Assessing and Generating Robust Plans with Partial Domain Models

Tuan A. Nguyen * and Subbarao Kambhampati * and Minh B. Do
* Dept. of Computer Science & Engineering, Arizona State University. Email: {natuan, rao}@asu.edu
t Embedded Reasoning Area, Palo Alto Research Center. Email: minh.do@parc.com
(For an updated version, please see: http://rakaposhi.eas.asu.edu/robust-plans.pdf)

Abstract

Most current planners assume complete domain mod-
els and focus on generating plans that are correct with
respect to them. Unfortunately, assuming model com-
pleteness is unrealistic in the real world, where domain
modeling remains a hard, labor-intensive and error-
prone task. While domain experts cannot guarantee
completeness, often they are able to circumscribe the
incompleteness of the model by providing annotations
as to which parts of the domain model may be incom-
plete. In such cases, the goal of planning would be to
generate plans that are robust with respect to any known
incompleteness of the domain. Doing this requires both
a formal framework for assessing plan robustness and
a methodology for guiding a planner’s search towards
robust plans. In this paper we formalize the notion of
plan robustness with respect to a partial domain model,
show a way of reducing exact robustness assessment
to model-counting, and describe methods of approxi-
mately assessing plan robustness. We propose a heuris-
tic search approach using model-counting techniques on
top of the FF planner to generate plans that are not only
correct but also robust, and present experimental results
showing the effectiveness of this approach.

Introduction

In the past several years, significant strides have been made
in scaling up plan synthesis techniques. We now have tech-
nology to routinely generate plans with hundreds of actions.
A significant amount of ongoing work in the community has
been directed at building up on these advances to provide
efficient synthesis techniques under a variety of more ex-
pressive conditions (including partial observability, stochas-
tic dynamics, durative/temporal actions, over-subscribed re-
sources etc.).

All this work however makes a crucial assumption—that
a complete model of the domain is specified in advance.
While there may be domains where knowledge-engineering
such detailed models is necessary as well as feasible (e.g.,
mission planning domains in NASA and factory-floor plan-
ning), there are also many scenarios where insistence on cor-
rect and complete models renders the current planning tech-
nology unusable. What is needed to handle such cases is a
planning technology that can get by with partially complete
domain models, and yet generate plans that are “robust” in
the sense that they are likely to execute successfully in the
real world.

This paper addresses the problem of assessing plan ro-
bustness and generating robust plans given partially com-
plete domain models. Following (Garland and Lesh 2002),
we shall assume that although the domain modelers can-
not provide complete models, often they are able to provide
annotations on the partial model circumscribing the places
where it is incomplete. In our framework, these annotations
consist of allowing actions to have possible pre-conditions
and effects (in addition to the standard necessarily precondi-
tions and effects).

As an example, consider a variation of the Gripper do-
main, a well-known planning benchmark. The robot has
two hands that can be used to pickup balls from one room
and move them to another room. The modeler suspects that
one arm may have an internal problem, but this cannot be
confirmed until the robot actually executes the plan. If the
arm has a problem, the execution of the pick-up action never
succeeds, if the arm has no problem, it can always pickup a
ball. The modeler can express his partial knowledge about
the domain by annotating the pickup action with statement
representing this possible effect.

We shall see that partial domain models with such pos-
sible effects/preconditions implicitly defines an exponential
set of complete domain models (each corresponding to par-
ticular realizations of possible preconditions/effects), with
the semantics that the real domain model is guaranteed to be
one of these. The robustness of a plan can now be formal-
ized in terms of the fraction of the complete domain models
under which it executes successfully. We shall show that ro-
bustness defined this way can be compiled into a (weighted)
model-counting problem that works off of a causal-proof
based SAT encoding of the plan (c.f. Mali and Kambhampati
1999). To generate robust plans, we extend the FF planner
and combine its forward heuristic search with a SAT model-
counting software. We present experimental results showing
that the modified planner finds more robust plans than the
base planner that ignores the incompleteness annotations.

Before we go further, we should clarify that the seman-
tics of the possible preconditions/effects in our partial do-
main models differ fundamentally from non-deterministic
and stochastic effects. Going back to the Gripper exam-
ple above, with non-determinism/stochasticity, each time a
robot tries to pickup a ball with the same hand, it will ei-
ther succeed or fail independently of the other execution in-
stances of the same action. In planning with incomplete ac-
tion models, executing different instances of the same pick-

up action would either all fail or all succeed (because there
is no uncertainty but the information is unknown at the time
the model is built). This distinction also leads to differences
between “robust plans” and good stochastic plans. If there
is only one hand and the modeler does not know if it’s good,
then the most robust plan is to use that hand, but the robust-
ness of the plan is measured by 50% success-rate, no matter
how many instances of that action we concatenate into the
plan. In contrast, if the hand’s effects are stochastic, then
trying the same picking action multiple times increases the
chances of success.

