from the Bibfinder
system’s query log [14] was used as the training queries for
overlap statistics. All the queries with a frequency greater
than or equal to 4 were considered,4 which resulted in 1,062
distinct queries and a total cumulative frequency of 19,425.

For computing the collection representative, each collec-
tion in each test bed was sampled by using 10 randomly
selected training queries. The samples were used to build
the representative. Next, 10 size estimates were made for
each collection. The final size estimate is the mean of these
estimates. Finally, queries that appeared more than 5 times
were used in the frequent item set computation. A support
value of .05% was required during the Apriori algorithm.
For the purposes of these experiments overlap meant dupli-
cate documents.

In order to demonstrate the efficiency of ROSCO we com-
pared it to two other well known methods CORI [3] and
ReDDE [16]. Until recently, CORI [3] has been widely ac-
cepted as the best, most stable method for collection selec-
tion; hence, it was included in this study. CORI models each
collection as a virtual document. It can be viewed as a df-icf
method where df is the document frequency of a term within
a collection and icf is the inverse collection frequency of a
term. Single source text retrieval is performed over the col-
lection of these virtual documents to determine the order in
which the collections should be called. CORI used the same
sample as ROSCO and ReDDE. Once this sample was ob-
tained then the document frequency or the number of docu-
ments containing each term in a collection was determined.
Also, the collection frequency of a term was determined by
finding the number of collections in the testbed which con-
tain the term. ReDDE [16] and ROSCO use the same set
of size and collection representation statistics so these were
also shared. ROSCO contrasts with ReDDE because it con-
siders overlap. ReDDE has no notion of residual relevance
and all calculations are thus done with the assumption that
every document (or document class) belongs to precisely one
collection.

Finally, to evaluate the relative effects of handling rel-
evance and overlap considerations in collection selection,
we also experimented with COSCO [9] that differs from
ROSCO in that it focuses only on overlap statistics. Notice
that the comparison between ROSCO and ReDDE allows us
to evaluate the effect of overlap analysis alone (since ReDDE
is can be seen as ROSCO without overlap analysis!).

To establish a baseline and bounds for the performance of
our systems, we have also experimented with three straw-
man approaches: (i) Greedy ideal (ii) Size-based and (iii)

4Since the queries from the BibFinder query-list were rela-
tional in nature, each query selected was transformed into
a keyword query by simply merging all the fields from the
relational query.

Figure 3: Results on testbed 4 (VRD)

Random.
Greedy Ideal: This method attempts to greedily maximize
the percentage recall (Equation 1), assuming oracular infor-
mation. Specifically, greedy ideal assumes complete knowl-
edge of every collection and will always pick the collection
with the most documents in the top-k first followed by the
collection with the real highest residual relevance next and
so on. It understands both pair-wise and higher order over-
lap. For the empirical study, Greedy Ideal is implemented
as a “post-facto” method–which calls all the collections with
the query, and analyzes their results to decide on the ideal
order. The method is “greedy” in the sense that given a
collection subset of size c that is greedy maximal then it
will pick a subset of size c + 1 that is also greedy maximal
and therefore it never backtracks.5 Greedy ideal provides
an upper bound on performance over the long run.
Random: This method picks collections randomly and thus
provides a lower bound on long run performance. Any al-
gorithm should outperform random in the long run. The
difference between a given method and the random method
shows the degree of improvement over the baseline perfor-
mance.
Size Based: This method picks the collections in the order
of their sizes starting with the largest (without regard to
relevance or overlap). We included this because French and
Powell [15] showed that most collection selection algorithms
inadvertently follow a size based ranking.

8. EXPERIMENTAL RESULTS
For the experiments, 100 queries which were disjoint from

the training queries were sent to each method. The percent
recall R∗ at each step (collection call) was determined for ev-
ery method. Specifically, this involves comparing the results
to the top-k results retrieved by running the same query on
a database corresponding to the union of all the collections
(see Section 2). We set the threshold parameter in Algo-
rithm 2 such that we focus on top 100 results (i.e. k = 100).
We keep the “document retrieval” method constant across
all collections as well as the union database (we used the
standard TF/IDF based cosine similarity [16]). The results

5A non-greedy version will have to consider all possible c+1-
sized subsets of collections and will thus be exponential even
for the post-facto analysis!

