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Abstract

Incompleteness due to missing attribute values (aka “null
values”) is very common in autonomous web databases, on
which user accesses are usually supported through medi-
ators. Traditional query processing techniques that focus
on the strict soundness of answer tuples often ignore tu-
ples with critical missing attributes, even if they wind up
being relevant to a user query. Ideally we would like the
mediator to retrieve such relevant uncertain answers and
gauge their relevance by accessing their likelihood of be-
ing relevant answers to the query. The autonomous nature
of the databases poses several challenges in realizing this
idea. Such challenges include the restricted access privi-
leges, limited query patterns and sensitivity of database and
network resource consumption in the web environment. We
introduce a novel query rewriting and optimization frame-
work that tackles these challenges. Our technique involves
reformulating the user query based on approximate func-
tional dependencies (AFDs) among the database attributes.
The reformulated queries are aimed at retrieving the rele-
vant uncertain answers in addition to the certain answers.
Our query processing frameworkQPIAD is able to gauge
the relevance of such reformulated queries to manage the
cost of database query processing and answer transmission.
To support this framework, we develop methods for mining
attribute correlations (in terms of AFDs) and value distribu-
tions(using Näıve Bayes Classifiers). We present empirical
studies to demonstrate that our approach is effective in re-
trieving relevant uncertain answers with high precision, high
recall and manageable cost.

1 Introduction

Data integration in autonomous web database scenarios
has drawn much attention in recent years, as more and more
data becomes accessible via web servers which are sup-
ported by back-end databases. A mediator provides a uni-
fied query interface as a global schema of the underlying
databases. Queries on the global schema are then rewrit-
ten as queries over autonomous databases through their web
interfaces. Current mediator systems [14, 11] return to user
only certain answersthat exactly satisfy all the user query
predicates. Tuples that are otherwise highy relevant for the
query will not be retrieved if they have null values on any

of the query predicates. For example, in a used car trad-
ing application, if a user asks for convertible cars, all the
returned answers must have the value “convt” for the at-
tribute body style. Even though all Z4’s are convertible, a
BMW Z4 car which has a null value in itsbody style will
not be returned. Unfortunately, such an approach is both in-
flexible and inadequate for querying many autonomous web
databases many of which are inherently incomplete for the
following reasons:
Incomplete Entry: Web databases are often input by lay in-
dividuals without any central curation. For example, web-
sites such asCars.comand Yahoo! Autos, obtain car in-
formation from individual car owners who may not provide
complete information for their cars, resulting in a lot of miss-
ing values (aka “null” values) in the databases. In the exam-
ple above, the owner of the BMW Z4 may have skipped fill-
ing thebody style attribute assuming that it is obvious (just
as the owner of an Accord may skip entering themake to be
Honda). As a result, this car won’t be retrieved by current
mediators for queries on “body style=convt”.1

Extraction Inaccuracy: Many web databases are be-
ing populated using automated information extraction tech-
niques. As a result of the inherent imperfection of the ex-
traction, these web databases may contain missing values.
Schema Heterogeneity:The global schema provided by
a mediator may often contain attributes that do not appear
in some local schemas. For example, a global schema for
used car trading may have an attribute calledbody style,
which is supported inCars.com, but not inYahoo! Autos.
Given a query on the global schema that selects cars having
body style equal to “convertible”, approaches that only re-
turn certain answers won’t be able to return car information
from Yahoo! Autos.

Website # of Total Incomplete Body Engine
Attributes tuples tuples style

AutoTrader.com 13 25127 33.67% 3.6% 8.1%
CarsDirect.com 14 32564 98.74% 55.7% 55.8%

Table 1. Statistics on missing values in web
databases

Table 1 shows statistics on the percentage of incomplete

1This type of incompleteness is expected to increase even more with
services such as GoogleBase which provide users significantfreedom in
deciding which attributes to define and/or list.
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ID Make Model Year Body style
1 Audi A4 2001 convt
2 BMW Z4 2002 convt
3 Porsche Boxster 2005 convt
4 BMW Z4 2003 null
5 Honda Civic 2004 null
6 Toyota Camry 2002 sedan

Table 2. Fragment of a Car Database

tuples on two autonomous web databases. The statistics were
computed from a probed sample. The table also gives statis-
tics on the percentage of missing values for thebody style
andengine attributes. These statistics show that incomplete-
ness can indeed creep into online databases.

When faced with such incomplete databases, current me-
diators provide only certain answers thereby sacrificing re-
call. This is particularly problematic when the data sources
have a significant fraction of incomplete tuples, and/or the
user requires high recall (consider, for example, a law-
enforcement scenario, where a potential crime suspect goes
unidentified because of information that is fortuitously miss-
ing in the database).

A naı̈ve approach for improving the recall would be to
return, in addition to all the certain answers, all the tu-
ples with missing values on the constrained attribute(s).
For example, consider a selection queryQ′ for cars hav-
ing body style=convt on a fragment of a Car database as
shown in Table 2. For the above queryQ′, a mediator could
return not only the tuplest1, t2, t3 whosebody style values
are “convt” but also the tuplest4 andt5 whosebody style
values are missing(null). This approach of returningall un-
certain answersreferred to as AUA has two obvious draw-
backs. First, it is infeasible to retrieve all tuples with nulls in
some cases, as web databases usually do not allow the me-
diator to directly retrieve tuples with null values on specific
attributes. Second, and perhaps more important, many tuples
with missing values on constrained attributes areirrelevant
to the query. Intuitively, not all the tuples that have a nullin
the attributebody style represent convertible cars! The AUA
approach thus improves recall but suffers from low precision
and high cost.

