
To appear in Proc. Principles of Knowledge Rep. and Reasoning (KRR), May 1994

Refinement Search as a Unifying Framework for analyzing Planning Algorithms

Subbarao Kambhampati�
Department of Computer Science and Engineering
Arizona State University, Tempe, AZ 85287-5406

Email: rao@asu.edu

Abstract

Despite the long history of classical planning,
there has been very little comparative analysis of
the performance tradeoffs offered by the multitude
of existing planning algorithms. This is partly due
to the many different vocabularies within which
planning algorithms are usually expressed. In this
paper, I show that refinement search provides a
unifying framework within which various planning
algorithms can be cast and compared. I will provide
refinement search semantics for planning, develop
a generalized algorithm for refinement planning,
and show that all planners that search in the space
of plans are special cases of this algorithm. I will
then show that besides its considerable pedagogical
merits, the generalized algorithm also (i) allows us
to develop a model for analyzing the search space
size, and refinement cost tradeoffs in plan space
planning, (ii) facilitates theoretical and empirical
analyses of competing planning algorithms and
(iii) helps in synthesizing new planning algorithms
with more favorable performance tradeoffs. I will
end by discussing how the framework can be
extended to cover other planning models (e.g.
state-space, hierarchical), and richer behavioral
constraints.

1 Introduction

The idea of generating plans by searching in the space of
(partially ordered or totally ordered) plans has been around
for almost twenty years, and has received a lot of formal-
ization in the past few years. Much of this formalization
has however been limited to providing semantics for plans
and actions, and proving soundness and completeness results
for planning algorithms. There has been very little effort
directed towards comparative analysis of the performance
tradeoffs offered by the multitude of plan-space planning

�This research is supported in part by an NSF Research Initi-
ation Award IRI-9210997, and ARPA/Rome Laboratory planning
initiative under grant F30602-93-C-0039. Special thanks to David
McAllester for many enlightening (e-mail) discussions on refine-
ment search, and Bulusu Gopi Kumar for critical comments.

algorithms.1 Indeed, there exists a considerable amount of
disagreement and confusion about the role and utility of
even such long-standing concepts as ‘‘goal protection’’, and
‘‘conflict resolution’’ -- not to mention the more recent ideas
such as ‘‘systematicity.’’

An important reason for this state of affairs is the seem-
ingly different vocabularies and/or frameworks within which
many of the algorithms are usually expressed. The lack of
a unified framework for viewing planning algorithms has
hampered comparative analyses and understanding of de-
sign tradeoffs, which in turn has severely inhibited fruitful
integration of competing approaches.

In this paper, I shall show that viewing planning as a re-
finement search provides a unified framework within which
the complete gamut of plan-space planning algorithms can
be effectively cast and compared.2 I will start by character-
izing planning as a refinement search, and provide semantics
for partial plans and plan refinement operations. I will then
provide a generalized algorithm for refinement planning, in
terms of which the whole gamut of the so-called plan-space
planners can be expressed. The different ways of instantiat-
ing this algorithm correspond to the different design choices
for plan-space planning. This unified view facilitates sep-
aration of important ideas underlying individual algorithms
from ‘‘brand-names’’, and thus provides a rational basis
for understanding the design tradeoffs and fruitfully inte-
grating the various approaches. I will demonstrate this by
using the framework as a basis for analyzing search space
size vs. refinement cost trade-offs in plan-space planning,
and developing novel planning algorithms with interesting
performance tradeoffs.

The paper is organized as follows: Section 2 provides
the preliminaries of refinement search, develops a model for

1The work of Barrett and Weld [1] as well as Minton et.
al. [16, 17] are certainly steps in the right direction. However,
they do not tell the full story since the comparison there was
between a specific partial order and total order planner. The
comparison between different partial order planners itself is still
largely unexplored.

2Although it has been noted in the literature that most existing
classical planning systems are ‘‘refinement planners,’’ in that they
operate by adding successively more constraints to the the partial
plan, without ever retracting any constraint, no formal semantics
have ever been developed for planning in terms of refinement
search.

estimating the size of the search space explored by a re-
finement search, and introduces the notions of systematicity
and strong systematicity. Section 3 reviews the classical
planning problem, and provides semantics of plan-space
planning in terms of refinement search. Specifically, the
notion of candidate set of a partial plan is formally defined
in this section, and the ontology of constraints used in rep-
resenting partial plans is described. Section 4 describes the
generalized refinement planning algorithm, discusses its var-
ious components, and explains how the existing plan-space
planners can all be seen as instantiations of the generalized
algorithm. Section 5 discusses the diverse applications of
the unifying componential view provided by the generalized
algorithm. Specifically, we will see how the unifying view
helps in explicating and analyzing the tradeoffs (Section
5.1), facilitating comparative performance analyses (Section
5.2), and synthesizing planning techniques with novel per-
formance tradeoffs (Section 5.3). Section 6 discusses how
the generalized algorithm can be extended to handle richer
types of goals (e.g. maintenance goals, intermediate goals),
and other types of planning models (e.g. HTN planning,
state-space planning). Section 7 presents the concluding
remarks.

2 Refinement search Preliminaries

A refinement search (or split-and-prune search [18]) can be
visualized as a process of starting with the set of all potential
candidates for solving the problem, and splitting the set
repeatedly until a solution candidate can be picked up from
one of the sets in bounded time. Each search node N in
the refinement search thus corresponds to a set of potential
candidates, denoted by hhNii.

A refinement search is specified by providing a set of re-
finement operators (strategies) R, and a solution constructor
function sol. The search process starts with the initial node
N;, which corresponds to the set of all potential candidates
(we shall call this set K).

The search progresses by generating children nodes by the
application of refinement operators. Refinement operators
can be seen as set splitting operations on the candidate sets
of search nodes -- they map a search node N to a set of
children nodes fN 0

ig such that 8i hhN 0
i ii � hhNii.

Definition 1 Let R be a refinement strategy that maps a
node N to a set of children nodes fN 0

ig. R is said to be
complete if

S
ihhN

0
i ii = hhNii (i.e., no candidate is lost in the

process of refinement).
R is said to be systematic if 8N 0

i
;N 0

j
hhN 0

i ii \ hhN
0
jii = ;.

The search terminates when a node N is found for which
the solution constructor returns a solution candidate. A
solution constructor sol is a 2-place function which takes a
search node N and a solution criterion SG as arguments. It
will return either one of three values:

1. *fail*, meaning that no candidate in hhNii satisfies the
solution criterion

2. Some candidate c 2 hhNii which satisfies the solution
criterion (i.e., c is a solution candidate)

3. ?, meaning that sol can neither construct a solution
candidate, nor determine that no such candidate exists.

Algorithm: Refinement Search(sol;R)
Initialize open with N;, the node with initial
(null) constraint set
Begin Loop
If open is empty, terminate with failure

Else, non-deterministically pick a nodeN from open
Ifsol(N ,G) returns a candidate c,

Then return it with success
Else, choose some refinement operatorR 2 R,

(Not a backtrack point.)
GenerateR(N), the refinements of

n with respect to R.
Prune any nodes in R(N) that are inconsistent.
Add the unpruned nodes in R(N) to open.

End Loop

Figure 1: An algorithm for generic refinement search

In the first case, N can be pruned. In the second case
search terminates with success, and in the third, N will
be refined further. N is called a solution node if the call
sol(N ;SG) returns a solution candidate.

Definition 2 (Completeness of Refinement Search) A re-
finement search with the refinement operator set R and a
solution constructor function sol is said to be complete if
for every solution candidate c of the problem, there exists
some search node N that results from a finite number of
successive refinement operations on N; (the initial search
node whose candidate set is the entire candidate space),
such that sol can pick up c fromN .