Partial Domain Models

We consider planning scenarios where a planner is given
as input a deterministic domain model D and a planning
problem P, together with some knowledge about the lim-
ited completeness of some actions specified in D. Due to
the presence of such knowledge, the partial domain model D
should be seen as a stand in for (a possibly exponential num-
ber of) complete domain models which subsume the true do-
main model D*. A plan 7 that solves the problem P with
respect to D thus may or may not succeed when executed (as
it may not be correct with respect to D*. Since any of the
completions of the partial domain model may correspond to
the true domain model, the robustness of a plan can thus be
defined as the fraction of completions in which it succeeds.
We formalize these notions below:

A partial domain model D is defined as D = (F, A),
where F' = {p1,pa, ..., pn} is the set of propositions, A is
the set of actions that might not be completely specified. A
state s C F'is set of propositions that hold in the state of
the world, and the truth value of a proposition p in state s
is denoted by s[p]. In addition to proposition sets that are
known as its preconditions Pre(a) C F, additive effects
Add(a) C F and delete effects Del(a) C F, each action
a € Ain our formalism ! is also modeled with the following
sets of propositions:

e Possible precondition set PreP(a) C F contains propo-
sitions that action a might need as its precondition.

e Possible additive effect set AddP(a) C F contains
propositions that action a might add after its execution.

e Possible delete effect set DelP(a) C F contains propo-
sitions that action a might delete after its execution.

In addition, each possible precondition, addi-
tive and delete effect p of the action a are associ-
ated with a weight wP™(p), w2 (p) and w(p)
0 < wkre(p), w(p), wde(p) < 1) representing the
domain writer’s assessment of the likelihood that p is a
precondition, additive and delete effect of a (respectively).
Our formalism therefore allows the modeler to express
her degree of belief on the likelihood that various possible
preconditions/effects will actually be realized in the real
domain model, and possible preconditions and effects
without associated weights are assumed to be governed by
non-deterministic uncertainty.

'We extend the formalism introduced by Garland & Lesh
(2002), discussed in more details in the related work section.

The action a is considered incompletely modeled if ei-
ther its possible precondition or effect set is non-empty. The
action a is applicable in a state s if Pre(a) C s, and the re-
sulting state is defined by (s, a) = (s\ Del(a) U Add(a) U
AddP(a)).?

A planning problem is P = (D,I,G) where I C F is
the set of propositions that are true in the initial state, and
G is the set of goal propositions. We denote aj,ac € A
as two dummy actions representing the initial and goal state
such that Pre(a;) = 0, Add(ay) = I, Pre(ag) = G,
Add(ag) = {T} (where T ¢ F denotes a dummy propo-
sition representing goal achievement). A plan for the prob-
lem P is a sequence of actions 7 = (ag, a1, ..., a,) with
ap = ay and a, = ag and a; is applicable in the state
S = 7(7(7(0’03 Q)aal)v e aifl) (1 <i< TL)

In the presence of PreP(a), AddP(a) and Del P(a), the
execution of a plan 7 might not reach a goal state (i.e. the
plan fails) when some possible precondition or effect of an
action a is realized (i.e. winds up holding in the true domain
model) and invalidates the executability of the plan.

From the modeling point of view, the possible precondi-
tion and effect sets can be modeled at either the schema or
grounded level. Thus, they can be relevant at the ground ac-
tion level or at the general action schema level (and thus
applicable to all ground actions sharing the same action
schema). Going back to the Gripper domain mentioned ear-
lier, if the possible internal problem is related to only the left
hand, then only the ground action related to the left robot
hand is incomplete. However, if the problem is related to
both hands of the robot, then the incompleteness is at the
action schema that models picking up using any hand.
Assumption underlying our model: In using PreP,
AddP and Del P annotations, we are using an assumption,
which we call uncorrelated incompleteness: the incomplete
preconditions and effects are all assumed to be independent
of each other. Our representation thus does not allow a do-
main writer to state that a particular action a will have the
possible additive effect e only when it has the possible pre-
condition p. While we cannot completely rule out a domain
modeler capable of making annotations about such corre-
lated sources of incompleteness, we assume that this is less
likely.

Robustness Measure of Plans

Using the partial domain model as defined above, we can
now formalize the notion of plan robustness. Given that any
subset of possible precondition and effect sets of an action
a € A can be part of its preconditions and effects in the com-
plete domain D*, there are (exponentially) large number of
candidate complete models for D*. For each of these can-
didate models, a plan 7 = (ag, a1, ..., a,) that is found in
a plan generation process with respect to the partial domain
model D, as defined above, may either succeed to reach a
goal state or fail when one of its actions, including a4, can-
not execute. If all of them have equal chance to be the com-
plete model (according to the modeler), then the plan 7 is

“Note that we neglect PreP(a) in action applicability checking
condition and Del P(a) in creating the resulting state to ensure the
completeness. Thus, if there is a plan that is executable in at least
one candidate domain model, then it is not excluded.

state s (initial state) state s, state s;(goal state)
Candidate models of plan 1 2 3 4 5 6 7 8

a; relieson 2, yes | ves | yes | yes [no no no no

a; deletes p, yes | yes | no | no [yes | yes | no no

4, adds P, yes [no | yes | no [yes | mo [yes no
Plan status fail | fail | fail | fail [succeed| fail [succeed|succeed

Legend

— <] precondition [«]— additive effect [«}--=> PISSRle . @ pis true

o possible | possible S e fal
[precondition [<HO~ delete efect [} O » delote effect 2.4 P 1S false

Figure 1: An example of different candidate models of ac-
tions in plan, and the corresponding plan status. Spare
nodes are actions, circle nodes with solid (dash) boundary
are propositions that are true (false). The solid (dash) lines
represent the (possible) preconditions and effects of actions.

considered highly robust if there are a large number of can-
didate models of D* for which the execution of 7 success-
fully achieves all goals.