QPIAD Approach: In this paper, we focus on query pro-
cessing techniques for incomplete autonomous databases,
that not only return certain answers but also return, in a
ranked fashion, tuples that have missing values and yet are
highly relevant to queries. The goal of our query processing
frameworkQPIAD2 is to return query answers with good
precision, recall and manageable cost.

Our approach starts by adapting standard techniques to
predict missing values. Given techniques to predict val-
ues for null, one obvious way of exploiting them would be
to store the predicted values in databases and then process
queries on them directly. Indeed this is advocated by some
existing research efforts [10, 15, 18, 23]. Unfortunately,such
an approach is not appropriate for querying incomplete au-

2QPIAD is an acronym for Query(Q) Processing(P) over Incomplete(I)
Autonomous(A) Databases(D)

tonomous web databases. Since a mediator usually does not
have update capabilities over the autonomous databases, it
cannot directly replace the null values.

A more plausible solution is to first retrieve all the tu-
ples with nulls on constrained attributes, predict missingval-
ues for them, and then decide the relevant query answer set.
We call this approach as returningrelevant uncertain an-
swers(RUA). However, this approach may be inappropriate
as discussed before due to the limited query access pattern
of web databases and high network transmission costs.

To handle this challenge, we propose online query rewrit-
ing techniques that not only retrieve certain answers to a
query, but also highly relevant answers that have nulls on
constrained attributes. These latter answers, termed asrel-
evant uncertain answers, are retrieved without modifying
the underlying data sources. When a query is submitted,
the mediator first retrieves all the certain answers for the
given user query. Then based on the certain answers and
a set of mined attribute correlation rules, the mediator forms
a group of rewritten queries to be sent to the data sources.
The rewritten queries are then ranked based on their likeli-
hood of bringing back relevant answers before being posed
to the data sources. Using missing value prediction tech-
niques in the context of such query rewriting approach poses
some unique challenges such as how to generate and rank
the rewritten queries. To handle these, we present a missing
value prediction strategy that uses Approximate Functional
Dependencies(AFDs) and Naı̈ve Bayesian Classifiers(NBC).
In the car database example, this analysis may allowQPIAD
to identify thatmodel determinesbody style and the fact
that Z4 cars in the database often seem to be convertibles.
QPIAD then rewrites the query onbody style=convt into
additional selection queries such asmodel=Z4 to retrieve
relevant uncertain tuples such ast4.

QPIAD also provides support for handling incomplete-
ness caused by schema heterogeneity (see above). Specifi-
cally, when faced with data sources not supporting the query
attribute (e.g.body style attribute byYahoo! Autos), QPIAD
leverages the mined approximate functional dependencies
from correlated data sources (such asCars.com) to rewrite
the query and retrieve relevant answers.

Contributions: To the best of our knowledge,QPIAD
framework is the first that retrieves relevant but uncertainan-
swers with missing values on constrained attributes without
modifying underlying databases. Consequently it is suitable
for querying incomplete autonomous databases. The idea
of using attribute correlations and predicted distributions on
missing values to rewrite queries is also a novel contribution
of our work. Our framework also describes a novel applica-
tion of leveraging attribute correlations among data sources
in order to retrieve relevant answers from data sources not
supporting the query attribute. Our experimental evaluation
shows thatQPIAD retrieves most relevant information while
keeping the query processing costs low.

Organization: The rest of the paper is organized as fol-
lows. In the next section we describe related work on han-
dling incomplete data. In Section 3, we give some pre-
liminaries and describe the architecture of QPIAD. Section
4 discusses online query rewriting and ranking techniques
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to retrieve relevant uncertain answers from incomplete au-
tonomous databases and from data sources not supporting
the query attribute in their local schema. Section 5 provides
the details of computing attribute correlations and missing
value distributions used in our query rewriting phase. A
comprehensive empirical evaluation of our approach is pre-
sented in Section 6. We conclude the paper in Section 7.

2 Related Work

Querying incomplete databases:Compared to previous
work on querying incomplete databases, the critical novelty
of our work is that our approach does not modify original
data. It is therefore suitable for querying incomplete au-
tonomous databases, where a mediator is not able to store
the estimation of missing values in sources. Techniques
have been studied to process queries on databases with null
values [10]. Null values are typically represented in three
different approaches:(i) Codd Tables where all the null val-
ues are treated as the same; (ii) V-tables which allow many
different null values marked by variables; and (iii) Condi-
tional tables which are V-tables with additional attributes for
conditions. [15] proposed a query language on incomplete
databases, where we can have a subset of the domain as an
attribute value. [18, 4] discussed query evaluation on incom-
plete databases where attribute values can be intervals. In
all the above approaches, data sources need to be modified,
and standard relational data model and query languages need
to be extended in order to handle incomplete data. In con-
trast, our work proposes online query rewriting techniquesto
query incomplete autonomous databases without modifying
source data and data models.
Probabilistic Databases:Incomplete databases are similar
to probabilistic databases once the probabilities for miss-
ing values are assessed. [23] gives an overview of query-
ing probabilistic databases where each tuple is associated
with an additional attribute describing the probability ofits
existence. Some recent work on the TRIO[22, 24] sys-
tem deals with handling uncertainty over probabilistic re-
lational databases. ConQuer[7, 1] system returns clean an-
swers over inconsistent databases. Handling inconsistency
in databases is a special case of handling missing values
where the inconsistent attribute can only take values that
lead to inconsistency rather than any possible value. These
approaches assume the presence of probabilities for miss-
ing data. Since autonomous databases do not store or allow
mediators to store probability distribution, our approachas-
sesses these probabilities in order to issue rewritten queries
to retrieve relevant answers. Thus, our query rewriting tech-
niques could also be used by these systems if the databases
are autonomous.
Query relaxation: Reformulating queries using database
constraints for query optimization in distributed mediator
systems has been described in [19]. There has been work on
query relaxation over databases [17] which focuses on how
to relax input query constraints such that data thatpartially
satisfies the query constraints is also returned. Our work is
similar to such efforts in the spirit of retrieving relevantdata
even when it does not exactly satisfy user queries. How-
ever, we focus on retrieving data that has missing values in

