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Abstract of the query predicates. For example, in a used car trad-
ing application, if a user asks for convertible cars, all the

Incompleteness due to missing attribute values (aka “null returned answers must have the value “convt” for the at-
values”) is very common in autonomous web databases, orfribute body style. Even though all Z4'’s are convertible, a
which user accesses are usually supported through medi-BMW Z4 car which has a null value in itsody style will
ators. Traditional query processing techniques that focus Not be returned. Unfortunately, such an approach is both in-
on the strict soundness of answer tuples often ignore tu-flexible and inadequate for querying many autonomous web
ples with critical missing attributes, even if they wind up databases many of which are inherently incomplete for the
being relevant to a user query. Ideally we would like the following reasons
mediator to retrieve such relevant uncertain answers and Incomplete Entry: Web databases are often input by lay in-
gauge their relevance by accessing their likelihood of be- dividuals without any central curation. For example, web-
ing relevant answers to the query. The autonomous naturesites such a€ars.comand Yahoo! Autosobtain car in-
of the databases poses several challenges in realizing thisformation from individual car owners who may not provide
idea. Such challenges include the restricted access privi-complete information for their cars, resulting in a lot ofssH
leges, limited query patterns and sensitivity of databask a ing values (aka “null” values) in the databases. In the exam-
network resource consumption in the web environment. Weple above, the owner of the BMW Z4 may have skipped fill-
introduce a novel query rewriting and optimization frame- ing thebody style attribute assuming that it is obvious (just
work that tackles these challenges. Our technique involvesas the owner of an Accord may skip entering theke to be
reformulating the user query based on approximate func- Honda). As a result, this car won't be retrieved by current
tional dependencies (AFDs) among the database attributesmediators for queries orbddy style=convt”.!

The reformulated queries are aimed at retrieving the rele- gytraction Inaccuracy: Many web databases are be-

‘(’inrt ul?ecrertarigcgrs]z\i,r\:er?r;r;nae(\j/\?ci%)lglfgri]se a?belretation agjweers. ing populated using automated information extractiontech
query p g gaug niques. As a result of the inherent imperfection of the ex-

the relevance of such reformulated queries to manage theyaciion, these web databases may contain missing values.
cost of database query processing and answer transmission

To support this framework, we develop methods for mining Schema Heterogeneity: The global schema provided by
attribute correlations (in terms of AFDs) and value distib & Mediator may often contain attributes that do not appear
tions(using Nave Bayes Classifiers). We present empirical N S0me local schemas. For example, a global schema for
studies to demonstrate that our approach is effective in re- US€d car trading may have an attribute calledy style,

trieving relevant uncertain answers with high precisioigth ~ Which is supported irCars.com but not inYahoo! Autos
recall and manageable cost, Given a query on the global schema that selects cars having

body style equal to “convertible”, approaches that only re-
turn certain answers won't be able to return car information

i |
1 Introduction from Yahoo! Autos
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has drawn much attention in recent years, as more and mor| CaDrect e R A o

data becomes accessible via web servers which are sup-
ported by back-end databases. A mediator provides a uni-
fied query interface as a global schema of the underlying
databases. Queries on the global schema are then rewrit-
ten as queries over autonomous databases through their web o )
interfaces. Current mediator systems [14, 11] return to use  1able 1 shows statistics on the percentage of incomplete
only .Certam answershat exactly SaFISfy ?‘” the user query 1This type of incompleteness is expected to increase evee mith
predicates. Tuples that are otherwise highy relevant fer th services such as GoogleBase which provide users signiffoeetom in
qguery will not be retrieved if they have null values on any deciding which attributes to define and/or list.

Table 1. Statistics on missing values in web
databases




[ ID | Make | Model | Year | Body style | tonomous web databases. Since a mediator usually does not
1 Audi Al 2001 convt have update capabilities over the autonomous databases, it
2 | BMW Z4 2002 convt cannot directly replace the null values.
3 | Porsche| Boxster| 2005 convt A more plausible solution is to first retrieve all the tu-
4 | BMW Z4 2003 null ples with nulls on constrained attributes, predict missialg
5 | Honda | Civic | 2004 null ues for them, and then decide the relevant query answer set.
6 | Toyota | Camry | 2002 sedan We call this approach as returnimglevant uncertain an-

swers(RUA) However, this approach may be inappropriate

Table 2. Fragment of a Car Database as discussed before due to the limited query access pattern

of web databases and high network transmission costs.
To handle this challenge, we propose online query rewrit-
tuples on two autonomous web databases. The statistics wering techniques that not only retrieve certain answers to a
computed from a probed sample. The table also gives statisquery, but also highly relevant answers that have nulls on
tics on the percentage of missing values for théy style constrained attributes. These latter answers, termeel-as
andengine attributes. These statistics show thatincomplete- evant uncertain answersare retrieved without modifying
ness can indeed creep into online databases. the underlying data sources. When a query is submitted,
When faced with such incomplete databases, current methe mediator first retrieves all the certain answers for the
diators provide only certain answers thereby sacrificing re given user query. Then based on the certain answers and
call. This is particularly problematic when the data soarce a set of mined attribute correlation rules, the mediatanor
have a significant fraction of incomplete tuples, and/or the a group of rewritten queries to be sent to the data sources.
user requires high recall (consider, for example, a law- The rewritten queries are then ranked based on their likeli-
enforcement scenario, where a potential crime suspect goebood of bringing back relevant answers before being posed
unidentified because of information that is fortuitoushgmi  to the data sources. Using missing value prediction tech-
ing in the database). nigues in the context of such query rewriting approach poses
A naive approach for improving the recall would be to some unique challenges such as how to generate and rank
return, in addition to all the certain answers, all the tu- the rewritten queries. To handle these, we present a missing
ples with missing values on the constrained attribute(s).value prediction strategy that uses Approximate Functiona
For example, consider a selection quépy for cars hav- ~ Dependencies(AFDs) and Naive Bayesian Classifiers(NBC).
ing body style=convt on a fragment of a Car database as In the car database example, this analysis may a}déWAD
shown in Table 2. For the above qu&py, a mediator could  to identify thatmodel determinesody style and the fact
return not only the tuples, t», t3 whosebody style values that Z4 cars in the database often seem to be convertibles.
are “convt” but also the tuplesg andts whosebody style QPIAD then rewrites the query obvdy style=convt into