Search nodes as Constraint Sets: Although it is con-
ceptually simple to think of search nodes in terms of their
candidate sets, we obviously do not want to represent the
candidate sets explicitly in our implementations. Instead, the
candidate sets are typically implicitly represented as gener-
alized constraint sets associated with search nodes (c.f. [6])
such that every potential candidate that is consistent with
the constraints in that constraint set is taken to belong to
the candidate set of the search node. Under this representa-
tion, the refinement of a search node corresponds to adding
new constraints to its constraint set, thereby restricting its
candidate set. Anytime the set of constraints of a search
node becomes inconsistent (unsatisfiable), the candidate set
becomes empty, and the node can be pruned.

Definition 3 (Inconsistent Search Nodes) A search node is
said to be inconsistent if its candidate set is empty, or
equivalently, its constraint set is unsatisfiable.

Search Space Size: Figure 1 outlines the general refine-
ment search algorithm. To characterize the size of the search
space explored by this algorithm, we will look at the size of
the fringe (number of leaf nodes) of the search tree. Suppose
Fd is the dth level fringe of the search tree explored by the
refinement search. Let �d � 0 be the average size of the
candidate sets of the search nodes in the dth level fringe, and
�d(� 1) be the redundancy factor, i.e., the average number
of search nodes on the fringe whose candidate sets contain a
given candidate inK. It is easy to see that jFdj��d = jKj��d
(where j:j is used to denote the cardinality of a set). If b is

the average branching factor of the search, then the size of
dth level fringe is also given by bd. Thus, we have,

jFdj = bd =
jKj � �d

�d
(1)

In terms of this model, a minimal guarantee one would
like to provide is that the size of the fringe will never be more
than the size of the overall candidate space jKj. Trying to
ensure this motivates two important notions of irredundancy
in refinement search: systematicity and strong systematicity.

Definition 4 (Systematicity and Strong Systematicity)
A refinement search is said to be systematic if for any
two nodes N and N 0 falling in different branches of the
search tree, then hhNii \ hhN 0ii = ; (i.e., the candidate sets
represented by N and N 0 are disjoint). Additionally, the
search is said to be strongly systematic if it is systematic
and never refines an inconsistent node.

From the above, it follows that for a systematic search, the
redundancy factor, �, is 1. Thus, the sum of the cardinalities
of the candidate sets of the termination fringe will be no
larger than the set of all potential candidates K. For strongly
systematic search, in addition to � being equal to 1, we also
have � � 1 (since no node has an empty candidate set) and
thus jFdj � jKj. Thus,

Proposition 1 The fringe size of any search tree generated
by a strongly systematic refinement search is strictly bounded
by the size of the candidate space (i.e. jKj).

It is easy to see that a refinement search is systematic
if and only if all the individual refinement operations are
systematic. To convert a systematic search into a strongly
systematic one, we only need to ensure that all inconsistent
nodes are pruned from the search. The complexity of the
consistency check required to effect this pruning depends
upon the nature of the constraint sets associated with the
search nodes.

3 Planning as Refinement Search

In this section, we shall develop a formal account of plan-
space planning as a refinement search. Whatever the exact
nature of the planner, the ultimate aim of (classical) planning
is to find a ground operator sequence, which when executed
in the given initial state, will produce desired behaviors or
sequences of world states. Most classical planning tech-
niques have traditionally concentrated on the sub-class of
behavioral constraints called the goals of attainment [5],
which essentially constrain the agent’s attention to behaviors
that end in world states satisfying desired properties. For
the most part, this is the class of goals we shall also be
considering in this paper (the exception is Section 6, which
shows that our framework can be easily extended to a richer
class of goals).

The operators (aka actions) in classical planning are mod-
eled as general state transformation functions. We will be
assuming that the domain operators are described in ADL
[19, 20] representation with Precondition and Effect formu-
las. The precondition and effect formulas are function-less
first order predicate logic sentences involving conjunction,
negation and quantification. The precondition formulas can

also have disjunction, but disjunction is not allowed in the
effects formula. The subset of this representation where both
formulas can be represented as conjunctions of function-less
first order literals, and all the variables have infinitedomains,
is called the TWEAK representation (c.f. [2, 10]).3

From the above definitions, it is clear that any potential
solution for a planning problem must be a ground operator
sequence. Thus, viewed as a refinement search, the can-
didate space, K, of a planning problem, is the set of all
ground operator sequences. As an example, if the domain
contains three ground actions a1, a2 and a3, then the regular
expression fa1ja2ja3g� would describe the candidate space
for this domain. We will next define when a ground operator
sequence is considered a solution to a planning problem in
classical planning:

Definition 5 (Plan Solutions) A ground operator sequence
S : o1; o2; � � �on is said to be a solution to a planning
problem [I;G], where I is the initial state of the world,
and G is the specification of the desired behaviors, if the
following two restrictions are satisfied:

1. S is executable, i.e., I ` prec(o1), o1(I) ` prec(o2)
and on�1(on�2 � � � (o1(I))) ` prec(on) (where prec(o)
denotes the precondition formula of the operator o) and

2. The sequence of states I; o1(I); � � � ; on(on�1 � � �
(o1(I))) satisfies the behavioral constraints specified
in the goals of the planning problem.

For goals of attainment, the second requirement is stated
solely in terms of the last state resulting from the plan
execution: on(on�1 � � � (o1(I))) ` G. A solution S is said to
be minimal if no operator sequence obtained by removing
some of the operators from S is also a solution.

Traditionally, the completeness of a planner is measured in
terms of its ability to find minimal solutions (cf. [22, 19, 14]):

Definition 6 (Planner Completeness) A planning algo-
rithm is said to be complete if it can find all minimal
solutions for every solvable problem.

3.1 Refinement Search Semantics for Partial Plans

When plan-space planning is viewed as a refinement search,
the constraint sets associated with search nodes can be seen as
defining partial plans (in the following, we will be using the
terms ‘‘search node’’ and ‘‘partial plan’’ interchangeably).
The candidate set of a partial plan will be defined as all
the ground operator sequences that satisfy the partial plan
constraints.

The partial plan representation used by refinement
planners can be described in terms of a 6-tuple:
hT;O;B;ST ;L;Aiwhere:

� T is the set of steps in the plan; T contains two
distinguished steps t0 and t1.

� ST is a symbol table, which maps steps to domain
operators. The special step t0 is always mapped to
the dummy operator start, and similarly t1 is al-
ways mapped to fin. The effects of start and the

3In TWEAK representation, the list of non-negated effects is
called the Add list while the list of negated effects is called the
Delete list.

preconditions of fin correspond, respectively, to the
initial state and the desired goals (of attainment) of the
planning problem.

� O is a partial ordering relation over T .

� B is a set of codesignation (binding) and non-
codesignation (prohibited bindings) constraints on the
variables appearing in the preconditions and post-
conditions of the operators.

� L is a set of auxiliary constraints. Auxiliary constraints
are best seen as putting restrictions on the ground
operator sequences being represented by the partial
plan (see below).

� A is the set of preconditionsof the plan, which are tuples
of the form hc; si, where c is a condition that needs to
be made true before the step s 2 T . These include
the preconditions and secondary preconditions [19] of
all the actions introduced during planning process (see
Section 4). A is sometimes referred to as the agenda of
the plan.

Informally, the candidate set of a partial plan, P, is the set
of all ground operator (action) sequences that are consistent
with the step, ordering, binding and auxiliary constraints of
P. Before we can formalize this notion, we need a better
characterization of auxiliary constraints.

Auxiliary Constraints: Informally, auxiliary constraints
should be seen as the constraints that need to be true for a
ground operator sequence to belong to the candidate set of a
partial plan. They can all be formalized as unary predicates
on ground operator sequences. We will distinguish two
types of auxiliary constraints: monotonic constraints and
non-monotonic constraints.

Definition 7 (Monotonic Auxiliary Constraints) An aux-
iliary constraint C is monotonic if given a ground operator
sequence S that does not satisfy C, no operator sequence S0

obtained by adding additional ground operators to S will
satisfy C.