the query constrained attributes, yet is likely to be relevant
to the original user query. Since we use an entirely new set
of rewritten queries to retrieve uncertain answers, our query
relaxation is value directed.
Learning missing values: There has been a large body
of work on missing values imputation [5, 20, 21, 25, 2].
Common imputation approaches include substituting miss-
ing data values by the mean, the most common value, de-
fault value of the attribute in question, or using k-Nearest
Neighbour[2], association rules[25], etc. Other approach
used to estimate missing values isparameter estimation.
Maximum likelihood procedures that use variants of the
Expectation-Maximization algorithm[5, 20] can be used to
estimate the parameters of a model defined for the complete
data. In this paper, we are interested not in the standard im-
putation problem but a variant that can be used in the context
of query rewriting. In this context, it is important to have
schema level dependencies between attributes as well as dis-
tribution information over missing values. We use AFDs for
the former, and an AFD-enhanced Naı̈ve Bayes Classifier for
the later. We experimented with other methods including as-
sociation rules and bayes network learning - but found them
to be either significantly less accurate or significantly costlier
to compute.

3 Preliminaries and Architecture of QPIAD
We will start with formal definitions of certain answers

and uncertain answers with respect to selection queries.

Definition 1 (Complete/Incomplete Tuples)Let R(A1,
A2, · · · , An) be a database relation. A tuplet ∈ R is
said to be complete if it has non-null values for each of
the attributesAi; otherwise it is considered incomplete.
A complete tuplet is considered to belong to the set of
completions of an incomplete tuplet̂ (denotedC(t̂)), if t and
t̂ agree on all the non-null attribute values.

The notion of completions brings forth the connection be-
tween incompleteness and uncertainty: an incomplete tuple
can thus be seen as a disjunction of its possible completions.
We go a step further and view the incomplete tuple as aprob-
ability distributionover its completions. The distribution can
be interpreted as giving a quantitative estimate of the prob-
ability that the incomplete tuple corresponds to a specific
completion in the real world.

Now consider a selection queryQ: σAm=vm
(1 ≤ m ≤

n) overR.

Definition 2 (Certain/Uncertain Answers) A tuple t is
said to be a certain answer for the queryQ: σAm=vm

if
t.Am=vm. t is said to be an uncertain answer forQ where
t.Am=null (wheret.Am is the value of attributeAm in t).

Notice that in the definition above,t can be either a complete
or incomplete tuple. An incomplete tuple can be a certain an-
swer to the query, if its incompleteness is not on the attribute
being selected by the query.

Since we view the incomplete tuple as a probability dis-
tribution over its completions, it is possible for us to quantify
the degree to which an uncertain answer is actually relevant
to a query Q.
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Definition 3 (Degree of Relevance)The degree of rele-
vance of a tuplet to the queryQ: σAm=vm

is defined to be
the probabilityP (t.Am=vm).
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Figure 1. QPIAD System Architecture.

Conceptually, the operation of QPIAD can be understood
in terms of (i) automatically assessing the probability dis-
tributions and (ii) actively using the learned distribution in-
formation to retrieve uncertain tuples that have a high de-
gree of relevance to the query. Realizing this seemingly
straightforward idea presents several challenges becauseof
the autonomous nature of the databases. Figure 1 shows the
QPIAD system architecture. In this framework, a user ac-
cesses autonomous databases through a mediator. When a
user submits a query to the mediator, the query reformulator
first directs the query to the autonomous databases and re-
trieves the set of all certain answers (called thebase result
set). In order to retrieve relevant uncertain answers, the me-
diator needs to issue additional queries taking into account
the limited access patterns of the autonomous databases. We
propose online query rewriting techniques to generate new
queries based on the original query, the base result set, and
attribute correlations learned from a database sample. The
attribute correlations used to generate the rewritten queries
are mined in terms of Approximate Functional Dependen-
cies(AFDs). The goal of these new queries is to return an
extended result set, which consists of highly relevant uncer-
tain answers to the original query. Since these new queries
are not all equally good in terms of retrieving relevant un-
certain answers, they are ranked before being posed to the
databases. The ranking of rewritten queries is based on the
value distributions for the missing attribute. We reduce the
problem of acquiring such value distributions to learning
classifiers. We develop an AFD-enhanced Naı̈ve Bayesian
classifier learning method(where AFD plays a feature se-
lection role for the classification task). As shown in Fig-
ure 1,QPIAD mines attribute correlations and learns value
distributions on a small portion of data sampled from the au-
tonomous database. The sampling module collects the sam-
ple data from the autonomous database using random prob-
ing queries, and the knowledge mining module learns AFDs
and the AFD-enhanced classifiers from these samples.

4 Retrieving Relevant Incomplete Answers
In this section, we first briefly review the limitations of

AUA and RUA approaches in the context of autonomous
databases. Then, we will present a novel query rewrit-
ing technique that overcomes these limitations in order to
retrieve relevant uncertain answers from incomplete au-
tonomous databases. Finally, we describe how to extend this
query rewriting framework in order to retrieve relevant an-
swers from data sources not supporting the query attribute.