Example: Figure 1 shows an example with the partial
domain model D = (F,A) with F = {p1,p2,ps} and
A = {ai1,a2} and a solution plan 7 = (a1,as) for
the problem P = (D,I = {p1},G = {p1,p2,pa})
All actions are incompletely modeled: Pre(a;) = {p1},
PreP(a1) = {ps}, Add(a1) = {p2}, AddP(a1) = 0,
Del(ay) = 0, DelP(a1) = {p1}; Pre(as) = {p2}.
PreP(az) = 0, Add(az) = {ps}, AddP(a2) = {p1}.
Del(az) = DelP(az) = (. Given that the total number
of possible preconditions and effects is 3, the total number
of candidate models of D* therefore is 2° = 8, for each of
which it may succeed or fail to reach a goal state, as shown in
the table. The candidate model 6, for instance, corresponds
to the scenario where the first action a1 does not depend on
ps but it deletes p;. Even though as could execute, it does
not have p; as an additive effect, and the plan fails to achieve
p1 as a goal. In summary, there are 5 of 8 candidate mod-
els where 7 fails and 3 candidate models of D* for which 7
succeeds.

We define the robustness measure of a plan m, denoted
by R(w), as the probability that it succeeds in achieving
goals with respect to D* after execution. More formally,
let K = >, c4(|PreP(a)| + |AddP(a)| + |DelP(a)|),
Sp = {D1,Ds,...,Dyx } be the set of the candidate mod-
els of D* and h : Sp — [0, 1] be the distribution function
(suchthat), ., ok h(D;) = 1) representing the modeler’s
estimate of the probability that a given model in Sp is actu-
ally D*, the robustness value of a plan 7 is then defined as
follows:

rRmE S D)) 0
Djell

where [[C Sp is the set of candidate models in which 7 is
a valid plan.

Note that given the assumption of uncorrelated incom-
pleteness, the probability h(D;) for a model D; € Sp
can be computed as the product of the weights w?"¢(p),
w4 (p), and w®! (p) (for all a € A and its possible precon-
ditions/effects p) if p is realized as its precondition, additive
and delete effect in D; (or the product of their “complement”
1 —wP™(p), 1 — w2 (p), and 1 — wi®(p) if p is not).

There is a very exetreme scenario, which we call non-
deterministic incompleteness, when the domain writer does
not have any quantitative measure of likelihood as to
whether each (independent) possible precondition/effect
will be realized or not. In this case, we will handle
non-deterministic uncertainty as “uniform” distribution over
models.? The robustness of 7 can then be computed as fol-
lows:

r(m) = 11 @

The robustness value of the plan in Figure 1, for instance,
is R(m) = 2 if h is the uniform distribution. However, if
the writer thinks that p3 is very unlikely to be a precondition
of a; (by providing wk®(ps) = 0.1), the robustness of this
plan is increased to R(m) = 0.9 x 0.5 x 0.5+ 0.9 x 0.5 x
0.5+0.9x0.5x0.5 = 0.675 (as intutively, the first 4 candi-
date models with which the plan fails are very unlikely to be
the complete one). For the rest of this paper, we first focus
on the situation with the assumption of non-deterministic in-
completeness, but some of our techniques can be adapted for
the more general case.

Assessing Plan Robustness

Given the partial domain model D and a plan ©# =
(ag, ..., an), computing K is easy and thus the main task
of assessing plan robustness is to compute M, = |[]] as
accurately and as quickly as possible. A naive approach is
to enumerate all domain models D; € Sp and check for
executability of 7 with respect to D;. This is prohibitively
expensive when K is large. In this section, we introduce dif-
ferent approaches (from exact to approximate computation)
to assessing the robustness value of plans.

Exact Computation Approach

In this approach, we setup a SAT encoding E such that there
is a one-to-one map between each model of £/ with a candi-
date domain model D € []. Thus, counting the number of
models of E should gives us M. To encode the executabil-
ity of m, we will use constraints representing the causal-
proof (c.f. Mali and Kambhampati 1999) of the correctness
of . In essence, the SAT constraints enforce that when-
ever an action a; € 7 needs a precondition p € Pre(a;) or

3as is typically done when distributional information is not
available-since uniform distribution has the highest entropy and
thus makes least amount of assumptions.

p € PreP(a;), then (i) p is established at some level j < 4
and (ii) there is no action that deletes p between j and i.
In level 4, we means the i*" state progressed from the initial
state I by applying the action sequence a,a;. The details
of our compilation approach are given below:

SAT Boolean Variables: For each action a € A, we cre-
ate a set of boolean variables whose truth values represent
whether a depends on, adds or deletes a proposition in its
possible precondition and effect lists. Specifically, for each
proposition f € PreP(a), we create a boolean variable
fPre where fPr¢ = T if f is realized as a precondition
of a during execution, and fP"¢ = F otherwise. Simi-
larly, we create boolean variables f¢ and f2¢ for each
f € AddP(a) and f € DelP(a). Note that these vari-
ables are created independently of solution plans and there
are exactly 2X possible complete assignments to all of these
variables (with K defined in the previous section). Each
complete assignment is a potential solution of £ and corre-
sponds to a candidate domain model of D*.

