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Abstract Ranking of search results and ads has traditionally been studied sep-
arately. The probability ranking principle is commonly used to rank the search
results while the ranking based on expected profits is commonly used for paid
placement of ads. These rankings try to maximize the expected utilities based on
the user click models. Recent empirical analysis on search engine logs suggests
unified click models for both ranked ads and search results (documents). These
new models consider parameters of (i) probability of the user abandoning browsing
results (ii) perceived relevance of result snippets. However, current document and
ad ranking methods do not consider these parameters. In this paper we propose
a generalized ranking function—namely Click Efficiency (CE)—for documents and
ads based on empirically proven user click models. The ranking considers param-
eters (i) and (ii) above, optimal and has the same time complexity as sorting.
Furthermore, the CE ranking exploits the commonality of click models, hence is
applicable for both documents and ads. We examine the reduced forms of CE
ranking based upon different underlying assumptions, enumerating a hierarchy of
ranking functions. Interestingly, some of the rankings in the hierarchy are currently
used ad and document ranking functions; while others suggest new rankings. Thus,
this hierarchy illustrates the relationships between different rankings, and clarifies
the underlying assumptions. While optimality of ranking is sufficient for docu-
ment ranking, applying CE ranking to ad auctions requires an appropriate pricing
mechanism. We incorporate a second price based mechanism with the proposed
ranking. Our analysis proves several desirable properties including revenue dom-
inance over Vickrey Clarke Groves (VCG) for the same bid vector and existence
of a Nash equilibrium in pure strategies. The equilibrium is socially optimal, and
revenue equivalent to the truthful VCG equilibrium. As a result of its generality,
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the auction mechanism and the equilibrium reduces to the current mechanisms
including Generalized Second Price Auction (GSP) and corresponding equilibria.
Furthermore, we relax the independence assumption in CE ranking and analyze
the diversity ranking problem. We show that optimal diversity ranking is NP-Hard
in general, and a constant time approximation algorithm is not likely. Finally our
simulations to quantify the amount of increase in different utility functions con-
form to the results, and suggest potentially significant increase in utilities.

Keywords ad ranking · document ranking · diversity · auctions · click models

1 Introduction

Search engines rank results to maximize the relevance of the top documents. On
the other hand, targeted ads are ranked primarily to maximize the profit from
clicks. In general, users browse through ranked lists of search results or ads from
top to bottom, either clicking or skipping the results, or abandoning browsing
the list altogether due to impatience or satiation. The goal of the ranking is to
maximize the expected relevances (or profits) of clicked results based on the click
model of the users. The sort by relevance ranking suggested by Probability Ranking
Principle (PRP) has been commonly used for search results for decades [29,18]. In
contrast, sorting by the expected profits calculated as the product of bid amount
and Click Through Rate (CTR) is popular for ranking ads [27].

Recent click models suggests that the user click behaviors for both search
results and targeted ads is the same [21,35]. Considering this commonality, the
only difference between the two ranking problems is the utility of entities ranked:
for documents utility is the relevance and for the ads it is the cost-per-click (CPC).
This suggests the possibility of a unified ranking function for search results and
ads. The current segregation of document and ad ranking as separate areas does
not consider this commonality. A unified approach often helps to widen the scope
of the related research to these two areas, and enables applications of existing
ranking function in one area on isomorphic problems in the other area as we will
show below.

In addition to the unified approach, the recent click models consider the fol-
lowing parameters:

1. Browsing Abandonment: The user may abandon browsing ranked list at
any point. The likelihood of abandonment may depend on the entities the user
has already seen [35].

2. Perceived Relevance: Perceived relevance is the user’s relevance assessment
viewing only the search snippet or ad impression. The decision to click or
not depends on the perceived relevance, not on the actual relevance of the
results [34,8].

Though these parameters are part of the click models [21,35] how to exploit these
parameters to improve ranking is currently unknown. The current document rank-
ing is based on the simplifying assumption that the perceived relevance is the same
as the actual relevance of the document, and ignores browsing abandonment. The
ad placement partially considers perceived relevance, but ignores abandonment
probabilities.
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In this paper, we propose a unified optimal ranking function—namely Click Ef-

ficiency (CE)—based on a generalized click model of the user. CE is defined as the
ratio of the standalone utility generated by an entity to the sum of the abandon-
ment probability and the click probability of that entity, where the abandonment
probability is the probability for the user to leave browsing the list after seeing the
entity. We show that sorting entities in the descending order of CE guarantees op-
timum ranking utility. We do not make assumptions on the utilities of the entities,
which may be assessed relevance for documents or cost per click (CPC) charged
based on the auction for ads. On plugging in the appropriate utilities—relevance
for documents and CPC for the ads—the ranking specializes to document and ad
ranking.

As a consequence of the generality, the proposed ranking will reduce to spe-
cific ranking problems on assumptions about user behavior. We enumerate a hi-
erarchy of ranking functions corresponding to different assumptions on the click
model. Most interestingly, some of these special cases correspond to the currently
used document and ad ranking functions—including PRP and sort by expected
profit described above. Further, some of the reduced ranking functions suggest
new rankings for special cases of the click model—like a click model in which the
user never abandons the search, or the perceived relevance is approximated as
the actual relevance. This hierarchy elucidates interconnection between different
ranking functions and the assumptions behind the rankings. We believe that this
will help in choosing the appropriate ranking function for a particular user click
behavior.

Ranking in ad placement used in conjunction with a pricing strategy to form
the complete auction mechanism. Hence to apply the CE ranking on ad placement,
a pricing mechanism has to be associated. We incorporate a second-price based
pricing mechanism with the proposed ranking. Our analysis establishes many inter-
esting properties of the proposed mechanism. Particularly, we state and prove the
existence of a Nash Equilibrium in pure strategies. At this equilibrium, the profits
of the search engine and the total revenue of the advertisers is simultaneously op-
timized. Like ranking, the proposed auction this is a generalized mechanism, and
reduces to the existing GSP and Overture mechanisms under the same assump-
tions as that of the ranking. Further, the stated Nash Equilibrium is a general
case of the equilibriums of these existing mechanisms. Comparing the mechanism
properties with that of VCG [31,9,20], we show that for the same bid vector,
search engine revenue for the CE mechanism is greater or equal to that of VCG.
Furthermore, the revenue for the proposed equilibrium is equal to the revenue of
the truthful dominant strategy equilibrium of VCG.

Our analysis so far has been based on the assumption of parameter indepen-
dence between the ranked entities. We relax this assumption and analyze the
implications based on a specific well known problem—diversity ranking [5,3,26].
Diversity ranking tries to maximize the collective utility of top-k ranked entities.
For a ranked list, an entity will reduce residual utility of a similar entity in the
list blow it. Though optimizing all the current ranking functions incorporating di-
versity is known to be NP-Hard [5], an understanding of why this is an inherently
hard problem is lacking. We show that optimizing set utilities is NP-Hard even for
the basic form of diversity ranking. Furthermore we extend our proof showing that
a constant ratio approximation algorithm is unlikely. As a benefit of the generality
of ranking, these results are applicable both for ads and documents.
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Although we prove the optimality of the proposed ranking, the amount by
which the profit may improve is not clear. Considering the very restricted access
to online experiments on ads, we performed simulations to this end. We compare
the profit improvement by the CE and reduced forms to existing rankings. These
experiments suggest potentially significant increase in profits. We believe that
these experiments will motivate further online evaluations.

In summary, the contributions of the unified ranking, including both ad and
document domains are:

1. Unified optimal ranking.
2. Optimal ranking considering abandonment probabilities for documents and

ads.
3. Optimal Ranking considering perceived relevance of documents and ads.
4. A unified hierarchy of ranking functions and enumerating optimal rankings for

different click models.
5. Analysis of general diversity ranking problem and hardness proofs.

Our contributions to ad placement are:

1. Design and analysis of a generalized ad auction mechanism incorporating pric-
ing with CE ranking.

2. Proof of the existence of a socially optimal Nash Equilibrium with optimal
advertisers revenue as well as optimal search engine profit.

3. Proof of search engine revenue dominance over VCG for equivalent bid vectors,
and equilibrium revenue equivalence to the truthful VCG equilibrium.

1.1 Background

In search and search advertising, both search results and ads are ranked to maxi-
mize utility. At a high level, search results are ranked to maximize the information
content (or relevance) of the top documents to the users; whereas ads are ranked
to maximize both the relevance as well as the profit to the search engines. Users
generally browse through ranked search results starting from the top, either click-
ing or skipping the results. This browsing pattern of users is called the click model.
Search and ad rankings try to maximize the utility to the users based on a click
model.