4.1 Retrieving Relevant Uncertain Answers from
Autonomous Databases

Retrieving relevant uncertain answers is more challenging
when it comes to autonomous web databases compared to
local databases. First, web databases usually do not support
arbitrary selection query patterns as local databases do. For
example, a website rarely allows users to submit queries such
as “list all the cars that have a missing value forbody style
attribute”. Therefore, the mediator may not be able to di-
rectly retrieve uncertain answers, thus AUA and RUA ap-
proaches are not applicable in this scenario. Second, even if
the web databases allow null value binding, AUA and RUA
approaches tend to return too many irrelevant uncertain an-
swers. In the sample queryQ′: σbody style=convt, both AUA
and RUA retrieve all the tuples with missingbody style val-
ues, most of which may not be“convt” . Although RUA
ranks uncertain answers and only returns the most relevant
ones, significant database and network resources are wasted
while processing and transmitting the irrelevant ones. Thus
in a web environment, such approaches are not desirable.

To address the two challenges above, intuitively we would
like to issue queries in an intelligent way, so that the query
patterns are more likely to be supported by web databases,
and only the most relevant uncertain answers are sent back
to the mediator in the first place.
Query Rewriting: The goal of our query rewriting is to
generate a set of rewritten queries to retrieve relevant uncer-
tain answers. Let’s consider the same user queryQ′ asking
for all convertible cars. We use the fragment of Car database
shown in Table 2 to explain our approach. First, we issue the
queryQ′ to the autonomous database to retrieve all the cer-
tain answers which correspond to tuplest1, t2 andt3 from
Table 2. These certain answers form thebase result setof Q′.
Consider the first tuplet1=〈Audi, A4, 2001, convt〉 in the
base result set. If there is a tupleti in the database with the
same value formodel ast1 but missing value forbody style,
thenti.body style is likely to beconvt. Wecapture this in-
tuition by mining attribute correlationsfrom the data itself.

One obvious type of attribute correlations is “functional
dependencies”. For example, the functional dependency
model→make often holds in automobile data records.
There are two problems in adopting the method directly
based on functional dependencies: (i) often there are not
enough strong functional dependencies in the data and (ii)
autonomous databases are unlikely to advertise the func-
tional dependencies. The answer to both these problems in-
volveslearningapproximate functional dependencies from a
(probed) sample of the database.
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Definition 4 (Approximate Functional Dependency)
X A over relation R is anapproximate functional depen-
dency(AFD) if it holds on all but a small fraction of the
tuples. The set of attributesX is called thedetermining set
of A denoted by dtrSet(A).

For example, an AFDmodel body style indicates that the
value of a car’smodel attributesometimes(but not always)
determines the value ofbody style attribute. Note that AFDs
can also describedistributional properties of the attribute
values without explicit semantic significance. For exam-
ple, AFD (model, color) year suggests that statistically
someyear value is more common than others for a given
(model, color) value pair.

Therefore, we considerti as a relevant uncertain answer
to the queryQ′ and to retrieveti from the database (which
does not support null value binding), the mediator can issue
another queryQ1: σmodel=A4 based on thedetermining set
of the attributebody style. Similarly, we can issue queries
Q2: σmodel=Z4 andQ3: σmodel=Boxster to retrieve other rel-
evant uncertain answers. Note that the generated queries will
return highly relevant uncertain answers, such ast4, as well
as a few tuples whosebody style value is neitherconvt nor
null, as the AFD only holds approximately. Therefore, we
would like to filter out those tuples from the answers which
will be discussed in more detail later.

As illustrated above, this approach aims to restrict the
retrieval of uncertain answers to just therelevanttuples, it
is named as returningrestricted relevant uncertain answers
(RRUA). RRUA follows a two-step approach. First, the orig-
inal query is sent to the database to retrieve the certain an-
swers which are then returned to the user. Next, a group of
rewritten queries are sent to the database to retrieve the rele-
vant uncertain answers.

RRUA approach has two advantages. First, it can be used
to query autonomous databases which do not support null
value binding. Second, RRUA is much more efficient as it
only retrieves relevant uncertain answers rather than all un-
certain answers thus requiring fewer tuples to be retrieved
and transmitted when compared with AUA and RUA.

Ranking Rewritten Queries: In the query rewriting
step of RRUA, we generate new queries according to the
distinct value combination in the base result set based on
the determining set of the constrained attribute. However,
these queries may not be equally good in terms of retrieving
relevant uncertain answers. In the example above, based
on three certain answers to the user queryQ′, we generate
three new queries:Q1: σmodel=A4, Q2: σmodel=Z4 and
Q3: σmodel=Boxster . Although all three queries retrieve
uncertain answers that are likely to be more relevant to
Q′ than a random tuple with missingbody style value,
they may not be equally good. For example, based on the
value distribution in the sample database, we may find
that a Z4 model car is more likely to be aconvertible
than a car withA4 model. As will be discussed in Sec-
tion 5.2, we build AFD-enhanced classifiers which give the
probability values P (body style=convt|model=A4),
P (body style=convt|model=Z4) and
P (body style=convt|model=Boxster). Using these
probability values, we rank the rewritten queries according

to the relevance of their expected query results. The relevant
uncertain answers retrieved by these queries need not be
ranked again as they are implicitly ranked based on the rank
of the rewritten query that retrieved them. Ranking rewritten
queries according to their answers’ expected degrees of
relevance brings forth an appealing characteristic of the
RRUA approach. When database or network resources are
limited, the mediator can choose the most relevant queries
to be sent to the database (bringing in the most relevant
answers) and sacrifice the least amount of relevant answers.
This allows the mediator to retrieve relevant uncertain
answers with highly manageable cost. For a given cost
limit (defined in terms of the number of queries to be sent
to a database, and correspondingly the number of answer
tuples returned), RRUA is able to maximize the precision.
This adjustable mechanism allows the mediator to adapt
to different users’ preferences on precision and recall. For
users who care more about the precision of the results, the
mediator can send only the top ranked rewritten queries. For
those who are more interested in recall, the mediator can
send a larger portion of the rewritten queries and retrieve
more relevant uncertain answers.

