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Abstract

This paper challenges the prevailing pessimism about the
scalability of partial order planning (POP) algorithms by
presenting several novel heuristic control techniques that
make them competitive with the state of the art plan syn-
thesis algorithms. Our key insight is that the techniques
responsible for the efficiency of the currently success-
ful planners–viz., distance based heuristics, reachability
analysis and disjunctive constraint handling–can also be
adapted to dramatically improve the efficiency of the POP
algorithm. We implement our ideas in a variant of UCPOP
called REPOP1. Our empirical results show that in ad-
dition to dominating UCPOP, REPOP also convincingly
outperforms Graphplan in several “parallel” domains. The
plans generated by REPOP also tend to be better than
those generated by Graphplan and state search planners
in terms of execution flexibility.

1 Introduction
Most recent strides in scaling up planning have centered
around two dominant themes - heuristic state space planners,
exemplified by UNPOP[20], HSP-R[3], and CSP-based plan-
ners, exemplified by Graphplan[2] and SATPLAN [14] . This
is in stark contrast to planning research up to five years ago,
when most of the efforts were focused on scaling up partial or-
der planners[19; 27; 15; 23; 11; 13]. Despite such efforts, the
partial order planners continue to be extremely slow and are
not competitive with the fastest state search-based and CSP-
based planners. Indeed, the recent advances in plan synthe-
sis have generally been (mis)interpreted as establishing the
supremacy of state space and CSP-based approaches over POP
approaches.

Despite its current scale-up problems, partial order planning
remains attractive over state space and CSP-based planning for
several reasons. The least commitment inherent in partial order
planning makes it one of the more open planning frameworks.
This is evidenced by the fact that most existing architectures
for integrating planning with execution, information gather-
ing, and scheduling are based on partial order planners. In
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1UCPOP [27]!UNPOP [20]! REPOP. REPOP’s source code
is available from http://rakaposhi.eas.asu.edu/repop.html.

[25], Smith argues that POP-based frameworks offer a more
promising approach for handling domains with durative ac-
tions, and temporal and resource constraints as compared to
other planning approaches. In fact, most of the known im-
plementations of planning systems capable of handling tem-
poral and durative constraints –including IxTET [6] as well
as NASA’s RAX [10]–are based on the POP algorithms. Even
for simpler planning domains, partial order planners search for
and output partially ordered plans that offer a higher degree of
execution flexibility. In contrast, none of the known state space
planners can find parallel plans efficiently [8], and CSP plan-
ners such as Graphplan only generate a very restricted class of
parallel plans (see Section 5).

The foregoing motivates the need for improving the effi-
ciency of POP algorithms. We show in this paper that the
insights and techniques responsible for the advances in plan
synthesis made in the recent years in the context of state-based
and CSP-based planners are largely adaptable to POP algo-
rithms. In particular, we present novel methods for adapting
distance based heuristics, reachability analysis and disjunctive
constraint processing techniques to POP algorithms. Distance-
based heuristics are used as the basis for ranking partial plans
and as flaw selection methods. The other two techniques are
used for efficiently enforcing the consistency of the partial
plans–by detecting implicit conflicts and resolving them.

Our methods help scale up POP algorithms dramatically–
making them competitive with respect to state space planners,
while preserving their flexibility. We present empirical studies
showing that REPOP, a version of UCPOP [27] enhanced by
our ideas, can perform competitively with other existing ap-
proaches in many planning domains. In particular, REPOP
appears to scale up much better than Graphplan in the paral-
lel domains we tried. More importantly, the solutions REPOP
generates are generally shorter in length, and provide signifi-
cantly more execution flexibility [25].

The paper is organized as follows. In the next section we
will briefly review the basics of the POP algorithm. Section 3
describes how distance based heuristics can be adapted to rank
partial plans. Section 4 shows how unsafe links flaws can be
generalized and resolved efficiently. Section 5 reports empir-
ical evaluations of the techniques that have been described.
Section 6 discusses related work, and Section 7 summarizes
the contributions of this work.