Figure 4: Results on testbed 6 (SCD)

are averaged over all the test queries in order to provide a
clear look at performance. Ideally, we would like to get high
recall with the fewest collection calls (and thus the methods
that perform better at the lower end of number of collections
accessed are preferred). In addition to percentage recall, we
also measured the performance of the individual methods
relative to the performance of Greedy Ideal. Our hypothe-
sis is that ROSCO will perform better than approaches like
CORI when the collections have overlap. Between ROSCO
and COSCO we would expect ROSCO to perform better
as it considers both relevance and overlap.

Figures 3-8 show some of the results of our experiments.
The first five compare ROSCO with COSCO, ReDDE and
CORI in terms of their relative performance with respect to
Greedy Ideal in five of the eight testbeds. The last shows the
percentage recall of these four methods as well as the three
strawman methods (Greedy Ideal, Size-based and Random)
in one of the (more realistic) testbeds. The results show
that ROSCO clearly outperforms the other methods by 5%
to 25% when selecting a small subset of collections .

Figure 2 shows that in the presence of overlap that CORI’s
performance suffers dramatically. Furthermore, in this case
ROSCO outperforms all of the other methods. Figure 3
shows the performance of the methods in testbed 4 where
collection sizes vary and the distribution of relevant docu-
ments is random. This is probably not like real world sce-
narios since collections most likely do not have randomly
assigned documents but are authoritative on certain top-
ics. In this testbed, both ROSCO and ReDDE suffer in the
beginning. ROSCO performs very well but not much bet-
ter than size based ranking. Finally, CORI performs very
poorly especially in the presence of overlap. Figure 4 again
illustrates that ROSCO outperforms all of the other meth-
ods in testbed 6. CORI’s performance degrades significantly
in the presence of overlap.

Finally, testbeds 7 and 8 represent those that are most
likely encountered in the real world. The collections vary in
size and they have a clustered distribution. Figure 5 shows
that in testbed 7 , ROSCO outperforms the other methods
at every step except for a small range where CORI performs
the best; but, CORI is very unstable in this testbed. Fig-
ure 6 shows that in testbed 8, ROSCO outperforms the
other methods until about half of the collections have been
selected when COSCO begins to outperform ROSCO. How-

Figure 5: Results on testbed 7 (VCN)

ever, since collection selection aims to select a small subset
of collections, it is more important to perform well early
on. Notice that CORI’s performance deteriorates quickly
because of the presence of overlap. Finally, Figure 7 shows
the relative performance of all 7 approaches (including the
3 strawman approaches) in testbed 8. This figure focuses on
the performance in the initial stages (upto the time a third
of the 100 collections have been accessed), and provides an-
other perspective on the way different methods compare to
Greedy Ideal.

8.1 Summary and Discussion of Results
Summarizing the results over all testbeds (including the

three that are not discussed here, but are included in [6]), we
see that ROSCO performs better than CORI in all testbeds
where there is overlap among collections. CORI also seems
to be much less stable. As expected, ROSCO is an im-
provement on COSCO as well. Although ReDDE follows
ROSCO closely in some testbeds, ROSCO consistently im-
proves on it by 3%-7%. ROSCO performs the best over all
the collections with the exception of testbeds 3 and 4. These
testbeds however, reflect scenarios that are less likely in the
real world.

ReDDE follows closely because ROSCO and ReDDE will
always select the same first collection. In the testbeds that
we set up, this meant that after the first selection both
ROSCO and ReDDE will have selected a collection with
roughly 70-85% of the greedy ideal. This percentage gener-
ally (in most testbeds) increases monotonically. The dif-
ference between ROSCO and ReDDE after this point is
the effect that overlap has on ReDDE. Over time ROSCO
gains on ReDDE in all test beds. However, in testbed 4
both ROSCO and ReDDE suffer (although the percentages
skew the view of the actual impact). In this case selecting a
slightly less than optimal choice up front has a huge impact.

A final word of explanation is in order regarding the per-
formance of CORI in our experiments. The testbeds that
we created vary three attributes (relevance, size, and over-
lap). CORI explicitly assumes no overlap and implicitly as-
sumes roughly equivalent sizes (both [16] and [15] acknowl-
edge this). So in all test beds except SRN (testbed 1) and
SCN (testbed 5), CORI winds up having a big disadvantage.
Our results are consistent with Si and Callan’s own compari-
son between ReDDE and CORI (see Figure 1 in [16]). In the

Figure 6: Results on testbed 8 (VCD)

comprehensive results reported in [6], we show that CORI
does perform much better on testbeds 1 and 5. Specifically,
on testbed 1, CORI outperforms all other methods until
about 10 collections have been selected. In testbed 5, it
does perform significantly better than both sized based and
random ranking.