Monotonic constraints are useful because of the pruning
power they provide. If none of the ground operator sequences
matching the ground linearizations of a partial plan satisfy
its monotonic constraints, then that partial plan cannot have
a non-empty candidate set, and thus can be pruned. For this
reason, we will call the set of monotonic auxiliary constraints
of a partial plan its auxiliary candidate constraints (Lc),
and the set of non-monotonic auxiliary constraints of a
partial plan are called auxiliary solution constraints, (Ls).
Although auxiliary solution constraints cannot be used to
prune partial plans, they can be used as a basis for selection
heuristics during search (see the discussion of MTC-based
goal selectors in Section 4.2, and that of filter conditions in
6).

Almost all of the auxiliary constraints employed in clas-
sical planning can be formalized in terms of two primitive
types of constraints: interval preservation constraints (IPCs),
and point truth constraints (PTCs):

Definition 8 (Interval Preservation Constraint) An inter-
val preservation constraint, hsi; c; sji of a plan P is said to
be satisfied by a ground operator sequence S according to

a mapping function M that maps steps of P to elements of
S, if and only if every operator o in S that comes between
M(si) and M(sj) preserves the condition c (i.e., if c is true
in the state before o, then c will be true in the state after its
execution).4

Definition 9 (Point Truth Constraint) A point truth con-
straint hc@si is said to be satisfied by a ground operator
sequence S with respect to a mappingM that maps steps of
P to elements of S, if and only if either c is true in the initial
state, and is preserved by every action of S occurring before
M(s), or c is made true by some action S[j] that occurs
before M(s), and is preserved by all the actions between
S[j] and M(s).

It is easy to see that interval preservation constraints
are monotonic constraints, while point truth constraints are
non-monotonic. In our model of refinement planning, IPCs
are used to represent book-keeping (protection) constraints
(Section 4.3) while PTCs are used to represent the solu-
tion constraints. In particular, given any partial plan P,
corresponding to every precondition hC; si on its agenda,
the partial plan contains an auxiliary solution constraint
hC@si.5

We are now ready to formally define the candidate set of
a partial plan:6

Definition 10 (Candidate set of a Partial plan) Given a
partial plan P : hT;O;B;ST ;L;Ai, a ground operator
sequence S is said to belong to P’s candidate set, hhPii, if
and only if there exists a mapping function M (called can-
didate mapping) that maps steps of P (excepting the dummy
steps t0 and t1) to elements of S, such that S satisfies all
the constraints of P under the mappingM. That is,

1. M is consistent with ST . That is, ifMmaps the step s
to S[i] (i.e., the ith element in the operator sequence),
then S[i] corresponds to the same action as ST (s).

2. M is consistent with the ordering constraints O and
the binding constraintsB. For example, if si � sj , and
M(si) = S[l] and M(sj) = S[m], then l < m.

3. S satisfies all the auxiliary candidate constraints (Lc)
under the mappingM.

Definition 11 (Solution Candidate of a Partial Plan)
A ground operator sequence S is said to be a solution
candidate of a partial plan P, if S is a candidate of P and
S satisfies all the auxiliary solution constraints of P.

4Note that the plan does not have to make c true.
5Notice that this definition separates that the agenda precondi-

tions from solution constraints. Under this model, the planner can
terminate without having explicitly worked on the preconditions
in the agenda (as long as the solution constraints are all true).
Similarly, it also allows us to post solution constraints that we do
not want the planner to explicitly work on (see the discussion about
filter conditions in Section 6).

6Note that by our definition, a candidate of a partial plan may
not be executable. It is possible to define candidate sets only in
terms of executable operator sequences (or ground behaviors). We
will stick with this more general notion of candidates, since coming
up with an executable operator sequence can it self be seen as part
of planning activity.

Given the definitions above, and the assumption that
corresponding to every precondition of the plan, there exists
a point truth constraint on the auxiliary solution constraints,
we can easily prove the following relation between solution
candidates and solutions of a planning problem:

Proposition 2 Let I be the effect formula of t0, and G be
the precondition formula of t1 of P. If a ground operator
sequence S is a solution candidate of a partial plan P, then
S solves the problem [I;G] according to Definition 5.

Example: To illustrate the definitions above, suppose the
partial planP is given by the constraint set below, where the
auxiliary constraints are interval preservation constraints as
described above (the agenda field is omitted for simplicity):*

ft0; t1; t2; t1g; ft0 � t1; t1 � t2; t2 � t1g; ;;
ft1 ! o1; t2 ! o2; t0 ! start; t1 ! fing;
fht1; p; t2i; ht2; q; t1ig

+

Consider the ground operator sequence S : o1o3o2. It
is easy to see that as long as the action o3 preserves p, S
will belong to the candidate set of P. This is because there
exists a candidate mapping, M : ft1 ! S[1]; t2 ! S[3]g
according to which S satisfies all the constraints of P (the
interval preservation constraint ht1; p; t2i is satisfied as long
as o3 preserves p). Similarly, the ground operator sequence
S0 : o1o2o5 belongs to the candidate set of P if and only if
o5 preserves q.

Search Space Size: Search space size of a refinement
planner can be estimated with the help of Eqn. 1. A
minor problem in adapting this equation to planning is that
according to the definitions above, both candidate space and
candidate sets can have infinite cardinalities even for finite
domains. However, if we restrict our attention to minimal
solutions, then it is possible to construct finite versions of
both. Given a planning problem instance P , let lm be the
length of the longest ground operator sequence that is a
minimal solution of P . Let K be the set of all ground
operator sequences of up to length lm. jKj provides an
upper bound on the number of operator sequences that need
to be examined to ensure that all minimal solutions for the
planning problem are found. In the rest of the paper, when
we talk about the candidate set of a partial plan, we will be
concerned about the subset of its candidates that belong to
K.

3.2 Candidate sets and Ground Linearizations

Traditionally, semantics for partial plans are given in terms of
their ground linearizations (rather than in terms of candidate
sets, as is done here).

Definition 12 A ground linearization (aka completion) of
a partial plan P :hT;O;B;ST ;L;Ai is a fully instantiated
total ordering of the steps ofP that is consistent withO (i.e.,
a topological sort) and B.

A ground linearization is said to be a safe ground
linearization if and only if it also satisfies all the auxiliary
candidate constraints.7

7Note that safe ground linearizations do not have to satisfy
auxiliary solution constraints.

For the example plan discussed above, t0t1t2t1 is the only
ground linearization, and it is also a safe ground linearization.
Safe ground linearizations are related to candidate sets in the
following technical sense:

Proposition 3 Every candidate S belonging to the candi-
date set of a partial plan P : hT;O;B;ST ;L;Ai is either a
minimal candidate, in that it exactly matches a safe ground
linearization of P (except for the dummy steps t0 and t1,
and modulo the mapping of ST), or is a safe augmenta-
tion of a minimal candidate obtained by adding additional
ground operators without violating any auxiliary candidate
constraints.

This proposition follows from the definition of candidate
constraints. Consider any candidate (ground operator se-
quence) S of the plan P. Let M be the candidate mapping
according to which S satisfies the Definition 10. Consider
the operator sequence S0 obtained by removing fromS every
element S[i] such that M does not map any step in P to
S[i]. From the definition of candidate set, it is easy to see
that S0 must match with a ground linearization ofP. Further,
since S satisfies all the auxiliary candidate constraints, and
since candidate constraints are monotonic, it cannot be the
case that S0 violates them. Thus, S0 matches a safe ground
linearization of the plan.

For the example plan discussed above, o1o2 is a mini-
mal candidate because it exactly matches the safe ground
linearization t0t1t2t1, under the mapping ST . The ground
operator sequence o1o3o2o4, where o3 does not add or delete
p, and o4 does not add or delete q, is a candidate of this plan.
It can be obtained by augmenting the minimal candidate
o1o2 with the ground operators o3 and o4 without violating
auxiliary candidate constraints.