As mentioned above, it is possible that different ac-
tions a;,,ai,,...,a;, are grounded from the same action
schema. In this case, if the incompleteness is speci-
fied at the schema level, then boolean variables created
from a possible precondition (or effect) f of these actions
are treated as a single variable, or fg’:le = g;e =..=f"
SAT Constraints: As mentioned above, we encode the
causal-proof of plan correctness in which all action precon-
dition should be achieved at some level before it is needed.
In order to identify correctly the set of actions whose (pos-
sible) effects can affect fact f needed at level ¢, we first in-
troduce the notion of confirmed level C. Basically, C'} is
the latest level at which the value of f is confirmed (to be
either T or F) by action a; with j < ¢. Formally speak-
ing: f € Pre(a;) or f € Add(a;) (confirmed T) or
f € Del(a;) (confirmed F). For example, C3 = 1 and
C?, = 0 for the plan in Figure 1. Given that the initial state
I atlevel 1 is a complete state, C} exists for all f and 7. Intu-
itively, if a fact f is needed at level 4, then only the possible
effects of actions executing within [C’}, i — 1] can affect the
value of f at .

Precondition establishment: For each f € Pre(a;), we cre-
ate the following constraints:

(Cl) Vke [C},i del = \/ add
k<m<i

The constraint C/ ensures that if f is a precondition of the
action a; and is deleted by a possible effect of ay, then there
must be another (white-knight) action a,,, that re-establishes
f as part of its possible add effect. Note that if there is no
such action a,, that can add f, then we replace CI with

del = F

A * i

If f is confirmed to be F at C}, then we also need to add

another constraint to ensure that it is added before i:

(C2) Vke[Chi—1]:\/fu
Note that based on our definitions of action application and

valid plan, there should exist at least one such action aj
when setting up C2.

Possible Precondition Establishment: When a possible pre-
condition is realized to be a true precondition, it also needs
to be established as a normal precondition. Thus, if for a
given action a; and its possible precondition f € PreP(a;),
in a model where f is realized (i.e., fI7¢ = T) we need to
establish it and protect the estabhshment using constraints
CI and C2 above. The modification to CI and C2 is that
they are enforced only when f?"¢ = T. Specifically, we
add:

(C3) Vke[Chi—1]: fIre= (fi' = \/ fu9)

Am
k<m<i

which is a variation of C/. If there is no such aj action
where f € DelP(ay), then C3 changes to: f?'¢ = T
(i.e. we can omit the constraint). On the other hand, if
for a given action ay, that may delete f and there is no ac-
tion a,, to possibly add it after k, then we change C3 to:
fire = (fih = F).

When f is confirmed to be F at C%, then we also add a

variation of C2:

(C4) Vke[Chi—1]: frre=\/ fod
if there is no such action ay, that can possibly add f, then
constraint C4 changes to f27¢ = F.

Therefore, given a logical formula representing causal-
proof for plan correctness, an exact model-count method
such as Cachet (Sang et al. 2004) can be invoked to com-
pute the number of models with which the plan succeeds.
Using precondition/effect weights in computing robust-
ness: in order to relax the assumption of non-determinstic
incompleteness, the SAT boolean variables f2r¢, fadd fdel
can be associated with corresponding weights w?¢(f),
w24 (£), wldel(f) if provided, and a model-counting algo-
rithm (for instance, the one described in (Sang, Beame, and
Kautz 2005)) can be used to compute the weight of the logi-
cal formula, which immediately corresponds to the plan ro-
bustness.

Approximate Computation Approaches

The exact computation discussed above has exponential run-
ning time in the worst case. In some cases, it is enough to
know approximate robustness values of plans, for instance
in comparing two plans whose robustness are very differ-
ent. We now discuss two approximate approaches to esti-
mate plan robustness.

Using approximate model-counting algorithms: Given a
logical formula representing constraints on domain models
with which the plan 7 succeeds as described in the previous
section, in this approach an approximate model-counting
software, for instance the work by (Gomes, Sabharwal, and
Selman 2006) or (Wei and Selman 2005), can be used as a
black-box to approximate the number of domain models.
Robustness propagation approach: We next consider an
approach based on approximating robustness value of each
action in the plan, which can then be used later in generating
robust plans. At each action step ¢ (0 < i < n), we denote
M, (i) C Sp as the number of domain models with which
all actions ag, a1, ..., a; of m are executable, and therefore

R, (i) = |M,(i)|/2% as the robustness value of the action
step <. Similarly, we define the robustness value for any set
of propositions @) C F at level i, R,(Q,i) (i > 0), as
the ratio of Sp with which (ag, a1, ...,a;—1) succeeds and
p =T (Vp € Q) in the resulting state s;.

