
Appeared in Working notes of AAAI 1990 Spring Symposium on Casebased Reasoning

A Classification of Plan Modification Strategies Based on
Coverage and Information Requirements*

C

Subbarao Kambhampati

enter for Design Research and Department of Computer Science
Stanford University
Stanford CA 94305

u

T

1. Introduction

email: rao@sunrise.stanford.ed

he ability to modify an existing plan to make it conform to the
t

f
constraints of a new (or changed) planning situation is importan
or plan reuse, replanning and case-based planning. While

,
[
significant amount of past work addressed this problem (e.g.
2, 3] [5, 1] [13] [17], [16]), there is still a lack of understanding

.
F
of the general types of modification strategies and their coverage

or example, while it is generally agreed that the information
e

fl
about the internal structure of the plan is important to facilitat

exible plan modification, the general issue of relation between
e

m
the types of remembered information and the modification/reus

ethodologies they entail has not been adequately addressed. In
rthe course of our research on developing , a framework foPRIAR

e
d
flexible plan reuse in hierarchical planning [11, 12, 10], we hav
eveloped a classification of plan modification strategies based

d
t
on the nature of the modifications that are allowed by them, an
he types of information they require to facilitate those

r
u
modifications. The motivation behind it was to classify and bette
nderstand the previous work on plan modification, and to

scharacterize ’s approach in that spectrum. We present thiPRIAR

classification in the current paper, with the belief that it can help
s

e
in better understanding the coverage and capabilities of variou
xisting plan modification strategies, and in formulating the

s
p
directions for further research. (Much of the discussion in thi
aper generalizes in part also to reuse and modification of other

dependent structures such as designs and problem solutions.)

Let us start by describing two dimensions along which the

b
information requirements of the plan modification strategies can
e classified: the two dimensions of classification of the

.
‘
represented information: functionality and ease of acquisition
‘Functionality’’ refers to the coverage, i.e., the different types of

o
plan modification the represented information facilitates. ‘‘Ease
f acquisition’’ is concerned about the methods by which such

l
b
information can be acquired, and their complexity. As wil
ecome clear later on, there is often a trade-off involved between

h
these two.
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

s
A

* The support of the Defense Advanced Research Project
gency and the U.S. Army Engineer Topographic Laboratories

l
R
under contract DACA76-88-C-0008, and that of Office of Nava

esearch under contract N00014-88-K-0620 are gratefully ack-
nowledged.

The generally accepted answer to the question of
t

w
representation of a stored plan is to ‘‘remember everything tha

ent into the formation of the plan.’’ This was first suggested by
,

t
Carbonell in his derivational analogy work [2]. For plan reuse
his has been interpreted to mean that the stored plan should

.
H
represent a comprehensive ‘‘derivational trace’’ of the plan [13]

ere we show that the derivational trace typically combines two
g

t
fundamentally different classes of information, which vary alon
he dimensions of functionality and ease of acquisition. We refer

-
s
to these two types as the correctness explanation and the deci
ion rationale. The first consists of information about the inter-

-
t
nal dependencies of the plan that effectively provide an explana
ion of the correctness (or the validity) of that plan. This itself

r
can be sub-divided based on whether the explanation is with
espect to the planner’s domain model or with respect to some

,
c
external domain model. The second type, decision rationale
onsists of information about the rationale behind the individual

f
planning choices. In the rest of the paper, we shall discuss the
unctionality and the ease of acquisition of these two broad

n
m
categories of information, and list previous approaches to pla

odification that can be categorized into these classes (Table 1
e

w
summarizes the exising work in this classification). Along th

ay, we shall address the importance of correctness explanations
f

‘
in guiding flexible plan modification, introduce the notion o
‘correctness with respect to domain models at various levels of

m
abstraction,’’ and motivate its utility in guiding plan

odification.