2 Background on Partial Order Planning
In this paper we consider the simple STRIPS representation of
classical planning problems, in which the initial world state I ,



goal state G and the set of deterministic actions 
 are given.
Each action a 2 
 has a precondition list and an effect list,
denoted respectively as Prec(a); Eff(a). The planning prob-
lem involves finding a plan that when executed from the initial
state I will achieve the goal G.

A tutorial introduction to POP algorithms can be found in
[27]. We will provide a brief review here. Most POP algo-
rithms can be seen as searching in the space of partial plans. A
partial plan is a five-tuple: P = (A;O;L;OC;UL), where
A� 
 is a set of (ground) actions,2 O is a set of ordering
constraints over A, and L is a set of causal links over A.3 A
causal link is of the form ai

p
�! aj , and denotes a commit-

ment by the planner that the precondition p of action a j will
be supported by an effect of action a i. OC is a set of open con-
ditions, and UL is a set of unsafe links. An open condition is
of the form (p; a), where p 2 Prec(a) and a 2 A, and there is
no causal link b

p
�!a 2 L. Loosely speaking, the open condi-

tions are preconditions of actions in the partial plan which have
not yet been achieved in the current partial plan. A causal link
ai

p
�!aj is called unsafe if there exists an action ak 2 A such

that (i) :p 2 Eff(ak) and (ii) O[fai � ak � ajg is consis-
tent. In such a case, ak is also said to threaten the causal link
ai

p
�! aj . Open conditions and unsafe links are also called

flaws in the partial plan. Therefore a solution plan can be seen
as a partial plan with no flaws (i.e., OC = ; and UL = ;).

The POP algorithm starts with a null partial plan P and
keeps refining it until a solution plan is found. The null par-
tial plan contains two dummy actions a0 � a1 where the
preconditions of a1 correspond to the top level goals of the
problem, and the effects of a0 correspond to the conditions in
the initial state. The null plan has no causal links or unsafe
link flaws, but has open condition flaws corresponding to the
preconditions of a1 (top level goals).

A refinement step involves selecting a flaw in the partial
plan P , and resolving it, resulting in a new partial plan. When
the flaw chosen is an open condition (p; a), an action b needs
to be selected that achieves p. b can be a new action in 
, or
an action that is already in A. The sets OC, O, L and UL also
need to be updated with respect to b. Secondly, when the flaw
chosen is an unsafe link ai

p
�! aj that is threatened by action

ak, it can be repaired by either promotion, i.e adding ordering
constraint ak � ai into O, or demotion, i.e adding aj � ak
into O.

The efficiency of POP algorithms depends critically on the
way partial plans are selected from the search queue, and the
strategies used to select and resolve the flaws. In Section 3
we present several distance-based heuristics for ranking partial
plans in the search queue. Section 4 introduces the disjunctive
constraint representation for efficiently handling unsafe link
flaws, and reachability analysis for generalizing the notion of
unsafe links to include implicit conflicts in the plan.

3 Heuristics for ranking partial plans
In choosing a plan from the search queue for further refine-
ment, we are naturally interested in plans that are likely to
lead to a solution with a minimum number of refinements

2Although partial order planners are capable of handling partially
instantiated action instances, we restrict our attention to ground action
instances.

3Strictly speakingA should be seen as a set of “steps”, where each
step is mapped to an action instance [15].

(flaw resolutions). As we handle the unsafe links in a signif-
icantly different way than standard UCPOP (see Section 4),
the only remaining category of flaws to be resolved are open
condition flaws. Consequently one way of ranking plans in
the search queue is to estimate the minimum number of new
actions needed to resolve all the open condition flaws.