values are missing(null). This approach of returratigun- additional selection queries such m@del=24 to retrieve
certain answerseferred to as AUA has two obvious draw- relevant uncertain tuples suchias
backs. First, it is infeasible to retrieve all tuples witHIaun QPIAD also provides support for handling incomplete-

some cases, as web databases usually do not allow the maress caused by schema heterogeneity (see above). Specifi-
diator to directly retrieve tuples with null values on sfieci  cally, when faced with data sources not supporting the query
attributes. Second, and perhaps more important, manystuple attribute (e.gbody style attribute byYahoo! Autoy QPIAD

with missing values on constrained attributes iaraevant leverages the mined approximate functional dependencies
to the query. Intuitively, not all the tuples that have a il from correlated data sources (suchGess.con) to rewrite

the attributéody style represent convertible cars! The AUA the query and retrieve relevant answers.

approach thus improves recall but suffers from low preqisio  ~qtributions: To the best of our knowledgeQPIAD

and high cost. framework is the first that retrieves relevant but uncersain
QPIAD Approach: In this paper, we focus on gquery pro- swers with missing values on constrained attributes withou
cessing techniques for incomplete autonomous databasesnodifying underlying databases. Consequently it is sigtab
that not only return certain answers but also return, in afor querying incomplete autonomous databases. The idea
ranked fashion, tuples that have missing values and yet aref using attribute correlations and predicted distribogion
highly relevant to queries. The goal of our query processing missing values to rewrite queries is also a novel contriouti
framework QPIAL? is to return query answers with good  of our work. Our framework also describes a novel applica-
precision, recall and manageable cost. tion of leveraging attribute correlations among data sesirc
Our approach starts by adapting standard techniques tan order to retrieve relevant answers from data sources not
predict missing values. Given techniques to predict val- supporting the query attribute. Our experimental evatunati
ues for null, one obvious way of exploiting them would be shows thatDQPIAD retrieves most relevant information while
to store the predicted values in databases and then proced&eping the query processing costs low.
gueries on them directly. Indeed this is advocated by som
existing research efforts [10, 15, 18, 23]. Unfortunatelgh
an approach is not appropriate for querying incomplete au-

eOrganization: The rest of the paper is organized as fol-
lows. In the next section we describe related work on han-
dling incomplete data. In Section 3, we give some pre-
2QPIAD is an acronym for Query(Q) Processing(P) over Incaegl) liminaries and describe the architecture of QPIAD. Section
Autonomous(A) Databases(D) 4 discusses online query rewriting and ranking techniques




to retrieve relevant uncertain answers from incomplete au-the query constrained attributes, yet is likely to be raitva
tonomous databases and from data sources not supportingp the original user query. Since we use an entirely new set
the query attribute in their local schema. Section 5 pravide of rewritten queries to retrieve uncertain answers, ouryjue
the details of computing attribute correlations and migsin relaxation is value directed.

value distributions used in our query rewriting phase. A | earning missing values: There has been a large body
comprehensive empirical evaluation of our approach is pre-of work on missing values imputation [5, 20, 21, 25, 2].
sented in Section 6. We conclude the paper in Section 7. common imputation approaches include substituting miss-
ing data values by the mean, the most common value, de-
2 Related Work fault value of the attribute in question, or using k-Nearest
Neighbour[2], association rules[25], etc. Other approach
used to estimate missing values garameter estimatian
Maximum likelihood procedures that use variants of the
Expectation-Maximization algorithm[5, 20] can be used to

Querying incomplete databases:Compared to previous
work on querying incomplete databases, the critical ngvelt
of our work is that our approach does not modify original

data. It is therefore suitable for querying incomplete au-

tonomous databases, where a mediator is not able to storgs't'm"’llte i}he parameters of a model(;jefmt_—ed fi(])r the c;mg)l_ete
the estimation of missing values in sources. Techniquesdat@. In this paper, we are interested not in the standard im-
; ith nuputation problem but a variant that can be used in the context

values [10]. Null values are typically represented in three O duery rewriting. In this context, it is important to have
different approaches: (i) Codd Tables where all the null val schema level dependencies between attributes as well-as dis

ues are treated as the same; (ii) V-tables which allow manytnbutlon information over missing values. We use AFDs for

different null values marked by variables; and (iii) Condi- the former, and an AFD-enhanced Naive Bayes Classifier for
tional tables which are V-tables with additional attritater ~ the later. We experimented with other methods including as-