The purpose of this approach is to estimate the robustness
values R () through a propagation procedure, starting from
the dummy action ag with a note that R, (0) = 1. The result-
ing robustness value R, (n) at the last action step can then
be considered as an approximate robustness value of 7. In-
side the propagation procedure (Algorithm 1) is a sequence
of approximation steps: at each step i (1 < i < n), we esti-
mate the robustness values of individual propositions p € F'
and of the action a; (the procedure ApproxPro(p,:,) at
lines 6-7 and ApproxAct(i, 7) at line 8, respectively) using
those of the propositions and action at the previous step. To
obtain efficient computation, in the following discussion we
assume that the robustness value of a proposition set Q C F
can be approximated by a combination of robustness values
of p € @, and that the precondition and effect realizations of
different actions are independent (although two actions can
be instantiated from an action schema, and incompleteness
information is asserted at the schema level).

The procedure ApproxPro(p, i,) is presented in the al-
gorithm 2. When p ¢ s; (this includes the case where
p € Del(a;—1)), the robustness of p is set to 0 (line 4-5),
since p = F at its confirmed level C’Z, and yet cannot be
(possibly) added by any action ay, (Czi) <k <i—1). Now
we consider the case when p € s;. If p € Add(a;—1), then p
will be asserted in the state s; by a;_1 for all domain models
with which (ag, a1, ..., a;—1) succeeds, and hence its robust-
ness is that of a;_1 (line 6-7). When p is a possible additive
effect of a;_1 (line 8-13), we consider two cases:

ep & s,.1: p = T in the resulting state s; af-
ter (ag, ai, ...,a;—1) executes only for candidate domain
models with which (i) (ag, a1, ..., a;—1) succeeds and (ii)
p is realized as additive effect of a;_;. With the indepen-
dence assumption on precondition and effect realizations
of actions, the number of such models is § x [M (i —1)|,
therefore the robustness of p in the state s; is approxi-
mated with x R (i — 1) (line 9-10).

e p € s;_1: p=Tins; with the following two disjoint sets
of candidate domain models:

— Those models with which (i) (ag,a1,...,a;—1) suc-
ceeds, and (ii) p is additive effect of a;_;. Similar to
the case when p ¢ s;_1, the number of such models is
approximated with 1 x | M (i — 1)|.

— Those models with which (ag, a1, ..., a;—1) succeeds, p
is not additive effect of a;_1, and p = T in s;_1 dur-
ing execution. Equivalently, they are the models with
which (i) p and all propositions in S U Pre(a;_1) are
T at the step 7 — 1 (for any S C PreP(a;_1))—there
are R, ({p}USUPre(a;_1),i—1)x 2% such models,
and (ii) p is not additive effect of a;_1, all propositions
in S are realized as preconditions of a;_1. As these
realizations are assumed to be independent on actions
at levels before 7 — 1, the number of such models is
approximated with:

> sCPrep(ai 1) 3 X grreraor X Bx({p} U S U
Pre(a;_1),i—1) x 2K,

These approximate numbers of models in these two sets
are then used to estimate the robustness value of p (line
11-12).

With similar arguments, we approximate the robustness
of p in the state s; when p € s;, p is possible delete effect
of a;_; (line 14-16) and when p € s; but is neither possible
precondition nor possible effect of a;_1 (line 17).

The procedure ApproxAct(z, 7) (Algorithm 3) approx-
imates the robustness of the action a;, using the robust-
ness values of its (possible) sets of preconditions S U
Pre(a;) (S C PreP(a;)). Again, with the realization
independence assumption, for any set of realized precon-
ditions of a;, S C PreP(a;), here we approximate the
number of domain models for which a; is executable with
W X R.(SU Pre(a;),1).

Until now, we haven’t mentioned in our algorithms any
specific way to approximate the robustness value of a propo-
sition set @ C F from that of its individual propositions
p € Q. We discuss two possible options:

e One simple method is to assume that any two different
propositions p, g € @ are independent, in other words the
sets of domain models with which they are made T at the
step ¢ are drawn independently, and therefore R, (Q, %) =

[lpeq Bx({p},1).

e The interaction between propositions (Bryce and Smith
2006) can also be considered to have better approximate
value of R, (Q,). The interaction degree of proposition
pairs is now propagated through the actions of 7 (instead
of the plan graph), starting from the initial state where all
propositions are known to be independent, which is used
later together with robustness value of individual proposi-
tions p € @ in order to estimate R, (Q,).

Figure 2 shows an example of the robustness propagation
procedure, assuming that the robustness of a proposition set
is approximated with the product of the robustness of its
propositions. The robustness value of action step 2, for in-
stance, is computed by considering two cases: when p; is
realized as a precondition of as, and when it is not. There-
fore, R-(2) = 3 x R-({p1,p3},2) + 3 x R-({p3},2) =
$%(0.5x0.5)+1 x0.5 = 0.375. On the other hand, p; = T
at step 3 if it is realized as precondition of ag, or it must be
T at level 2 and ay is executable. Hence, R.({p1},3) =
3 % Ra(2) + 5 x 3 % (Re({p1} U {ps},2) + Rx({p1} U
{p1,p3},2)) = £ x0.375+1 x x(0.25+0.25) = 0.3125.
Note that if there is an action ag applying in the state s3, and
the precondition and effect realizations of two actions a,
a3 must be consistent in any domain models, our robustness
propagation treats them as two independent actions so that
the robustness of ag at level 3 can be approximated using ro-
bustness of propositions and the action at level 2 only (and
“forgetting” the action a1).