2. Modification based on Correctness Expla-

O

nations
ne type of information that has been found to be of significant

c
use during plan reuse and modification is the explanation of the
orrectness or validity of the plan. Such information helps the

e
o
planner compute the ramifications of local modifications on th
verall correctness of the plan, and can also help it guide the

-
n
modification so as to cause least amount disturbance to the origi
al plan [12]. Various implemented systems (e.g., [5, 17, 16])

including [11] utilize this type of information to guidePRIAR

plan modification. Here we shall argue that the information
g

t
regarding the correctness of the plan is necessary for ensurin
he flexibility of plan modification. We will show that such

s
b
information can be further divided into two broad sub-categorie
ased on whether the explanation is with respect to the planner’s

w
(problem-solver’s) knowledge of the domain, or whether it is

ith respect to some external domain
iii

i
Type of Information Functionality Served Ease of Acquisition

iii

I. Explanation of Correct-
ness

Retrieval, Location and
y

F
Repair of Applicabilit

ailures, Control of
Modification.

Can be acquired on-line
e

a
during planning, or off-lin
fter the planning through

d
c
a domain model base
ausal simulation.

p
(a). Correctness w.r.t.

lanner
[Validation Structure]

Ensures correctness rela-

d
tive to the planner’s
omain knowledge.

d
p
In other words, modifie
lans stay in the deductive

s
d
closure of the planner’
omain knowledge.

Can be annotated by the
f

p
planner as a by-product o
lanning (e.g., [11],PRIAR

NSIPE NONLI[17], [4])

ii

(b). Correctness w.r.t.

[
external domain models
Causal Explanation]

Ensures correctness rela-

m
tive to the external domain

odel.
In other words,

c
modification here can take
are of failures that the

t
o
planner itself cannot detec
r correct. Thus, modified

f
t
plans may lie outside o
he deductive closure of

k
the planner’s own domain
nowledge.

Off-line causal simulation
l

d
with the help of externa
omain models (e.g., F

[GTD

CHE

5], [16]).

ii

II. Rationale behind deci-

[
sions
Justification for choosing

-
s
a particular planning deci
ion over the other possi-

ble alternatives.]

Can guide modification to
,

a
avoid previous failures
chieve optimality etc.

These structures have to
e

p
be annotated by th
lanner or captured in-

teractively (e.g., [3], [14]).

i

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
cciicc

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

F
Table 1. Classification of Plan Modification Strategies based on

unctionality and Ease of Acquisition of information represented on the stored plans

i)
t
model. We shall see that this categorization allows us (
o better compare the approaches of [5] and S

PRIAR SIPE

CHEF GORDIU

ii -
g
[16] to those of [11] and [17], and () to sug
est ways in which their approaches can be combined.

c
We will also discuss the utility of hybrid approaches that
an exploit both types of correctness explanations.

E

2.1. Correctness with respect to Planner
xplanation of correctness of the plan in terms of the planner’s

t
own knowledge of the domain can be provided (annotated) by
he planner as a by-product of the initial plan generation. To the

a
p
extent that such information helps in judging the correctness of
lan relative to the planner’s own domain knowledge, it can also

t
t
help in ensuring the correctness of the modification with respec
o that knowledge. Since the result of modification lies in the

e
m
deductive closure of planner’s domain knowledge, th

odification process itself can be integrated with the generative

planning. (A point to bear in mind here is that the planner’s
t

t
own domain model may be incorrect and incomplete; more abou
hat below.)

In our work with , we formalized this type of expla-
n

PRIAR

ation as the validation structure of the plan. The validation
n

i
structure essentially encodes the information about the protectio
ntervals of the plan locally on each task of the hierarchical task

t
e
network underlying the development of the plan. Thus, i
ffectively provides an explanation of correctness of the plan at

c
different levels of abstraction. Plan modification is seen as a pro-
ess of removing the inconsistencies in the validation structure of

tthe plan . We showed that validation structure can be used no1

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

g
v

1 Such as repairing failing validations, establishing missin
alidations, and removing redundant validations; see [11] for de-

tails.

w
only for efficient localization of plan applicability failures (as

as demonstrated by previous work), but also to control the
s

c
refitting and retrieval phases [11, 12]. Other work that use
orrectness explanations with respect to planner to guide plan

f
t
modification includes [7, 4, 17]; for a detailed comparison o
hese systems with , see [11]. We believe that in com-PRIAR