- ; iation rules and bayes network learning - but found them
conditions. [15] proposed a query language on incompleteSO¢all >S al 1g - L .
databases, where we can have a subset of the domain as 4@ be either significantly less accurate or significantiytioers

attribute value. [18, 4] discussed query evaluation onrimco 10 COmpute.

plete databases where attribute values can be intervals. Ig Preliminaries and Architecture of QPIAD

all the above approaches, data sources need to be modified, ) ] o _

and standard relational data model and query languages need We will start with formal definitions of certain answers
to be extended in order to handle incomplete data. In con-and uncertain answers with respect to selection queries.

trast, our work proposes online query rewriting technigoes —
query incomplete autonomous databases without modifyingigﬁ.miloz :L)(ng rgpijeaigi)n;soemgle;? o-i]upleAS)ttStle eRl(‘%Aié

source .d-atf';\ and data models. o said to be complete if it has non-null values for each of
Probabilistic Databases:Incomplete databases are similar the attributes4;; otherwise it is considered incomplete.

to probabilistic databases once the probabilities for miss o complete tuple is considered to belong to the set of
ing values are assessed. [23] gives an overview of query-

: are _ €ry-completions of an incomplete tuplédenoted:(2)), if t and
ing probabilistic databases where each tuple is assomateéa ree on all the non-null attribute values
with an additional attribute describing the probabilityitsf 9 :

existence. Some recent work on the TRIO[22, 24] sys-  The notion of completions brings forth the connection be-
tem deals with handling uncertainty over probabilistic re- tween incompleteness and uncertainty: an incomplete tuple
lational databases. ConQuer[7, 1] system returns clean ancan thus be seen as a disjunction of its possible completions
swers over inconsistent databases. Handling inconsistencwe go a step further and view the incomplete tuple poa-

in databases is a special case of handling missing valuespility distributionover its completions. The distribution can
where the inconsistent attribute can onIy take values thatbe interpreted as giVing a quantitative estimate of the .prob

lead to inconsistency rather than any possible value. Thesepility that the incomplete tuple corresponds to a specific
approaches assume the presence of probabilities for misscompletion in the real world.

ing data. Since autonomous databases do not store or allow Now consider a selection quety: o4, —,,. (1 < m <
mediators to store probability distribution, our approash n) overR.

sesses these probabilities in order to issue rewritteni@gier _ ) i ]
to retrieve relevant answers. Thus, our query rewritingtec Definition 2 (Certain/Uncertain Answers) A tuple ¢ is

niques could also be used by these systems if the databasé@id to be a certain answer for the que@y: 04,,—0,, if
are autonomous. t.Ap,=v,. tis said to be an uncertain answer f¢ where

Query relaxation: Reformulating queries using database t.Am=null (wheret. Ay, is the value of attribute,, in t).

constraints for query optimization in distributed mediato Notice that in the definition abovecan be either a complete
systems has been described in [19]. There has been work onr incomplete tuple. Anincomplete tuple can be a certain an-
query relaxation over databases [17] which focuses on howswer to the query, if its incompleteness is not on the atteibu
to relax input query constraints such that data freatially being selected by the query.

satisfies the query constraints is also returned. Our work is  Since we view the incomplete tuple as a probability dis-
similar to such efforts in the spirit of retrieving relevatzta tribution over its completions, it is possible for us to gtifyn
even when it does not exactly satisfy user queries. How-the degree to which an uncertain answer is actually relevant
ever, we focus on retrieving data that has missing values into a query Q.



Definition 3 (Degree of Relevance)The degree of rele- 4 Retrieving Relevant Incomplete Answers

vance of a tuplé to the queryQ: o4,,—.,, is defined to be . . ) : . L
the probability P (t. A, =vy ). In this section, we first briefly review the limitations of

AUA and RUA approaches in the context of autonomous
databases. Then, we will present a novel query rewrit-
ing technique that overcomes these limitations in order to
retrieve relevant uncertain answers from incomplete au-

QPIAD | | tonomous databases. Finally, we describe how to extend this
ATDs, | Certain Answers + query rewriting framework in order to retrieve relevant an-
Classifiers Lrocessor /1| Relevant Uncertain Answers swers from data sources not supporting the query attribute.
l')mnflili-:)n xtender Base . . .
Tnformat 4.1 Retrieving Relevant Uncertain Answers from
~ Autonomous Databases
ampler == L. . . .
5 ™
Query ),_Use, Query - Retrieving relevant uncertain answers is more challenging
Reformulator when it comes to autonomous web databases compared to
Result Tuples Rewritten Queries local databases. First, web databases usually do not suppor
arbitrary selection query patterns as local databasesato. F
Sampling Queries User Query example, a website rarely allows users to submit querids suc
Awonemous as “list all the cars that have a missing value fiofly style
. ) attribute”. Therefore, the mediator may not be able to di-
Figure 1. QPIAD System Architecture. rectly retrieve uncertain answers, thus AUA and RUA ap-

proaches are not applicable in this scenario. Second, éven i

) the web databases allow null value binding, AUA and RUA
Conceptually, the operation of QPIAD can be understood gpproaches tend to return too many irrelevant uncertain an-

in terms of (i) automatically assessing the probability-dis gyers. In the sample qUEEY': oy style—convt, DOth AUA
tributions and (ii) actively using the learned distributim- and RUA retrieve all the tuples with missibgdy style val-
formation to retrieve uncertain tuples that have a high de- ,e5 most of which may not beonvt” . Altﬁough RUA