Generating Robust Plans

Given the robustness measure defined previously, in this sec-
tion we introduce our first attempt to develop a forward-
search approach to generating robust plans. To this end, we

A)

" 03125

)

0.37!

o

0.37

a

Figure 2: An example of robustness propagation.

Algorithm 1: Approximate plan robustness.

1 Input: The plan 7 = (ao, a1, ...,an);
2 Output: The approximate robustness value of 7;
3 begin
R-(0) =1,
for i =1..ndo
forp € Fdo
R ({p},1) « ApproxPro(p,i, 7);
R (i) < ApproxAct(i,);
9 Return R (n);
10 end

NN A

extend the FF planner (Hoffmann and Nebel 2001) by in-
corporating an exact model-counting procedure into its en-
forced hill climbing strategy to assess the robustness value
of both the current partial plan and relaxed plan, which then
is used together with the heuristic value in chosing a better
state.

Given a state s reached from the initial state s; through
a sequence of actions 7(s), and the corresponding relaxed
plan RP(s), we compute the number of candidate domain
models for which all actions in 7(s) are executable and
RP(s) remains valid relaxed plan by enforcing a set of con-
straints as follows. The set of constraints on the sequence
of actions 7 (s), called C(s), is constructed using the con-
straints C'1 - C4 above. The constraint set Crp(s) for
RP(s), on the other hand, is put together differently, re-
specting the fact that it may become invalid in the complete
domain D*: some realized precondition f € PreP(a) of
the action a € A,(t) at the level ¢ of the relaxed plan RP(s)
may no longer be supported by the (realized) additive effects
of any action in the relaxed plan at the previous levels. A re-
laxed plan is therefore considered more robust if it remains
valid in a larger number of candidate domain models of D*.
For each action a € A,(t) and f € PreP(a) such that f is
not an additive effect of any action at levels before ¢, we add
the following constraint into Crp(s):

\/ add
a/

o' €EAddPL 1 (f,t)

(Cb) e =

where AddPgj(f, 1) is the set of actions of the relaxed plan
at levels ¢ < t having f as a possible additive effect. The
union set of constraints Cx(s) U Crp(s) is then given to a
model-counting software to get the number of models, from
which the robustness value 7(s) is computed.

The procedure described aboved is applied during the en-
forced hill-climbing search for both the current state s; and
its descendant states sg4.s to assess the robustness values
r(s;) and 7(Sg4es). These are then used together with the

Algorithm 2: The procedure ApproxPro(p, i,) to ap-
proximate the robustness value of a proposition.

1 Input: The plan 7 = (ao, a1, ..., an); proposition p € F,
level i (1 <7 < n);

2 Output: The approximate robustness value of p at level i;

3 begin

4 if p & s; then

5 return 0;

6 ifp c Add(aifl) then

7 return R, (i — 1);

8 if p € AddP(a;—1) then

9 if p & s;_1 then

10 7 2 X Re(i—1);

1 else

12 T(—%XRW(i—l)—F%XmX

2osCprep(a;_y) Br({PYUSUPTe(ai—1),i—1);

13 return 7;
14 if p € DelP(a;—1) then
15 e g X Q\PTePl(az_l)\ X

Yoscprep(a; 1) Bx({PYUSU Pre(ai1),i—1);
16 return r;
17 return 42\Prepl<ai7—1)| X 2scprep(a;_p) Br({P}USU

Pre(a;—1),1—1);

18 end

Algorithm 3: The procedure ApproxAct(i,) to ap-
proximate the robustness value of an action.

1 Input: The plan 7 = (ag, a1, ..., an); level ¢ (1 < i < n);

2 Output: The approximate robustness value of action a;;

3 begin

4 YetUrN —rpopray X 2 5c prep(a,) B (S U Pre(as), i);
5 end

original FF’s heuristic values h(s) and h(S4es) in compar-
ing the two states. Specifically, we use these values simply
for breaking ties between two states s;, Sqes having similar
heuristic values: if |h(s;) — h(Sges)| < 9 then the state with
higher robustness value is considered better; otherwise the
better state is the one with better (i.e., smaller) h(s) value.

Empirical Evaluation: Preliminary Results

We have implemented our proposed approaches to find ro-
bust plans as described in the previous sections. In order to
compute the number of models of a set of constraints, we
exploit the Cachet software (Sang et al. 2004).

Partial domain generation: In order to test our approach
with the benchmark domains, we have built a program to
generate a partial domain model from a deterministic one.
To do this, we add N new propositions to each domain (as-
sumed false at the initial state) and make each action schema
incomplete with a probability pincompiete. We first generate
copies of each action schema a: a1, as, . . . ax, (for instance,
the copies F'ly,, Fly,, ..., Flyx for the Fly action schema
in the ZenoTravel domain), and then to make these actions
incomplete we randomly add min(py,. % |Pre(a)|, N) new
propositions into the possible precondition list of a with
a probability p,.. > 0, and do the same for its possible

add and possible delete lists (using pgq4q4, |Add(a)| and pge;,
|Del(a)| respectively). Each action schema may also in-
clude new propositions (randomly selected) as its additive
(delete) effects with a given probability pnew_add Pnew_del)-
This strategy ensures that the solution to problems in the new
domain exists when it is solvable in the original domain, and
a new plan with different robustness value can be generated
from another plan by replacing actions in the same original
schemas (e.g., F'ly; and Flys).

