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ABSTRACT 

The  Computer Vision Laboratory at the University of 
Maryland is designing  and de:reloping a  vision system for 
autonomous  ground  navigation. Our approach to  visual 
navigation  segments the task into  three levels called  long 
range,  intermediate  range  and  short  range  navigation.  At 
the long  range,  one  would first generate a plan for  the 
day's  outing,  identifying  the  starting  location,  the goal, 
and  a low resolution path for  moving  from the  start to 
the goal. From  time  to  time,  during  the course of the 
outing,  one may want  to  establish his position with 
respect to  the long  range  plan.  This could be accom- 
plished  by  visually identifying  landmarks of known  loca- 
tion,  and  then  triangulating  to  determine  current posi- 
tion. We  describe  a  vision  system  for  position  determina- 
tion that we have  developed as part of this  project. At  
the  intermediate  range,  one would look ahead  to  deter- 
mine  generally  safe  directions of travel called corridors of 
/ t ee   space .  Short  range  navigation is the process that, 
based  on  a  detailed  topographic  analysis sf one's  immedi- 
ate  environment,  enables us to safely navigate  around 
obstacles  in the  current  corridor of free  space  along  a 
track o/ safe  passage. We  describe a quadtree  based  path 
planning  algorithm which  could serve as the basis for 
identifying  such  tracks of safe passage. 

1. INTRODUCTION 
The  Computer Vision Laboratory at the University 

of Maryland is designing  and  developing  a vision system 
for autonomous  ground  navigation.  This vision system 
will be integrated by Martin  Marrietta Corp., Denver 
Colorado, into 8 navigation  system that will auto- 
nomously drive  a  ground vehicle over a network of roads 
at speeds of up to 10 kilometers/hour. The vehicle  will 
be equipped  with  a variety of sensors,  including 'pa/ sen- 
sors and  an  active  ranging  sensor, as well as a sophisti- 
cated  inertial  navigation  system.  The vehicle will be 
driven,  initially, by a suite of computers  including  a VAX 
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11/75Q and a VICOM  image  processor. The project is 
supported  under DARPA's Strategic  Computing Pro- 
gram,  and will involve the collaboration of many indus- 
trial  and  university  research  laboratories. 

The vision  research is focused  by a set of project 
milestones that involve  incrementally  extending the capa- 
bilities of t,he vehicle to deal  with  more and  more  com- 
plex situations. The first milestone  requires that  the 
vehicle be  able  to  navigate  a single, obstacle free road, 
with no intersections, at speeds on the  order of 5 
kilometers/hour. A demonstration of this milestone is 
initially  scheduled  for  late  summer 1985. Subsequent 
milestones  include navigating on a road  with  widely 
spaced  obstacles,  and  navigating  a  network of roads  hav- 
ing  different  compositions  and  quality. 

It is expected that  many of these  milestones  might 
not be  achievable at  the desired  speeds  using  commer- 
cially available  computers.  Therefore,  a  large  part of the 
Strategic  Computing  Program is devoted to  fostering the 
development of appropriate  computer  architectures for 
the machine  intelligence  tasks  associated  with  navigation. 
Prototype machines  developed under  the  program will 
first be introduced into  the AI and Vision Laboratories 
studying  navigation,  and  eventually  integrated  into  a  test 
vehicle. 

Our  approach  to  visual  navigation  segments  thc  task 
into  three levels, called  long  range, intermediate  range 
and  short  range  navigation.  The  general flow  of control 
between levels is that goals flow from levels of greater 
abstraction  to levels of lesser abstraction  (long - inter- 
mediate - short) while status information  concerning the 
achievement  of  these  goals flows in the opposite  direction. 
Each level  of  navigation  maintains a map of  (some sub- 
set) of the  environment  to be navigated,  with  the  map 
representations  becoming  more  detailed as one ~ O W S  
from long range down to  short range  navigation.  Specific 
Sensors and  visual  capabilities  are  associated  with  each 
level of navigation;  these  sensors  and  capabilities  function 
to maintain  the  correctness of the  map  representation at 
that Ievel. 