gree of relevance to the query. Realizing this seemingly ranks uncertain answers and only returns the most relevant
straightforward idea presents several challenges beaduse ones, significant database and network resources are wasted
the autonomous nature of the databases. Figure 1 shows thghjle processing and transmitting the irrelevant ones.sThu
QPIAD system architecture. In this framework, a user ac- jn 3 web environment, such approaches are not desirable.
cesses autonomous databases through a mediator. When a 1g address the two challenges above, intuitively we would
user submits a query to the mediator, the query reformulatorjjie o issue queries in an intelligent way, so that the query
first directs the query to the autonomous databases and reépatterns are more likely to be supported by web databases,

trieves the set of all certain answers (called iase result  anq only the most relevant uncertain answers are sent back
sej. In order to retrieve relevant uncertain answers, the me-yg the mediator in the first place.

diator needs to issue additional queries taking into actou
the limited access patterns of the autonomous databases.
propose online query rewriting techniques to generate ne
gueries based on the original query, the base result set, an
attribute correlations learned from a database sample. Th
attribute correlations used to generate the rewrittenigsier

are mined in terms of Approximate Functional Dependen-

cies(AFDs). The goal of these new queries is to return an ;
. : : _ Table 2. These certain answers formfaese result seaf Q.
extended result seivhich consists of highly relevant uncer Consider the first tuple,—(Audi, A4, 2001, convt) in the

tain answers to the original query. Since these new querie . . .
are not all equally good in terms of retrieving relevant un- base result set. If there is a tuplein the database with the
ame value fomodel ast; but missing value fobody style,

certain answers, they are ranked before being posed to th ent. bodu stule is likelv to be ¢ We capture this in-
databases. The ranking of rewritten queries is based on the ‘o1 vi-?04Y styte IS TIKEly conut. P .
uition by mining attribute correlationom the data itself.

value distributions for the missing attribute. We reduce th One obvious type of attribute correlations Fifictional

problem of acquiring such value distributions to learning ; :
classifiers. We develop an AFD-enhanced Naive BayesiandependenCIéS For example, the functional dependency

classifier learning method(where AFD plays a feature se-?hogfé;:gafv\fo Oftriglehrglsd?nlg d?)Utt(i)nmottr):(lae rggttﬁoéegﬁg%
lection role for the classification task). As shown in Fig- P pting y

ure 1, QPIAD mines attribute correlations and learns value based hon functllconal_deple(?denccljes: @ theﬁ trzjere ared not
distributions on a small portion of data sampled from the au- enough strong functional dependencies in the data and (if)

tonomous database. The sampling module collects the sam@utonomous databases are unlikely to advertise the func-
ple data from the autonomous database using random Ior0bt_|onal dependencies. The answer to both these problems in-

ing queries, and the knowledge mining module learns AI:DsvoIvesIearningapproximate functional dependencies from a
and the AFD-enhanced classifiers from these samples. (probed) sample of the database.

\r}\guery Rewriting: The goal of our query rewriting is to
Wgenerate a set of rewritten queries to retrieve relevargmunc

in answers. Let's consider the same user q@grasking
or all convertible cars. We use the fragment of Car database
shown in Table 2 to explain our approach. First, we issue the
guery@’ to the autonomous database to retrieve all the cer-
tain answers which correspond to tuplest, andts from



Definition 4 (Approximate Functional Dependency) to the relevance of their expected query results. The reteva
X~~A over relation R is arapproximate functional depen- uncertain answers retrieved by these queries need not be
dency(AFD)if it holds on all but a small fraction of the ranked again as they are implicitly ranked based on the rank
tuples. The set of attribute¥ is called thedetermining set  of the rewritten query that retrieved them. Ranking rewritt
of A denoted by dtrSet(A). queries according to their answers’ expected degrees of
o relevance brings forth an appealing characteristic of the
For example, an AFDnodel~body style indicates thatthe  RRUA approach. When database or network resources are
value of a car'snodel attributesometimegbut not always)  |imijted, the mediator can choose the most relevant queries
determines the value 6bdy style attribute. Note that AFDs  to pe sent to the database (bringing in the most relevant
can also describdistributional properties of the attribute  answers) and sacrifice the least amount of relevant answers.
values without explicit semantic significance. For exam- This allows the mediator to retrieve relevant uncertain
ple, AFD (model, color)~year suggests that statistically answers with highly manageable cost. For a given cost
someyear value is more common than others for a given |imit (defined in terms of the number of queries to be sent
(model, color) value pair. ) to a database, and correspondingly the number of answer
Therefore, we considef as a relevant uncertain answer typles returned), RRUA is able to maximize the precision.
to the queryR)’ and to retrieve;; from the database (which  Thjs adjustable mechanism allows the mediator to adapt
does not support null value binding), the mediator can issuetg different users’ preferences on precision and recalk Fo
another query):: oymodei=a4 based on theletermining set  ysers who care more about the precision of the results, the
of the attributebody style. Similarly, we can issue queries mediator can send only the top ranked rewritten queries. For
Q2: Omodel=z4 ANAQ3: Omodel=Boaster tO retrieve otherrel-  those who are more interested in recall, the mediator can
evantuncertain answers. Note that the generated quetles wisend a larger portion of the rewritten queries and retrieve
return highly relevant uncertain answers, suchagas well more relevant uncertain answers.
as a few tuples whogedy style value is neithetonuvt nor
null, as the AFD only holds approximately. Therefore, we 4.2  Algorithm for RRUA Approach
would like to filter out those tuples from the answers which
will be discussed in more detail later. In this section, we describe the algorithmic details of the
As illustrated above, this approach aims to restrict the RRUA approach. LeR(A4;, Az, - - -, A,,) be a database rela-
retrieval of uncertain answers to just trdevanttuples, it tion. SupposéirSet(A,,) is the determining set of attribute
is named as returningstricted relevant uncertain answers 4, (1 < m < n), according to the highest confidence AFD
(RRUA) RRUA follows a two-step approach. First, the orig- (to be discussed in Section 5.3). RRUA processes a given
inal query is sent to the database to retrieve the certain anselection query): o4 according to the following two
swers which are then returned to the user. Next, a group ofsteps.
rewritten queries are sent to the database to retrievellte re 1. Send to the database and retrieve the base resuR $ét))