PRIAR -
t
parison to earlier approaches, represents a more sys
ematic exploration of the utility of annotated correctness expla-

p
nations (validation structure) in guiding and controlling various
hases of plan reuse and modification.

n
M
2.2. Correctness with respect to External Domai

odels
The correctness explanation can also be provided with respect to

d
m
an external domain model, which may be arbitrarily deep an

ay explicitly state assumptions that the planner’s own model
.might have left implicit (to improve the efficiency of planning)2

l
s
Such an explanation is typically acquired as a result of causa
imulation, after the planning. Since the explanation of correct-

h
ness is not limited by the the planner’s domain model, it can also
elp in the detection and correction of bugs that arise due to

d
d
incorrectness and incompleteness of the planner’s own limite
omain model. The trade-off is the increased complexity of plan

modification (see below). Hammond’s case-based planner CHEF

GORDIUS]
a
[5], and Simmons’ Generate-Test-Debug planner [16
re examples of systems that do plan modification using this type

of correctness explanation.

An important source of complexity here is that

c
modification cannot be integrated with planning, as the planner
annot carry out the debugging of plans that are not faulty with

x
d
respect to its model of the domain. As a result, more comple
omain independent debugging techniques would have to be

employed to carry out the modification.3

:
H
2.3. Combining the Correctness Explanations

ybrid Models
Though most previous plan modification/debugging approaches

-
n
used either one or the other of the above two types of correct
ess explanations, the use of one does not necessarily preclude

-
t
the use of the other. A way of exploiting both types of explana
ions would be the following: When the specification of the plan

ochanges, first, type validation structures can be used tPRIAR

efficiently produce a plan at the level of correctness of the

i
planner through reuse. If during subsequent execution, that plan
s found to fail due to incorrectness or incompleteness of the

planner’s domain model, a style debugging of that planGTD

-
t
can be attempted with the help of a correctness explanation rela
ive to an external domain model. In a type framework ,CHEF 4

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

The rationale is that it may be more efficient on the aver-
a

2

ge to synthesize a plan with the help of a simple if incomplete

c
domain model and then to test it with respect to a deeper and
omplete external domain model, than to synthesize plans with a

complete domain model; see [16] for further explanation.

Simmons [16] points out that the overall success of D

s

3 GT

ystem is predicated on the generator’s ability to produce plans
-

g
that are typically correct, thereby reducing the need for debug
ing with the help of external domain models.

nFor our purpose, ’s case-base of plans plus its plaCHEF

m

4

odification strategies can be seen to constitute its plan genera-
tor.

this allows us to first ensure the correctness of the modification
y

d
with respect to planner, before embarking on a more costl
ebugging stage. This in turn lets the debugger concentrate on

,
a
only those bugs that the planner itself cannot detect or repair
llowing for improvement of average case efficiency of plan

2

modification.

.3.1. Modification in the presence of Multiple Incom-

I

plete Domain Models

n many realistic domains, the planner is an embedded module,

m
and has to of necessity interact with other modules that have

ore knowledge about certain aspects of the domain. Plan
.

F
modification in such situation presents additional complexities

or example, in process planning for manufacturing, many
.

I
important planning decisions arise from geometric considerations
f the domain model of the planner were to directly model such

y
i
considerations, the resultant planner would be unacceptabl
nefficient. In general there may be several other considerations

d
of this nature influencing a planner operating in a realistic
omain (e.g., fixture considerations in process planning). One

f
way of looking at them is to see those considerations as arising
rom specialized but incomplete models of the domain. For

b
example, in process planning, the geometric considerations may
e seen as stemming from the geometric simulation model of the

s
s
domain. Note that these are not necessarily passive testers, a
ome level of understanding of these considerations is required to

n
i
be able to carry out any useful planning at all. Plan modificatio
n such situations provides special challenges as the correctness

r
s
of the plan cannot be explained without addressing these othe
pecialist modules. change.