4.2 Algorithm for RRUA Approach

In this section, we describe the algorithmic details of the
RRUA approach. LetR(A1, A2, · · · , An) be a database rela-
tion. SupposedtrSet(Am) is the determining set of attribute
Am (1 ≤ m ≤ n), according to the highest confidence AFD
(to be discussed in Section 5.3). RRUA processes a given
selection queryQ: σAm=vm

according to the following two
steps.

1. SendQ to the database and retrieve the base result setRS(Q)
as the certain answers ofQ. ReturnRS(Q) to the user.

2. Generate a set of new queries, rank them, and send the most
relevant ones to the database to retrieve the extended result set
R̂S(Q) as relevant uncertain answers of Q. This step contains
the following tasks.

(a) Generate rewritten queries.Let πdtrSet(Am)(RS(Q))
be the projection ofRS(Q) onto dtrSet(Am). For
each tupleti in πdtrSet(Am)(RS(Q)), create a se-
lection queryQi in the following way. For each at-
tributeAj in dtrSet(Am), create a selection predicate
Aj=ti.Aj . The selection predicates ofQi consist of
the conjunction of all these predicates.

(b) Rank rewritten queries.Compute the conditional prob-
ability of PQi

=P (Am=vm|ti) for eachQi. Rank all
Qis according to theirPQi

values.
(c) Retrieve extended result set. Pick the top K

queries {Q1, Q2, · · · , QK} and issue them
in the order of their ranks. Their result sets
RS(Q1), RS(Q2), · · · , RS(QK) compose the
extended result set̂RS(Q). The results inR̂S(Q) are
ranked according to the ranks of the corresponding
queries, i.e. the results inRS(Q1) are ranked higher
than those inRS(Q2), and so on.3

(d) Post-filtering. Remove fromR̂S(Q) the tuples with
Am 6= null. Return the remaining tuples in̂RS(Q)
as the relevant uncertain answers ofQ.

3All results returned for a single query are ranked equally.
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Multi-attribute Selection Queries: Although we described
the above algorithm in the context of single attribute se-
lection queries, it is easy to see that this algorithm can
be adapted to support multi-attribute selection queries by
adding extra selection predicates. These selection predicates
correspond to the user query constrained values except the
attribute for which we are retrieving a relevant uncertain tu-
ple having a null value. They are added while generating the
rewritten queries in Step 2(a).

4.3 Retrieving Relevant Answers from Data
Sources Not Supporting the Query Attribute

We adapt the query rewriting techniques to a scenario
where a mediator handles multiple sources in order to re-
trieve relevant answers from a data source not supporting the
query attribute. The global schema supported by the me-
diator may often contain attributes which are not supported
in some individual data sources. For example, consider a
global schemaGSUsedCars supported by the mediator over
the sourcesYahoo! AutosandCars.comas shown in Figure
2. Since the form based interface ofYahoo! Autosdoesn’t
support queries onbody style attribute, the mediator cannot
directly query the database in order to retrieve cars having
a specificbody style. Given a queryQ′: σbody style=convt

on the global schema, approaches that only return certain
answers won’t be able to return car information fromYa-
hoo! Autos. Hence many relevant cars fromYahoo! Autos
wouldn’t be shown to the user.

Mediator GS(Make, Model, Y ear, Price, Mileage, Location, Bodystyle)
Cars.com LS(Make, Model, Y ear, P rice, Mileage, Location, Bodystyle)

Yahoo! Autos LS(Make, Model, Y ear, P rice, Mileage, Location)

Figure 2. Global schema and local schema of
data sources

We use AFDs and NBC classifiers which we learned on
Cars.comto retrieve cars fromYahoo! Autosas possible
ranked relevant answers to a query onbody style. For ex-
ample, consider theCars.comdatabase for which we have
mined an AFDmodel body style. In order to retrieve rel-
evant answers from theYahoo! Autosdatabase, the mediator
issues rewritten queries toYahoo! Autosbased on this AFD
and tuples retrieved from the base set results ofCars.com.

The algorithm used to retrieve relevant tuples from a
sourceSk not supporting the query attribute is similar to
RRUA Algorithm described in Section 4.2 except that the
base result set is retrieved from thecorrelated sourceSc in
Step 1.

Definition 5 (Correlated Source) For any autonomous
data sourceSk not supporting the attributeAm, we define
a correlated sourceSc as any data source that satisfies the
following: (i) Sc supports attributeAm in its local schema
(ii) Sc has an AFD forAm (iii) Sk supports the determining
set of attributes in the AFD forAm mined fromSc.

From all sources correlated with a given sourceSk, we use
the source for which the AFD forAm has the highest confi-
dence. Then using AFDs and value distribution learned from

Sc, ranked rewritten queries are generated in Step 2. These
rewritten queries are then issued in the order of their ranks
in order to retrieve relevant answers for the user query from
sourceSk.