The decomposition ob the navigation  problem into 
these  three levels is intuitively  motivated by the  types of 
navigation tasks that a  human  might  perform in moving 
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through a generally  unfamiliar  environment  with the aid 
of a low resolution map (of the  sort  that  one  might 
obtain  upon  entrance to a national  park).  At  the so- 
called  long range,  one would  first generate  a  plan  for  the 
day’s outing,  identifying  the  starting  location,  the goal, 
and  a low resolution path for  moving  from the  start to 
the goal. This  path would  be  chosen  based on gross con- 
siderations of the  terrain to be  crossed and  the capabili- 
ties of the “vehicle”.  From  time  to  time,  during  the 
course of the  outing,  one  may  want  to  establish his posi- 
tion  with  respect  to  the long  ra.nge plan. This could  be 
accomplished by visually  identifying  landmarks of known 
location,  and  then  triangulating to determine  current 
position.  Section 2 of this  paper describes  a  vision system 
for position  determination  that we  have  developed as part 
of this  project.  A  more  detailed  description is available 
in Andresen  and  Davis[l]. 

At  the  intermediate range,  one  would  look  ahead to  
determine generally  safe  directions of travel.  This would 
involve  assessing the  nature of the  terrain  in one’s 
immediate  visual  environment  and  identifying  those por- 
tions of that  environment  through which it is feasible to  
move. We refer to  those  navigable  portions of the 
environment as corridors o f f ree  space. In the context of 
the  current  set of project  milestones,  corridors of free 
space  naturally  correspond to  segments of road in the 
vehicle’s field of view. We  have developed  a  system of 
algorithms  that  can, in many cases, detect  and follow 
roads in sequences of imagery.  They  are based  princi- 
pally on an  analysis of dominant  linear  features  extracted 
from  the  individual  frames in the image  sequence. These 
algorithms  are  currently  being  evaluated on a large  data- 
base of images  acquired at Martin  Marrietta’s  test  site in 
Denver. The details of the algorithm  design  are  included 
in Waxman  et. a@. 

Finally,  short  range  navigation is the process that, 
based on a  detailed  topographic  analysis of one’s  immedi- 
ate  environment,  enables us to determine  safe  positions 
for foot  placement,  and to navigate  around  obstacles in 
the  current corridor of free  space.  Human  navigators 
probably use stereo  and  motion vision to derive the  three 
dimensional  information  needed to solve  these  problems. 
The vehicle,  which is a wheeled  vehicle as opposed to a 
legged  vehicle,  will  be  equipped with a laser range sensor, 
currently  being  constructed at the  Environmental 
Research Institute of Michigan  (Zuk and Dell’eva[3]), 
which is capable of acquiring  two 100 x 100 arrays of 
range data per  second. This range data can,  for  example, 
be  converted  into  a  simple  array in which  regular  patches 
of terrain  are classified as either  “navigable” or “non- 
navigable” and  then  appropriate  path  planning algo- 
rithms  can  determine  what we  refer to as a track of safe 
passage and  generate  the  corresponding  motion  control 
algorithms to  the pilot of the vehicle to negotiate  that 
track. In  Section 3 of this  paper we  describe a quadtree 
based path  planning  algorithm which  could serve as the 
basis  for  identifying  such  hacks of safe  passage. A more 
detailed  description  with  extensive  examples is presented 
in Kambhampati  and  DavisIl]. 

2. LANDMARK BASED VEHICLE POSI- 
TIONING 

An autonomous vehicle must  have  the  capability of 
computing  its  current  position  for a variety of reasons - 
e.g., to be able  to  anticipate, on the basis of available 
cartographic  data,  importnnt  events  that  are likely to 
occur  (road  intersections,  bends,  changes  in  terrain,  etc.) 
and to  use these  expectations  to  guide  its sensory  process- 
ing. The position of the vehicle  can  be determined using 
many  different approaches.  The vehicle will have an 
onboard  inertial  navigation  system.  Although  such sys- 
tems  are  very  accurate,  they  do suffer from  some  degree 
of drift which  can  build  up to  substantial  errors  over long 
distances. The vehicle might also have access to a  satel- 
lite  positioning  system  such as the  Global  Positioning 
System.  While  such  a  system  does  not suffer from  drift, 
its  accuracy is not as high as an  inertial  system;  further- 
more,  since  such  systems  depend on components  that  are 
external  to  the vehicle, there is no guarantee  that  they 
will be  available when  needed. 

I t  is also possible to  compute  the position of the 
vehicle  by  visually identifying  objects of known  scale, 
location  and  appearance  and  then  simply trizngdating to 
determine  the vehicle’s  position. Qrdinarily,  one has 
some  initial  estimate of the vehicle  position  (perhaps  from 
the  inertial  system)  and  one wishes to  improve  the accu- 
racy of that  estimate using  visual  landmark  recognition. 