Definition 1 (h*) Given a partial plan P , let h�(P) denote
the minimum number of new actions that need to be added to
P to make it a solution plan.

h�(P) can be seen as the number of actions that, when exe-
cuted from the initial state I in some order, will achieve the
set of subgoals S = fpj(p; a) 2 OCg. In this sense, this is
similar to estimating the number of actions needed to achieve
a state from the given initial state in state search planners [3;
21], but for two significant differences: (i) the propositions in
S are not necessarily in the same world state and (ii) the set
of actions that achieve S cannot conflict with the set of actions
and causal links already present in P .

A well-known heuristic for estimating h� involves simply
counting the number of open conditions in the partial plan [13].

Heuristic 1 (Open conditions heuristic) hoc(P)= jOCj

This estimate is neither admissible nor informed in many
domains, because it treats every open condition equally. In
particular, it is ineffective when some open conditions require
more actions to achieve than others.

We would like to have a closer estimate of h� function with-
out insisting on admissibility. To do this, we need to take better
account of subgoal interactions[21]. Accounting for the neg-
ative interactions in estimating h� can be very tricky, and is
complicated by the fact that the subgoals in S may not be in
the same state. Thus we will start by ignoring the negative in-
teractions. This has three immediate consequences: (i) the set
of unsafe links UL becomes empty. (ii) the actions needed in
achieving a set of subgoals S will have no conflicts with the set
of actions A and and the causal links L already present in P .
and (iii) a subgoal p once achieved from the initial state can
never become untrue. Given these consequences, it does not
matter much that the subgoals in S are not necessarily present
in the same world state, since the minimum number of actions
needed for achieving such a set of subgoals in any given tem-
poral ordering is the same as the minimum cost of achieving a
state comprising all those subgoals.

The foregoing justifies the adaptation of many heuristic es-
timators for ranking the goodness of states in state search
planners. Most of the early heuristic estimators used in
state search not only ignore negative interactions, but also
make the stronger assumption of subgoal independence [3;
20]. A few of the recent ones, [21; 9] however account for
the positive interactions among subgoals (while still ignoring
the negative interactions). It is this latter class of heuristics that
we focus on for use in partial order planning. Specifically, to
account for the positive interactions, we exploit the ideas for
estimating the cost of achieving a set of subgoals S using a
serial planning graph.4

Specifically, we build a planning graph starting from the ini-
tial state I . Let lev(p) be the index of the level in the planning
graph that a proposition p first appears, and lev(S) be the index
of the first level at which all propositions in S appear. Let pS
be the proposition in S such that lev(pS) = maxpi2S lev(pi).

4We assume that the readers are familiar with the planning graph
data structure, which is used in Graphplan algorithm[2].



pS will possibly be the last proposition in S that is achieved
during execution. Let aS be an action in the planning graph
that achieves pS in the level lev(pS). We can achieve pS by
adding aS to the plan. Introduction of aS changes the set of
goals to be achieved to S 0 = S + Prec(aS) � Eff(aS). We
can express the cost of S in terms of the cost of aS and S 0:

cost(S) := cost(aS)+ cost(S+Prec(aS)�Eff(aS)) (1)

where cost(aS) = 1 if aS =2 A and 0 otherwise. Since
lev(Prec(aS)) is strictly smaller than lev(pS), recursively ap-
plying Equation 1 to its right hand side will eventually express
cost(S) in terms of cost(I) (which is zero), and the costs of
actions aS . The process is quite efficient as the number of ap-
plications is bounded by lev(S).

Heuristic 2 (Relax heuristic) hrelax(P) = cost(S), where
S = fpj(p; a) 2 OCg, and cost(S) is computed using the
recurrence relation 1.

Given such a heuristic estimate, plans in the search queue
are ranked with the evaluation function: f(P)= jAj+w �
h(P). The parameter w is used to increase the greediness of
the heuristic search and is set to 5 by default.

4 Enforcing consistency of partial plans
The consistency of a partial plan is ensured through the han-
dling of its unsafe links. In this section we describe two ways
of improving this phase. The first involves posting disjunctive
constraints to resolve unsafe links. The second involves detect-
ing implicit conflicts (unsafe links) using reachability analysis.