5 Learning Attribute Correlations and Value
Probability Distributions

As we have discussed, to retrieve uncertain answers in the
order of their relevance, RRUA requires two types of infor-
mation: (i) attribute correlations in order to generate rewrit-
ten queries (ii) value distributions in order to rank the rewrit-
ten queries. In this section, we present how each of these
are learned. Our solution consists of two stages. First, the
system mines the inherent correlations among database at-
tributes represented as AFDs. Then it builds Naı̈ve Bayes
Classifiers based on the features selected by AFDs to com-
pute probability distribution over the possible values of the
missing attribute for a given tuple. We exploit AFDs for fea-
ture selection in our classifier as it has been shown that ap-
propriate feature selection before classification can improve
learning accuracy[3].

5.1 Learning Attribute Correlations by Mining
Approximate Functional Dependencies(AFDs)

In this section, we describe the method for mining AFDs
from a (probed) sample of database. Recall that an AFDφ is
a functional dependency that holds on all but a small fraction
of tuples. According to [13], we define theconfidenceof an
AFD φ on a relationR as: conf(φ) = 1 − g3(φ), whereg3

is the ratio of the minimum number of tuples that need to be
removed fromR to makeφ a functional dependency onR.
Similarly, we defineapproximate key(AKey)which is a key
of all but a small fraction of tuples inR. We use TANE[9]
algorithm to discover AFDs and AKeys whose confidence is
above a thresholdα, which is set to0.3 in QPIAD to ensure
that we do not miss any significant AFDs.

Pruning Noisy AFDs: In most cases, AFDs with high confi-
dence are desirable for learning probability distributions for
missing values. However, not all high confidence AFDs are
useful for feature selection, such as high confidence AKeys
whose values are distinct. For example, consider a relation
car(VIN, model, make). After mining, we find thatVIN is an
AKey (in fact, a key) which determines all other attributes.
Given a tuplet with null value onmodel, its VIN is not
helpful in estimating the missingmodelvalue, since there
are no other tuples sharingt’s VIN value. Therefore AFDs
with a superset of AKey attributes in the determining set are
not useful features for classification and should be removed.
For example, suppose we have an AFD{A1, A2} A3 with
confidence 0.97, and an AKey{A1} with confidence 0.95.
Since most of{A1, A2} value pairs would be distinct, this
AFD won’t be useful in predicting the values forA3 and
needs to be pruned. An AFD will be pruned if its confidence
difference to the corresponding AKey is below a threshold
δ(currently set at0.3 based on experimentation).
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5.2 Learning Value Distributions using Classifiers

Given a tuple with a null value, we now need to estimate
the probability of each possible value of this null. We re-
duce this problem to a classification problem using mined
AFDs as selected features. A classifier is a functionf that
maps a given attribute vector~x to a confidence that the vec-
tor belongs to a class. The input of our classifier is a ran-
dom sampleS of an autonomous databaseR with attributes
A1, A2, · · · , An and the mined AFDs. For a given attribute
Am, (1 ≤ m ≤ n), we compute the probabilities for all
possible class values ofAm, given all possible values of its
determining setdtrSet(Am) in the corresponding AFDs.

We construct a Naı̈ve-Bayes Classifier(NBC) for each
missing attributeAm. Let a valuevi in the domain ofAm

represent a possible class forAm. Let ~x denote the values
of dtrSet(Am) in a tuple with null onAm. We use Bayes
theorem to estimate the probabilities:P (Am=vi|~x) =
P (~x|Am=vi)P (Am=vi)

P (~x) for all valuesvi in the domain. To
improve computation efficiency, NBC assumes that for
a given class, the featuresX1, · · · , Xn are conditionally
independent, and therefore we have:P (~x|Am=vi) =∏
i

P (xi|Am=vi). Despite this strong simplification, NBC

has been shown to be surprisingly effective[6]. In the ac-
tual implementation, we adopt the standard practice of us-
ing NBC with a variant of Laplacian smoothing called m-
estimates[16] to improve the accuracy.

5.3 Combining AFDs and Classifiers

So far we glossed over the fact that there may be more
than one AFD associated with an attribute. In other words,
one attribute may have multiple determining set with dif-
ferent confidence levels. For example, we have the AFD
model make with confidence0.99. We also see that cer-
tain types of cars are made in certain countries, so we might
have an AFDcountry make with some confidence value.
As we use AFDs as a feature selection step for NBC, we
experimented with several alternative approaches for com-
bining AFDs and classifiers to learn the probability distri-
bution of possible values for null. One method is to use
the determining set of the AFD with thehighest confidence
which we call theBest-AFDmethod. However, our exper-
iments showed that this approach can degrade the classifi-
cation accuracy if its confidence is too low. Therefore we
ignore AFDs with confidence below a threshold (which is
currently set to be0.5 based on experimentation), and instead
use all other attributes to learn the probability distribution us-
ing NBC. We call this approachHybrid One-AFD. We could
also use anEnsemble of classifierscorresponding to the set
of AFDs for each attribute, and then combine the probabil-
ity distribution of each classifier by a weighted average. At
the other extreme, we could ignore feature selection based
on AFD completely but use all the attributes to learn proba-
bility distribution using NBC. Our experiments described in
Section 6 show that Hybrid One-AFD approach has the best
classification accuracy among these choices.

6 Empirical Evaluation for QPIAD

In this section, we describe implementation and an em-
pirical evaluation of our systemQPIAD for query processing
over incomplete web databases.