A collection of algorithms  for  such a system has been 
designed and  partially  implemented in a research  environ- 
ment.  The  system uses the knowledge of the vehicle’s 
approximate  position  to visually locate known landmarks. 
It  then  triangulates  using  the  bearings of the known  land- 
marks to  acquire a new position with a reduced  uncer- 
tainty. 

We  assume  the vehicle’s  camera is mounted on a 
computer  controlled  pan  and  tilt  mechanism  and has a 
computer  adjustable focal  length.  We  also  assume esti- 
mates  are  available for the heading of the vehicle, as well 
as the  current  settings of the  pan,  tilt,  and  local  length of 
the  camera.  A  database of landmarks exists that includes 
all pertinent  landmark  qualities,  such as size and  position, 
and at least  one  representation of each  landmark  from 
which it could  be  recognized in an image. 

The  system is composed of three  modules, called the 
MATCHER,  the  FINDER,  and  the  SELECTOR,  that 
interact  to  establish  the vehicle’s  position with  a new 
level of uncertainty. 

I)  The  MATCHER locates likely positions for one  or 
more  landmarks in an  image,  and  rates  these  positions 
according to some  measure of confidence. 

2) The  FINDER  controls  the  pointing  direction  and 
focal lengih of the  camera to acquire  specified  images for 
a set of landmarks  and  directs  the  MATCHER  to find 
possible  positions  for  these  landmarks  in  the images. It 
then  eliminates  possible  positions  for  individual  land- 
marks  which  are  not  consistent  with  the possible posi- 
tions  found  for other  landmarks.  The  FINDER  then 

857 



evaluates the remaining  possible  posit,ions to determine 
the  actual  positions of the given landmarks. 

3)  The SELECTOR identifies a set of landmarks 
whose  recognition in images of appropriate  angular reso- 
lution would improve the position  estimate of the vehicle 
by the desired amount. It then  directs  tbe  FINDER to 
establish likely positions in such images for subsets of 
those  landmarks.  With  these positions, the SELEC'H'OR 
then  computes new estimates of the vehicle  position and 
position uncertainty  and  directs  the  FINDER, if neces- 
sary,  to  locate  additional  subsets of landmarks. 

and  SELECTOR, repectively. 
Section 2.1 - 2.3 describe the  MATCHER, FINDER, 

A generalized Hougb transform (51 is employed to 
locate  landmarks of known  image  orientation  and scale. 
The landmarks  are  represented by lists of boundary 
points;  these  points  are  then  individually  matched  to  edge 
points in the image. The algorithm consists of three 
main  phases:  edge  point detection,  matching of the text- 
piate  to  the edge points,  and  interpreting  the  results of 
the  matching. Edges are  detected as points where the 
Laplacim  changes sign and the iocak grey  levels have a 
high symmetric diberence. Matching is done  using the 
generalized  Hough transform and is restricted  in two 
ways. First,  template  points  match only points  having 
close to  the  same  gradient  direction.  Second, only those 
template  points  are used whose gradient  directions  have a 
high measure of informativeness;  this  measure is dis- 
cussed  in more detail below. 

It can oft,en occur that one or several  gradient direc- 
tions  are so prevalent in the image that  they  produce 
strong  voting  clusters in Houglir, space at, incorrect loca- 
tions. If a  gradient  direction  occurs xt N edge  points  in 
the image  and at M template  boundary  points,  then 
M x N  increments  are  made for that  gradient  direction in 
the Hough space.  Since  usually only a small  fraction of 
the edge points in the image are  part of the object's 
boundary,  the  remainder of the  matches  can  potentially 
contribute to fake peaks in the Hough  space. 

Also, if a  gradient  direction is  prevalent in the tem- 
plate,  then, as a  group,  points  with that  gradient direc- 
t,ion will contribute  more  correct  votes  than would points 
with  an  infrequent  gradient  direction.  This is because 
there will be  more  boundary  points  with  the  prevalent 
gradient.  direction incrementing  potential reference  points. 
Therefore, when the reference point  happens to  be  ?,he 
correct  location  for the  object,  more of t he   vo te  
contributing to  its peak will come  from points  with  the 
prevalent  gradient  direction  than  from  points  with  an 
infrequent  gradient  direction. 