In addition to the standalone relevance of the results, another important as-
pect of ranking is the diversity of the results. Although information contained in a
document may be highly relevant, if the information is similar to that in the doc-
uments above in the ranking, the document will be of little utility. To account for
this factor, the mutual influence of documents or ads ranked needs to be considered
to maximize total utility by a set of documents rather than individual documents.
To account for this factor, diversity-sensitive ranking maximizes residual relevance
of ads or documents in the context of other items in the ranked list.

In search ad ranking (paid placements), ads are selected based on the user
query. Generally, the click model for ads is similar to that of the search results. In
the most common pay-per-click ad campaigns, advertisers pay a certain amount to
the search engines whenever a user clicks on their ads. This amount is determined
by a pricing mechanism. The advertisers place a bid on the queries. The ads are
ranked based on the bid amounts and relevance of the ad to the query. For example,
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in commonly used Generalized Second Price (GSP) auction [14] ads are ranked
by the product of their click rates (ratio of the number of clicks to impressions)
and bid amounts. The amount the advertisers pay to the search engine need not
be equal to the bid amount, but rather determined by the pricing mechanism. For
example, in GSP auction, this amount is determined based the the bid amount and
the click rates of the given ad and the ad placed below the given ad. Thus ranking
and pricing together determines the auction mechanism of the ad placement.

The rest of this paper is organized as the follows. The next section reviews re-
lated work. Section 3 explains the click model used for our analysis. Subsequently
we introduce our optimal ranking function, and discuss the intuitions and implica-
tions. In Section 5 reductions of our ranking function to several document and ad
ranking functions under limiting assumptions are enumerated. Furthermore we dis-
cuss several useful special cases of our ranking and assumptions under which they
are optimal. In Section 6, we incorporate a pricing strategy to design a complete
auction mechanism for ads. Several useful properties are established, including
the existence of a Nash equilibrium and revenue dominance over VCG. Section 7
explores the ranking considering mutual influences and proves our hardness re-
sults. We present the experiments and results in Section 8. Finally we discuss our
conclusions and discuss potential future research directions.

2 Related Work

The impact of click models on ranking has been analyzed in ad-placement. In
our previous paper [4] we proposed an optimal ad ranking considering mutual
influences. The ranking uses the same user model, but the paper considers only
ad ranking, and does not include generalizations and auctions. Later Aggarwal et

al. [1] as well as Kempe and Mahdian [24] analyzed placement of ads using a sim-
ilar Markovian click model. The click model used is less detailed than our model
since abandonment is not modeled separately from click probability. These two
papers optimize the sum of the revenues of the advertisers. We optimize search
engine profits in this paper. Nevertheless, the ranking formulation has common
components with these two papers, as workshop version of this paper [4] as these
three papers formulated ranking based on the similar browsing models indepen-
dently at almost the same time frame. But, unlike this paper, any of the other two
papers do not have a pricing, auctions, or a generalized taxonomy.

Edelman et al. [14] analyze a version of GSP auction in their classic paper.
They assume that the click probability at a position is a constant. We relax this
assumption, and account for the influence of ads above on the click probabilities
at a position. This difference gives rise to additional complexities and interesting
differences in our mechanism. We show that GSP proposed by Edelman et al. is a
special case of our proposed mechanism.

Giotis and Karlin [17] extend Markovian model ranking by applying GSP pric-
ing and analyzing the equilibrium. The GSP pricing and ranking lacks the opti-
mality and generality properties we prove in this paper. Deng and Yu [11] extend
Markovian models by suggesting a ranking and pricing schema for the search en-
gines and prove the existence of a Nash Equilibrium. The ranking is a simpler
bid based ranking (not based on CPC as in our case); and mechanism as well as
equilibrium do not show optimality properties. Our paper is different from both



6 Raju Balakrishnan and Subbarao Kambhampati

the above works by using a more detailed model, by having optimality proper-
ties, detailed comparisons with other baseline mechanisms, and in the ability to
generalize to a family of rankings.

Kuminov and Tennenholtz [25] proposed a Pay Per Action (PPA) model similar
to the click models and compared the equilibrium of GSP mechanism on the
model with the VCG. Ad auctions considering influence of other ads on conversion
rates are analyzed by Ghosh and Sayedi [16]. Both these papers address different
problems than considered in this paper.

Our proposed model is a general case of the positional auctions model by
Varian [30]. Positional auctions assume static click probabilities for each position
independent of other ads. We assume more realistic dynamic click probabilities
depending on the ads above. Since we consider these externalities, our model,
auction, and analysis are more complex. (e.g. monotonically increasing values and
prices with positions).

The existing document ranking based on PRP [29] claims that a retrieval order
sorted on relevance leads to the largest number of relevant documents in a result set
than any other policy. Gordon and Lenk [18,19] identified the required assumptions
for the optimality of the ranking according to PRP. Our discussion on PRP may
be considered as an independent formulation of assumptions under which PRP is
optimal for web ranking.

There are number of user behavior studies in click models validating our as-
sumed user model and ranking function. There are a number of position based and
cascade models studied [12,10,21,6,35,32,23]. In particular, General Click Model
(GCM) by Zhu et al.[35] is interesting, since many other click models are special
cases of GCM. Zhu et al. [35] list assumptions under which the GCM would reduce
to other click models. We will discuss the relations of our model to GCM below.
Optimizing utilities of two dimensional placement of search results has been stud-
ied by Chierichetti et al. [7]. Many of the recent click models are more general than
the click model used in our paper, but please note that the contribution of our
paper is not the click model, but a unified optimal ranking and auction mechanism
based on the click model.

Along with the current click models, there has been research on evaluating
perceived relevance of the search snippets [34] and ad impressions [8]. Research
in this direction neatly complements our new ranking function by estimating the
parameters required. Chapelle and Zhang [6] demonstrated that separately mod-
eling perceived and actual relevances improves relevance assessment of documents
using click logs.

Diversity ranking has received considerable attention recently [3,26]. The ob-
jective functions used to measure diversity by prior works are known to be NP-
Hard [5]. We provide a stronger proof showing that even the basic diversity rank-
ing problem is NP-Hard irrespective of any specific objective function, and further
show that a constant ratio approximation is unlikely. To the best of our knowledge,
this paper is the first unified optimal ranking and auction mechanism based on a
generalized click model.
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Table 1 Definition of the Symbols

e A ranked entity.
C(e) Perceived relevance.
γ(e) Abandonment probability.
U(e) Utility.
Pc(e) The click probability of the entity at position i in the ranking.
d A ranked document.
R(d) Relevance of the document.
a A ranked ad.
SE An abbreviation indicating Search Engine.
$(a) Cost-Per-Click (CPC) of the ad.
v(a) Private value of the ad for the advertiser.
b(a) Bid for the ad.
w(a) Ratio of the click probability to the sum of abandonment and click probability.
µ(a) Sum of abandonment and click probability (i.e. C(a) + γ(a)).
CE(a) Proposed Click-Efficiency ranking score of the ad.
pi Payment by the advertiser (CPC) to the search in a given mechanism.
Ur(e) Residual utility in the context of other entities in the ranked list.
α Simulation constant to balance between the click and the abandonment probabilities.

3 Click Model

As we mentioned above, we approach the ranking as an optimization based on the
user’s click model on the ads. The expected utilities are maximized based on the
click model. For the optimization, we assume a basic user click model in which
the web user browses the entity list in the ranked order, as shown in Figure 1. At
every result entity, the user may:

1. Click the result with perceived relevance C(e). We define the perceived rele-
vance as the probability of clicking the entity ei having seen ei i.e. C(ei) =
P (click(ei)|view(ei)). Note that the Click Through Rate (CTR) defined in ad
placement is the same as the perceived relevance defined here [27].

2. Abandon browsing the result list with abandonment probability γ(ei). γ(ei) is
defined as the probability of abandoning the search at ei having seen ei. i.e.
γ(ei) = P (abandonment(ei)|view(ei)).

3. Go to the next entity with probability
[
1−

(
C(ei) + γ(ei)

)]
The click model can be schematically represented as the flow graph shown in

Figure 1. Labels on the edges refer to the probability of the user traversing them.
Each vertex in the figure corresponds to a view epoch (see below), and the flow
balance holds at each vertex. Starting from the top entity, the probability of the
user clicking the first ad is C(e1) and probability of him abandoning browsing is
γ(e1). The user goes beyond the first entity with probability 1 − (C(e1) + γ(e1))
and so on for the subsequent results.