9. CONCLUSION
This paper addressed the issue of collection selection for

information retrieval in an environment composed of over-
lapping collections. We presented a method called ROSCO
which adapts a state-of-the-art relevance based collection
selection method, ReDDE, to consider collection overlap.
We presented a systematic evaluation of the effectiveness of
ROSCO over existing methods. Our experiments showed
that ROSCO outperforms current best methods including
CORI and ReDDE when there are overlapping collections,
while being competitive in the others.

10. REFERENCES
[1] R. Agrawal and R. Srikant. Fast algorithms for mining

association rules. In Proceedings of VLDB Conference,
1994.

[2] R. A. Baeza-Yates and B. A. Ribeiro-Neto. Modern
Information Retrieval. ACM Press / Addison-Wesley, 1999.

[3] J. P. Callan, Z. Lu, and W. B. Croft. Searching distributed
collections with inference networks. In Proceedings of ACM
SIGIR Conference, pages 21–28, 1995.

[4] Callan, J. and Connell, M. Query-based sampling of text
databases. Information Systems, 19(2):97-130, 2001.

[5] J. G. Conrad and J. R. S. Claussen. Early user–system
interaction for database selection in massive
domain-specific online environments. ACM Transactions on
Information Systems, 21(1):94–131, 2003.

[6] J. (W) Dyer. Relevance and Overlap in Text Resource
Selection Honors Thesis. Dept. of CSE. Arizona State
University. April 2005. rakaposhi.eas.asu.edu/wes-thesis.pdf

[7] L. Gravano, H. Garćıa-Molina, and A. Tomasic. GlOSS:
text-source discovery over the Internet. ACM Transactions
on Database Systems, 24(2):229–264, 1999.

[8] T. Hernandez. Improving text collection selection with
coverage and overlap statistics. M.S. Thesis. Dept. of CSE.
Arizona State University. October 2004.
rakaposhi.eas.asu.edu/thomas-thesis.pdf

[9] T. Hernandez and S. Kambhampati. Improving text
collection selection with coverage and overlap statistics.

Figure 7: Percentage Recall of all methods for
testbed 8 (VCD)

WWW (Special interest tracks and posters) 2005.
[10] A. E. Howe and D. Dreilinger. SAVVYSEARCH: A

metasearch engine that learns which search engines to
query. AI Magazine, 18(2):19–25, 1997.

[11] P. Ipeirotis and L. Gravano. Distributed search over the
hidden web: Hierarchical database sampling and selection.
In Proceedings of VLDB Conference, 2002.

[12] Z. Liu, C. Luo, J. Cho, and W. Chu. A probabilistic
approach to metasearching with adaptive probing. In
Proceedings of the International Conference on Data
Engineering, 2004.

[13] W. Meng, C. Yu, and K.-L. Liu. Building efficient and
effective metasearch engines. ACM Computing Surveys,
34(1):48–89, 2002.

[14] Z. Nie and S. Kambhampati. A frequency-based approach
for mining coverage statistics in data integration. In
Proceedings of the International Conference on Data
Engineering, 2004.

[15] A. L. Powell and J. C. French. Comparing the performance
of collection selection algorithms. ACM Transactions on
Information Systems, 21(4):412–456, 2003.

[16] Si, L. and Callan, J. Relevant Document Distribution
Estimation Method for Resource Selection. In Proceedings
of the 26th Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval,
2003.

[17] M. Bender, S. Michel, P. Triantafillou, G. Weikum and
C. Zimmer. Improving Collection Selection with Overlap
Awareness in P2P Search Engines In Proc. 28th Annual
Intl. SIGIR Conf., 2005.

[18] C. Silverstein, M. Henzinger, H. Marais, and M. Moricz.
Analysis of a very large AltaVista query log. Technical
Report 1998-014, Digital SRC, 1998.

[19] E. M. Voorhees, N. K. Gupta, and B. Johnson-Laird. The
collection fusion problem. In Text REtrieval Conference,
TREC, 1994.

[20] Z. Wu, W. Meng, C. Yu, and Z. Li. Towards a
highly-scalable and effective metasearch engine. In
Proceedings of the World Wide Web Conference, pages
386–395, 2001.

[21] B. Yuwono and D. L. Lee. Server ranking for distributed
text retrieval systems on the internet. In Database Systems
for Advanced Applications, pages 41–50, 1997.

[22] Y. Zhang, J. Callan and T. Minka. Novelty and
Redundancy Detection in Adaptive Filtering In Proc.
SIGIR 2002.