To use  these  observations to best advantage, we 
developed  a  measure of gradient  direction  informativeness 
(CDI) to  rate  the  gradient  directions.  Only  those  points 
whose gradient  directions rate highly are used in the 
matching.  In  this  way, we can  eliminate the uninforma- 
tive  sources of spurious  patterns  in  the  Ilough  space  and 

make  best  use of the  most  informative  points. T h e   m e w  

ure used is ~ '' ' le where P[ G I t  is the probability  that, 

gradient  direction 6 occurs  in the  template  and k[ G 1; is 
the  probability  that  gradient  direction G occurs  in the 
image. The actual  probabilities  are  extracted  from  histo- 
grams  of  the  template  and  the image.  Based  on this 
measure, only the most  informative 15 percent of the 
edge points in the image are used in the  matching.  Ccnse- 
quently,  boundary  points in bhe template whose gradient 
directions  are  not selected will not  be  used. 

I t  can  be  seen  that  gradient  directions  that occur 
often in the  template  but  infrequently in the image  would 
rate very  high on this scale. Also, gradient  directions 
with few occurences  in the  template  hut  many in the 
image  would rate very low. Points  with such gradient 
directions  would  yield a bigh number of unrelated  votes, 
cluttering  the Hough  space and  creating false  peaks. 

PI l i2  

This  section  describe a strategy  (the FINDER) for 
determining  bearings to B given set oi landmarks. The 
FINDER is also given specifications for images in which it 
can  expect to find these  landmarks. It then  controls the 
camera to obtain  these images and uses the hMTCHER 
to establish likely positions  for the  landmarks in  their 
respective  images.  Since 'she search  for  any specific land- 
mark  may  result in severat  possible  image  positions 
(which we will refer to from  now on as ''peaks'']  for that 
landmark (at most one of which can  be  correct),  a  simple 
geometric  constraint  propagation  algorithm is employed 
to eliminat,e many of the false  peaks. 

The geometric  constraint  propagation  algorithm eon- 
siders  possible peaks  for a pair of landmarks  and  deter- 
mines if they could both  be  the  correct  peaks for  their 
respective  landmarks. Two possible peaks  are called 
consistent if they  meet  this  criterion. The details of this 
consistency computation  are described below. With con- 
sistency  determined for all  pairs ob peaks,  a  graph is then 
constructed in  which  nodes are  ?eaks,  and  arcs  represent 
the  mutual consistency  between two  peaks.  Analysis of 
this  graph  can  determine  consistency  among  groups of 
more than  two  peaks  and  therefore  eliminate  peaks based 
on more  than just pairwise  inconsistency. 

T o  determine consistency  between two peaks p ,  and 
p for landmarks L and L 2, we  first calculate  a  range of 
possible angular differences between L and I,, based on 
the vehicie's  positional  nnccrtainty. We  then  extend  this 
range by the  pointing  error  and check thst  the measured 
angular difference  between p 1  and p z  falls  within  this 
range. 

The angular difference between L and E is deter- 
mined  by  simply taking  the difference of their bearings. 
The range of angular differences is then  obtained by let- 
ting  the  value for the  current position  vary  according to 
the position uncertainty of the vehicle. For  the  purposes 
of this  analysis,  we  assume that  the position uncertainty 
can  be  represented by a solid  disc on  the local ground 
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plane. If we make  the reasonable  assumption that nei- 
ther  landmark lies inside the disc,  then  it is easy to show 
that  the positions  which  give the maximum  and 
minimum  angular differences will always lie on the cir- 
cumference of the disc. From  these  positions we can  then 
calculate  directly  the  maximum  and  minimum  angular 
difference  between L and L 2. An abbreviated  derivation 
of an  analytic  solution for these  points  can  be  found in 
111. 

As mentioned  above, the consistency  graph 
represents  consistency  relations  between the possible  loca- 
tions  for  different  landmarks.  Ideally, we would want to 
determine  the  maximal  complete  subgraphs (MCS’s) of 
this  graph  because  they would represent  the  largest  sets 
of landmark  locations that  are all  mutually  consistent. 
For  small  graphs  this is practical,  but for large  graphs we 
might  be  forced,  due  to  time  constraints,  to  perform a 
simpler  analysis. 

We  can,  for  example,  apply  certain  simple  iterative 
tests to the  graph  that would eliminate  any  landmark 
location  not part of a t  least  a k-clique. In what follows, 
we identify  two  simple  tests  for  eliminating  nodes  not 
part of k-cliques. These processes are similar t o  so-called 
“discrete  relaxation”  algorithms - see, e.g., Naralick and 
Shapiro [SI. 