Analysis: We tested our approaches with three domains in
IPC-3: Rovers, Satellite and ZenoTravel. For each domain,
we first make 4 copies of each action schema, adding 5
new propositions, and randomly generating 3 different par-
tial domains using our generators with p;y,compiete = 1.0,
Ppre = Padd = Pdel = Pnew.add = Pnew.del = 0.5. In
order to test our Exact Model-Counting (EMC) approach,
we set § = 1. We compare the performance of the EMC
approach with the base-line approach, which runs the FF
planner on the partial domains, ignoring possible precondi-
tions and effects, in terms of the following main objectives:
(1) the robustness value of solution plans returned, (2) the
time taken by the search (including the time used by the
model-counting algorithm, Cachet, in the EMC approach).
The experiments were conducted using an Intel Core2 Duo
3.16GHz machine with 4Gb of RAM. For both approaches,
we search for a solution plan within the 30-minute time limit
for each problem.

Overall, we observe that the EMC approach is able to
improve the robustness of solution plans, compared to the
base-line FF. In particular, over all solvable problems of the
3 versions of each partial domain generated, the EMC ap-
proach returns more robust plans in 49/58 (84.48%) prob-
lems in Rovers domain, 33/54 (61.11%) in Satellite, and
35/60 (58.33%) in ZenoTravel; it returns less robust plans
than FF in 6/58 (10.34%) problems of in Rovers, 1/54
(1.85%) in Satellite, and 7/60 (11.67%) in ZenoTravel; and
the two approaches return the same plans in 13/54 (24.07%)
problems in Satellite domain and 18/60 problems (30%) in
ZenoTravel. However, the EMC approach fails to solve 3/58
(5.07%) problems in Rovers and 7/54 (12.96%) problems in
Satellite.

Figure 3(a) shows the relative plan robustness value gen-
erated by the two approaches in one of the three partial
versions of each domain. Among 19, 16 and 20 problems
of Rovers, Satellite and ZenoTravel (respectively) that are
solvable, EMC finds more robust plans than FF in 15/19
(78.94%) problems in Rovers domain, 9/16 (56.25%) prob-
lems in Satellite and 11/20 (55%) problems in ZenoTravel.
The search of EMC approach, however, may lead to a solu-
tion plan with lower robustness value: 4/19 (21.05%) prob-
lems in Rovers domain; and as mentioned above it could
also fail to find a solution: EMC fails in 4/16 (25%) prob-
lems in Satellite domain. One of the reasons for this some-
what counter-intuitive failure is that when EHC search in
EMC approach, enhanced with model-counting procedure,
fails to find a solution, there is not enough time remaining
for the standard best-first search (used also in base-line FF
approach) to find a solution. We also observe that if a plan
is found in this case, its quality is normally not better than
the one returned by the EHC of the FF planner.

Figure 3(b) shows the time spent by the two approaches

Plan P, Plan P,
P 7 14 p; 7 *h
/ f 5 \ / f \
EI R —E e @R E e

Figure 4: Example of plans with same risk, as defined in
Garland & Lesh model, but with different robustness values.

searching for plans. We observe that even though EMC can
improve the quality of plans, it can take much longer search
time in some problems where the total time to count the
number of models is high. In many problems, on the other
hands, the overall search time of the EMC approach is not
too expensive, compared to the base-line, and the solution
plan is also better in quality.

Related Work

The work most closely related to ours is that of Garland &
Lesh (2002). Although their paper shares the objective of
generating robust plans with respect to partial domain mod-
els, their notion of robustness is defined in terms of four
different types of risks, and only has tenuous heuristic con-
nections with likelihood of successful execution of the plan
(Figure 4). In contrast, we provide a more formal defini-
tion in terms of fraction of complete models under which the
plan succceeds. A recent extension by Robertson & Bryce
(2009) does focus on the plan generation in Garland & Lesh
model, by measuring and propagating risks over FF’s re-
laxed plans. Unfortunately, their approach still relies on the
same unsatisfactory formulation of robustness. The work by
Fox et al 2006 also explores robustness of plans, but their
focus is on temporal plans and their executability under un-
foreseen execution-time variations. They focus only on as-
sessing robustness, and do so with monte carlo probing tech-
niques.

Although we focused on a direct approach for generat-
ing robust plans, it is also possible to compile the robust
plan generation problem into a “conformant probabilistic
planning” problem (Bryce, Kambhampati, and Smith 2008).
Specifically, the realization of each possible precondition
and effect can be seen as being governed by an unobservable
random variable. This allows us to compile down model in-
completeness into initial state uncertainty. Finding a plan
with robustness p will then be equivalent to finding a prob-
abilistic conformant plan P that reaches goals with a proba-
bility p. As of this writing, we do not have definitive conclu-
sions on whether or not such a compilation method will be
competitive with direct methods that we are investigating.