There are two ways of dealing with the problem—the
-

c
first, embraced by several existing systems (e.g., [8]), is to anti
ipate all the interactions and the corresponding linearizations

-
n
with the help of some collection of expert rules, before the plan
ing starts . While this allows the planner to side-step the costly

i

5

nteraction detection and resolution processes, it leaves the
f

t
planner with little understanding of the internal dependencies o
he resultant plan (as it has no understanding of why certain

-
q
planning decisions, such as linearizations, were made). Conse
uently, during reuse when the specification of the problem

-
i
change (there by changing the anticipated interactions and linear
zations), the planner cannot decide how much of its original

n
plan will survive, and which parts need to be changed in the
ew situation. This inhibits flexible reuse of the plan.

-
i

A second way is to build into the planner an understand
ng of these interactions at some level of abstraction so that the

a
planner, while incapable of discovering interactions by itself, can
t least compute the ramifications of those interactions on its

w
plan. In the event of specification change, such a capability

ould help it avoid redoing everything from scratch by flexibly
s

p
reusing any applicable parts of the plan. For example, in proces
lanning, the planner might use a predicate such as

m
Clear −Access (?f eature) as a precondition of various actions to

odel tool accessibility of the feature. It may not be able to
d

s
deduce the truth or falsity of the Clear −Access predicate base
olely on its domain model, but may have to rely on the

.
N
geometric simulator to compute the truth of this predicate

otice that this leads to two levels of explanation of correctness
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

this has obvious similarities to the approach taken by5

.CHEF [5]

p
of the plan—when the specification of the problem changes, the
lanner by itself cannot completely determine if its plan is

c
correct—it will have to depend on the geometric simulator to
ompute the truth of the predicates such as Clear −Access . How-

f
C
ever, the planner can use the change in the truth o

lear −Access predicate to realize which exact parts of its plan
l

q
will get affected and which will stay unaffected. The critica
uestion concerns the feasibility of coming up with such con-

i
sistent abstractions. Currently, we have started investigating this
n the process planning domain.

s
A

2.4. Heuristic Modifications and Correctnes
common theme in the previous section was that the

f
t
modification is best guided by an explanation of correctness o
he plan with respect to some systematically abstracted model of

c
the domain—either encoded in the planner, or outside of it. In
ontrast, most of the work in case-based plan modification, util-

-
c
izes heuristic modification strategies. Such strategies are typi
ally based on local transformations of the plan that are known

r
g
to be harmless in the particular domain, or based on some othe
eneral knowledge of the domain (see [9] for a taxonomy of

t
e
such modification strategies). To the extent that they represen
xternally acquired expertise (rather than cached generalizations

s
from previous correctness-based modifications), it is difficult to
ay anything systematic about the correctness of the resultant

d
modified plan. For example, a heuristic modification might intro-
uce some new ‘bugs’ into the plan which may be impossible to

e
p
detect in the absence of a causal dependency structure of th
lan. Thus, either these strategies have to be supplemented by a

d
simulation-debugging stage, or they should be restricted to
omains where execution time failures are permissible.

n
s

Our position is that in general the heuristic modificatio
trategies should be supplemented by explanations of correctness

l
m
of the underlying plans, so that the ramifications of loca

odifications can be computed by the planner if needed. This is
sin contrast to Hammond’s position [6] . While his argument i6

n
c
based on the apparent complexity of modification based o
ausal models, our position is motivated by a desire to demarcate

e
b
the applicability of purely heuristic modification strategies. W
elieve that acquiring a set of robust and useful heuristic

-
c
modification strategies which are guaranteed to give rise to suc
essful plans is generally infeasible , and thus to avoid frequent7

g
s
execution time errors, or the costly simulation and debuggin
essions, the modification process should also have access to the

r
i
internal dependency structure of the plan. We are not arguing fo
nclusion of detailed causal models during plan modification; that

,
w
will obviously be inefficient. As we pointed out in section 2.3.1

e believe that the right way of dealing with ‘‘complex causal
l

i
models’’ during plan modification is to abstract the causal mode
n such a way that the planner/modifier has an understanding of
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

In [6], Hammond argues ‘‘ . . . New plans are built
f

6

rom old plans. But the internal effects of these plans need not
be known and need not be analyzed by the planner.’’