Implementation and User Interface
QPIAD system is implemented in Java and has a form based
query interface. The system returns each relevant uncertain
answer to the user along with aconfidencemeasure equal
to the assessed degree of relevance. Although the relevance
estimate could be biased by the imperfections of the learn-
ing method, its inclusion can provide useful guidance to the
users, over and above the ranking.QPIAD also can option-
ally “explain” its relevance assessment by providing snippets
of its reasoning. In particular, it justifies the confidence as-
sociated with an answer by listing the AFD that was used in
making the density assessment. In case of our running exam-
ple, the uncertain answert4 for the queryQ′ will be justified
by showing the learned AFDmodel body style.

Experimental Settings
We evaluated the quality of classifiers and the per-
formance of query rewriting and ranking techniques
on two data sets. One is theused car database
Cars(make,model,year,price,milage,location,color,body
style) extracted from AutoTrader(www.autotrader.com)
which has around 100,000 tuples. This database in inher-
ently incomplete as described in Table 1. The second is the
Census database Census(age, workshop, weight, education,
marital-status, occupation, relationship, race, sex, capital-
gain, capital-loss, hours-per-week, native-country)from
UCI4 data repository with around 45,000 tuples.

To perform anoracular studybased on aground truth, for
both databases we consider only complete tuples and then ar-
tificially make them incomplete by randomly selecting10%
of tuples and making one random attribute in each tuple to
be null, which forms the test database.5

We partitioned each database into two parts: a training
set to learn the classifiers and a test set. To simulate the rel-
atively small percentage of the training data available to the
mediators, we experimented with different sizes of training
set, varying from3% to 15% of the entire databases.

Accuracy of Classifiers
Since we use classifiers as a basis for query rewriting and
for ranking, we perform a baseline study on their accuracy.
For each tuple in the test set, we compute the probability
distribution of possible values of a null, choose the one with
the maximum probability and compare it against the actual
value. The classification accuracy is defined as the propor-
tion of the tuples in the test set that have their null values
predicted correctly.

Table 3 shows the average prediction accuracy of vari-
ous AFD-enhanced classifiers introduced in Section 5.3. In
this experiment, we use a training set whose size is 10%
of the database. The classification accuracy is measured
over 5 runs using different training set and test set for each
run. Considering the large domain sizes of attributes in Cars

4Available at http://www.ics.uci.edu/mlearn/MLRepository.html
5In order to show the effectiveness of our AFD-enhanced classifier, we

only consider missing values on attributes for which AFDs exist.
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database (varying from55(year) to 1151(model)), the clas-
sification accuracy obtained is quite reasonable, since a ran-
dom guess would give much lower prediction accuracy. We
can also see in Table 3 that the Hybrid One-AFD approach
performs the best and therefore is used in our query rewriting
implementation.

Database Best All Ensemble Hybrid
AFD Attributes One-AFD

Cars 43.06 28.22 34.3 43.86
Census 72 70.51 70.56 72

Table 3. Null value prediction accuracy across
different AFD-enhanced classifiers

We also compared the accuracy of our AFD-enhanced
NBC classifier with two other approaches - one based on
association rules[25] and the other that learns bayesian net-
works from the data. We found that the accuracy of our ap-
proach is competitive with the bayesian networks[8] while
being significantly better than the association rules. Space
limitations preclude extensive discussion of the experiments,
the interested readers are referred to [12].
Comparing RRUA with AUA and RUA
To compare the effectiveness of retrieving relevant uncertain
answers, we randomly formulate selection queries and re-
trieve uncertain answers from the test databases using AUA,
RUA and RRUA. Recall that AUA approach presents all tu-
ples containing missing values on the query constrained at-
tribute without ranking them. RUA approach begins by re-
trieving all the certain and uncertain answers, as in AUA,
then it rank uncertain answers according to the classification
techniques described in Section 5. In contrast, RRUA uses
query rewriting techniques to retrieve only relevant uncertain
answers in a ranked order. We use precision-recall to mea-
sure the effectiveness of the above approaches at the time
when the mediator sees theKth (K=1, 2, 3, · · ·) answer tu-
ple. In the rest of the evaluation, we focus on comparing the
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Figure 3. Precision-Recall curves(Cars)
effectiveness of retrieving relevant uncertain answers. That
is, the precision and recall are both calculated with respect
to uncertain answers instead of the entire answer set.

Figures 3 and 4 show the precision and recall curves of
a query on each of the test databases.6 It shows that both

6Note that to evaluate the full spectrum of precision-recallcurve, we
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Figure 4. Precision-Recall curves(Census).

RUA and RRUA approach have significantly higher preci-
sion compared to AUA. The curves for RUA and RRUA are
almost always overlapping for the Cars and Census database
since RRUA returns a subset of the answers of RUA, and
both of them use the same probability distribution to rank the
query answers. For the querybody style=convt, the curves
for RRUA and RUA are overlapping in the initial portion.
However, later on precision for RUA falls since it returns all
uncertain answers and in the process returns large number of
tuples which have a higher rank but are not really relevant
to the query. In contrast, RRUA only retrieves few highly
relevant tuples, hence the precision for the returned tuples
remains high throughout. Note that RRUA does not reach
100% recall since it does not return all uncertain answers.
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Figure 5. Precision for Top K tuples(Cars).

Furthermore, the numbers in the parenthesis in the leg-
end in Figures 3 and 4 are the number of uncertain answers
retrieved by each method. As we can see, RRUA avoids re-
trieving too many irrelevant tuples and therefore very effi-
cient. It can further cut down the cost by only sending the
top ranked rewritten queries to the database.

To reflect the “density” of the relevant answers along the
time line, we also plot the precision of each method at the
time when topK(K=1, 2, · · · , 100) answers are retrieved as
shown in Figures 5 and 6 for the same queries. Again RUA
and RRUA are much better in retrieving relevant uncertain
answers in topK results which is critical in web scenarios.