Our work can also be categorized as one particular in-
stance of the general model-lite planning problem, as de-
fined in (Kambhampati 2007). Kambhampati points out
a large class of applications ranging from web-service to
work-flow management where model-lite planning is un-
avoidable due to the difficulty in getting a complete model.
While we focused on the problem of how to assess robust-
ness and generate robust plans with the given partial domain
model, in the long run, an agent should try to reduce the
model incompleteness through learning. As such, the work
on learning action models (e.g (Yang, Wu, and Jiang 2007;
Amir and Chang 2008) is also relevant to the general prob-
lem we address.

Rovers Satellite ZenoTravel
100 100 100
% 90 90
80 80 80
~ 70 70 70
S
= 60 60 60
@
o 50 50 50 -FF
@ w0 40 40 <EMC
2
S 30 30
g
20 20 20
10 10 10
0 0 0
0 2 4 6 8 10 12 14 16 18 20 2 4 6 8 10 12 14 16 18 20 0O 2 4 6 8 10 12 14 16 18 20
Problem Problem Problem
(a)
120
200 1000
100
800
& 150 80
2
g o 600
@ 100 BFF
o 400 +EMC
£ 40
s % 20 200
©
L)
n

0 2 4 6 8 10 12 14 16 18 20 2 4 6 8

Problem

Problem

(b)

20 0 2 4 6 8 10 12 14 16 18 20

Problem

Figure 3: The robustness of plans and search time in Rovers, Satellite and ZenoTravel.

Conclusion and Future Work

In this paper, we motivated the need for assessing and gen-
erating robust plans in the presence of partially complete
domain models. We presented a framework for represent-
ing partially complete domains models, where the domain
modeler can circumscribe the incompleteness in the do-
main through possible precondition/effect annotations. We
then developed a well-founded notion of plan robustness ,
showed how robustness assessment can be cast as a model-
counting problem over a causal SAT encoding of the plan,
and proposed an approximate approach based on robust-
ness propagation idea. Finally, we described an approach
for modifying FF so it can generate more robust plans. We
presented empirical results showing the effectiveness of our
approach.

We are investigating more sophisticated ways of assessing
plan robustness, considering to some extent the consistent
constraints between precondition and effect realizations of
actions to have a better trade-off between robustness accu-
racy and computation cost. We are also extending our plan
generation method to make its search more sensitive to ro-
bustness, taking into account the robustness values of actions
estimated from the approximate robustness assessment ap-
proach. We intend to do this by modifying the relaxed plan
extraction routine in FF so it is greedily biased towards more
robust heuristic completions of the current partial plan.
Acknowledgement: This research is supported in part by
ONR grants N00014-09-1-0017, N00014-07-1-1049 and the
NSF grant IIS-0905672.

References

Amir, E., and Chang, A. 2008. Learning partially observable
deterministic action models. Journal of Artificial Intelligence Re-
search 33(1):349-402.

Bryce, D., and Smith, D. 2006. Using Interaction to Compute
Better Probability Estimates in Plan Graphs. In ICAPS’10 Work-

shop on Planning Under Uncertainty and Execution Control for
Autonomous Systems. Citeseer.

Bryce, D.; Kambhampati, S.; and Smith, D. 2008. Sequential
monte carlo in reachability heuristics for probabilistic planning.
Artificial Intelligence 172(6-7):685-715.

Fox, M.; Howey, R.; and Long, D. 2006. Exploration of the
robustness of plans. In AAAL

Garland, A., and Lesh, N. 2002. Plan evaluation with incomplete
action descriptions. In Proceedings of the National Conference
on Artificial Intelligence, 461-467.

Gomes, C.; Sabharwal, A.; and Selman, B. 2006. Model count-
ing: A new strategy for obtaining good bounds. In Proceedings
of the National Conference on Artificial Intelligence, volume 21,
54. Menlo Park, CA; Cambridge, MA; London; AAAI Press;
MIT Press; 1999.

Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. Journal of Artificial
Intelligence Research (JAIR) 14:253-302.

Kambhampati, S. 2007. Model-lite planning for the web age
masses: The challenges of planning with incomplete and evolving
domain theories. In AAAL

Mali, A., and Kambhampati, S. 1999. On the utility of plan-space
(causal) encodings. In AAAI, 557-563.

Robertson, J., and Bryce, D. 2009. Reachability heuristics for
planning in incomplete domains. In ICAPS’09 Workshop on
Heuristics for Domain Independent Planning.

Sang, T.; Beame, P.; and Kautz, H. 2005. Solving Bayesian
networks by weighted model counting. In Proc. of AAAI-05.

Sang, T.; Bacchus, F.; Beame, P.; Kautz, H.; and Pitassi, T. 2004.
Combining component caching and clause learning for effective
model counting. In Seventh International Conference on Theory
and Applications of Satisfiability Testing. Citeseer.

Wei, W., and Selman, B. 2005. A new approach to model count-
ing. Lecture Notes in Computer Science 3569:324-339.

Yang, Q.; Wu, K.; and Jiang, Y. 2007. Learning action models
from plan traces using weighted max-sat. Artificial Intelligence
Journal (AlJ) 171:107-143.