To achieve robustness, such strategies have to either care-
f

7

ully restrict allowable modifications to the plan specification
l

s
(before they resort to from-scratch planning), or rely on retrieva
trategies that are able to provide a very closely applicable plan

a
fl
for any given new problem. What we are addressing here is
exible modification strategy that does not impose such limita-

tions [11].

the correctness (internal effects) of its plan at some level of

3

abstraction.

. Exploiting Rationale Behind Planning

W

Choices
e have discussed several types of dependency structures that

t
represent explanation of the correctness of a stored plan. One of
he limitations of the correctness explanations is that while they

e
s
point out why a planning decision (such as a schema instanc
election) is valid, they do not explicate the rationale behind that

t
decision choice. In other words, they do not give any informa-
ion regarding the space of possible decision choices at the time

t
that decision was made, or regarding the reasons for choosing
hat particular decision from among the competing ones. The

c
correctness explanations also do not address the global optimality
onsiderations underlying the plan. Often a particular planning

-
t
decision may have been made based on optimality considera
ions, and when an existing plan is being reused in a new situa-

.
T
tion, it may be correct, but no longer optimal in that situation

he decision rationale information of the type outlined above,

m
when properly represented, can be useful in guiding the

odification so as to avoid previous failures, or to take optimal-
ity considerations into account during plan modification.

To make this distinction clear, let us consider the example
of modifying a process plan for making two holes h and h on1 2

s
a
a metal stock. Suppose that in the original plan, both the hole
re being made with spade drilling operation even though h 2

-
t
could have been made with a less expensive twist drilling opera
ion. Such a decision may have been made to ensure global

i
optimality of the plan by avoiding a tool change. When this plan
s being used in a slightly different situation, the planner may

,find that h ′ , the hole corresponding to h in the new situation1 1

y
c
cannot be made with spade drilling. This should not onl
hange the process plan for hole h ′ , but should also change the

p 2

1

rocess plan for the hole h ′ , so that it will now be made with
-

t
twist drilling instead of the more expensive spade drilling opera
ion. (Even this might not necessarily ensure the global optimal-

ity of the resultant plan; see below.)

Neither of the two types of correctness explanations dis-
-

i
cussed previously capture such optimality considerations underly
ng the plan. (From the point of view of correctness, in the

tabove example, the decision to make h with the help of twis2

h
e
drilling and the decision to make it with spade drilling are bot
qually viable.) Such decision rationale information has to be

a
either annotated by the planner, or be interactively captured from

teacher. The problem with the first alternative is that there are

o
very few planners which do any kind of intelligent deliberation
n the decision choice. Further, while it is possible to remember

-
p
previous failures, often (particularly in nonlinear planning) pin
ointing the exact planning decision which lead to a particular

c
type of failure (and subsequent backtracking) might require a
ostly analysis. The second alternative of interactive capture of

r
decision rationale is an even harder problem, as the captured
ationale has to be in a form that can be understood and utilized

e
h
by the planner (see [15]). It is thus not surprising that ther
ave not been any implemented systems which systematically

e
p
represent decision rationale information, or utilize it to automat
lan reuse and modification.

The original derivational analogy framework [2] proposed
n

t
that this type of information be captured. However, since the
here has not been any systematic characterization of the nature

tand utility of such structures. Carbonell and Veloso’s recen

s
proposal for integrating derivational analogy into a problem-
olving framework [3] takes some preliminary steps towards

b
enumerating the types of decision rationale information that can
e captured automatically. However, it does not specify the

-
t
details of the possible uses that are envisaged for such informa
ion. currently does not capture or utilize this type of deci-

s
PRIAR

ion rationale information. Making it do so is an important

t
research direction. An avenue for potential research is to extend
he validation structure such that it will also include infor-

m
PRIAR

ation about ‘‘optimality validations,’’ i.e., validations whose
e

p
failure will not necessarily undermine the executability of th
lan, but would necessitate a re-examination of the plan optimal-

w
ity. Upon failure of such validations, the modification strategies

ould have to look at possible ways of regaining the local and
a

p
global optimality of the plan. Unlike correctness, optimality is
redominantly global consideration. To formalize such notions of

f
q
incremental restoration of optimality, more systematic notions o
uasi-optimality (such as reusing as much of the current plan as

a
possible by finding the modifications that can be merged with the
ctions of the existing plan) have to be formulated.