During search, it is often useful to recognize and prune
inconsistent plans (as they clearly cannot lead to solutions).
Proposition 4, which is a direct consequence of Proposition
3, provides a method of checking consistency in terms of
safe ground linearizations:

Proposition 4 A search node in refinement planning is con-
sistent if and only if the corresponding partial plan has at
least one safe ground linearization.

4 A generalized algorithm for Refinement
Planning

The algorithms Find-plan and Refine-Plan in Figure
2 instantiate the refinement search within the context of
planning. In particular, they describe a generic refinement-
planningalgorithm, the specific instantiationsof which cover
the complete gamut of plan-space planners. Table 1 char-
acterizes many of the well known plan-space planners as
instantiations of the Refine-Plan algorithm. The algo-
rithms are modular in that individual steps can be analyzed
and instantiated relatively independently. Furthermore, the
algorithms do not assume any specific restrictions on action
representation, and can be used by any planner using ADL
action representation [19].

The refinement process starts with the partial plan P;,
which contains the steps t0 and t1, and has its agenda
and auxiliary solution constraints initialized to the top level

goals of attainment (preconditions of t1). The procedure
Refine-Plan specifies the refinement operations done
by the planning algorithm. Comparing this algorithm to
the refinement search algorithm in Figure 1, we note that
it uses two broad types of refinements: the establishment
refinements (steps 2.1, 2.2); and the tractability refinements
(step 3). In each refinement strategy, the added constraints
include step addition, ordering addition, binding addition, as
well as addition of auxiliary constraints. In the following,
we briefly review the individual steps of these algorithms.

4.1 Solution Constructor function

As discussed in Section 3, the job of a solution-constructor
function is to look for and return a solution candidate from
the candidate set of a partial plan. Since enumerating and
checking the full candidate set can be prohibitively expen-
sive, most planners concentrate instead on the safe-ground
linearizations of the plan (which bound the candidate set
from above; see Proposition 3), and see if any of those
correspond to solution candidates. In particular, the follow-
ing is the default solution constructor used by all existing
refinement planners (with respect to which completeness
results are proven):

Definition 13 (All-sol) Given a partial plan P, all-sol re-
turns with success only whenP is consistent, all of its ground
linearizations are safe, and each safe ground linearization
corresponds to a ground operator sequence that is a solution
candidate of P.

The terminationcriteria of all-sol correspond closely to the
notion of necessary correctness of a partially ordered plan,
first introduced by Chapman [2]. Existing planning systems
implement All-sol in two different ways: Planners such
as Chapman’s TWEAK [2] use the modal truth criterion
to explicitly check that all the safe ground linearizations
correspond to solutions (we will call these the MTC-based
constructors). Planners such as SNLP [15] and UCPOP
[22] depend on protection strategies and conflict resolution
(see below) to indirectly guarantee the safety and necessary
correctness required by all-sol (we call these protection based
constructors). In this way, the planner will never have to
explicitly reason with all the safe-ground linearizations.

4.2 Goal Selection and Establishment

The most fundamental refinement operation is the so-called
establishment operation. It selects a precondition hC; si of
the plan (where C is a precondition of a step s), and refines
(i.e., adds constraints to) the partial plan such that different
steps act as contributors of C to s in different refinements.
Chapman [2] and Pednault [19] provide theories of sound
and complete establishment refinement. Pednault’s theory is
more general as it deals with actions containing conditional
and quantified effects.8 It is possible to limitRefine-Plan
to establishment refinements alone and still get a sound and
complete (in the sense of Definition 2) planner (using the
default solution constructor all-sol described earlier).

In Pednault’s theory, establishment of a condition c at
a step s essentially involves selecting some step s0 (either

8And also separates checking truth of a proposition from plan-
ning to make that proposition true, see [10].

Algorithm Find-Plan(I;G) Parameters: sol: Solution
constructor function.

1. Initialize the open list with the null plan P; :
hft0; t1g; ft0 � t1g; ;; ft0 ! start; t1 !
fing;L;;A;i, where corresponding to each goal gi 2 G,
A; contains hgi; t1i, and L; contains hgi@t1i.

2. Nondeterministically pick a partial plan P from open.

3. If sol(P; G) returns a solution, return it, and terminate.
If it returns �fail�, skip to Step 2. If it returns ?, call
Refine-plan(P) to generate refinements of P . Add all
the refinements to the open list; Go back to 2.

Algorithm Refine-Plan(P) /*Returns refinements of P */
Parameters: (i) pick-prec: the routine for picking the
preconditions from the plan agenda for establishment. (ii)
interacts?: the routine used by pre-ording to check if a
pair of steps interact. (iii) conflict-resolve: the routine
which resolves conflicts with auxiliary candidate constraints.

1. Goal Selection: Using the pick-prec function, pick a pre-
condition hC; si (where C is a precondition of step s) from
P to work on. Not a backtrack point.

2.1. Goal Establishment: Non-deterministically select a new or
existing establisher step s0 for hC; si. Introduce enough or-
dering and binding constraints, and secondarypreconditions
to the plan such that (i) s0 precedes s (ii) s0 will have an
effect C , and (iii) C will persist until s (i.e., C is preserved
by all the steps intervening between s0 and s). Backtrack
point; all establishment possibilities need to be considered.

2.2. Book Keeping: (Optional) Add auxiliary constraints noting
the establishment decisions, to ensure that these decisions
are protected by any later refinements. This in turn reduces
the redundancyin the search space. The protection strategies
may be one of goal protection, interval protection and
contributor protection (see text). The auxiliary constraints
may be one of point truth constraints or interval preservation
constraints.

3. Tractability Refinements: (Optional) These refinements
help in making the plan handling and consistency check
tractable. Use either one or both:

3.a. Pre-Ordering: Impose additional orderings between
every pair of steps of the partial plan that possi-
bly interact according to the static interaction metric
interacts?. Backtrack point; all interaction or-
derings need to be considered.

3.b. Conflict Resolution: Add orderings, bindings and/or
secondary (preservation) preconditions to resolve con-
flicts between the steps of the plan, and the plan’s
auxiliary candidate constraints. Backtrack point; all
possible conflict resolution constraints need to be
considered.

4. Consistency Check: (Optional) If the partial plan is inconsis-
tent (i.e., has no safe ground linearizations), prune it.

5. Return the refined partial plan (if it is not pruned).

Figure 2: A generalized refinement algorithm for plan-space
planning

Planner Soln. Constructor Goal Selection Book-keeping Tractability Refinements
Tweak [2] MTC-based MTC-based None None

(O(n4) for TWEAK rep; (O(n4) for TWEAK rep;
NP-hard with ADL) NP-hard with ADL)

UA [16] MTC-based O(n4) MTC-basedO(n4) None Unambiguous ordering
Nonlin [26] MTC (Q&A) based Arbitrary O(1) Goal Protection via Q&A Conflict Resolution
TOCL [1] Protection basedO(1) Arbitrary O(1) Contributor protection Total ordering
Pedestal [14] Protection basedO(1) Arbitrary O(1) Interval Protection Total ordering
SNLP [15] Protection based Arbitrary Contributor protection Conflict resolution
UCPOP [22] O(1) O(1)
MP, MP-I [8] Protection based Arbitrary (Multi) contributor protection Conflict resolution
SNLP-UA Protection basedO(1)/ Arbitrary O(1)/ Contributor protection Unambiguous Ordering
(cf. Section 5.3.1) MTC based/O(n4) Pick if nec. false. /O(n4)

Table 1: Characterization of existing planners as instantiations of Refine-Plan

existing or new), and adding enough constraints to the plan
such that (i) s0 � s, (ii) s0 causes c to be true and (iii) c is
not violated before s. To ensure ii, we need to in general
ensure the truth of certain additional conditions before s00.
Pednault calls these the causation preconditions of s00 with
respect to c. To ensure iii, for every step s00 of the plan, we
need to either make s00 come before s0, or make s00 come
after s, or make s00 necessarily preserve c. The last involves
guaranteeing truth of certain conditions before s00. Pednault
calls these the preservation preconditions of s00 with respect
to c. Causation and precondition preconditions are called
secondary preconditions of the action. These are added to the
agenda of the partial plan, and are treated in the same way as
normal preconditions. (This includes adding a PTC hc@si to
the auxiliary solution constraints, whenever a precondition
hc; si is added to the agenda; see Section 3.1).

