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Abstract

Despite the recent resurgence of interest in learning
methods for planning, most such efforts are still fo-
cused exclusively on classical planning problems. In
this work, we investigate the effectiveness of learn-
ing approaches for improving over-subscription plan-
ning, a problem that has received significant recent
interest. Viewing over-subscription planning as a
domain-independent optimization problem, we adapt
the STAGE (Boyan and Moore 2000) approach to learn
and improve the plan search. The key challenge in our
study is how to automate the feature generation process.
In our case, we developed and experimented with a re-
lational feature set, based on Taxonomic syntax as well
as a propositional feature set, based on ground-facts.
The feature generation process and training data gener-
ation process are all automatic, making it a completely
domain-independent optimization process that takes ad-
vantage of online learning. In empirical studies, our
proposed approach improved upon the baseline planner
for over-subscription planning on many of the bench-
mark problems.

Introduction
Use of learning techniques to improve the performance of
automated planners was a flourishing enterprise in the late
eighties and early nineties, but has however dropped off
the radar in the recent years (Zimmerman and Kambham-
pati 2003). One apparent reason for this is the tremen-
dous scale-up of plan synthesis algorithms in the last decade
fueled by powerful domain-independent heuristics. While
early planners needed learning to solve even toy problems,
the orthogonal approach of improved heuristics proved suf-
ficiently powerful to reduce the need for learning as a crutch.

This situation is however again changing, with learning
becoming an integral part of planning, as automated plan-
ners move from restrictive classical planning problems to fo-
cus on increasingly complex classes of problems.1 One such
class is “over-subscription” (aka “partial satisfaction”) plan-
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1One sign of this renewed interest is the fact that for the first
time, in 2008, the International Planning Competition will have a
track devoted to planners that employ learning techniques.

ning. Unlike classical planning where the focus is on achiev-
ing a set of goals starting from an initial state and all solu-
tion plans are considered equally valid, in over-subscription
planning (OSP) actions have costs and goals have utilities.
Among many class of OSP problems, we focus our attention
on maximizing “net benefit” which is the cumulative util-
ity of goals achieved minus the cumulative cost of actions
used in the plan. The problem is further complicated by the
fact that the goals have both “cost” and “utility” interactions
(the former because achievement of one goal may make it
cheaper or costlier to achieve another goal; and the latter be-
cause the achievement of one goal may make it more or less
useful to achieve another goal).

Like other planning problems, the dominant approach for
OSP problems is forward state space search and one chal-
lenge in improving over-subscription planners has been in
developing effective heuristics that take cost and utilityin-
teractions into account (c.f. (Do et al. 2007)). Our re-
search aims to investigate if it is possible to boost the heuris-
tic search with the help of learning techniques. Given the
optimizing nature of OSP, we were drawn in particular to
STAGE (Boyan and Moore 2000) which had shown signifi-
cant promise for improving search in optimization contexts.

STAGE is an online learning approach that was origi-
nally invented to improve the performance of random-restart
hill-climbing techniques on optimization problems. Rather
than resort to random restarts which may or may not help
the base-level search escape local minimum, STAGE aims
to learn a policy that can be used to intelligently generate
restart states that are likely to lead the hill-climbing search
towards significantly better local optima. The algorithm pro-
ceeds in two iterated stages. In the first stage, the base-level
hill-climbing search is run until it reaches a local minimum.
This is followed by a learning phase where STAGE trains on
the sequence of states that the hill-climbing search passed
through in order to learn a function that predicts for any
given states, the valuev of the optima that will be reached
from s by hill climbing. This learned function is then used in
the second stage (alternative) local search to scout for a state
s′ (that has the highest promise of reaching a better state).
If the learner is effective,s′ is expected to be a good restart
point for the base-level search. The stages are then repeated
starting withs′ as the initial point.

The main challenge in adapting the STAGE approach to



OSP involves finding appropriate state features to drive the
learner. In their original work, Boyan and Moore usedhand-
craftedstate features to drive learning. While this may be
reasonable for the applications they considered, it is infeasi-
ble for us to hand-generate features for every planning do-
main and problem. Moreover, such manual intervention runs
counter to the basic tenets of domain-independent planning.
Rather, we would like the features to be generated automat-
ically from the problem and domain specifications. To this
end, we developed two techniques for generating features.
The first uses “facts” of the states and the actions leading
to those states as features. The second, more sophisticated
idea uses a Taxonomic syntax to generate higher level fea-
tures (McAllester and Givan 1993). We are not aware of
any other work that used the STAGE approach in the context
of automatically generated features. We implemented both
these feature generation techniques and used them to adapt
a variant of the STAGE approach to support online learning
in solving OSP problems. We compared the performance of
our online learning system to a baseline heuristic search ap-
proach for solving these planning problems (c.f. (Do et al.
2007)). Our results convincingly demonstrate the promise of
our learning approach. Particularly, our on-line learningsys-
tem outperforms the baseline system including the learning
time, which is typically ignored in prior studies in learning
and planning.