4. Summary
PRIAR n

r
In this paper, based on our experience in designing pla
euse and modification framework, we attempted a categorization

e
a
of classes of plan modification strategies based on their coverag
nd information requirements. We refined the notion of ‘‘deriva-

m
tional trace’’ of a plan in guiding plan modification, and

otivated the utility of correctness explanations with respect to
s

t
domain models at various levels of abstraction. This allowed u
o classify various previous approaches to plan modification, to

r
r
compare their coverage, and to suggest directions for furthe
esearch.

References
1. R. Alterman, ‘‘An Adaptive Planner’’, Proceedings of 5th

2

AAAI, 1986, 65-69.

. J. G. Carbonell, ‘‘Derivational Analogy and its Role in
n

D
Problem Solving’’, Proceedings of AAAI, Washingto

.C., 1983, 64-69.

3. J. Carbonell and M. Veloso, ‘‘Integrating Derivational
,

P
Analogy into a General Problem Solving Architecture’’

roceedings of Case-Based Reasoning Workshop, 1988,

4

104-121.

. L. Daniel, ‘‘Planning: Modifying non-linear plans’’, DAI
r

1
Working paper 24, University of Edinburgh, Decembe
977. (Also appears as ‘‘Planning and Operations

s
a
Research,’’ in Artificial Intelligence: Tools, Technique
nd Applications, Harper and Row, New York, 1983).

d5. K. J. Hammond, ‘‘CHEF: A Model of Case-Base
Planning’’, Proceedings of 5th AAAI, 1986, 267-271.

g6. K. Hammond, ‘‘Case-Based Planning: Viewing Plannin
as a Memory Task’’, Proceedings of Darpa workshop on

7

Case-Based Reasoning, 1988, 17-20.

. P. J. Hayes, ‘‘A Representation for Robot Plans’’,

8

Proceedings of 4th IJCAI, 1975.

. C. Hayes, ‘‘Using Goal Interactions to Guide Planning’’,

9

Proceedings of Sixth AAAI, 1987, 224-228.

. T. R. Hinrichs, ‘‘Strategies for Adaptation and Recovery in

w
a Design Problem Solver’’, Proceedings of 2nd DARPA

orkshop on Case-Based Reasoning, 1989, 115-118.

10. S. Kambhampati and J. A. Hendler, ‘‘Flexible Reuse of

I
Plans via Annotation and Verification’’, Proceedings of 5th
EEE Conf. on Applications of Artificial Intelligence, 1989,

1

37-44.

1. S. Kambhampati, ‘‘Flexible Reuse and Modification in
d

A
Hierarchical Planning: A Validation Structure Base

pproach’’, CS-Tech. Rep.-2334, CAR-Tech. Rep.-469,

S
Center for Automation Research, Department of Computer

cience, University of Maryland, College Park, MD 20742,

1

October 1989. (Ph.D. Dissertation).

2. S. Kambhampati and J. A. Hendler, ‘‘Control of Refitting
e

o
during Plan Reuse’’, 11th International Joint Conferenc

n Artificial Intelligence, Detroit, Michigan, USA, August

1

1989, 943-948.

3. J. L. Kolodner, ‘‘Case-Based Problem Solving’’,

M
Proceedings of the Fourth International Workshop on

achine Learning, University of California, Irvine, June

1

1987, 167-178.

4. J. Mostow and M. Barley, ‘‘Automated Reuse of Design
n

E
Plans’’, Proceedings of International Conference o

ngineering Design, 1987.

15. J. Mostow, ‘‘Design by Derivational Analogy: Issues in
s

U
the Automated Replay of Design Plans’’, Rutger

niversity ML-Tech. Rep.-22, March 1987. (To appear in

1

Artificial Intelligence Journal).

6. R. Simmons and R. Davis, ‘‘Generate, Test and Debug:
,

P
Combining Associational Rules and Causal Models’’

roceedings of 10th IJCAI 10 (1987), 1071-1078.

n17. D. E. Wilkins, ‘‘Recovering from execution errors i
SIPE’’, Computational Intelligence 1 (1985).