Goal Selection: The strategy used to select the particular
precondition hC; si to be established, (called goal selection
strategy) can be arbitrary, can depend on some ranking based
on precondition abstraction [24], and/or demand driven (e.g.
select a goal only when it is not already necessarily true
according to the modal truth criterion [2]). The last strategy,
called MTC-based goal selection, involves reasoning about
truth of a condition in a partially ordered plan, and can be
intractable for general partial orderings consisting of ADL
[19] actions (see Table 1, as well as the discussion of
pre-ordering strategies in Section 4.5.1.).

4.3 Book Keeping and Protecting establishments

It is possible to do establishment refinement without book-
keeping step. Chapman’s TWEAK [2] is such a planner.
However, such a planner is not guaranteed to respect its
previous establishment decisions while making new ones,
and thus may have a high degree of redundancy. Specifically
such a planner may (i) wind up visiting the same candidate
(potential solution) in more than one search branch (in terms
of our search space characterization, this means � > 1), and
(ii) wind up repeatedly establishing and clobbering the same
precondition. The book-keeping step attempts to reduce
these types of redundancy.

At its simplest, the book-keeping may be nothing more
than removing each precondition from the agenda of the
partial plan once it is considered for establishment. When the
agenda of a partial plan is empty, it can be pruned without loss

of completeness (this is because the establishment refinement
looks at all possible ways of establishing a condition at the
time it is considered).

A more active form of book-keeping involves protecting
previous establishments in a partial plan, while making new
refinements to it. In terms of Refine-Plan, such pro-
tection strategies can be seen as posting auxiliary candidate
constraints on the partial plan to record the establishment
decisions, and ensuring that they are not violated by the
later refinements. If they are violated, then the plan can be
abandoned without loss of completeness (even if its agenda
is not empty). The protection strategies used by classical
partial order planners come in two main varieties: interval
protection (aka causal link protection, or protection inter-
vals), and contributor protection (aka exhaustive causal link
protection [8]). They can both be represented in terms of the
interval preservation constraints.

Suppose the planner just established a condition c at step
s with the help of the effects of the step s0. For planners
using interval protection (e.g., PEDESTAL [14]), the book-
keeping constraint requires that no candidate of the partial
plan can have p deleted between operators corresponding
to s0 and s. It can thus be modeled in terms of interval
preservation constraint hs0; p; si. Finally, for book keeping
based on contributor protection, the auxiliary constraint
requires that no candidate of the partial plan can have p
either added or deleted between operators corresponding to
s0 and s.9 This contributor protection can be modeled in
terms of the twin interval preservation constraints hs0; p; si
and hs0;:p; si.

While most planners use one or the other type of protec-
tion strategies exclusively for all conditions, planners like
NONLIN and O-Plan [26, 27] post different book-keeping
constraints for different types of conditions. Finally, the
interval protections and contributor protections can also be
generalized to allow for multiple contributors supporting a
given condition (see [8] for a motivation and formal treatment
of this idea).

While all the book-keeping strategies described above
avoid considering same precondition for establishment more
than once, only the contributor protection eliminates the
redundancy of overlapping candidate sets, by making estab-

9See [7] for a coherent reconstruction of the ideas underlying
goal protection strategies.

lishment refinement systematic. Specifically, we have:

Proposition 5 Establishment refinement with exhaustive
causal links is systematic in that partial plans in differ-
ent branches of the search tree will have non-overlapping
candidate sets (thus � = 1).

This property can be proven from the fact that contrib-
utor protections provide a way of uniquely naming steps
independent of the symbol table mapping (see [15, 7]). To
understand this, consider the following partial plan (where
the agenda and the auxiliary solution constraints are omitted
for simplicity):

N :

*
ft0; t1; t1g; ft0 � t1; t1 � t1g; ;;
ft1 ! o1; t0 ! start; t1 ! fing;
fht1; p; t1iht1;:p; t1ig

+

where the step t1 is giving conditionp to t1, the goal step.
Suppose t1 has a precondition q. Suppose further that there
are two operators o2 and o3 respectively in the domain which
can provide the condition q. The establishment refinement
generates two partial plans:

N1 :

*
ft0; t1; t2; t1g; ft0 � t2; t2 � t1; t1 � t1g; ;;
ft1 ! o1; t2 ! o2; t0 ! start; t1 ! fing;
fht1; p; t1i; ht1;:p; t1i; ht2; q; t1i; ht2;:q; t1ig

+

N2 :

*
ft0; t1; t2; t1g; ft0 � t2; t2 � t1; t1 � t1g; ;;
ft1 ! o1; t3 ! o3; t0 ! start; t1 ! fing;
fht1; p; t1i; ht1;:p; t1iht2; q; t1iht2;:q; t1ig

+

Consider the step t2 in N1. This can be identified inde-
pendent of its name in the following way:

‘‘The step which gives q to the step which in turn
gives p to the dummy final step’’

An equivalent identification in terms of candidates is:

‘‘The last operator with an effect q to occur before
the last operator with an effect p in the candidate
(ground operator sequence)’’

The contributor protections ensure that this operator is o2
in all the candidates ofN1 and o3 in all the candidates ofN2.
Because of this, no candidate ofN1 can ever be a candidate of
N2, thus ensuring systematicity of establishment refinement.

4.4 Consistency Check
The aim of the consistency check is to prune inconsistent
partial plans (i.e., plans with empty candidate sets) from
the search space, thereby improving the performance of the
overall refinement search. (Thus, from completeness point
of view, consistency check is an optional step.) Given the
relation between the safe ground linearizations and candidate
sets, the consistency check can be done by ensuring that each
partial plan has at least one safe ground linearization. This
requires checking the consistency of orderings, bindings
and auxiliary constraints of the plan. Ordering consistency
can be checked in polynomial time, binding consistency is
tractable for infinite domain variables, but is intractable for
finite domain variables. Finally, consistency with respect to
auxiliary constraints is also intractable for many common
types of auxiliary candidate constraints (even for ground
partial plans without any variables). Specifically, we have:

Proposition 6 Given a partial plan whose auxiliary candi-
date constraints contain interval preservation constraints,
checking if there exists a safe ground linearization of the
plan is NP-hard.

This proposition directly follows from the result in [25],
which shows that checking whether there exists a conflict-
free ground linearization of a partial plan with interval
protection constraints is NP-hard.

4.5 Tractability refinements

Since, as observed above, the consistency check is NP-hard
in general, each call to Refine-Plan is also NP-hard. It
is of course possible to reduce the cost of refinement by
pushing the complexity into search space size. Specifically,
when checking the satisfiability of a set of constraints is
intractable, we can still achieve polynomial refinement cost
by refining the partial plans into a set of mutually exclusive
and exhaustive constraint sets such that the consistency of
each of those refinements can be checked in polynomial time,
while preserving the completeness and systematicity of the
search. This is the primary motivation behind tractability
refinements. There are two types of tractability refinements:
pre-ordering and conflict resolution. Both these aim to
maintain partial plans all of whose ground linearizations are
safe ground linearizations.