4.1 Disjunctive representation of ordering
constraints

Normally, an unsafe link ai
p
�! aj that is in conflict with

action ak is resolved by either promotion or demotion, that
is, splitting the current partial plan into two partial plans, one
with the constraint ak � ai, and the other with the constraint
aj � ak. A problem with this premature splitting is that a
single failing plan gets unnecessarily multiplied into many de-
scendant plans poisoning the search queue significantly. A
much better idea, first proposed in [16], is to resolve the un-
safe link by posting a disjunctive ordering constraint that cap-
tures both the promotion and demotion possibilities, and incre-
mentally simplify these constraints by propagation techniques.
This way, we can detect many failing plans before they get se-
lected for refinement.

Specifically, an unsafe causal link ai
p
�! aj that is in con-

flict with action ak can be resolved by simply adding a dis-
junctive ordering constraint (ak � ai)_ (aj � ak) to the plan.

We use the following procedure for simplifying the disjunc-
tive orderings. Whenever an open condition (p; a) is selected
and resolved by either adding a new action or reusing an action
b in the partial plan, we add a new ordering constraint b � a
to O, followed by repeated application of the constraint prop-
agation rules below:

� (a1 � a2) 2 O^(a2 � a3) 2 O) O O [(a1 � a3)

� (a1 � a2) 2 O ^(a2 � a1) 2 O ) False

� (a1 � a2) 2 O^(a2 � a1 _ a3 � a4) 2 O )
O  O [(a3 � a4)
O  O �(a2 � a1 _ a3 � a4)

The first two propagation rules are already done as part of
POP algorithm to ensure the transitive consistency of ordering
constraints. The third rule is a unit propagation rule over order-
ing constraints. This propagation both reduces the disjunction
and detects infeasible plans ahead of time. When all the open
conditions have already been established and there are still dis-
junctive constraints left in the plan, the remaining disjunctive
constraints are then split into the search space [16].

4.2 Detecting and Resolving implicit conflicts
through reachability analysis

Although the unsafe link detection and resolution steps in the
POP algorithm are meant to enforce consistency of the par-
tial plan, often times they are too weak to detect implicit in-
consistencies. In particular, the procedure assumes that a link
ai

p
�! aj is threatened by an action a only if a has an ef-

fect :p. Often a might have an effect q (or precondition r)
such that no legal state can have p and q (or p and r) true to-
gether. Detecting and resolving such implicit interactions can
be quite helpful in weeding out inconsistent partial plans from
the search space.

In order to do implicit conflict detection as described above,
we need to have (partial) information about the properties of
reachable states. Interestingly, such reachability information
has played a significant role in the scale-up of state space plan-
ners, motivating the development of procedures for identify-
ing mutex constraints, state invariants and memos etc. [2; 7;
5] (we shall henceforth use the term mutex to denote all these
types of reachability information). One simple way of produc-
ing reachability information is to expand Graphplan’s planning
graph structure, armed with mutex propagation procedure [2].
The mutexes present at the level where the graph levels off are
state invariants [21].

Exploiting the reachability information to check consistency
of partial plans requires identifying the feasibility of the world
states that any eventual execution of the partial plan must pass
through. Although partial order plans normally do not have
explicit state information associated with them, it is neverthe-
less possible to provide partial characterization of the states
their execution must pass through. Specifically, we define the
general notion of cutsets as follows:

Definition 2 (Cutsets) Pre- and post- cutsets, C� and C+ of
an action ak in a planP are defined as C�(ak) = Prec(ak)[
L(ak), and C+(ak) = Eff(ak) [ L(ak), where L(ak) is the
set of all conditions p such that there exists a link ai

p
�! aj

where ai is necessarily before ak, and aj is necessarily after
ak

The pre- and post-cutsets of an action can be seen as partial
description of world states that must hold before and after the
action ak. If these partial descriptions violate the properties
of the reachable states, then clearly the partial plan cannot be
refined into an executable solution.