First, wc  can iteratively  eliminate all nodes  which do 
not  have  arcs to  nodes  representing at least  k  other dis- 
tinct  landmarks.  After  this process is complete, we can 
then  eliminate  all  nodes which are not the  center  of  what 
we refer to  as a k-fan. A node n is the  center  of  a  k-fan 
if there  exists a connected  chain of nodes o? distinct  land- 
marks of length  k-1 in which  each  element  of the chain is 
connected to PI. Finally, we  find all MCSs  for  this  pruned 
graph. 

Since  we  could  end  up  with  several MCSs, we now 
need a way to  determine which is the  actual  set of land- 
mark  locations. To  do  this, we define an evaluation  func- 
tion to operate on the MCSs and  then pick the MCS 
which  responds  best to  the evaluation  function. In our 
current  system, we  use a simple  summation of the 
confidences for each of the possible  peaks. 

2.3. The SELECTOR 
This section  describes a strategy  (the  SELECTOR) 

for selecting  a set of landmarks whose  identification in 
appropriate images  would  improve the  current  estimate 
of the vehicle’s  position. The  SELECTOR  supplies  sub- 
sets of these  landmarks,  with  appropriate image 
specifications, to  the  FINDER which returns  the  most 
likely relative  positions  for  each  landmark  in  each  subset. 
The  SELECTOR  then  computes  the Tlehicle’s actual loca- 
tion  and the new uncertainty  associated  with  it. If this 
new uncertainty is insufficient, then  the SELEC‘1C.R can 
either  simply  accept the new uncertainty as the best 
achievable  result,  or  try to  further improve the position 
estimate  using  other  landmarks. 

Given  a  database of visual  landmarks, a variety ob 
strategies can be  employed  to select a subset of those 
landmarks  for  identification.  The  implementation  of  any 
of these  strategies  requires  the  abilities t o  determine  both 
the ease of identification oi any given landmark  and  the 
eifect of its  identification on the vehicle’s  position  uncer- 
tainty.  Here, we  consider  only the  latter; see [I] for a dis- 
cussion of the former. 

Given a pair of bearings ( B 1 , B 2 )  for  two  landmarks 
with  known  positions (z , ,yl)  and (z2,y2), we  can  find the 
actual vehicle  location  by  intersecting the lines passing 
through (zl,yl) with  angle B ,  and (z2,y2) with  angle B,. 
See Figure la .  If the bearing Bi to landmark 15,. is only 
known to within f B i ,  then  the possible lines passing 
through (z i  ,yi 1 would  sweep out a wedge Wi of angular 
width 26, on the ground  plane.  See  Figure lb .  Since  for 
each landmark, Li , found the vehicle is constrained  to lie 
in the  planar wedge Wi, then  the vehicle must lie in the 
convex  polygon  formed by the  intersection of these 
wedges.  See Figure IC. 

The size  and  shape of this convex  polygon is deter- 
mined  by the  width of each  wedge at their  intersection 
and  the angles at which they  intersect.  The  width Vi of 
a  wedge iq at  a distance di from Ei is given  by 
Vi = 2.d;  .tanOi,  where is the  uncertainty of the 
landmark  bearing.  Therefore, the effect of finding Li’s 
bearing on the vehicle  location  uncertainty is proportional 
to  the  angular  uncertainty 6; of the bearing  and  the dis- 
tance  from Li to  the  actual vehicle  location.  Since the 
actual vehicle  location is not  known at this  point, we 
approximate it by the assumed  current  position. 

To express  in  one parameter  the  uncertainty 
represented  by  an  arbitrary convex  polygon, we  find the 
two  vertices  which  are  furthest  apart. Half of the dis- 
tance  between  these  two  vertices is a  reasonable  approxi- 
mation of the  “radius” of this polygon. 

3. QUADTREE PATH PLANNING 
We are developing  a  system of algorithms for  mobile 

robot path  planning  based on a multiresolution  represen- 
tation of the  robot’s  immediate  environment.  The mul- 
tiresolution  representation used is the  quadtree 
(Samet[7]).  Figure 2 illustrates  the  quadtree  reprcsenta- 
tion  for a simple  binary  array  where  black  points 
represent  obstacle  points  and  white  points  represent  lree 
space.  The  quadtree is a  recursive  decomposition of that 
array  into  uniformly colored (i.e., either black or  white) 
2’ x2’ blocks. Thus, il there  are  large  areas of free space 
(or of obstacles)  then  those  areas  can  be  represented by a 
few large  blocks in the  quadtree  and can  be  dealt  with as 
units by the  planning  algorithms. 