4.5.1 Pre-ordering refinements
Pre-ordering strategies aim to restrict the type of partial
orderings in the plan such that consistency with respect
to auxiliary candidate constraints can be checked without
explicitly enumerating all the ground linearizations. Two
possible pre-ordering techniques are total ordering and un-
ambiguous ordering [16]. Total ordering orders every pair
of steps in the plan, while unambiguous ordering orders a
pair of steps only when one of the steps has an effect c, and
the other step either negates c or needs c as a precondition
(implying that the two steps may interact). Both of them
guarantee that in the refinements produced by them, either
all ground linearizations will be safe or none will be.10 Thus,
consistency can be checked in polynomial time by examining
any one ground linearization.

Pre-ordering techniques can also make other plan handling
steps, such as MTC-based goal selection and MTC-based
solution constructor, tractable (c.f. [16, 7]). For example,
unambiguous plans also allow polynomial check for neces-
sary truth of any condition in the plan. Polynomial necessary
truth check can be useful in MTC-based goal selection and
termination tests. In fact, unambiguous plans were originally
used in UA [16] for this purpose.

4.5.2 Conflict Resolution Refinements
Conflict resolution refines a given partial plan with the aim
of compiling the auxiliary constraints into the ordering and
binding constraints. Specifically, the partial plan is refined
(by adding ordering, bindingor secondary preconditions [19]
to the plan) until each possible violation of the auxiliary can-
didate constraint (called conflict) is individually resolved.
The definition of conflict depends upon the specific type

10In the case of total ordering, this holds vacuously true since the
plan has only one linearization

of auxiliary constraint. An interval preservation constraint
hsi; p; sji is violated (threatened) whenever a step s0 can
possibly come between si and sj and not preserve p. Re-
solving the conflict involves either making s0 not intervene
between si and sj (by adding either the ordering s0 � si
or the ordering sj � s0), or adding secondary (preservation)
preconditions of s0, required to make s0 preserve c [19], to
the plan agenda (and the corresponding PTCs to the auxiliary
solution constraints; see Section 3.1). When all conflicts
are resolved this way, the resulting refinements will have the
property that all their ground linearizations are safe. Thus,
checking the partial plan consistency will amount to check-
ing for the existence of ground linearizations. This can be
done by checking ordering and binding consistency.

5 Applications of the Unified Framework

The componential view of refinement planning, provided by
the Refine-Plan algorithm has a variety of applications
in understanding and analyzing the performance tradeoffs in
the design of plan-space planning algorithms. I will briefly
discuss these in this section.

5.1 Explication and analysis of Design Tradeoffs
We have seen that the various ways of instantiating
Refine-Plan algorithm correspond to the various choices
in designing the plan-space planning algorithms. The model
for estimating search space size, developed in Section 2,
provides a way of analyzing the search space size vs. re-
finement cost tradeoffs provided by these different design
choices. Understanding these tradeoffs allows us to predict
the circumstances under which specific techniques will lead
to performance improvements.

If C is the average cost per invocation of the
Refine-Plan algorithm, b is the average branching factor
and de is the effective depth of the search, then the cost of
the planning (in a breadth-first regime) is C � jFde j (where
Fde is the size of the fringe at de

th level of the search tree.
From Section 3 (Eqn. 1), we have

Fde =
jKj� �de

�de
= bde

C itself can be decomposed into three main components:
C = Ce + Cc + Cs, where Ce, is the establishment cost
(including the cost of selecting the open goal to work on),
Cs is the cost of solution constructor, and Cc is the cost of
consistency check. The average branching factor, b can be
split into two components, be, the establishment branching
factor, and bt the tractability refinement branching factor,
such that b = be � bt. be and bt correspond, respectively, to
the branching made in steps 2 and 3 of the Refine-Plan
algorithm.

This simple model is remarkably good at explaining and
predicting the tradeoffs offered by the different ways of
instantiating Refine-Plan algorithm. One ubiquitous
tradeoff is between that of search space size (jFdj) and
refinement cost (C): almost every method for reducing
C increases Fde and vice versa. For example, consider
the MTC-based and protection-based solution constructors
discussed in Section 4.1. Protection based constructors
have to wait until each precondition of the plan has been

considered for establishment explicitly, while the MTC-
based constructors can terminate the search as soon as all
the preconditions in the partial plan are necessarily correct
(according to the modal truth criterion). MTC-based solution
constructors can thus allow the search to end earlier, reducing
the effective depth of the search, and thereby the size of the
explored search space. In terms of candidate space view,
such stronger solution constructors lead to larger �d at the
termination fringe. However, at the same time they increase
the cost of refinement C (specifically the Cs factor). For
example, MTC-based solution constructor has to reason with
all safe ground linearization of the plan explicitly, and can
thus be intractable for general partial orderings involving
ADL actions [10, 2]. Protection-based constructor, on the
other hand need only check that the agenda is empty, and
that there are no unresolved conflicts (which can be done in
O(1) time).

Book-keeping techniques aim to reduce the redundancy
factor �d. This tends to reduce the fringe size, jFdj. Book
keeping constraints do however tend to increase the cost of
consistency check. In particular, checking the consistency
of a partial plan containing interval preservation constraints
is NP-hard even for ground plans in TWEAK representation
(c.f. [25]). Tractability refinements primarily aim to reduce
the Cc component of refinement cost. In terms of search
space size, tractability refinements further refine the plans
coming out of the establishment stage, thus increasing the
(bt component of the) branching factor.

This jFdj vs. C tradeoff also applies to other types
of search-space reduction techniques such as deferment of
conflict resolution [21, 7]. Since conflict resolution is
an optional step in Refine-Plan, the planner can be
selective about which conflicts to resolve, without affecting
the completeness or the systematicity of Refine-Plan.
Conflict deferment is motivated by the idea that many of the
conflicts are ephemeral, and will be resolved automatically
during the course of planning. Thus, conflict deferment tends
to reduce the search space size by reducing the tractability
branching factor bt. This does not come without a penalty
however. Specifically, when the planner does such partial
conflict resolution, the consistency check has to once again
test for existence of safe ground linearizations, rather than
order and binding consistency (making consistency check
intractable once again). Using weaker consistency checks,
such as order and binding consistency check, can lead to
refinement of inconsistent plans, thereby reducing �d and
increasing jFdj.

5.1.1 Depth First Search Regimes

Although the above analysis dealt with breadth-first search
regimes, the Refine-Plan algorithm also allows us to
analyze the performance of different planning algorithms in
depth first regimes [7]. Here, the critical factor in estimating
the explored search space size is the probability that the
planner picks a refinement that contains at least one solution
candidate. Even small changes in this probability, which we
shall call success probability, can have dramatic effects on
performance.

To illustrate, let us consider the effect of tractability
refinements on the success probability. If we approxi-
mate the behavior of all the refinement strategies used by

Refine-Plan as random partitioning of candidate set of a
plan into some number of children nodes, then it is possible
to provide a quantitative estimate of the success probability.
Consider the refinement of a plan P by Refine-Plan.
Suppose that P has m solution candidates in its candidate
set. If b is the average branching factor, thenRefine-Plan
splits P into b different children plans. The success proba-
bility is just the probability that a random node picked from
these b new nodes contains at least one solution candidate.
This is just equal to q(m; b) where q(m; b) is the binomial
distribution:11

q(m; b) =
m�1X
i=0

�
m

b

�
1

bm�i

�
1�

1
b

�i

It can be easily verified that for fixed m, q(m; b), the
success probability, monotonically decreases with increas-
ing b. As the success probability reduces, the size of the
explored search space increases. Thus, under random parti-
tioning model, the addition of tractability refinements tends
to increase the explored search space size even in depth-first
search regimes. The only time we will expect reduction in
search space size is if the added refinements distribute the
solutions in a non-uniform fashion, thereby changing the
apparent solution density (c.f. [17]).

5.2 Facilitation of Well-founded Empirical
Comparisons

Given the variety of ways in which Refine-Plan can be
instantiated, it is important to understand the comparative
advantages of the various instantiations. While theoretical
analyses of the comparative performances are desirable,
sometimes either they are not feasible, or the performance
tradeoffs may be critically linked to problem distributions.
In such cases, comparisons must inevitably be based on
empirical studies.