In this model, we assume that the parameters—C(ei), γ(ei) and U(ei)—are
functions of the entity at the current position i.e. these parameters are indepen-
dent of other entities the user has already seen. We recognize that this assumption
is not fully accurate, since the user’s decision to click the current item or to leave
the search may depend not just on the current item but rather on all the entities
he has seen before in the list. We stick to the assumption for the optimal ranking
analysis below, since considering mutual influence of ads may lead to combina-
torial optimization problems with intractable solutions. We will show that even
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Fig. 1 Flow graph for an user browsing the first two entities. The labels are the view proba-
bilities and ei denotes the entity at the ith position

the simplest dependence between the parameters will indeed lead to intractable
optimal ranking in Section 7.

Although the proposed model is intuitive enough, we would like to mention that
our model is also confirmed by the recent empirical click models. For example, the
General Click Model (GCM) by Zhu et al. [35] is based on the same basic user
behavior. The GCM is empirically validated for both search results and ads [35].
Furthermore, other click models are shown to be special cases of GCM. Please refer
to Zhu et al. [35] for a detailed discussion. These previous works avoid the need
for separate model validation, as well as confirm the feasibility of the parameter
estimation. Further, Yilmaz et al.[33] proposes an expected browsing utility metric
based on a similar user model.

4 Optimal Ranking

Based on the click model, we formally define the ranking problem and derive
optimal ranking in this section. The problem may be stated as,

Choose the optimal ranking Eopt = 〈e1, e2, .., eN 〉 of N entities to maximize the

expected utility

E(U) =
N∑
i=1

U(ei)Pc(ei) (1)

where N is the total number of entities to be ranked.

The utility function U(ei) denotes the stand-alone utility of the entity ei to the
search engine (or one who performs the ranking). This may vary depending on the
specific ranking problem. For example, for ranking search results, the utility will
be the relevance of document ei; whereas for ranking ads to maximize the revenue
of the search engine, the U(ei) will be pay-per-click of ad ei. We define the specific
utility function for entities as we discuss the specific ranking problems below.

For the browsing model in Figure 1, the click probability for the entity at the
ith position is,

Pc(ei) = C(ei)
i−1∏
j=1

[
1−

(
C(ej) + γ(ej)

)]
(2)
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Substituting click probability Pc from Equation 2 in Equation 1 we get,

E(U) =
N∑
i=1

U(ei)C(ei)
i−1∏
j=1

[1− (C(ej) + γ(ej))] (3)

The optimal ranking maximizing this expected utility can be shown to be a
sorting problem with a simple ranking function:

Theorem 1 The expected utility in Equation 3 is maximum if the entities are placed

in the descending order of the value of the ranking function CE,

CE(ei) =
U(ei)C(ei)

C(ei) + γ(ei)
(4)

Proof Sketch: The proof shows that any inversion in this order will reduce the
expected profit. CE function is deduced from expected profits of two placements—
the CE ranked placement and placement in which the order of two adjacent ads
are inverted. We show that the expected profit from the inverted placement can
be no greater than the CE ranked placement. Please refer to Appendix A-1 for
the complete proof. �

As mentioned in the introduction, the ranking function CE is the utility gen-
erated per unit view probability consumed by the entity. With respect to browsing
model in Figure 1, the top entities in the ranked list have greater view probabili-
ties, and placing ads with greater utility per consumed view probability at higher
positions intuitively increases total utility.

The proof of Theorem 1 assumes that the user clicks only one entity in the list.
Since this may not always be true, we extend the optimality to multiple clicks in
Theorem 2.

Theorem 2 The order proposed in Theorem 1 is optimal for multiple clicks if the user

restarts browsing at the position one below the last clicked entity.

Proof Sketch: We proved that ordering according to CE provides maximum ex-
pected utility for single click above. Multiple clicks are the same as the user
restarting her browsing from the entity immediately below the last clicked en-
tity. A simple induction on number of clicks based on this idea, using a single click
as base case is sufficient to prove that the proposed placement provides maximum
expected utility for multiple clicks. See Appendix A-2 for the complete proof.�

Note that the ordering above does not maximize the utility for selecting a
subset of items. The seemingly intuitive method of ranking the set of items by CE
and selecting top-k may not be optimal [1]. For optimal selection, the proposed
ranking can be extended by a dynamic programming based selection [1]. In this
paper, we discuss only the ranking problem.

5 Ranking Taxonomy

The click model in Figure 1 is common to many types of rankings including docu-
ment searches and search ads. The only difference between these rankings sharing
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Fig. 2 Taxonomy reduced CE ranking functions. The assumptions and corresponding re-
duced ranking functions are illustrated. The dotted lines denote predicted ranking functions
incorporating new click model parameters.

a common click model is the utility to be maximized. Consequently, the CE rank-
ing can be made applicable to different ranking problems by plugging in different
utilities. For example, if we plug in relevance as utility (U(e) in Equation 4), the
ranking function is applicable for the documents, whereas if we plug in cost per
click of ads, the ranking function is applicable to ads. Furthermore, we may as-
sume specific constraints on one or more of the three parameters of CE ranking
(e.g. ∀iγ(ei) = 0). Through these assumptions, CE ranking will suggest a number
of reduced ranking functions with specific applications. These substitutions and
reductions can be enumerated as a taxonomy of ranking functions.

We show the taxonomy in Figure 2. The three top branches of the taxonomy
(U(e) = R(d), U(e) = $(a), and U(e) = v(a) branches) are for document ranking,
ad ranking maximizing search engine profit, and ad ranking maximizing advertisers
revenue respectively. These branches correspond to the substitution of utilities by
document relevance, CPC, and private value of the advertisers. The sub-trees
below these branches are the further reduced cases of these three main categories.
The solid lines in Figure 2 denote already known functions, while the dotted lines
are the new ranking functions suggested by CE ranking. Sections 5.1, 5.2, and 5.3
below discuss the further reductions of document ranking, search engine optimal
ad ranking, and social optimal ad ranking respectively.

5.1 Optimal Document Ranking

For document ranking the utility of ranking is the probability of relevance of the
document. Hence by substituting the document relevance—denoted by R(d)—in
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Equation 4 we get

CE(d) =
C(d)R(d)

C(d) + γ(d)
(5)

This function suggests the general optimal relevance ranking for the documents.
We discuss some intuitively valid assumptions on user model for the document
ranking and the corresponding ranking functions below. The three assumptions
discussed below correspond to the three branches under Optimal Document Rank-
ing subtree in Figure 2.

Sort by Relevance (PRP): We elucidate two sets of assumptions under which
the CE(d) in Equation 5 will reduce to PRP.

First assume that the user has infinite patience, and never abandons results
(i.e. γ(d) ≈ 0). Substituting this assumption in Equation 5,

CE(d) ≈ R(d)C(d)

C(d)
= R(d) (6)

which is exactly the ranking suggested by PRP.
In other words, the PRP is still optimal for scenarios in which the user has

infinite patience and never abandons checking the results (i.e. the user leaves
browsing the results only by clicking a result).

The second set of slightly weaker assumptions under which the CE(d) will
reduce to PRP is

1. C(d) ≈ R(d).
2. Abandonment probability γ(d) is negatively proportional to the document rel-

evance i.e. γ(d) ≈ k − R(d), where k is a constant between one and zero. This
assumption corresponds to the intuition that the higher the perceived relevance
of the current result, the less likely is the user abandoning the search.

Now CE(d) reduces to,

CE(d) ≈ R(d)2

k
(7)

Since this function is strictly increasing with zero and positive values of R(d),
ordering just by R(d) results in the same ranking as suggested by the function.
This implies that PRP is optimal under these assumptions also.

It may be noted that abandonment probability decreasing with perceived rele-
vance is a more intuitively valid assumption than the infinite patience assumption
above.

Ranking Considering Perceived Relevance: Recent click log studies effectively
assess perceived relevance of document search snippets [34,8]. But, how to use the
perceived relevance for improved document ranking is still an open question. The
proposed perceived relevance ranking addresses this question.

If we assume that γ(d) ≈ 0 in Equation 5, the optimal perceived relevance
ranking is the same as that suggested by PRP as we have seen in Equation 6.

On the other hand, if we assume that the abandonment probability is negatively
proportional to the perceived relevance (γ(d) = k − C(d)) as above, the optimal
ranking considering perceived relevance is

CE(d) ≈ C(d)R(d)

k
∝ C(d)R(d) (8)
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i.e. sorting in the order of the product of document relevance and perceived rele-
vance is optimal under these assumptions. The assumption of abandonment proba-
bilities being negatively proportional to relevance is more realistic than the infinite
patience assumption as we discussed above. This discussion shows that by esti-
mating the nature of abandonment probability, one would be able to decide on the
optimal perceived relevance ranking.