m=Um

vant uncertain answers. as the certain answers @f. ReturnRS(Q) to the user.

RRUA approach has two advantages. First, it can be used 2. Generate a set of new queries, rank them, and send the most
to query autonomous databases which do not support null relevant ones to the database to retrieve the extended sesul
value binding. Second, RRUA is much more efficient as it RS(Q) as relevant uncertain answers of Q. This step contains
only retrieves relevant uncertain answers rather thanrall u the following tasks.
certain answers thus requiring fewer tuples to be retrieved (a) Generate rewritten queried.et T4, se1(a,,) (RS(Q))
and transmitted when compared with AUA and RUA. be the projection ofRS(Q) onto dirSet(Ay,). For

each tuplet; in mgrsee(a,,) (RS(Q)), create a se-
lection query@; in the following way. For each at-
tribute A; in dirSet(An), create a selection predicate
Aj=t;.Aj. The selection predicates ¢f; consist of

Ranking Rewritten Queries: In the query rewriting
step of RRUA, we generate new queries according to the
distinct value combination in the base result set based on

the determining set of the constrained attribute. However, the conjunction of all these predicates.

these queries may not be equally good in terms of retrieving (b) Rank rewritten queriesCompute the conditional prob-
relevant uncertain answers. In the example above, based ability of P, =P(Am=vm|t;) for eachQ;. Rank all
on three certain answers to the user qu@fywe generate Qs according to theiPy, values.

three new queries: Q1: omodei=A4, Q2: Omoder=z4 and (c) Retrieve extended result set. Pick the top K
Q3: Omodel=Bouster - AIthough_ all three queries retrieve queries {Q1,Qs,---,Qx} and issue them
uncertain answers that are likely to be more relevant to in the order of their ranks. Their result sets
Q' than a random tuple with missinkpdy style value, RS(Q1),RS(Q2),---,RS(Qx) compose the
they may not be equally good. For example, based on the extended result sekS(Q). The results inR3(Q) are
value distribution in the sample database, we may find ranked according to the ranks of the corresponding
that a Z4 model car is more likely to be a&onvertible queries, i.e. the results iRS(Q1) are ranked higher
than a car withA4 model. As will be discussed in Sec- than those ilRS(Q2), and so orf.

tion 5.2, we build AFD-enhanced classifiers which give the

probability values P(body style—convt|model—Ad), (d) Post-filtering. Remove fromRS(Q) the tup.IE§ with
P(body style=convt|model=24) and Am # null. Return the remaining tuples iRS(Q)

P(body style=convt|model=Boxster).  Using these as the relevant uncertain answer<.pf
probability values, we rank the rewritten queries accaydin 3All results returned for a single query are ranked equally.




Multi-attribute Selection Queries: Although we described S, ranked rewritten queries are generated in Step 2. These
the above algorithm in the context of single attribute se- rewritten queries are then issued in the order of their ranks
lection queries, it is easy to see that this algorithm canin order to retrieve relevant answers for the user query from
be adapted to support multi-attribute selection queries bysourceSk.

adding extra selection predicates. These selection atedic

correspond to the user query constrained values except thg Learning Attribute Correlations and Value
attribute for which we are retrieving a relevant uncertain t Probability Distributions

ple having a null value. They are added while generating the y

rewritten queries in Step 2(a). ) ] . .
As we have discussed, to retrieve uncertain answers in the

order of their relevance, RRUA requires two types of infor-

mation: (i) attribute correlations in order to generatertw

ten queries (ii) value distributions in order to rank the niew

. . . ten queries. In this section, we present how each of these
We adapt the query rewriting techniques to a scenariore |earned. Our solution consists of two stages. First, the

where a mediator handles multiple sources in order to re-gystem mines the inherent correlations among database at-

trieve rele\_/ant answers from a data source not supporteng th riputes represented as AFDs. Then it builds Naive Bayes

query attribute. The global schema supported by the me-cjassifiers based on the features selected by AFDs to com-

4.3 Retrieving Relevant Answers from Data
Sources Not Supporting the Query Attribute

diator may often contain attributes which are not supported

pute probability distribution over the possible valuestod t

in some individual data sources. For example, consider amjssing attribute for a given tuple. We exploit AFDs for fea-

global schemd7 Sy scacars SUpported by the mediator over
the source¥ahoo! AutosaandCars.comas shown in Figure
2. Since the form based interface Ydhoo! Autogloesn’t
support queries obody style attribute, the mediator cannot

directly query the database in order to retrieve cars having

a specificbody style. Given a quenQ’: ohody style=conut

on the global schema, approaches that only return certain

answers won't be able to return car information frofa-
hoo! Autos Hence many relevant cars froviahoo! Autos
wouldn't be shown to the user.