The unified framework offers help in designing focused
empirical studies. In the past, empirical analyses tended to
focus on a wholistic ‘‘black-box’’ comparisons of brand-
name planning algorithms, such as TWEAK vs. SNLP
(c.f. [13]). It is hard to draw meaningful conclusions from
such comparisons, since when seen as instantiations of our
Refine-Plan algorithm, they differ on a variety of di-
mensions (see Table 1). A more meaningful approach,
facilitated by the unifying framework of this paper, involves
comparing instantiations of Refine-Plan that differ only
on a single dimension. For example, if our objective is
to judge the utility of specific protection (book-keeping)
strategies, we could keep everything else constant and vary
only the book-keeping step in Refine-Plan. In contrast,
when we compare TWEAK [2] with SNLP [15], we are
not only varying the protection strategies, but also the goal
selection, conflict resolution and termination (solution con-
structor) strategies, making it difficult to form meaningful
hypotheses from empirical results.

11q(m; n) is the probability that a randomly chosen urn will
contain at least one ball, whenm balls are independently randomly
distributed into n urns. This is equal to probability that a randomly
chosen urn will have all m balls plus the probability that it will
have m� 1 balls and so on plus the probability that it will have 1
ball.

In [11], I exploit this experimental methodology to com-
pare the empirical performance of a variety of normalized
instantiations of Refine-Plan algorithm. These experi-
ments reveal that the most important cause for the perfor-
mance differentials among different refinement planners are
the differences in the tractability refinements they employ.
Although tractability refinements increase the bt component
of the branching factor, they may also indirectly lead to a
reduction in the establishment branching factor, be. The
overall performance of the planner thus depends on the in-
terplay between these two influences. The book-keeping
(protection) strategies themselves only act as an insurance
policy that pays off in the worst-case scenario when the
planner is forced to look at a substantial part of its search
space.

5.3 Designing planners with better tradeoffs

By providing a componential view of the plan-space planning
algorithms, and explicating the spectrum of possible planning
algorithms, the unified framework also facilitates the design
of novel planning algorithms with interesting performance
tradeoffs. We will look at two examples briefly:

5.3.1 Strong systematicity with polynomial refinement
As we noted earlier, a refinement search is strongly sys-
tematic if it is systematic, and never refines an inconsistent
node. From Table 1, we see that there exist no partial or-
der planning algorithms which are both strongly systematic
and have polynomial time refinement complexity. SNLP,
which uses contributor protection, is systematic and can be
strongly systematic as long as the consistency check is pow-
erful enough to remove every inconsistent plan from search.
However, checking whether a general partially ordered plan
is consistent with respect to a set of exhaustive causal links is
NP-hard in general [25]. This raises the interesting question:
Is it possible to write a partial order planning algorithm
that is both strongly systematic and has a polynomial time
refinement cycle?

Our modular framework makes it easy to synthesize such
an algorithm. Table 1 describes a novel planning algorithm
called SNLP-UA which uses exhaustive causal links for
book-keeping, and uses a pre-ordering refinement whereby
every pair of steps s1 and s2 such that an effect of s1 pos-
sibly codesignates with a precondition or an effect of s2,
are ordered with respect to each other.12 Such an ordering
converts all potential conflicts into either necessary conflicts,
or necessary non-conflicts.13 This in turn implies that either
all ground linearizations are safe or none of them are. In
either case, consistency can be checked in polynomial time
by examining any one of the ground linearizations. SNLP-
UA is thus strongly systematic, maintains partially ordered
plans, but still keeps the refinement cost polynomial. It could
thus strike a good balance between systematic planners such
as SNLP and unsystematic, but polynomial-time refinement

12Note that this definition of interaction is more general than
the one used by UA [17]. It is required because of the contributor
protections used by SNLP-UA (see [7]).

13For actions with conditional effects, a necessary conflict can
be confronted by planning to make the preservation preconditions
true for the interacting step.

planners such as UA. In [11], I provide empirical compar-
isons between SNLP-UA and other possible instantiations of
Refine-Plan.

5.3.2 Polynomial eager solution-constructors
As discussed in Section 4.1, all-sol, the solution constructor
used in all existing plan-space planners returns with success
only when all the safe ground linearizations of the partial
plan are solutions. Our refinement search paradigm suggests
that such solution constructors are over-conservative since
the goal of planning is only to find one solution. In contrast,
eager solution constructors, that stop as soon as they find
a safe ground linearization that is a solution, will reduce
solution depth, increase �, and there by reduce search-space
size. The most eager constructor, which I call all-eager-
constructor, would stop as soon as the partial plan contains
at least one safe ground linearization that is a solution.
Unfortunately both the all-sol and all-eager-constructor are
NP-hard in general, as the problem of finding necessary
and possible truth of a proposition in a partially ordered
plan can respectively be reduced to them [10]. This raises
the interesting question: Are there any domain-independent
eager solution-constructors that are tractable? I answer the
question in the affirmative by providing a family of tractable
eager solution constructors called k-eager-constructors:

Definition 14 (k-eager Constructor) Given a partial plan
P, a k-eager-constructor randomly enumerates at most k
ground linearizations ofP, and returns any one of them that
is safe and corresponds to a solution for P.

The k-eager-constructors are tractable since they only enu-
merate and check at most k different ground linearizations.
Based on the value of k, they define a family of solu-
tion constructors whose cost increases and effective solution
depth reduces with increasing k. Finally, the solution depth
of k-eager-constructor is guaranteed to lie between that of
all-eager-constructor and the MTC-based all-sol solution
constructor, thus providing an interesting balance between
the two. Empirical studies are currently under way to assess
the practical impact of these constructors.

5.4 Pedagogical explanatory power

The unifying framework also has clear pedagogical advan-
tages in terms of clarifying the relations between many
brand-name planning algorithms, and eliminating several
long-standing misconceptions. An important contribution of
Refine-Plan is the careful distinction it makes between
book-keeping constraints or protection strategies (which aim
to reduce redundancy), and tractability refinements (which
aim to shift complexity from refinement cost to search space
size). This distinction removes many misunderstandings
about plan-space planning algorithms. For example, it clar-
ifies that the only motivation for total ordering plan-space
planners is tractability of refinement. Similarly, in the past
it has been erroneously claimed (e.g. [13]) that the system-
aticity of SNLP increases the effective depth of the solu-
tion. Viewing SNLP as an instantiation of Refine-Plan
template, we see that it corresponds to several relatively
independent instantiation decisions, only one of which, viz.,
the use of contributor protections in the book-keeping step,
has a direct bearing on the systematicity of the algorithm.

From the discussion in Section 4, it should be clear that
the use of exhaustive causal links does not, ipso facto, in-
crease the solution depth in any way. Rather, the increase
in solution depth is an artifact of the particular solution
constructor function, and the conflict resolution and/or the
preordering strategies used in order to get by with tractable
termination and consistency checks. These can be replaced
without affecting the systematicity property. Similarly, our
framework not only clarifies the relation between the un-
ambiguous planners such as UA [17] and causal-link based
planners such as SNLP [15], it also suggests fruitful ways
of integrating the ideas in the two planning techniques (cf.
SNLP-UA in Section 5.3.1).

6 Extending the framework

In this section, I will discuss how the Refine-Plan
framework can be extended to handle a wider variety of
behavioral constraints (beyond goals of attainment), as well
as other types of planning models.

Maintenance goals are a form of behavioral constraints
which demand that a particular condition be maintained (not
violated) throughoutthe execution of the plan (e.g. keep A on
B while transferring C to D; avoid collisions while traveling
to room R). They can be modeled in the Refine-Plan
algorithm simply as auxiliary candidate constraints. For
example, we can maintain On(A;B) by adding the inter-
val preservation constraint ht0; On(A;B); t1i to P; in the
Find-Plan algorithm in Figure 2.