Ranking Considering Abandonment: We now examine the ranking considering
abandonment probability γ(d), with the assumption that the perceived relevance
is approximately equal to the actual relevance. In this case CE(d) becomes,

CE(d) ≈ R(d)2

R(d) + γ(d)
(9)

Clearly this is not a strictly increasing function with R(d). Hence the ranking
considering abandonment is different from PRP ranking, even if we assume that the
perceived relevance is equal to the actual relevance. assumption that ∀dγ(d) = 0,
the abandonment ranking becomes the same as PRP.

5.2 Optimal Ad Ranking for Search Engines

For the paid placement of ads, the utilities of ads to the search engine are Cost-
Per-Click (CPC) of the ads. Hence, by substituting the CPC of the ad—denoted
by $(a)— in Equation 4 we get

CE(a) =
C(a)$(a)

C(a) + γ(a)
(10)

Thus this function suggests the general optimal ranking for the ads. Please recall
that the perceived relevance C(a) is the same as the CTR used for ad place-
ment [27].

In the following subsections we demonstrate how the general ranking presented
reduces to the currently used ad placement strategies under various assumptions.
We will show that they all correspond to specific assumptions about the abandon-
ment probability γ(a). These two functions below corresponds to the two branches
under the SE (Search Engine) Optimal Ad Placement subtree in Figure 2.

Ranking by Bid Amount: The sort by bid amount ranking was used by Overture
Services (and was later used by Yahoo! for a while after acquisition of Overture).
Assuming that the user never abandons browsing (i.e. ∀aγ(a) = 0), then Equa-
tion 10 reduces to

CE(a) = $(a) (11)

This means that the ads are ranked purely in terms of their payment. In fact
overture ranking is by bid amount, which is different from payment in a second
price auction. But both will result in the same ranking as higher bids implies
higher payments also.

When γ(a) = 0, we essentially have a user with infinite patience who will keep
browsing downwards until he finds a relevant ad. Hence ranking by bid amount
maximizes profit. More generally, for small abandonment probabilities, ranking by
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bid amount is near optimal. Note that this ranking is isomorphic to PRP ranking
discussed above for document ranking, since both ranks are based only on utilities.

Ranking by Expected Profit: Google and Microsoft supposedly place the ads in
the order of expected profit based on product of CTR (C(a) in CE) and bid amount
($(a)) [28]. The mechanism is called Generalized Second Price (GSP) auction,
and the most popular one as well. If we approximate abandonment probability
as negatively proportional to the CTR of the ad (i.e. ∀aγ(a) = k − C(a)) , the
Equation 10 reduces to,

CE(a) ≈ $(a)R(a)

k
∝ $(a)R(a) (12)

This shows that ranking ads by their standalone expected profit is near optimal as
long as the abandonment probability is negatively proportional to the relevance. To
be accurate, the Google mechanism—GSP—uses the bid amount of the advertisers
(instead of CPC in Equation 12) for ranking. Although CPC and bids are different
for GSP, we will show that both will result in the same ranking in Section 6. Note
that this ranking is isomorphic to the perceived relevance ranking of documents
discussed above.

5.3 Social Optimal Ad Ranking

An important property of any auction mechanism is social utility, i.e. total utilities
of all the players. In our case this is equal to the sum of the utilities of all the
advertisers and the search engine. To analyze advertiser’s profit, a private value
model is commonly used. Each advertiser has a private value for the click, which
is equal to the expected benefit (direct and indirect revenue) from the click. Ad-
vertisers pay a fraction of this benefit to the search engine as CPC. The utility
for the advertisers is the difference between the private value and payment to the
search engine. The utility for the search engine is the payment from the advertis-
ers. Hence the social utility is equal to the sum of private values of all the clicks for
the advertisers (which is the sum of utilities of the search engine and advertisers).
Consequently, to prove the social optimality all we need to prove is that the total
private values of clicks for the advertisers is optimal.

The social-optimal branch in Figure 2 corresponds to the ranking to maximize
total revenue. Private value of advertisers ai is denoted as—v(ai). By substituting
the utility by private values in Equation 4 we get,

CE(d) =
C(a)v(a)

C(a) + γ(a)
(13)

If the ads are ranked in this order, the ranking will guarantee maximum revenue.
Note that the optimal revenue does not imply optimal net profits for the adver-
tisers, since part of this revenue is paid to the search engine as CPC. But optimal
revenue implies a maximum total profit (utility)—sum of profits of search engine
and advertisers.

In Figure 2 the two left branches of the Social Optimal subtree (labeled γ(a) = 0
and γ(a) = k − C(a)) correspond respectively to the assumption of no abandon-
ment, and abandonment probabilities being negatively proportional to the click
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probability. These two cases are isomorphic to the Overture and Google ranking
discussed in Section 5.2 above.

The social optimal ranking is not directly implementable as search engines do
not know the private value of the advertisers. But this ranking is useful in analysis
of auctions mechanisms. Furthermore, the search engine may try to effectuate this
order through auction mechanism equilibriums as we demonstrate in Section 6.

6 Applying CE Ranking for Ad placement

We have shown that CE ranking maximizes the profits for search engines for given
CPCs. The CPCs are determined by the pricing mechanism used by the search
engine. Hence the overall profit of ranking can be analyzed only in association with
a pricing mechanism. The existing ad pricing mechanisms like GSP do not preserve
any of their appealing properties for CE ranking as they do not consider the
additional parameter abandonment probability. For example, the GSP pricing [14]
is no longer the minimum amount need to be paid by the advertiser to maintain
his position in the CE ranking. To this end, we design a full auction mechanism
by proposing a new second price based pricing to be used with the CE ranking.
Subsequently, we analyze the properties of the auction mechanism.

Let us start by describing the dynamics of ad auctions briefly, the search engine
decides the ranking and pricing (CPC) of the ads based on the bid amounts of the
advertisers. Generally the pricing is not equal to the bid amount of advertisers,
but derived based on the bids [13,14,2]. In response to these ranking and pricing
strategies, the advertisers (more commonly, the software agents of the advertisers)
may change their bids to maximize their profits. They may change bids hundreds of
times a day. Eventually, the bids may stabilize at a fixed point where no advertiser
can increase his profit by unilaterally changing his bid, depending on the initial bids
and behavior of the advertisers. This set of bids corresponds to a Nash Equilibrium
of the auction mechanism. Hence the expected profits of a search engine will be
the profits corresponding to the Nash Equilibrium, if the auction attains a Nash
Equilibrium.

The next section discusses properties of any mechanism based on the user
model—independent of the ranking and pricing strategies. In Section 6.2, we in-
troduce a pricing mechanism and analyze the properties including the equilibrium.

6.1 User Model Based Properties

We discuss general properties of all auction mechanisms using the browsing model
(Figure 1). These properties are implications of the user behavior and applicable
to any pricing and ranking.

Lemma 1 (Individual Rationality) In any equilibrium the payment by the adver-

tisers is less than or equal to their private values.1

If this is not true, this advertiser may opt out from the auction by bidding zero
and increase the profit, violating the assumption of equilibrium.

1 This property is called individual rationality
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Lemma 2 (Pricing Monotonicity) In any equilibrium, the price paid by an adver-

tiser increases monotonically as he moves up in the ranking unilaterally.

From the browsing model, click probability of the advertisers is non-decreasing
as he moves up in the position. Unless the price increases monotonically, the ad-
vertiser may increase his profit by moving up, thereby violating assumption of an
equilibrium.

Lemma 3 (Revenue Maximum) The sum of the payoffs of the advertisers and the

search engine is less than or equal to

E(V ) =
N∑
i=1

v(ai)C(ai)
i−1∏
j=1

[1− (C(aj) + γ(aj))] (14)

when the advertisers are ordered by C(a)v(a)
C(a)+γ(a) .

Note that this quantity is the maximal advertiser revenue corresponding to the
social optimal placement in Equation 13, and is a direct consequence. The adver-
tiser pay a fraction of his revenue to the search engine. Payoff for the advertisers
is the difference between the total revenue and the payment to the search engine.
The total payoff of the search engine is the sum of these payments by all the ad-
vertisers. Since the suggested order above in Lemma 3 maximizes total revenue of
the advertisers, the sum of the payoffs for the search engine and the advertisers
will not exceed this value.