The contributions of this research are thus two fold. First,
we demonstrate that the performance of heuristic search
planners in challenging OSP domains can be improved with
the help of online learning techniques. This is interesting
both because OSP is a hard planning problem and because
there has been little prior work on learning techniques to
improve plan quality. Second, we show that it is possible
to retain the effectiveness of the STAGE approach without
resorting to hand-crafted features.

In the rest of the paper, we will give preliminaries of both
OSP and the STAGE approach. We follow with details of
how we adapt this to OSP. Of particular interest here are the
details of our automated feature generation techniques. Next
we present and analyze empirical results comparing the per-
formance of our online learning approach with the baseline
heuristic search planner on a set of benchmark domains. We
end the paper with a brief description of promising future
directions.

Preliminaries
Over-subscription Planning
We define an over-subscription planning (OSP) problemP o

as a tuple of(O,P, Y, I,G,U,C), whereO is a set of con-
stants,P is a set of available predicates andY is a set of
available action schema. A fact isp ∈ P applied to appro-
priate set of constants inO. P is a set of all facts. A states is
a set of facts andI is the initial state. Additionally, we define
the set of grounded actionsA, where eacha ∈ A is gener-
ated fromy ∈ Y applied to appropriate set of constants in
O. As is usual in the planning literature, each actiona ∈ A
consists of preconditionPre(a) which must be met in the
current state before applyinga, Add(a) describes the set of

added facts after applyinga andDel(a) describes the set of
deleted facts after applyinga. C is a cost function that maps
an actiona to a real valued cost,C : a→ R.

Unlike classical planning problems where we define a set
of goal facts that must be achieved, the set of goalsG in a
problemP o may remain unsatisfied in the final state. In-
stead, utility values are defined on subsets of the goals and
we have a utility functionU , which evaluates the current
state,U : S → R. More specifically, for a goal setG ⊆ P,
U consists of a set of local utility functions{u(·)} that as-
sign real number valued utilities to subsets of the goals. In
other words, with the problem goal setG, utility is given
to goal subsets using local utility functions,u(Gi) ∈ R,
on Gi ⊆ G and utility of a states with an achieved goal
subsetG′ ⊆ G hasU(s) =

∑
Gi⊆G′ u(Gi), following the

general additive independence model(Bacchus and Grove
1995). Each setGi represents agoal dependency, where
having achieved all of the goals inGi causes changes to the
global utility of the final state. Of course, a single fact may
exist in a goal dependency set, thereby allowing individual
goal facts to be assigned a utility value.

Of many classes of OSP problems, we investigate max-
imizing “net-benefit” objective problems, one of the most
popular form of OSP problems. The objective of OSP
is to find the sequence of actions (and states)Ap =
{I, a1, s1 . . . , an, sn} with the best possiblenet benefit, de-
fined as the difference between the summed utility ofsn,
U(sn), and the summed costs of the actions in the plan,∑

a∈Ap
C(a).

OSP Planners: There are several planners developed to
solve OSP problems (Smith 2004; Sanchez and Kambham-
pati 2005; Do et al. 2007; Benton, van den Briel, and Kamb-
hampati 2007). Many of these planners solve a relaxed ver-
sion of the original OSP problem at each search node.2 Solv-
ing relaxed problems has the disadvantage that their solu-
tions can overestimate the utilities that can be achieved.3

Despite this, forward state space heuristic search planners
have shown promise and have done well in solving OSP
problems in practice. In this work, our baseline planner
SPUDS (Do et al. 2007) is from this class of planners, in
that it finds a relaxed plan to compute heuristics for a for-
ward state space search.

Review of STAGE approach

STAGE (Boyan and Moore 2000) aims to learn a policy
for intelligently predicting restart points for a base-level
random-restart hill-climbing strategy. STAGE works by al-
ternating between two search strategies O-SEARCH and S-
SEARCH. O-SEARCH is the base-level local search which
aims to hill-climb with some natural objective functionO
for the underlying problem (e.g., number of bins used in

2Exceptions to this areAltWlt (Sanchez and Kambhampati
2005) and the orienteering planner (Smith 2004), both of which
select goals up-front then solve for those goals in a classical plan-
ning problem.