Intermediate goals are useful to describe planning prob-
lems which cannot be defined in terms of the goal state
alone. As an example, consider the goal of making a round
trip from Phoenix to San Francisco.14 Since the initial and
final location of the agent is Phoenix, this goal cannot be
modeled as a goal of attainment, i.e., a precondition of t1
(unless time is modeled explicitly in the action representa-
tion [23]). However, we can deal with this goal by adding
an additional dummy step (say tD) to the plan such that tD
has a preconditionAt(Phoenix) and t1 has a precondition
At(SFO), and t0 � tD � t1.

Many refinement planners (especially the so-called task
reduction planners) use extensions such as condition-typing
[26], time-windows [27] and resource based reasoning
[27, 28]. Many of these extensions can be covered with
the auxiliary constraint mechanism. Time windows and
resource reasoning aim to prune partial plans that are in-
feasible in terms of their temporal constraints and resource
requirements. These can, in principle, be modeled in terms
of monotonic auxiliary constraints. Condition typing allows
the domain user to specify how various preconditions of an
operator should be treated during planning [26]. In particu-
lar, some planners use the notion of filter conditions, which
are the applicability conditions of the operators that should
never be explicitly considered for establishment. Filter con-
ditions thus provide a way for the domain writer to disallow
certain types of solutions (e.g., building an airport in a city
for the express purpose of going from there to another city)
even if they satisfy the standard definition of plan solutions

14In the past, some researchers (e.g. [4]) have claimed (mis-
takenly) that intermediate goals of this type cannot be modeled in
classical planning without hierarchical task reduction.

(see Definition 5). Filter conditions can be modeled as
point truth constraints, and included in the auxiliary solution
constraints (without adding them to the agenda) [12]. Since
they are (non-monotonic) solution constraints, they cannot
be used to prune partial plans. However, they can be used
as a basis for selection heuristics (viz., to prefer partial plans
which have already satisfied filter conditions).15

Finally, Refine-Plan can also be extended to cover
planning models other than plan-space planning. To
cover state-space planners (cf. [1]), we need to allow
Refine-Plan to use incomplete establishment refine-
ments, and backtrack over goal-selection to make the overall
search complete. The HTN planners (cf. [27, 4]) can be
modeled by extending the refinement algorithm such that its
main refinement operation is task reduction rather than estab-
lishment (with establishment refinement being a particular
way of reducing tasks); see [12].

7 Conclusion

In this paper, I have shown that refinement search provides
a unifying framework for understanding the performance
tradeoffs in plan-space planning. I have developed a formal-
ization of plan-space planning in terms of refinement search,
and gave a generic refinement search algorithm in which the
complete gamut of plan-space planners can be cast. I have
shown that this unifying framework facilitates explication
and analysis of performance tradeoffs across a variety of
planning algorithms. I have also shown that it could help
in designing new algorithms with better cost-benefit ratios.
Although I concentrated on the plan-space planners solving
problems involving goals of attainment, I have shown (Sec-
tion 6) that the framework can be extended to cover richer
types of behavioral constraints, as well as other types of
planners (e.g. state-space planners, hierarchical planners).

References
[1] A. Barrett and D. Weld. Partial Order Planning: Evaluating

Possible Efficiency Gains. CSE TR 92-05-01, University of
Washington, June 1992.

[2] D. Chapman. Planning for conjunctive goals. Artificial
Intelligence, 32:333--377, 1987.

[3] G. Collins and L. Pryor. Achieving the functionality of filter
conditions in partial order planner. In Proc. 10th AAAI, 1992.

[4] K. Erol, D. Nau and J. Hendler. Toward a general framework
for hierarchical task-network planning. In Proc. of AAAI
Spring Symp. on Foundations of Automatic Planning. 1993.

[5] M.G. Georgeff. Planning. In Readings in Planning. Morgan
Kaufmann, 1990.

[6] J. Jaffar and J. L. Lassez. Constraint logic programming. In
Proceedings of POPL-87, pages 111--119, 1987.

[7] S. Kambhampati. Planning as Refinement Search: A unified
framework for comparative analysis of Search Space Size

15Some researchers [3] have suggested that filter conditions
cannot be used in partial order planning without loss of complete-
ness. I believe that this confusion is mainly a result of seeing
filter conditions as filtering out refinement possibilities, as against
solutions.

and Performance. Technical Report 93-004, Arizona State
University, June, 1993.16

[8] S. Kambhampati. Multi-Contributor Causal Structures for
Planning: A Formalization and Evaluation. Arizona State
University Technical Report, CS TR-92-019, July 1992. (To
appear in Artificial Intelligence. A preliminary version appears
in the Proc. of First Intl. Conf. on AI Planning Systems, 1992).

[9] S. Kambhampati. On the Utility of Systematicity: Under-
standing tradeoffs between redundancy and commitment in
partial order planning. In Proceedings of IJCAI-93, 1993.

[10] S. Kambhampati and D.S. Nau. On the Nature and Role of
Modal Truth Criteria in Planning. Tech. Report. ISR-TR-93-
30, University of Maryland, March, 1993.

[11] S. Kambhampati. Design Tradeoffs in Partial Order (Plan
Space) Planning. Submitted to AIPS-94 and AAAI-94.

[12] S. Kambhampati. HTN Planning: What? Why? and When?
ASU Technical Report in preparation, 1994.

[13] C. Knoblock and Q. Yang. A Comparison of the SNLP and
TWEAK planning algorithms. In Proc. of AAAI Spring Symp.
on Foundations of Automatic Planning. 1993.

[14] D. McDermott. Regression Planning. Intl. Jour. Intelligent
Systems, 6:357-416, 1991.

[15] D. McAllester and D. Rosenblitt. Systematic Nonlinear Plan-
ning. In Proc. 9th AAAI, 1991.

[16] S. Minton, J. Bresina and M. Drummond. Commitment
Strategies in Planning: A Comparative Analysis. In Proc.
12th IJCAI, 1991.

[17] S. Minton, M. Drummond, J. Bresina and A. Philips. To-
tal Order vs. Partial Order Planning: Factors Influencing
Performance In Proc. KR-92, 1992.

[18] J. Pearl. Heuristics: Intelligent Search Strategies for Com-
puter Problem Solving. Addison-Wesley (1984).

[19] E.P.D. Pednault. Synthesizing Plans that contain actions with
Context-Dependent Effects. Computational Intelligence, Vol.
4, 356-372 (1988).

[20] E.P.D. Pednault. Generalizing nonlinear planning to handle
complex goals and actions with context dependent effects. In
Proc. IJCAI-91. , 1991.

[21] M.A. Peot and D.E. Smith. Threat-Removal Strategies for
Nonlinear Planning. In Proc. Eleventh AAAI, 1993.

[22] J.S. Penberthy and D. Weld. UCPOP: A Sound, Complete,
Partial Order Planner for ADL. In Proc. KR-92, 1992.

[23] J.S. Penberthy. Planning with continuous change. Ph.D.
Thesis. CS-TR 93-12-01. University of Washington. 1993.

[24] E. Sacerdoti. Planning in a Hierarchy of Abstraction Spaces.
Artificial Intelligence, 5(2), 1975.

[25] D.E. Smith and M.A. Peot. Postponing threats in partial-order
planning. In Proc. Eleventh AAAI, 1993.

[26] A. Tate. Generating Project Networks. In Proceedings of
IJCAI-77, pages 888--893, Boston, MA, 1977.

[27] K. Currie and A. Tate. O-Plan: The Open Planning Architec-
ture. Artificial Intelligence, 51(1), 1991.

[28] D. Wilkins. Practical Planning. Morgan Kaufmann (1988).

16Technical reports available via anonymous ftp from
enws318.eas.asu.edu:pub/rao