A corollary of the social optimality combined with the individual rationality
result expressed in Lemma 1 is that,

Lemma 4 (Profit Maximum) The quantity E(V ) in Lemma 3 is an upper bound

for the search engine profit in any equilibrium.

6.2 Pricing and Equilibrium

An interesting property of the proposed mechanism is the existence of an equilib-
rium in which the search engine optimal ranking coincides with the social opti-
mality. As we proved above, CE ranking is search engine optimal as it maximizes
the revenue for the given CPCs. On the other hand, social optimal ordering max-
imizes the total profits for all the players (search engine and advertisers) for given
CPCs. Social optimality is desirable for search engines, as the increased profits
will improve the advertiser’s preference of one search engine over others. Since
search engines do not know the private value of the advertisers, social optimal
ranking is not directly achievable (note that the search engines do the ranking).
A possibility is to design a mechanism having an equilibrium coinciding with the
social optimality, as we propose below. This may cause the bid vector to stabilize
in a social optima.

For defining the pricing strategy for the auction mechanism, we define the
pricing order as the decreasing order of w(a)b(a), where b(a) is the bid value and
w(a) is,

w(a) =
C(a)

C(a) + γ(a)
(15)
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In this pricing order, we denote the ith advertiser’s w(ai) as wi, C(ai) as ci, b(ai) as
bi, and the abandonment probability γ(ai) as γi for convenience. Let µi = ci + γi.
For each click, advertiser ai is charged price pi (CPC) equal to the minimum bid
required to maintain its position in the pricing order,

pi =
wi+1bi+1

wi
=
bi+1ci+1µi
µi+1ci

(16)

Substituting pi in Equation 10 for the ranking order, CE of the ith advertiser
is,

CEi =
pici
µi

(17)

This proposed mechanism preserves the pricing order in the ranking as well,
i.e.

Theorem 3 The order by wibi is the same as the order by CEi for the auction i.e.

wibi ≥ wjbj ⇐⇒ CEi ≥ CEj (18)

The proof for theorem 3 is given in Appendix A-3. This order preservation property
implies that the final ranking is the same as that based on bid amounts. In other
words, ads can be ranked based on the bid amounts instead of CPCs. After the
ranking, the CPCs can be decided based on this ranking order. A corollary of this
order preservation is that the CPC is equal to the minimum amount the advertisers
have to pay to maintain their position in the ranking order.

Furthermore we show below that any advertiser’s CPC is less than or equal to
his bid.

Lemma 5 (Individual Rationality) The payment pi of any advertiser is less or

equal to his bid amount.

Proof

pi =
bi+1ci+1µi
µi+1ci

=
bi+1ci+1

µi+1

µi
cibi

bi =
CEi+1

CEi
bi ≤ bi(since CEi ≥ CEi+1)

This means advertisers will never have to pay more than their bid, similar to GSP.
This property makes it easy for the advertiser to decide his bid, as he may bid up
to his click valuation. He will never have to pay more than his revenue, irrespective
of bids of other advertisers.

Interestingly, this mechanism is a general case of existing mechanisms, similar
to CE ranking above. The mechanism reduces to GSP (Google mechanism) and
Overture mechanisms on the same assumptions on which CE ranking reduces to
respective rankings (described in Section 5.2).

Lemma 6 The mechanism reduces to Overture ranking with a second price auction on

the assumption ∀iγi = 0

Proof This assumption implies

wi = 1

⇒ pi = bi+1 (second price auction)

⇒ CEi = bi+1 ≡ bi (i.e. ranking by bi+1 is equivalent to ranking by bi)
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Lemma 7 The mechanism reduces to GSP on the assumption ∀iγi = k − ci

Proof This assumption implies

wi = ci

⇒ pi =
bi+1ci+1

ci
(i.e. ranking reduces to GSP ranking)

⇒ CEi =
bi+1ci+1

k
≡ bici

k
(by Theorem 3)

∝ bici

This lemma in conjunction with Theorem 3 implies that GSP ranking by cibi
(i.e. by bids) is the same as the ranking by cipi (by CPCs).

Now we will look at the equilibrium properties of the mechanism. We start
by noting that truth telling is not a dominant strategy. This trivially follows,
since GSP is a special case of the proposed mechanism, and it is generally known
that truth telling is not a dominant strategy for GSP. Hence we focus on Nash
Equilibrium conditions in our analysis.

Theorem 4 (Nash Equilibrium) Without loss of generality, assume that advertis-

ers are ordered in decreasing order of civi
µi

where vi is the private value of the ith

advertiser. The advertisers are in a pure strategy Nash Equilibrium if

bi =
µi
ci

[
vici + (1− µi)

bi+1ci+1

µi+1

]
(19)

This equilibrium is socially optimal as well as optimal for search engines for the given

CPC’s.

Proof Sketch: The inductive proof shows that for these bid values, no advertisers
can increase his profit by moving up or down in the ranking. The full proof is
given in Appendix A-4. Since the ranking is the same as the social optima order
in Equation 13, social optimality is a direct implication. �

We do not rule out the existence of multiple equilibriums. The stated equi-
librium is particularly interesting, due to the social optimality and search engine
optimality. Furthermore, although the equilibrium depends on the private values
of the advertisers unknown to the search engine, please keep in mind that search
engines do not implement equilibriums directly. Instead, search engines decide the
pricing and ranking, and the advertisers may reach an equilibrium by repeatedly
revising auction prices. The pricing and ranking are practical, since they depend
solely on the quantities known to the search engine.

The following Lemmas show that equilibriums of other placement mechanisms
are special cases of the proposed CE equilibrium. The stated equilibrium reduces
to equilibriums in the Overture mechanism and GSP under the same assumptions
(discussed above) under which the CE ranking reduces to Overture and GSP
rankings.

Lemma 8 The bid values

bi = vici + (1− ci)bi+1 (20)

are in a pure strategy Nash Equilibrium in the Overture mechanism. This corresponds

to the substitution of the assumption ∀iγi = 0 (i.e. µi = ci) in Theorem 4.
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The proof follows from Theorem 4 as both pricing and ranking are shown to be a
special case of our proposed mechanism.

Similarly for GSP,

Lemma 9 The bid values

bi = vik + (1− k)bi+1ci+1 (21)

is a pure strategy Nash Equilibrium in the GSP mechanism.

This equilibrium corresponds to the substitution of the assumption ∀iγi = k −
ci (1 ≥ k ≥ 0) in Theorem 4. Since this is a special case, this result follows from
Theorem 4.

6.3 Comparison with VCG Mechanism

We compare the revenue and equilibrium of CE mechanism with those of VCG [31,
9,20]. VCG auctions combine an optimal allocation (ranking) with VCG pricing.
VCG payment of a bidder is equal to the reduction of revenues of other bidders
due to the presence of the bidder. A well known property is that VCG pricing
with any socially optimal allocation has truth telling as the the dominant strategy
equilibrium.

In the context of online ads, a ranking optimal with respect to the bid amounts
is socially optimal ranking for VCG. This optimal ranking is bici

µi
; as directly im-

plied by the Equation 1 on substituting bi for utilities. Hence this ranking com-
bined with VCG pricing has truth telling as the dominant strategy equilibrium.
Since bi = vi at the dominant strategy equilibrium, ranking is socially optimal for
advertiser’s true value as suggested in Equation 13.

The CE ranking function is different from VCG since CE ranking by payments
optimizes search engine profits. On the other hand, VCG ranking optimizes the
advertiser’s profit. But Theorem 3 shows that for the pricing used in CE, ordering
of CE is the same as that of VCG. This order preserving property facilitates the
comparison of CE with VCG. The theorem below shows revenue dominance of CE
over VCG for the same bid values of the advertisers.

Theorem 5 (Search Engine Revenue Dominance) For the same bid values for

all the advertisers, the search engine revenue by CE mechanism is greater than or

equal to its revenue by VCG.

Proof Sketch: The proof is an induction based on the fact that the ranking by CE
and VCG are the same, as mentioned above. Full proof is given in Appendix A-5.
�

This theorem shows that the CE mechanism is likely to provide higher rev-
enue to the search engine even during transient times before the bids settle on
equilibriums.

Based on Theorem 5, we prove revenue equivalence of the proposed CE equi-
librium with dominant strategy equilibrium of VCG.

Theorem 6 (Equilibrium Revenue Equivalence) At the equilibrium in Theorem 4,

the revenue of the search engine is equal to the revenue of the truthful dominant strategy

equilibrium of VCG.
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Proof Sketch: The proof is an inductive extension of Theorem 5. Please see
Appendix A-6 for complete proof. �

Note that the CE equilibrium has lower bid values than VCG at the equilib-
rium, but provides the same profit to the search engine.