Proposition 1 If there exists a cutset that contains a mutex,
then the partial plan is provably invalid and can be pruned
from the search queue.

While this proposition allows us to detect and prune incon-
sistent plans, it is often inefficient to wait until the plan be-
comes inconsistent. Detecting and resolving implicit conflicts
is essentially a more active approach that prevents a partial
plan from becoming inconsistent by this proposition. Specifi-
cally, we generalize the notion of unsafe links as follows:



Definition 3 An action ak is said to have a conflict with a
causal link ai

p
�! aj if (i) O[fai � ak � ajg is consistent

and (ii) either Prec(ak) [ fpg or Eff(ak) [ fpg contains a
mutex. A causal link ai

p
�! aj is unsafe if it has a conflict

with some action in the partial plan.

These notions of conflict and unsafe link subsume the origi-
nal notions of threat and unsafe link introduced in Section 2,
because :p 2 Eff(ak) also implies that Eff(ak) [ fpg is
a mutex. Therefore the generalized notion of unsafe links re-
sult in detecting a larger number of (implicit) conflicts (unsafe
links) present in a partial plan.

Once the implicit conflicts are detected, they are resolved by
posting disjunctive orderings as described in the previous sub-
section. As we shall see later, the combination of disjunctive
constraints and detection of implicit conflicts through reacha-
bility information leads to quite robust improvements in plan-
ning performance.

5 Empirical Evaluation
We have implemented the techniques introduced in this paper
on top of UCPOP[27], a popular partial order planning algo-
rithm. We call the resulting planner REPOP. As mentioned in
Section 2, both UCPOP and REPOP are given ground action
instances, and thus neither of them have to deal with variable
binding constraints. Both UCPOP and REPOP use the LIFO
as the order in which open condition flaws are selected for res-
olution. Our empirical studies compare REPOP to UCPOP as
well as Graphplan[2] and AltAlt[21], which represent two cur-
rently popular approaches (CSP search and state space search)
in plan synthesis. All these planners are written in Lisp. In
the case of Graphplan, we used the Lisp implementation of the
original algorithm, enhanced with EBL and DDB capabilities
[17]. AltAlt [22] is a state-of-the-art heuristic regression state
search planner, that has been shown to be significantly faster
than HSP-R [3]. The empirical studies are conducted on a 500
MHz Pentium-III with 256MB RAM, running Linux. The test
suite of problems were taken from several benchmark planning
domains from the literature. Some of these, including gripper,
rocket world, blocks world and logistics are “parallel” domains
which admit solutions with loosely ordered steps, while others,
such as grid world and travel world admit only serial solutions.
Efficiency of Synthesis: In Table 1, we report the total run-
ning times for the REPOP algorithm, including the prepro-
cessing time for computing the mutex constraints (using bi-
level planning graph structures [18]). Table 1 shows that RE-
POP exhibits dramatic improvements from its base planner,
UCPOP, in gripper, logistics and rocket domains–all of which
are “parallel domains.” For instance, REPOP is able to com-
fortably generate plans with up to 70 actions in logistics and
gripper domains, a feat that has hither-to been significantly be-
yond the reach of partial order planners. More interesting is the
comparison between REPOP and the non-partial order plan-
ners. In the parallel domains, REPOP manages to outperform
Graphplan. Although REPOP still trails state search planners
such as AltAlt, these latter planners can only generate serial
plans.

Despite the impressive performance of the REPOP over par-
allel domains, it remains ineffective in “serial” domains in-
cluding the grid, 8-puzzle and travel world, which admit only
totally ordered plan solutions. We suspect that part of the rea-
son for this may be the inability of our heuristics to adequately
account for negative interactions. Indeed, we found that the

normal open conditions heuristic hoc is better than our relaxed
heuristic on these problems. It may also be possible that the
least commitment strategies employed by the POP algorithms
become a burden in serial domains, since eventually all actions
need to be ordered with respect to each other. One silverlining
in this matter is that most of the domains where POP algo-
rithms are supposed to offer advantages are likely to be paral-
lel domains from the planner’s perspective–either because the
actions will have durations (making the serial/parallel distinc-
tion moot) or because we want solution output by the planner
to offer some degree of scheduling flexibility.
Plan Quality: We also evaluated the quality of plans gener-
ated by REPOP, since plan quality is seen as an important is-
sue favoring POP algorithms. To quantify the quality of plans
generated, we consider three metrics: (i) the cumulative cost of
the actions included in the plan (ii) the minimum time needed
for executing the plan and (iii) the scheduling (execution) flex-
ibility of the plan.