| Mediator |
| Cars.com |
[ Yahoo! Autos |

GS(Make, Model, Y ear, Price, Mileage, Location, Bodystyle) |
LS(Make, Model, Y ear, Price, Mileage, Location, Bodystyle) |
LS(Make, Model, Y ear, Price, Mileage, Location) |

Figure 2. Global schema and local schema of
data sources

We use AFDs and NBC classifiers which we learned on
Cars.comto retrieve cars fronYahoo! Autosas possible
ranked relevant answers to a queryt@dy style. For ex-
ample, consider th€ars.comdatabase for which we have
mined an AFDmodel~~body style. In order to retrieve rel-
evant answers from théahoo! Autoslatabase, the mediator
issues rewritten queries ¥ahoo! Autodased on this AFD
and tuples retrieved from the base set resul@Gars.com

The algorithm used to retrieve relevant tuples from a
sourceSy; not supporting the query attribute is similar to
RRUA Algorithm described in Section 4.2 except that the
base result set is retrieved from therrelated sources.. in
Step 1.

Definition 5 (Correlated Source) For any autonomous
data sourceS;, not supporting the attributed,,,, we define

a correlated sourcé,. as any data source that satisfies the
following: (i) S. supports attributed,,, in its local schema
(i) S. has an AFD forA,, (iii) Sk supports the determining
set of attributes in the AFD fod,,, mined fromsS...

From all sources correlated with a given soufge we use
the source for which the AFD fad,,, has the highest confi-

ture selection in our classifier as it has been shown that ap-
propriate feature selection before classification can awer
learning accuracy[3].

5.1 Learning Attribute Correlations by Mining
Approximate Functional Dependencies(AFDs)

In this section, we describe the method for mining AFDs
from a (probed) sample of database. Recall that an AFD
a functional dependency that holds on all but a small fractio
of tuples. According to [13], we define tlenfidencef an
AFD ¢ on arelationR as: conf(¢) = 1 — g3(¢), wheregs
is the ratio of the minimum number of tuples that need to be
removed fromR to make¢ a functional dependency aR.
Similarly, we defineapproximate key(AKeyyhich is a key
of all but a small fraction of tuples i®. We use TANE[9]
algorithm to discover AFDs and AKeys whose confidence is
above a threshold, which is set td).3 in QPIAD to ensure
that we do not miss any significant AFDs.

Pruning Noisy AFDs: In most cases, AFDs with high confi-
dence are desirable for learning probability distribusidéor
missing values. However, not all high confidence AFDs are
useful for feature selection, such as high confidence AKeys
whose values are distinct. For example, consider a relation
car(VIN, model, make)After mining, we find tha¥/IN is an
AKey (in fact, a key) which determines all other attributes.
Given a tuplet with null value onmode] its VIN is not
helpful in estimating the missinmodelvalue, since there
are no other tuples shariris VIN value. Therefore AFDs
with a superset of AKey attributes in the determining set are
not useful features for classification and should be removed
For example, suppose we have an AEB,, A }~~ A3 with
confidence 0.97, and an AKeyA4; } with confidence 0.95.
Since most of{ 41, A»} value pairs would be distinct, this
AFD won't be useful in predicting the values fot; and
needs to be pruned. An AFD will be pruned if its confidence
difference to the corresponding AKey is below a threshold

dence. Then using AFDs and value distribution learned from é(currently set af.3 based on experimentation).



5.2 Learning Value Distributions using Classifiers 6 Empirical Evaluation for QPIAD

In this section, we describe implementation and an em-
Given a tuple with a null value, we now need to estimate pirical evaluation of our systei@PIADfor query processing
the probability of each possible value of this null. We re- over incomplete web databases.
duce this problem to a classification problem using mined jmplementation and User Interface

AFDs as selected features. A classifier is a funcifdihat  QpjAD system is implemented in Java and has a form based
maps a given attribute vectarto a confidence that the vec-  query interface. The system returns each relevant unoertai
tor belongs to a class. The input of our classmer_ is a ran- answer to the user along withanfidencemeasure equal
dom sample5 of an autonomous databaBewith attributes  to the assessed degree of relevance. Although the relevance
Ay, A, -+, A, and the mined AFDs. For a given attribute estimate could be biased by the imperfections of the learn-
Ap, (1 < m < n), we compute the probabilities for all  jng method, its inclusion can provide useful guidance to the
pOSSIb|e class values Gfm, given all pOSSIble values of its users, over and above the rank"'@PlAD also can Option_

determining setltrSet(A,,) in the corresponding AFDs. ally “explain” its relevance assessment by providing setsp
We construct a Naive-Bayes Classifier(NBC) for each of its reasoning. In particular, it justifies the confidense a
missing attributed,,,. Let a valuev; in the domain of4,, sociated with an answer by listing the AFD that was used in

represent a possible class fdy,. Let Z denote the values making the density assessment. In case of our running exam-
of dtrSet(A,,) in a tuple with null onA4,,,. We use Bayes ple, the uncertain answey for the queryQ’ will be justified
theorem to estimate the probabilities? (A,,=v;|¥) = by showing the learned AFBrodel~body style.