7 CE Ranking Considering Mutual Influences: Diversity Ranking

An assumption in CE ranking is that the entities are mutually independent as
we pointed out in Section 3. In other words, the three parameters—U(e), C(e)
and γ(e)—of an entity do not depend on other entities in the ranked list. In this
section we relax this assumption and analyze the implications. Since the nature
of the mutual influence may vary for different problems, we base our analysis on
a specific well known problem—ranking considering diversity [5,3,26].

Diversity ranking accounts for the fact that the utility of an entity is reduced by
the presence of a similar entity above in the ranked list. This is a typical example
of the mutual influence between the entities. All the existing objective functions
for the diversity ranking are known to be NP-Hard [5]. We analyze a basic form
of diversity ranking to explain why this is a fundamentally hard problem.

We modify the objective function in Equation 1 slightly to distinguish between
the standalone utilities and the residual utilities—utility of an entity in the context
of other entities in the list—as,

E(U) =
N∑
i=1

Ur(ei)Pc(ei) (22)

where Ur(ei) denotes the residual utility.
We examine a simple case of diversity ranking problem by considering a set

of entities—all having the same utilities, perceived relevances and abandonment
probabilities. Some of these entities are repeating. If an entity in the ranked list is
the same as the entity in the list above, the residual utility of that entity becomes
zero. In this case, it is intuitive that the optimal ranking is to place the maximum
number of pair-wise dissimilar entities in the top slots. The theorem below shows
that even in this simple case the optimal ranking is NP-Hard.

Theorem 7 Diversity ranking optimizing expected utility in Equation 22 is NP-Hard.

Proof Sketch: The proof is by reduction from the independent set problem. See
Appendix A-7 for the complete proof. �

Moreover, the proof by reduction from independent set problem has more im-
plications than NP-Hardness as shown in the following corollary,

Corollary 1 The constant approximation algorithm for ranking considering diversity

is hard.

Proof: The proof of NP-Hardness in the theorem above shows that the independent
set problem is a special case of diversity ranking. This implies that a constant ratio
approximation algorithm for the optimal diversity ranking would be a constant
ratio approximation algorithm for the independent set problem. Since a constant
ratio approximation algorithm for the independent set is known to be hard (cf.
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Garey and Johnson [15] and H̊astad [22]), the corollary follows. To define hard,
in his landmark paper H̊astad proved that independent set problem cannot be
solved within n1−ε for ε > 0 unless all problems in NP are solvable in probabilistic
polynomial time, which is widely believed to be not possible.2 �

This section shows that the optimal ranking considering mutual influences of
parameters is hard. We leave formulating approximation algorithms (not neces-
sarily constant ratio) for future research.

Beyond proving the intractability of mutual influence ranking, we believe that
the intractability of the simple scenario here explains why all optimal diversity
rankings and constant ratio approximations are likely to be intractable. Further-
more, the proof based on the reduction from the well explored independent set
problem may help in adapting approximation algorithms from graph theory.

8 Experiments

We compare the profit improvement by CE and reduced forms to existing rankings.
Although the optimality of the proposed ranking is proven above, experiments help
to quantify the increase in utilities. Considering the very restricted access to real
users and ad click logs, we limit our evaluations to simulations as it is common in
computational advertisement research. We believe that these experimental results
will motivate future online evaluations in industry settings.

In our first experiment in Figure 3(a), we compare the CE ranking with rank
by bid amount (Equation 11) strategy by Overture and rank by bid × perceived
relevance (Equation 12) by Google. We assign the perceived relevance values as a
uniform random number between 0 and α (0 ≤ α ≤ 1) and abandonment probabil-
ities as random between 0 and 1−α. This assures ∀i

(
C(ai) + γ(ai)

)
≤ 1 condition

required in the click model. The bid amounts for ads are assigned uniform ran-
domly between 0 and 1. We use uniform random for values as it is the maximum
entropy distribution and hence makes least assumptions about the bid amounts.
The number of relevant ads (corresponding to the number of bids on a query) is
set to fifty. Simulated users are made to click on ads. The number of ads clicked
is set to a random number generated in a zipf distribution with exponent 1.5. A
power law is most intuitive for the distribution of the number of clicks.

Simulated users browse down the list. Users click an entity with probability
equal to the perceived relevance and abandon the search results with a probability
equal to the abandonment probability. The set of entities to be placed is created
at random for each run. For the same set of entities, three runs—one with each
ranking strategy—are performed. Simulation is repeated 2 × 105 times for each
value of α.

An alternate interpretation of Figure 3(a) is as the comparison of ranking by
CE, PRP and perceived relevance ranking (Equation 8). As we discussed, PRP and
perceived relevance rankings are isomorphic to ad rankings by bid and bid × per-
ceived relevance respectively, with utility being relevance instead of bid amounts.
The simulation results are the same.

In Figure 3(b) we compare CE, PRP and abandonment ranking (Equation 9)
under the same settings used for Figure 3(a). CE provides the maximum utility

2 This belief is almost as strong as the belief P 6= NP
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as expected, and abandonment ranking occupies the second place. Abandonment
ranking provides sub-optimal utility—since the condition ∀dR(d) = C(d) is not
satisfied—but dominates over PRP. Further, as abandonment probability becomes
zero (i.e. α = 1) abandonment rankings becomes same as PRP and optimal as we
predicted in Section 5.1.

Figure 4(a) compares the perceived relevance ranking (Equation 8), CE, and
PRP under the condition for optimality for perceived relevance ranking (i.e. ∀dγ(d) =
k − R(d)). For this, we set γ(d) = α− C(d) keeping all other settings same as the
previous experiments. Figure 4(a) shows that the perceived relevance ranking pro-
vides optimal utility, exactly overlapping with CE curve as expected. Furthermore,
note that utilities by PRP are very low under this condition. The utilities by PRP
in fact goes down after α = 0.2. The increase in abandonment probability, as well
as increased sub-optimality of PRP for higher abandonment (since PRP does not
consider abandonment) probabilities may be causing this reduction.

In our next experiment shown in Figure 4(b), we compare abandonment rank-
ing (Equation 9) with PRP and CE under the condition ∀dC(d) = R(d) (i.e.
optimality condition for abandonment ranking). All other settings are the same
as those for the experiments in Figure 3(a) and 3(b). Here we observe that the
abandonment ranking is optimal and exactly overlaps with CE as expected. PRP
is sub-optimal but closer to optimal than random C(d) used for experiments in
Figure 3(b). The reason may be that C(d) = R(d) is one of the two conditions
required for PRP to be optimal for both sets of assumptions as we discussed
in Subsection 5.1. When abandonment probability becomes zero PRP relevance
reaches optimum as we have already seen.

All these simulation experiments confirm the predictions by the theoretical
analysis above. Although the simulation is no substitute for experiments on real
data, we expect that the observed significant improvements in expected utilities
would motivate future online experiments to quantify profit.

9 Conclusion and Future Work

We approach the document and ad ranking as a utility maximization based on
the user click model, and derive an optimal ranking—namely CE ranking. CE
ranking is simple and intuitive; and optimal considering perceived relevance and
abandonment probability of user behavior.

On specific assumptions on parameters, the CE ranking function spawns a
taxonomy of rankings in multiple domains. The taxonomy shows that the existing
document and ad ranking strategies are special cases of the proposed ranking
function under specific assumptions. The taxonomy is helpful in selecting optimal
ranking for a specific user behavior.

To apply CE ranking to ad auctions, we incorporate a second-price based
pricing mechanism. The resulting CE mechanism has a Nash Equilibrium which
simultaneously optimizes both the search engine and advertiser revenues. The CE
mechanism is revenue dominant over VCG for the same bid vectors, and has an
equilibrium which is revenue equivalent with the truthful equilibrium of VCG.

We relax the assumption of independence between entities in CE ranking and
apply it to diversity ranking. The ensuing analysis reveals that diversity ranking is
an inherently hard problem; since even the basic formulations are NP-Hard with
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unlikely constant ratio approximation algorithms. Furthermore our simulation ex-
periments confirm the results, and suggest potentially significant increase in profits
over the existing rankings.