For actions with uniform cost, the action cost is equal to
the number of actions in the plan. Table 1 shows that RE-
POP produces plans with lower action cost compared to both
Graphplan and AltAlt in all but one problem (rocket-ext-b).

We measure the minimum execution time in terms of the
makespan of the plan, which is loosely defined as the mini-
mum number of time steps needed to execute the plan (tak-
ing the possibility of concurrent execution into consideration).
Makespan for the plans produced by Graphplan is just the
number of steps in the plan, while the makespan for plans
produced by AltAlt (and other state space planners) is equal
to the number of actions in the plan. For a partially ordered
plan P generated by REPOP, the makespan is simply the
length of the longest path between a0 and a1. Specifically,
makespan(P ) = maxa2P est(a), where est(a) is the earli-
est start time step for the (instantaneous) action a. To compute
est, we can start by initializing est to 0 for all a 2 P . Next, we
repeatedly update them until fixpoint using the following rule:
For all (ai � aj) 2 O, est(aj) := maxfest(aj); 1+est(ai)g.
Table 1 shows that the solution plans generated by REPOP are
highly parallel, since the makespans of these plans are signif-
icantly smaller than the total number of actions. Graphplan’s
solutions have smaller makespans in several problems, but at
the expense of having substantially larger number of actions.

a1

a2 a4

a3a0

P1

ainf

(a) A parallel plan gen-
erated by Graphplan

a1

a2 a4

a3a0

P2

ainf

(b) A partially ordered
plan

Figure 1: Example illustrating the execution flexibility of partially
ordered plans over (Graphplan’s) parallel plans.

Finally, we measure the execution flexibility of a plan in
terms of the number of actions in the plan that do not have
any precedence relations among them. The higher this mea-
sure, the higher the number of orders in which a plan can be
executed (“scheduled”). Figure 1 illustrates a parallel plan P1

and a partially ordered plan P2, which are generated by Graph-
plan and REPOP, respectively. Both plans have 4 actions and
a makespan value of 2, but P2 is noticeably more flexible than



Problem UCPOP REPOP Graphplan AltAlt
(time) Time #A/ #S #flex Time #A/ #S #flex Time #A

gripper-8 – 1.01 21/ 15 .57 66.82 23/ 15 .69 .43 21
gripper-10 – 2.72 27/ 19 .59 47min 29/ 19 .71 1.15 27
gripper-12 – 6.46 33/ 23 .61 – – – 1.78 33
gripper-20 – 81.86 59/ 39 .68 – – – 15.42 59

rocket-ext-a – 8.36 35/ 16 2.46 75.12 40/ 7 7.15 1.02 36
rocket-ext-b – 8.17 34/ 15 7.29 77.48 30/ 7 4.80 1.29 34

logistics.a – 3.16 52/ 13 20.54 306.12 80/ 11 6.58 1.59 64
logistics.b – 2.31 42/ 13 20.0 262.64 79/ 13 5.34 1.18 53
logistics.c – 22.54 50/ 15 16.92 – – – 4.52 70
logistics.d – 91.53 69/ 33 22.84 – – – 20.62 85

bw-large-a(9) 45.78 (5.23) – (8/ 5) – (2.75) – 14.67 11/4 2.0 4.12 9
bw-large-b(11) – (18.86) – (11/ 8) – (3.28) – 122.56 18/ 5 2.67 14.14 11
bw-large-c(15) – (137.84) – (17/ 10) – (5.06) – – – – 116.34 19

travel1 149.74 (4.32) – (9/9) – (0.0) – 0.32 9/ 9 0.0 0.53 9
simple-grid1 56.40 (0.0) – (6/ 6) – (0.0) – 0.42 6/ 6 0.0 1.48 6
simple-grid2 – (2.43) – (10/ 10) – (0.0) – 0.95 10/ 10 0.0 1.58 10
simple-grid3 – – – – 3.96 16/ 16 0.0 15.12 16