The  quadtree  representation  thus offers a  comprom- 
ise between a simple  homogeneous  arrzy  representation 
(which is straightforward to construct  but  then  computa- 
tionally  costly to  analyze)  and  a  free  space region 
representation (e.g., Brooks[8])  which is more  costly to  
construct,  but on the  other  hand  more  eficient to 
analyze. 
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Before discussing the  planning  alprithm, we should 
point out  that  there  are several important differences 
between path  planning  requirements  for  a mobile robot 
and for the more familiar  manipulators (see  also the dis- 
cussion in Thorpe[S]).  For example: 

1) A mobile robot  may  have only an incomplete model 
of its  environment,  perhaps because it  constructs  this 
model  using vision and  thus  cannot  determine  what lies 
in the  shadow of an object. 

2) A mobile robot will ordinarily only negotiate m y  
given path  once (as opposed to  a  manipulator which 
might perform the  same Epecific task  thousands of times). 
Therefore,  it is more important  to develop a negotiable 
path quickly than  it is to develop an  “optimal”  path, 
which is usually a costly operation. 

3) A mobile robot will be moving according to  a previ- 
ously computed  path while it is computing  an extension 
or modification to  that  path - Le., path  planning for a 
mobile robot is a continuous, online process rather  than a 
single, offline process. 

The  algorithm  that follows only  addresses the second 
of the above three  points.  A  path  generated  from a 
quadtree is a sequcnce of blocks through which it is possi- 
ble for the  robot  to move. The  detailed motion within 
any  single block is not  determined at  this level; a default 
assumption of straight line motion through  the block is 
assumed. Although  this will not  ordinarily be an optimal 
path,  it will be a negotiable  path. 

Given the  quadtree  representation in which blocks of 
0’s represent  free  space  and blocks of 1’s represent  obsta- 
cles, we Erst compute  the distance transjorm of the  set of 
0’s. This  determines, for each block of free space,  the 
minimal distance between the  center of that block and 
the  boundary of a block of obstacles. Samet[7] describes 
an  algorithm for computing  the  distance  transform  for a 
quadtree. 

The  path  planning  algorithm itself is a simple A * 
search  algorithm  with  the  evaluation  function, f, defined 
as follows: 

f = g  + h  
where  g is the  distance of the  current node in the  search 
from  the  start  node,  and  h is the heuristic estimate of the 
goodness of the  remainder of the  path  passing  through 
that node. The heuristic h is the difference of two com- 
ponents, k, and h d ,  where hd is the  distance of the 
nearest  obstacle  from  the  current node (determined  by 
the  distance  transform  algorithm)  and hG is the  straight 
line distance between the  current node and the goal. 

the  optimal  path  through  these blocks, or we can simply 
connect  the  center  points of consecutive blocks 011 the list 
to  compute  a  path. 

Figure 3 contains a simple example. Figure  3a is a 
binary  array  with  start  and goal points  marked, along 
with an  indication of the  path  determined by the a l p  
rithm.  Figure 3b contains  the  tree  data  structure  that 
represents  the  quadtree,  with  the blocks on the  computed 
path  marked  with P’s. 

An important extension of this  simple  path  planning 
algorithm involves the  ability  to deal with grey nodes in 
the  quadtree  (nonterminal nodes  which  always have  both 
black and  white  descendants). Dealing with grey nodes 
can greatly  reduce  the  number of blocks that  the plan- 
ning algorithm needs to consider in building an ioitial 
estimate of a  path. Such an  algorithm is presented in [4]. 

4. CONCLUSIONS 
The  framework for visual  navigation that we have 

presented in this. paper  must itself be  incorporated  idto 
an even more comprehensive navigation  framework  that 
considers analyses of many  other sources of information - 
e.g., other sensors, maps, reconnaissance data,  etc.  Plan- 
ning and executing navigation  tasks  at  this level will 
require  very complex models for data fusion,  resource 
allocation and problem representation  and solving. 
important goal of the  autonomous  navigation  project is 
to structure  this  framework in such a way that it is possi- 
ble for a broad  spectrum of research  groups to  contribute 
to,  and  experiment  with,  the vehicle (or an appropriate 
simulation of the vehicle).  Achieving this goal would, 
hopefully, lead to  a  better  understanding of not  just 
vision as an  isolated  activity,  but of vision as part of a 
more comprehensive  intelligent  activity. 
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