As future research, assessing profits by CE ranking in an online experiment
on a large scale search engine will quantify improvement in ranking. Estimation
and prediction of abandonment probability using click logs and statistical models
are interesting problems. The suggested ranking is optimal for other web ranking
scenarios with similar click models—like product and friend recommendations—
and may be extended to these problems. Furthermore, effective approximation
schemes for diversity ranking based on similarity with the independent set problem
may be investigated.
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APPENDIX

A-1 Proof of Theorem 1

Theorem 1: The expected utility in Equation 3 is maximum if the entities are
placed in the descending order of the value of the ranking function CE,

CE(ei) =
U(ei)C(ei)

C(ei) + γ(ei)

Proof Consider results ei and ei+1 in positions i and i + 1 respectively. Let µi =
γ(ei) + C(ei) for notational convenience. The total expected utility from ei and
ei+1 when ei is placed above ei+1 is

i−1∏
j=1

(1− µj) [U(ei)C(ei) + (1− µi)U(ei+1)C(ei+1)]
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If the order of ei and ei+1 are inverted by placing ei above ei+1, the expected
utility from these entities will be,

i−1∏
j=1

(1− µj) [U(ei+1)C(ei+1) + (1− µi+1)U(ei)C(ei))]

Since utilities from all other results in the list will remain the same, the expected
utility of placing ei above ei+1 is greater than inverse placement iff

U(ei)C(ei) + (1− µi)U(ei+1)C(ei+1) ≥ U(ei+1)C(ei+1) + (1− µi+1)U(ei)C(ei)

m
U(ei)C(ei)

µi
≥ U(ei+1)C(ei+1)

µi+1

This means if entities are ranked in the descending order of U(e)C(e)
C(e)+γ(e) any inversions

will reduce the profit. Since any arbitrary order can be effected by a number of
inversions on the ranking by CE, this implies that ranking by U(e)C(e)

C(e)+γ(e) is optimal.

A-2 Proof of Theorem 2

Theorem 2: The order proposed in Theorem 1 is optimal for multiple clicks if the
user restarts browsing at the position one below the last clicked entity.

Proof Induction on number of clicks.
Base Case: Single click, proved in Theorem 1.
Inductive Hypothesis: The proposed ordering is optimal for n clicks.
Let there be total of n ranked entities and ec be the nth clicked entity. The

user will browse down starting next to ec. Since there is only one click remaining,
optimal ordering of entities is in the descending order of CE by the base case. Since
the relevance and abandonment probabilities ec+1 to en remain unchanged by the
independence assumption above, the optimal sequence will be the sub-sequence of
ec+1 to en in the ranking.

A-3 Proof of Theorem 3

Theorem 3 : The order by wibi is the same as the order by CEi for the auction i.e.

wibi ≥ wjbj ⇐⇒ CEi ≥ CEj

Proof Without loss of generality, we assume that ai refers to ad in the position i

in the descending order of wibi.

CEi =
pici
µi

=
bi+1ci+1µi
µi+1ci

ci
µi

=
bi+1ci+1

µi+1

= wi+1bi+1

≥ wi+2bi+2 = CEi+1
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A-4 Proof of Theorem 4

Theorem 4 (Nash Equilibrium): Without the loss of generality assume that the
advertisers are ordered in the decreasing order of civiµi

where vi is the private value

of the ith advertiser. The advertisers are in a pure strategy Nash Equilibrium if

bi =
µi
ci

[
vici + (1− µi)

bi+1ci+1

µi+1

]
This equilibrium is socially optimal for advertisers as well as optimal for search
engines for the given CPC’s.

Proof Let there are n advertisers. Without loss of generality, let us assume that
advertisers are indexed in the descending order of vici

µi
. We prove equilibrium in

two steps.
Step 1: Prove that

wibi ≥ wi+1bi+1 (A-1)

wibi =
bici
µi

Expanding bi by Equation 19,

wibi = vici + (1− µi)
bi+1ci+1

µi+1

= vici + (1− µi)wi+1bi+1

=
vici
µi

µi + (1− µi)wi+1bi+1

Notice that wibi is a convex linear combination of wi+1bi+1 and vici
µi

. This means

that the value of wibi is in between (or equal to) the values of wi+1bi+1 and vici
µi

.
Hence to prove that wibi ≥ wi+1bi+1 all we need to prove is that vici

µi
≥ wi+1bi+1.

This inductive proof is given below.
Induction hypothesis: Assume that

∀i≥j
vici
µi
≥ wi+1bi+1

Base case: Prove for i = N i.e. for the bottommost ad.
vN−1cN−1

µN−1
≥ wN bN

Assuming ∀i>N bi = 0

wN bN = vN cN ≤
vN cN
µN

(as µN ≤ 1) ≤ vN−1cN−1

µN−1
(by the assumed order i.e. by vici

µi
)

Induction: Expanding wjbj by Equation 19,

wjbj =
vjcj
µj

µj + (1− µj)wj+1bj+1

wjbj is the convex linear combination, i.e
vjcj
µj
≥ wjbj ≥ wj+1bj+1, as we know

that
vjcj
µj
≥ wj+1bj+1 by induction hypothesis. Consequently,

wjbj ≤
vjcj
µj
≤
vj−1cj−1

µj−1
(by the assumed order)

This completes the induction.
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Since advertisers are ordered by wibi for pricing, the above proof says that the
pricing order is the same as the assumed order in this proof (i.e. ordering by vici

µi
).

Consequently,

pi =
bi+1ci+1µi
µi+1ci

As corollary of Theorem 3 we know that CEi ≥ CEi+1.
In the second step we prove the equilibrium using results in Step 1.

Step 2: No advertiser can increase his profit by changing his bids unilater-

ally

Proof ( of lack of incentive to undercut to advertisers below) In the first step let us
prove that ad ai can not increase his profit by decreasing his bid to move to a
position j ≥ i below.
Inductive hypothesis: Assume true for i ≤ j ≤ m.
Base Case: Trivially true for j = i.
Induction: Prove that the expected profit of ai at m + 1 is less or equal to the
expected profit of ai at i.

Let ρk denotes the amount paid by ai when he is at the position k. By inductive
hypothesis, the expected profit at m is less or equal to the expected profit at i.
So we just need to prove that the expected profit at m+ 1 is less or equal to the
expected profit at m. i.e.

(vi − ρm)

(1− µi)

m∏
l=1

(1− µl) ≥
(vi − ρm+1)

(1− µi)

m+1∏
l=1

(1− µl)

Canceling the common terms,

vi − ρm ≥ (vi − ρm+1)(1− µm+1) (A-2)

ρm—the price charged to ai at position m—is based on the Equations 16 and 19.
Since the ai is moving downward, ai will occupy position m by shifting ad am
upwards. Hence the ad just below ai is am+1. Consequently, the price charged to
ai when it is at the mth position is,

ρm =
bm+1cm+1µi
µm+1ci

=
µi
ci

[
vm+1cm+1 + (1− µm+1)

bm+2cm+2

µm+2

]
Substituting for ρm and ρm+1 in Equation A-2,

vi−
µi
ci

[
vm+1cm+1 + (1− µm+1)

bm+2cm+2

µm+2

]
≥
(
vi −

µi
ci

[
vm+2cm+2 +

(1− µm+2)
bm+3cm+3

µm+3

])
(1−µm+1)

Simplifying, and multiplying both sides by −1

µi
ci

[
vm+1cm+1 + (1− µm+1)

bm+2cm+2

µm+2

]
≤ viµm+1 +

µi
ci

(1− µm+1)
[
vm+2cm+2+

(1− µm+2)
bm+3cm+3

µm+3

]
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Substituting by bm+2 from Equation 19 on RHS.

µi
ci

[
vm+1cm+1 + (1− µm+1)

bm+2cm+2

µm+2

]
≤ viµm+1 +

µi
ci

(1− µm+1)
bm+2cm+2

µm+2

Canceling out the common terms on both sides,

µi
ci
vm+1cm+1 ≤ viµm+1

m
vm+1cm+1

µm+1
≤ vici

µi

Which is true by the assumed order as m ≥ i

Inductive proof for m ≤ i is somewhat similar and enumerated below.

Inductive hypothesis: Assume true for j ≤ m.

Base Case: Trivially true for j = i.