Table 1: “Time” shows total running times in cpu seconds, and includes the time for any required preprocessing. Dashed entries denote
problems for which no solution is found in 3 hours or 250MB. Parenthesized entries (for blocks world, travel and grid domains) indicate the
performance of REPOP when using hoc heuristic. #A and #S are the action cost and time cost respectively of the solution plans. “flex” is the
execution flexibility measure of the plan (see below).

P1, since P1 implies ordering constraints such as a1 � a4 and
a2 � a3, but P2 does not. To capture this flexibility, we de-
fine, for each action a, flex(a) as the number of actions in
the plan that do not have any (direct or indirect) ordering con-
straint with a. flex(P ) is defined as the average value of flex
over all the actions in the plan. It is easy to see that for a serial
plan P , 8a2Pflex(a) = 0, and consequently flex(P ) = 0.
In our example in Figure 1, flex(a) = 1 for all a in P1,
and flex(a) = 2 for all a in P2. Thus, flex(P1) = 1 and
flex(P2) = 2. It is easy to see that P2 can be executed in
more ways than P1. Table 1 reports the flex() value for the
solution plans. As can be seen, plans generated by REPOP
have substantially larger average values of flex than Graph-
plan in blocks world and logistics, and similar values in grip-
per. Graphplan produces a more flexible plan in only one prob-
lem in the rocket domain.

Problem UCPOP +CE +HP +HP+CE

gripper-8 * 6557/ 3881 * 1299/ 698
gripper-10 * 11407/ 6642 * 2215/ 1175
gripper-12 * 17628/ 10147 * 3380/ 1776
gripper-20 * * * 11097/ 5675

rocket-ext-a * * 30110/ 17768 7638/ 4261
rocket-ext-b * * 85316/ 51540 28282/ 16324

logistics.a * * 411/ 191 847/ 436
logistics.b * * 920/ 436 542/ 271
logistics.c * * 4939/ 2468 7424/ 4796
logistics.d * * * 16572/ 10512

Table 2: Ablation studies to evaluate the individual effectiveness
of the new techniques: heuristic for ranking partial plans (HP) and
consistency enforcement (CE). Each entry shows the number of par-
tial plans generated and expanded. Note that REPOP is essentially
UCPOP with HP and CE. (*) means no solution found after generat-
ing 100,000 nodes.

Before ending the discussion on plan quality, we should
mention that it is possible to use post-processing techniques
to improve the quality of plans produced by state-space and
CSP-based planners. However, such post-processing, in addi-
tion to being NP-hard in general [1], does not provide a satis-
factory solution for online integration of the planner with other
modules such as schedulers and executors [6; 25].

Ablation Studies: We now evaluate the individual effective-
ness of each of the acceleration techniques, viz., heuristic func-
tions for ranking partial plans (HP), and consistency enforce-
ment (CE).Table 2 shows the number of partial plans generated
and expanded in the search when each of these techniques is
added into the original UCPOP. We restrict our focus to the
parallel domains where REPOP seems to offer significant ad-
vantages.

In the logistics and rocket domains, the use of hrelax heuris-
tic accounts for the largest fraction of the improvement from
UCPOP. Interestingly, hrelax fails to help scale up UCPOP
even on very small problems in the gripper domain. We found
that the search spends most of the time exploring inconsis-
tent partial plans for failing to realize that a left or right grip-
per can carry at most one ball. This problem is alleviated
by consistency enforcement (CE) techniques through detection
and resolution of implicit conflicts (e.g. the conflict between
carry(ball1; left) and carry(ball2; left)). As a result, RE-
POP can comfortably solve large gripper problems, such as
gripper-20.