3It is also possible that an inadmissible heuristic may some-
times underestimate achievable utilities.



the bin-packing problem). The S-SEARCHaims to scout for
good restart points for the O-SEARCH.

The O-SEARCH is run first (until, for example, the hill
climbing reaches a local minimum). LetT = s0, s1 · · · sn

be the trajectory of states visited by the O-SEARCH, and let
o∗(si) = bestj>iO(sj) be the objective function value of
the best state found on this trajectory aftersi. STAGE now
tries to learn a functionV to predict that any states′ that
is similar to the statesi on the trajectoryT , will lead the
hill-climbing strategy to an optima of valueo∗(si).

In the next phase, S-SEARCH is run usingV as the ob-
jective function, to find a states that will provide a good
vantage point for restarting the O-SEARCH. S-SEARCHnor-
mally starts fromsn, the state at the end of the trajectory of
the (previous) O-SEARCH(although theoretically it can start
from any random state, including the initial state).4

This sequence of O-SEARCH, learning and S-SEARCHare
iterated to provide multiple restarts for the O-SEARCH. As
we go through additional iterations, the training data for
the regression learner increases monotonically. For exam-
ple, after the O-SEARCH goes though a second trajectory
T2 : s2

0 · · · s
2
n where the best objective value encountered in

the trajectory after states2
j is o2

∗(sj), in addition to the train-
ing data from the first O-SEARCH si → o∗(si), we also
have the training datas2

j → o2
∗(s

2
j ). The regression is re-

done to find a newV function which is then used for driving
S-SEARCH in the next iteration.

Boyan and Moore showed that the STAGE approach is ef-
fective across a broad class of optimization problems. The
critical indicator of STAGE’s success turns out to be avail-
ability of good state features that can support effective (re-
gression) learning. In all the problems that Boyan and
Moore investigated, they provided hand-crafted state fea-
tures that are customized to the problem. One of the features
used for bin-packing problems, for example, is the variance
of bin fullness. As we shall see, an important contribution of
our work is to show that it is possible to drive STAGE with
automatically generated features.

Adapting STAGE to OSP
Automated Feature Generation

One key challenge in adapting the STAGE approach to
domain-independent OSP stems from the difficulty in han-
dling the wide variety of feature space between planning do-
mains. While task-dependent features often appear obvious
in many optimization problems, domain-independent prob-
lem solvers (such as typical planning systems) generally re-
quire a different set of features for each domain. Producing
such features by hand is impractical and it is undesirable to
require users of a planning system to provide such a set. In-
stead, we use automated methods for feature construction.

4In fact, if we can easily find the global optimum ofV , that
would be the ideal restart point for the O-SEARCH. This is nor-
mally impossible becauseV might be learned with respect to non-
linear (hand-selected) features of state. The inverse image ofV on
the state space forms its own complex optimization problem, thus
necessitating a second local search.

In our work, we experimented with two methods for fea-
ture generation. One method derives propositional features
for each problem from the ground problem facts. The other
derives relational features for each domain using a Taxo-
nomic syntax (McAllester and Givan 1993). We describe
both of them below. An important difference between Tax-
onomic and propositional feature sets is that the former re-
mains the same for each domain, while the latter changes
from problem to problem even in the same domain. Thus,
the number of propositional features grow with the size of
problems while Taxonomic features does not.
Propositional Features:In a propositional feature set, each
fact in the state represents a feature. Intuitively, if there is
some important factf that contributes to the achievement of
some goal or a goal by itself, then states that include the fact
should be valued high. In other words, a binary feature that
is true with the factf , should be weighted higher for the tar-
get value function. It is then natural to have all the potential
state facts or propositions as a feature set. This intuitiveidea
has been tested in a probabilistic planning system (Buffet
and Aberdeen 2007). In their case, the features were used to
learn policies rather than value functions. Given constants
O and predicatesP in an OSP problemP o, we can enumer-
ate all the ground factsP. Each ground fact is made into a
binary feature, with the value of the feature beingtruewhen
the fact is in the current state. We call the planning and learn-
ing system that uses these binary features a “Propositional”
system.
Relational Features:Although the propositional feature set
in the previous subsection is intuitive and a simple method
to implement, it cannot represent more sophisticated prop-
erties of the domain, where relations between state facts is
important, e.g., conjunction or disjunction of the facts.