PEAn=vi) P(Am=2i) for gl| valuesw; in the domain. To Experimental Settings

P() . .

improve computation efficiency, NBC assumes that for We evaluated the quality of classifiers and the per-
a given class, the featureX,,---, X, are conditionally = formance of query rewriting and ranking techniques
independent, and therefore we have? (7|A,,=v;) = on two data sets. One is thesed car database

1P (z;|A,,=v;). Despite this strong simplification, NBC  Cars(make,model,year,price,milage,location,colatypo
i o . style) extracted from AutoTrader(www.autotrader.com)
has been shown to be surprisingly effective[6]. In the ac- which has around 100,000 tuples. This database in inher-
tual implementation, we adopt the standard practice of Us-gntly incomplete as described in Table 1. The second is the
ing NBC with a variant of Laplacian smoothing called m- census database Census(age, workshop, weight, education,
estimates[16] to improve the accuracy. marital-status, occupation, relationship, race, sex, itap
gain, capital-loss, hours-per-week, native-countfyym
UCI# data repository with around 45,000 tuples.

To perform aroracular studybased on ground truth for
both databases we consider only complete tuples and then ar-

So far we glossed over the fact that there may be moretificially make them incomplete by randomly selectit@
than one AFD associated with an attribute. In other words, Of tuples and making one random attribute in each tuple to
one attribute may have multiple determining set with dif- Pe null, which forms the test database. .
ferent confidence levels. For example, we have the AFD  We partitioned each database into two parts: a training
model~make with confidence).99. We also see that cer- Se€t to learn the classifiers and a test set. To simulate the rel
tain types of cars are made in certain countries, so we mightatively small percentage of the training data availabléeo t
have an AFDeountry~~make with some confidence value. mediators, we experimented with different sizes of tragnin
As we use AFDs as a feature selection step for NBC, we Set, varying from8% to 15% of the entire databases.
experimented with several alternative approaches for com-Accuracy of Classifiers
bining AFDs and classifiers to learn the probability distri- Since we use classifiers as a basis for query rewriting and
bution of possible values for null. One method is to use for ranking, we perform a baseline study on their accuracy.
the determining set of the AFD with thieghest confidence  For each tuple in the test set, we compute the probability
which we call theBest-AFDmethod. However, our exper-  distribution of possible values of a null, choose the onéwit
iments showed that this approach can degrade the classifithe maximum probability and compare it against the actual
cation accuracy if its confidence is too low. Therefore we value. The classification accuracy is defined as the propor-
ignore AFDs with confidence below a threshold (which is tion of the tuples in the test set that have their null values
currently set to bé.5 based on experimentation), and instead predicted correctly.
use all other attributes to learn the probability distribous- Table 3 shows the average prediction accuracy of vari-
ing NBC. We call this approadHybrid One-AFD We could  ous AFD-enhanced classifiers introduced in Section 5.3. In
also use arEnsemble of classifierrresponding to the set  this experiment, we use a training set whose size is 10%
of AFDs for each attribute, and then combine the probabil- of the database. The classification accuracy is measured
ity distribution of each classifier by a weighted average. At over 5 runs using different training set and test set for each
the other extreme, we could ignore feature selection basedun. Considering the large domain sizes of attributes irsCar
on AFD completely but use all the attributes to learn proba-
bility distribution using NBC. Our experiments described i “Available at http://www.ics.uci.edu/mlearn/MLReposjttitml
Section 6 show that Hybrid One-AFD approach has the best__°In order to show the effectiveness of our AFD-enhanced ifiesswe
classification accuracy among these choices. only consider missing values on attributes for which AFDistex

5.3 Combining AFDs and Classifiers




database (varying froib (year) to 1151 (model)), the clas- 1
sification accuracy obtained is quite reasonable, sinca-a ra ST AUAGED

- > Q:education=bachelors |..... RUA (467)
dom guess would give much lower prediction accuracy. We 08 —RAUA (204
can also see in Table 3 that the Hybrid One-AFD approach
performsthe best and therefore is used in our query rewritin e
implementation. 2
0.4 4
Database | Best All Ensemble | Hybrid * ‘;:"I il TS
AFD | Attributes One-AFD 02 4 Fly), e
Cars 43.06 28.22 34.3 43.86 .
Census 72 70.51 70.56 72 0 0.2 0.4 Recall 0.6 0.8 1
Table 3. Null value prediction accuracy across _ o
different AFD-enhanced classifiers Figure 4. Precision-Recall curves(Census).

We also compared the accuracy of our AFD-enhancedRUA and RRUA approach have significantly higher preci-
NBC classifier with two other approaches - one based onsjon compared to AUA. The curves for RUA and RRUA are
association rules[25] and the other that learns bayesiin ne aimost always overlapping for the Cars and Census database
works from the data. We found that the accuracy of our ap- since RRUA returns a subset of the answers of RUA, and
proach is competitive with the bayesian networks[8] while poth of them use the same probability distribution to rarek th
being significantly better than the association rules. 8pac query answers. For the querydy style=conut, the curves
limitations preclude extensive discussion of the expenitsie  for RRUA and RUA are overlapping in the initial portion.
the interested readers are referred to [12]. However, later on precision for RUA falls since it returnk al
Comparing RRUA with AUA and RUA uncertain answers and in the process returns large number of
To compare the effectiveness of retrieving relevant uagert  tuples which have a higher rank but are not really relevant
answers, we randomly formulate selection queries and re-to the query. In contrast, RRUA only retrieves few highly
trieve uncertain answers from the test databases using AUAJelevant tuples, hence the precision for the returned suple
RUA and RRUA. Recall that AUA approach presents all tu- remains high throughout. Note that RRUA does not reach
ples containing missing values on the query constrained at-100% recall since it does not return all uncertain answers.
tribute without ranking them. RUA approach begins by re-
trieving all the certain and uncertain answers, as in AUA, 1,

then it rank uncertain answers according to the classifioati Q:body style=convt ||~ "