Among the consistency enforcement techniques, both
reachability analysis and disjunctive constraint representation
appear to complement each other. For instance, in problem lo-
gistics.d, if only reachability analysis is used with the heuristic
hrelax, a solution can be found after generating 255K nodes.
When disjunctive representation is also used, the number of
generated nodes is reduced by more than 15 times to 16K.

6 Related Work
Several previous research efforts have been aimed at acceler-
ating partial order planners (c.f. [11; 12; 13; 16; 23; 24; 6;
4]). While none of these techniques approach the current level
of performance offered by REPOP, many important ideas sep-
arately introduced in these previous efforts are either related to
or are complementary to our techniques. IxTeT [6] uses dis-
tance based heuristic estimates to select among the possible
resolutions of a given open condition flaw (although no eval-
uation of the technique is provided). It is interesting to note
that IxTeT’s use of distance based heuristics precedes their



independent re-discovery in the context of state-search plan-
ners by McDermott [20] and Bonet and Geffner [3]. In [4],
Bylander describes the use of a relaxation heuristic based on
linear planning for POP; it however seems not to be very ef-
fective. The idea of postponing the resolution of unsafe links
by posting disjunctive constraints has been pursued by Smith
and Peot in [23] as well as by Kambhampati and Yang in [16].
Our work shows that the effectiveness of this idea is enhanced
significantly by generalizing the notion of conflicts to include
indirect conflicts. The notion of action-proposition mutexes
defined in Smith and Weld’s work on temporal graphplan [26]
is related to our notion of indirect conflicts introduced in Sec-
tion 4. Finally, there is a significant amount of work on flaw
selection strategies (e.g., the order in which open condition
flaws are selected to be resolved) [11] that may be fruitfully
combined with REPOP. The techniques for recognizing and
suspending recursion (“looping”) during search may also make
a useful addition to REPOP [24].

7 Conclusion and Future Work
The successes in scaling up classical planning using CSP
and state space search approaches have generally been
(mis)interpreted as a side-swipe on the scalability of partial
order planning. Consequently, in the last five years, work on
POP paradigm has dwindled down, despite its known flexi-
bility advantages. In this paper we challenged this trend by
demonstrating that the very techniques that are responsible for
the effectiveness of state search and CSP approaches can also
be exploited to improve the efficiency of partial order plan-
ners dramatically. By applying the ideas of distance based
heuristics, disjunctive representations for planning constraints
and reachability analysis, we have achieved an impressive per-
formance for a partial order planner, called REPOP, across a
number of “parallel” planning domains. Our empirical stud-
ies show that not only does REPOP convincingly outperform
Graphplan in parallel domains, the plans generated by REPOP
have more execution flexibility. This is very interesting for two
reasons. First of all, most of the real-world planning domains
tend to have loose ordering among actions. Secondly, the abil-
ity for generating loosely ordered plans is very important in hy-
brid methods that involve on-line integration of planning with
scheduling.

There are several avenues for extending this work. To begin
with, our partial plan selection heuristics do not take negative
interactions into account. This may be one reason for the un-
satisfactory performance of REPOP in serial domains. One
way to account for the negative interactions, that we are con-
sidering currently, involves using the partial state information
provided by the pre- and post-cutsets of actions. Our work
on AltAlt [22] suggests that the cost of achieving these par-
tial states can be quantified in terms of the level in the plan-
ning graph at which the propositions comprising these states
are present without any mutex relations. Another idea we are
pursuing is to use n-ary state invariants (such as those detected
in [5]) to detect and resolve more indirect conflicts in the plan.
Finally, a more ambitious extension that we are pursuing in-
volves considering more general versions of POP algorithms–
including those that handle partially instantiated actions, as
well as actions with conditional effects and durations.
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