Our second approach involves relational (object-oriented)
features. For many of the planning domains, it is natural
to reason with objects in the domain. Particularly, it is rea-
sonable to express the value of a state in terms of objects.
For example, in a logistics domain, the distance to the goal
can be well represented with “number of packages not de-
livered”. Here, the “packages that are not delivered yet” are
a good set of objects that indicates the distance to the goal.
If we can provide a means to represent a set of objects with
such a property, then the cardinality of the set could be a
good feature for the value function to learn.

Taxonomic syntax (McAllester and Givan 1993) provides
a convenient framework for these expressions. In what fol-
lows, we review Taxonomic syntax and we define our feature
space with Taxonomic syntax.

Taxonomic Syntax:A relational databaseR is a collection
of ground predicates, where ground predicates are applica-
tions of predicatesp ∈ P to the corresponding set of objects
(o ∈ O). Each state in a planning problem is a good ex-
ample for a relational database. We prepend a special sym-
bol g if the predicate is from goal description andc if the
predicate is both true in the current state and the goal state.
c predicates are a syntactic convenience to express means-
ends analysis. Note that goal information is also part of
state information. An example relational database (a state
from a Logisticsworld domain) is shown in Figure 1. In this



(at truck1 location1), (at package1 location1),
(in-city location1 city1), (in-city location2 city1)
(gat package1 location1)
(cat package1 location1)
(at package2 location2) (gat package2 location1)

Figure 1: Example Relational Database: A State from Lo-
gisticsworld

example, there are two packagespackage1and package2.
package2is not at the goal location andpackage1is at the
goal location. So there is additional fact, (cat package1 lo-
cation1). It turned out that this simple notation make the
expression compact and useful for representing means-ends
analysis (Newell and Simon 1972).

Taxonomic syntaxC is defined as follows,

C = a-thing|(p C1 . . . ? . . . Cn(p))|C ∩ C|¬C

It consists ofa-thing, predicates with one position in the
argument is left for the output of the syntax, while other po-
sitions are filled with other class expressions, intersection of
class expressions and negation of a class expression.n(p) is
the arity of the predicatep. We define depthd(C) for enu-
meration purposes.a-thing has depth 0 and class expression
with one argument predicate has depth 1.

d((p C1 . . . ? . . . Cn(p))) = max d(Ci) + 1

Taxonomic Syntax Semantics:Taxonomic syntaxC[R]
against a relational databaseR describes sets of objects.
a-thing describes all the objects inR. In the example in
Figure 1, they are (city1, truck1, package1, package2, loca-
tion1, location2).(p C1 . . . ? . . . Cn(p)) describes a set
of objectsO that make the predicatep true inR whenO is
placed in the ? position while other positions are filled with
the objects that belong to the corresponding class expres-
sion. For example, considerC = (cat ? a-thing) and let
R be the relational database in Figure 1.C[R] is then (pack-
age1). Among all the objects, only package1 can fill in the
? position and make the (cat package1 location1) predicate
true. Note thata-thing allows any object, including loca-
tion1. As another example, considerC ′ = (at ? a-thing).
C ′[R] is then (package1, truck1, package2). It is worth
while to speculate the meaning ofC. It indicates all the ob-
jects that fill in the first argument position ofcat and make
the predicate true in the Logisticsworld, which means all the
objects that are already in the goal.

Feature Generation Function for Over-subscription Plan-
ning: We enumerate limited depth class expressions from
the domain definition.a-thing is included in the feature set
by default. Recall the planning domain definition,P o =
(O,P, Y, I,G,U,C). UsingP , the set of predicates, we can
enumerate Taxonomic features. First, for all the predicates,
except one argument position, we fill all the other argument
positions witha-thing. This set constitutes the depth 1 Tax-
onomic features. For the Logisticsworld,C andC ′ in the

above corresponds to this set of depth 1 features. Depthn
features can then be easily enumerated by allowing depth
n − 1 Taxonomic syntax in other argument positions than
the output position. For example,(at ¬(cat ? a-thing) ?)
is depth 2 feature, which is constructed by using depth 1
Taxonomic feature at the first argument position. The mean-
ing of this feature is “the location where a package is not
yet in the goal location”. In our experiments, we used depth
2. We could use deeper Taxonomic features but, it took too
much time during enumeration and evaluation process. We
call the planning and learning system that uses the class ex-
pression feature set a “Taxonomic” system. The value of the
Taxonomic features is the cardinality of the Taxonomic ex-
pressions, which gives out sets of objects. This makes the
features appropriate for value function learning.