-- RUA

techniques described in Section 5. In contrast, RRUA uses 08 1
query rewriting techniques to retrieve only relevant uteier
answers in a ranked order. We use precision-recall to mea-
sure the effectiveness of the above approaches at the time
when the mediator sees th&" (K=1,2, 3, - --) answer tu-
ple. In the rest of the evaluation, we focus on comparing the 02 |

14
— - AUA(1245, 0 20 a0 60 80 100
Q:body style=convt (1249)
Top K tuples
RUA(1245)

0.8 +
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Precision
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Figure 5. Precision for Top K tuples(Cars).

0.6

Precision

Furthermore, the numbers in the parenthesis in the leg-
end in Figures 3 and 4 are the number of uncertain answers
retrieved by each method. As we can see, RRUA avoids re-
trieving too many irrelevant tuples and therefore very effi-
cient. It can further cut down the cost by only sending the
top ranked rewritten queries to the database.

To reflect the “density” of the relevant answers along the
] o time line, we also plot the precision of each method at the

Figure 3. Precision-Recall curves(Cars) time when topil (K =1, 2, - - -, 100) answers are retrieved as
effectiveness of retrieving relevant uncertain answetsatT ~ shown in Figures 5 and 6 for the same queries. Again RUA
is, the precision and recall are both calculated with respec and RRUA are much better in retrieving relevant uncertain
to uncertain answers instead of the entire answer set. answers in tog« results which is critical in web scenarios.

Figures 3 and 4 show the precision and recall curves of Effect of Confidence Threshold on Precision
a query on each of the test databasds.shows that both

0.4 +

donot set threshold on confidence for both RUA tuples and RRitten
SNote that to evaluate the full spectrum of precision-recalive, we gueries
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_ 30 test queries on each database. We used the aggregate
QPIAD presents ranked relevant uncertain answers to Userstatistics over 30 queries to avoid biased information from

along with a confidence so that the users can use their owry single query. As we can see, RRUA is able to generate a
discretion to filter off answers with low confidence. We con- ranked list of rewritten queries, and the queries rankekidrig

ducted experiments to evaluate how pruning answers basegand to bring in uncertain answers that are more relevant.
on a confidence threshold affects the precision of the ®sult gy choosing the top ranked rewritten queries to send to the

returned. Figure 7 shows the average precision obtained ovegatapase, the mediator can maximize gphecisionwith any
40 test queries on Cars database by pruning answers baseglven cost restriction.

on different confidence thresholds. It shows that the high
confidence answers returned @PIAD are most likely to be
relevant answers.
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Figure 9. Accumulated precision curve with
different sample sizes on Cars database.

Figure 7. Average Precision for various confi-

dence thresholds(Cars). Robustness of the RRUA Approach
The performance of RRUA approach, in terms of precision
and recall, relies on the quality of the AFDs and Naive

Ranking the Rewritten Queries , o Bayesian Classifiers learned by the knowledge mining mod-
To control query processing cost according to applicaienr e | data integration scenario, the availability of thens

quirements, users’ preferences and real-time system workye training data from the autonomous data sources iseestri
load, ranking the rewritten queries is critical inthe RRUAa e Here we present the robustness of the RRUA approach
proach. In this section, we verify whether the ranked rewrit i, the face of limited size of sample data. Figure 9 shows
ten queries actually bring uncertain answers in order of rel {ne accumulated precision of a selection query on the Car
evance, measured by the precision of the returned result S?ﬁg‘?tabase, using various sizes of sample data as training set
For each database, we choose 30 test queries, each of whiclje see that the quality of the rewritten queries all fluctirate
has a single selection predicate “attribute=value’. F@hea 5 relatively narrow range and there is no significant drop of
query, we use RRUA to generate a ranked list of rewritten yrecision with the sharp decrease of sample size fr5¢A
queries{Q1, @2, - -+, Qn}, which are issued to the database {5 397 We obtain a similar result for the Census database
in order. After the extended result 585(Q,,,) of each query  which is described in [12] due to space constraints.

Qm(l < m < n) s retrieved, we calculate treecumulated  gtfectiveness of using Correlation Between Data Sources
precisionas follows: N We consider a mediator performing data integration over
;;1 number of true relevant answers in RS(Qr) three data sourceé3ars.comwww.cars.com)yahoo! Autos
- (autos.yahoo.com) an@arsDirect (www.carsdirect.com).
= The global schema supported by the mediator and the in-
Figure 8 shows the average accumulated precision of thedividual local schemas are shown in Figure 2. The schema

> number of answers in é\S(Qk)
1



of CarsDirectis the same as that of Yahoo! Autos which tain tuples. Presenting answers involving such general un-
do not supportody style attribute while Cars.comdoes certainty to lay users is an open problem.
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