Effect of Confidence Threshold on Precision

donot set threshold on confidence for both RUA tuples and RRUArewritten
queries
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Figure 6. Precision for top K tuples(Census).

QPIAD presents ranked relevant uncertain answers to users
along with a confidence so that the users can use their own
discretion to filter off answers with low confidence. We con-
ducted experiments to evaluate how pruning answers based
on a confidence threshold affects the precision of the results
returned. Figure 7 shows the average precision obtained over
40 test queries on Cars database by pruning answers based
on different confidence thresholds. It shows that the high
confidence answers returned byQPIAD are most likely to be
relevant answers.
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Figure 7. Average Precision for various confi-
dence thresholds(Cars).

Ranking the Rewritten Queries
To control query processing cost according to application re-
quirements, users’ preferences and real-time system work-
load, ranking the rewritten queries is critical in the RRUA ap-
proach. In this section, we verify whether the ranked rewrit-
ten queries actually bring uncertain answers in order of rel-
evance, measured by the precision of the returned result set.
For each database, we choose 30 test queries, each of which
has a single selection predicate “attribute=value”. For each
query, we use RRUA to generate a ranked list of rewritten
queries{Q1, Q2, · · · , Qn}, which are issued to the database
in order. After the extended result set̂RS(Qm) of each query
Qm(1 ≤ m ≤ n) is retrieved, we calculate theaccumulated
precisionas follows:

m∑
k=1

number of true relevant answers in R̂S(Qk)

m∑
k=1

number of answers in R̂S(Qk)

Figure 8 shows the average accumulated precision of the
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(a) Cars database
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(b) Census database

Figure 8. The accumulated precision curves.

30 test queries on each database. We used the aggregate
statistics over 30 queries to avoid biased information from
a single query. As we can see, RRUA is able to generate a
ranked list of rewritten queries, and the queries ranked higher
tend to bring in uncertain answers that are more relevant.
By choosing the top ranked rewritten queries to send to the
database, the mediator can maximize theprecisionwith any
given cost restriction.
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Figure 9. Accumulated precision curve with
different sample sizes on Cars database.

Robustness of the RRUA Approach
The performance of RRUA approach, in terms of precision
and recall, relies on the quality of the AFDs and Naı̈ve
Bayesian Classifiers learned by the knowledge mining mod-
ule. In data integration scenario, the availability of the sam-
ple training data from the autonomous data sources is restric-
tive. Here we present the robustness of the RRUA approach
in the face of limited size of sample data. Figure 9 shows
the accumulated precision of a selection query on the Car
database, using various sizes of sample data as training set.
We see that the quality of the rewritten queries all fluctuatein
a relatively narrow range and there is no significant drop of
precision with the sharp decrease of sample size from15%
to 3%. We obtain a similar result for the Census database
which is described in [12] due to space constraints.
Effectiveness of using Correlation Between Data Sources
We consider a mediator performing data integration over
three data sourcesCars.com(www.cars.com),Yahoo! Autos
(autos.yahoo.com) andCarsDirect (www.carsdirect.com).
The global schema supported by the mediator and the in-
dividual local schemas are shown in Figure 2. The schema
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of CarsDirect is the same as that of Yahoo! Autos which
do not supportbody style attribute whileCars.comdoes
support queries on thebody style attribute using Advanced
Search. We use the AFDs and NBC classifiers learned from
Cars.comto retrieve cars fromYahoo! AutosandCarsDi-
rect as possible relevant uncertain answers for queries on
body style according to Section 4.3. To evaluate the pre-
cision, we check the actualbody style of the retrieved car
tuples to determine whether the tuple was indeed relevant to
the original query. The average precision for the topK tu-
ples retrieved fromYahoo! AutosandCarsDirectover the 5
test queries is quite high as shown in Figure 10. This shows
that using the AFDs and value distributions learned from cor-
related sources, QPIAD can retrieve relevant answers from
data sources not supporting query attribute.
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Figure 10. Precision curves for top K tuples
retrieved using correlated source Cars.com.

7 Conclusion and Future Work
Incompleteness is inevitable in autonomous web

databases. Retrieving highly relevant uncertain answers
from such databases is challenging due to the restricted
access privileges of mediator, limited query patterns sup-
ported by autonomous databases, and sensitivity of database
and network workload in web environment. We developed
a novel query rewriting technique that tackles these chal-
lenges. Our approach involves rewriting the user query
based on the knowledge of database attribute correlations.
The rewritten queries are then ranked by leveraging attribute
value distributions according to their likelihood of retrieving
relevant uncertain answers before they are posed to the
databases. To support such query processing techniques,
we developed methods to mine attribute correlations in the
form of AFDs and the value distributions of AFD-enhanced
classifiers, from a small sample of the database itself. Our
comprehensive experiments demonstrated the effectiveness
of our query processing and knowledge mining techniques.

In this paper, we have focused mainly on selection queries
since these are the most typical queries faced in data aggre-
gation over web databases. We did however investigate join
queries in the context of QPIAD; a preliminary account can
be found in [12]. With join queries,QPIAD starts to inherit
some of the open challenges of probabilistic databases, in-
cluding doing joins over relations with uncertain tuples. One
interesting issue is that even if we start with tuples having
at most one null value — which can be modelled as the so
called x-tuples, joins will spread the uncertainty necessitat-
ing the full blown c-tables [10, 22] to represent the uncer-

tain tuples. Presenting answers involving such general un-
certainty to lay users is an open problem.
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