In both the “Propositional” and “Taxonomic” feature sets,
we also use actions involved as part of the features. Re-
call that each state in OSP involves actions that led the ini-
tial state to the current state. For the “Taxonomic” feature
set, we union these actions with state facts for the rela-
tional database construction. The semantics of this database
straightforwardly follow from Taxonomic syntax. For the
“Propositional” feature set, we also enumerate all the poten-
tial ground actions and assign a binary value 1 if they appear
in the actions that led to the state.

Doing O-SEARCHwith SPUDS
The STAGE approach was initially developed to work in a
local (aka iterative) search model where the overall merit of
the current state is completely specified in terms of the state
itself. While it is possible to do such local search directly in
the plan space (e.g. the LPG system (Gerevini, Saetti, and
Serina 2003)), the majority of current heuristic planners,in-
cluding those for OSP, search in the space of world states,
with the plan (the solution) being the path traversed (actions
taken) between states. This difference poses several tech-
nical difficulties in directly adapting the learning approach
given by STAGE for our needs.

Specifically, the baseline planner we use, SPUDS, en-
gages in an A* search to traverse the space of world states,
with each states evaluated byf(s) = g(s) + h(s), where
g(s) is the net-benefit of the plan realized in traversing from
the initial state tos, andh(s) is an estimate of additional
net-benefit that is expected to be accrued by expandings
further (Do et al. 2007). Viewing SPUDS as doing the O-
SEARCH phase of STAGE, theg value corresponds to the
objective function, while theh value is used in conjunction
with theg value to explore a potentially more promising part
of the search space.

Unlike local search which explores a single sequential tra-
jectory, the O-SEARCHdone by SPUDS essentially explores
(expands) a tree of states (see Figure 2). This is because,
SPUDS’s search is memory based, maintaining a priority
queue of states to explore while stochastic local search in
optimization does memory-less search, where no priority
queue is involved. Thus we need to re-define the optima
reachable for each expanded states. We define it as the best
g value of any node in the subtree rooted ats in the current
search tree (as shown in the figure). Note that only theg
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Figure 2: SPUDS Search Tree. Unlike memoryless stochas-
tic optimization search, SPUDS maintains the search queue.
Thus the best objective value that can be found after a state
S, is the best value in the subtree of S. In this tree, the best
expected value ofS is max(S1, S2, S3).
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Figure 3: Stage-OSP search behavior. The triangle in the
figure signifies O-SEARCH and the dotted lines signifies S-
SEARCH. As Stage-OSP progresses, it restarts O-SEARCH
after each end point of S-SEARCH (Ss

1 , Ss
2 . . .). Each S-

SEARCHphase itself always starts at the initial state,SI .

value is used here as it corresponds to the best actual plan
encountered unders.

For example, in our baseline planner, SPUDS (Do et
al. 2007), we define a policyπSPUDS . As shown
in Figure 2, the projected value from a states is
maxsj∈{s,s1,s2,s3} U(sj) − C(sj). U(·) (the goal utility
achieved in statesj) andC(·) is the cost of the actions that
were used to reachsj from I. Let V̂ πSP UDS

n (s) be the es-
timated value that can be found from states by following
the heuristic search where the number of node expansions is
limited by n. GivenS = {s1, . . . , sn}, we find our target
valueV̂ πSP UDS

n (si) by max
sj∈subtree of sU(sj)− C(sj).

Finally, to make-up for the possibility that the O-SEARCH
trajectory may have been wrongly biased by the heuristich,
we initiate the S-SEARCH starting back at the initial state
(rather than a state at the fringe of the expanded tree). Thus,
each time the S-SEARCHwill find another new start state for
O-SEARCH from the initial state. Additionally, to make the
S-SEARCH more ergodic, we allow it to backtrack a single
step by adding an operator that rolls back the most recent
action taken. We found that S-SEARCH without this back-
track operator just adds actions and could reach very local
minimum state.

Stage-OSP(P o, n)
// P o Over-subscription problem

// n limit of evaluated states for O and S-Search

F ← Enumerate-Feature-Set(P o)
st ← I
while ( states-enumerated< MAXEVAL )
{st . . . sn} ← {O-search}

perform-spud-search(P, st, n)
T = {(st, vt), . . . , (sn, vn)} ←

value-estimation(S)
W ← linear-fit (T , P, F )
{st . . . sk} ← {S-search}

stochastic-hillclimbing (F,W, I, n)
st ← sk

Return the-best-state-found

Figure 4: Stage-OSP Algorithm. It repeats SPUDS search
(O-SEARCH), learning and S-SEARCH. Also refer Figure 3
for graphical explanation.