Proof (of lack of incentive to overbid ad one above )

The case in which ai increases his bid to move one position up i.e. to i − 1 is
a special case and need to be proved separately. In this case, by moving a single
slot up, the index of the ad below ai will change from i + 1 to i − 1 (a difference
of two). For all other movements of ai to a position one above or one below, the
index of the advertisers below will change only by one. Since the amount paid by
ai depends on the ad below ai, this case warrants a slightly different proof,

(vi − ρi)
i−1∏
l=1

(1− µl) ≥ (vi − ρm−1)
i−2∏
l=1

(1− µl)

m
(vi − ρi)(1− µi−1) ≥ vi − ρi−1

Expanding ρi is straight forward.To expand ρi−1, note that when ai has moved
upwards to i− 1, the ad just below ai is ai−1. Since ai−1 has not changed its bids,

the ρi−1 can be expanded as µi
ci

[
vi−1ci−1 + (1− µi−1) biciµi

]
. Substituting for ρi

and ρi−1, (
vi −

µi
ci

[
vi+1ci+1 + ≥ vi −

µi
ci

[
vi−1ci−1 +

(1− µi+1)
bi+2ci+2

µi+2

])
(1− µi−1) (1− µi−1)

bici
µi

]
Simplifying and multiplying by −1

viµi−1 +
µi
ci

[
vi+1ci+1 + ≤ µi

ci

[
vi−1ci−1 + (1− µi−1)

bici
µi

]
(1− µi+1)

bi+2ci+2

µi+2

]
(1− µi−1)
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Substituting bi+1 from Equation 19

viµi−1 +
µi
ci

bi+1ci+1

µi+1
(1− µi−1) ≤ µi

ci

[
vi−1ci−1 + (1− µi−1)

bici
µi

]
m

viµi−1 +
µi
ci

(1− µi−1)
bi+1ci+1

µi+1
≤ µivi−1ci−1

ci
+
µi
ci

(1− µi−1)
bici
µi

We now prove that both the terms in RHS are greater or equal to the corresponding
terms in LHS separately.

viµi−1 ≤
µivi−1ci−1

ci
m

vici
µi
≤ vi−1ci−1

µi−1

Which is true by our assumed order.
Similarly,

µi
ci

(1− µi−1)
bi+1ci+1

µi+1
≤ µi

ci
(1− µi−1)

bici
µi

m
bi+1ci+1

µi+1
≤ bici

µi

Which is true by Equation A-1 above. This completes the proof for this case.

Induction: Prove that the expected profit at m−1 is less or equal to the expected
profit at m. The proof is similar to the induction for the case m > i.

Proof Base case is trivially true.

(vi − ρm)
m−1∏
l=1

(1− µl) ≥ (vi − ρm−1)
m−2∏
l=1

(1− µl)

Canceling common terms,

(vi − ρm)(1− µm−1) ≥ vi − ρm−1

In this case, note that ai is moving upwards. This means that ai will occupy
position m by pushing the ad originally at m one position downwards. Hence the
original ad at m is the one just below ai now. i.e.

ρm =
bmcmµi
µmci

=
µi
ci

[
vmcm + (1− µm)

bm+1cm+1

µm+1

]
Substituting for ρm and ρm−1(

vi −
µi
ci

[
vmcm + ≥ vi −

µi
ci

[
vm−1cm−1 +

(1− µm)
bm+1cm+1

µm+1

])
(1− µm−1) (1− µm−1)

bmcm
µm

]
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Simplifying and multiplying by −1

viµm−1 +
µi
ci

[
vmcm + ≤ µi

ci

[
vm−1cm−1 + (1− µm−1)

bmcm
µm

]
(1− µm)

bm+1cm+1

µm+1

]
(1− µm−1)

Substituting by bm from Equation 19

viµm−1 +
µi
ci

bmcm
µm

(1− µm−1) ≤ µi
ci

[
vm−1cm−1 + (1− µm−1)

bmcm
µm

]
Canceling common terms,

viµm−1 ≤
µi
ci
vm−1cm−1

m
vici
µi
≤ vm−1cm−1

µm−1

Which is true by the assumed order as m < i.

A-5 Proof of Theorem 5

Theorem 5 (Search Engine Revenue Dominance): For the same bid values for all the
advertisers, the revenue of search engine by CE mechanism is greater or equal to
the revenue by VCG.

Proof VCG payment of the ad at position i (i.e. ai) is equal to the reduction in
utility of the ads below due to the presence of ai. For each user viewing the list of
ads (i.e. for unit view probability), the total expected loss of ads below ai due to
ai is,

pVu
i =

1

1− µi

n∑
j=i+1

bjcj

j−1∏
k=1

(1− µk)−
n∑

j=i+1

bjcj

j−1∏
k=1

(1− µk)

=
µi

1− µi

n∑
j=i+1

bjcj

j−1∏
k=1

(1− µk)

=
µi

1− µi

i∏
k=1

(1− µk)
n∑

j=i+1

bjcj

j−1∏
k=i+1

(1− µk)

= µi

i−1∏
k=1

(1− µk)
n∑

j=i+1

bjcj

j−1∏
k=i+1

(1− µk)

This is the expected lose per user browsing the ad list. Pay per click should be
equal to the lose per click. To calculate the pay per click, we divide by the click
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probability of ai. i.e.

pVi =
µi
∏i−1
k=1(1− µk)

∑n
j=i+1 bjcj

∏j−1
k=i+1(1− µk)

ci
∏i−1
k=1(1− µk)

=
µi
ci

n∑
j=i+1

bjcj

j−1∏
k=i+1

(1− µk)

Converting to recursive form,

pVi =
bi+1µi
ci

ci+1 + (1− µi+1)
µici+1

ciµi+1
pVi+1

=
bi+1µici+1

ciµi+1
µi+1 + (1− µi+1)

µici+1

ciµi+1
pVi+1 (A-3)

For the CE mechanism payment from Equation 16 is,

pCEi =
bi+1ci+1µi
µi+1ci

Note that pVi is convex combination of PCEi and µici+1

ciµi+1
pVi+1, and hence is

between these two values. To prove that pCEi ≥ pVi all we need to prove is that
PCEi ≥ µici+1

ciµi+1
pVi+1 ⇔ bi ≥ pVi . This directly follows from individual rationality

property of VCG. Alternatively, a simple recursion with base case as pVN = 0
(bottommost ad) will prove the same. Note that we consider only the ranking (not
selection), and hence the VCG pricing of the bottommost ad in the ranking is
zero.

A-6 Proof of Theorem 6

Theorem 6 (Equilibrium Revenue Equivalence): At the equilibrium in Theorem 4, the
revenue of search engine is equal to the revenue of the truthful dominant strategy
equilibrium of VCG.

Proof Rearranging Equation A-3 and substituting true values for bid amounts,

pVi =
µi
ci

[
vi+1ci+1 +

(1− µi+1)ci+1

µi+1
pVi+1

]
For the CE mechanism, substituting equilibrium bids from Equation 19 in payment
(Equation 16),

pCEi =
bi+1ci+1µi
µi+1ci

=
µi
ci

[
vi+1ci+1 + (1− µi+1)

bi+2ci+2

µi+2

]
Rewriting bi+2 in terms of pi+1,

pCEi =
µi
ci

[
vi+1ci+1 +

(1− µi+1)ci+1

µi+1
pCEi+1

]
= pVi (iff pVi+1 = pCEi+1)

Ad at the bottommost position pays same amount zero, a simple recursion will
prove that the payment for all positions for both VCG and the proposed equilib-
rium is the same.
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A-7 Proof of Theorem 7

Theorem 7: Diversity ranking optimizing expected utility in Equation 22 is NP-
Hard.

Proof Independent set problem can be formulated as a ranking problem considering
similarities. Consider an unweighed graph G of n vertices {e1, e2, ..en} represented
as an adjacency matrix. This conversion is clearly polynomial time. Now, consider
the values in the adjacency matrix as the similarity values between the entities
to be ranked. Let the entities have the same utilities, perceive relevances and
abandonment probabilities. In this set of n entities from {e1, e2, .., en}, clearly the
optimal ranking will have k pairwise independent entities as the top k entities for
a maximum possible value of k. But the set of k independent entities corresponds
to the maximum independent set in graph G.
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(a) Comparison of CE, Google and Overture rankings.
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(b) Comparison of CE, PRP and abandonment rankings.

Fig. 3 (a) Comparison of Overture, Google and CE rankings. Perceived relevances are uni-
formly random in [0, α] and abandonment probabilities are uniformly random in [0, 1 − α].
CE provides optimal expected profits for all values of α. (b) Comparison of CE, PRP and
abandonment ranking (Equation 9). Abandonment ranking dominates PRP.
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(a) Comparison of Optimality of CE, PRP and perceived relevance rank-
ings.
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(b) Comparison of Optimality of CE, PRP and abandonment rankings.

Fig. 4 Optimality of reduced forms under assumptions (a) setting γ(d) = k − R(d). Per-
ceived relevance ranking is optimal for all values of α. (b) setting C(d) = R(d). In this case,
abandonment ranking is optimal.
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