Overall Approach
Figure 4 summarizes our algorithm, Stage-OSP. It starts with
the search provided by our baseline planner, SPUDS, where
the number of evaluated states is limited byn 5. Afterwards,
we learn a value estimate for the next search stage. Recall
that the feature set is not provided as in STAGE, but is enu-
merated automatically by one of two different methods as
described earlier. After a predefined number of node ex-
pansionsn, the search returns a search tree. The procedure
value-estimationreturns training data to perform thelinear
regression, which maps the best values found in the subtree
under the state. The learning is then finding weight vec-
torsW for enumerated featuresF . Then, Stage-OSP enters
S-SEARCHwhich uses the newly learned value function (in-
ner product of theW andF (·)) and restarts from the initial
stateI (note thatI is passed into the search as againstS).
S-SEARCH, like that described in the STAGE approach, is
memory-less and uses stochastic hill-climbing.

Figure 3 shows the over all search behavior of the Stage-
OSP algorithm. Each of the triangles correspond to O-
SEARCH stages, and the dotted lines correspond to S-
SEARCHstages. After each O-SEARCH, we train value func-
tions, and do an S-SEARCHto find the next restart point. The
next O-SEARCHstarts from the restart point identified by the
previous S-SEARCH.

Experimental Results
To test our system, we conducted experiments on the Rovers,
Satellite and Zenotravel benchmark domains in the con-
text of OSP. These domains are from International Planning
Competition and modified to add net-benefit features, action
costs and goal-interaction utilities. The machine used for

5We can use differentn for O-SEARCH and S-SEARCH . We
are currently investigating this issue.



these tests was a 2.8 Ghz Xeon processor using a Linux op-
erating system. For our training data, we usedn = 1000
evaluated states and set the timeout for each problem to 30
minutes of CPU time6. The planner is written in Java.
Note that the learning time was not significant as will be
revealed soon, as the number of automated features gener-
ated was typically less than 10,000. This effectively enables
our system do on-line learning and compete against domain-
independent planning systems head to head.

For the linear regression fit, we used two different li-
braries for our different automated feature types. The sta-
tistical package R (R-Project ) was used for the Taxonomic
features, but operated more slowly when learning with the
binary propositional features. The Java Weka library worked
better on this set, and we therefore used it when handling
features of this type. For our evaluation, we address the per-
formance of the Stage-OSP system in each domain on the
baseline planner (Do et al. 2007), Stage-OSP with the Tax-
onomic features, and Stage-OSP with the propositional fea-
tures. Note that Stage-OSP systemsinclude learning time.

For the case of learning with “Taxonomic” features, we
also used a simple wrapper method. That is, we greedily
add one feature at a time until there is convergence in the
approximation measure. For this purpose, we used the R-
square metric, which measures the explanation for the vari-
ances. This is rather a practical algorithm design choice,
since R cannot handle too many features.

Rovers Domain: The Rovers domain was developed to
mimic a Mars rover vehicle problem. It models Rovers sent
to a planet to perform various tasks (such as taking photos
and soil samples). Vehicles can travel between pre-defined
points on the planet with varying costs for each traversal. At
certain locations, the rover can communicate data collected.
However, because of limitations on the costs for traversal,a
plan needs to maximize collectivenet benefitfor the mission
(i.e., a plan needs to achieve high utility goals with minimum
cost).

We ran 20 problems from the International Planning Com-
petition of 2002, with modification to add action costs and
goal interaction utilities. Figure 7 shows the results. In the
graph shown, the Y axis is the best net benefit found for
each problem, thus higher values are better (and we want to
maximize our net benefit). The Rovers domain yielded the
best results of the three we tested. Except for on a few prob-
lem instances, both feature types, the Taxonomic and Propo-
sitional outperformed SPUDS. The cumulative net benefit
across the problems in each domain is available in Figure
5. The number of features enumerated is also available in
the figure. In Figure 5, for Rovers domain, we can see that
both of the learning systems, Propositional and Taxonomic,
outperform the baseline planner, achieving twice the cumu-
lative net benefit of SPUDS. This shows the benefit of the
learning involved. Note that, in our experiments, there was
no prior training. That is, in most of the recent machine
learning systems for planning, they used prior training data

6We have tried alternative training data sets, by changing the
“n” parameter variously between 500 to 2000, but the results were
more or less the same.

(navigate athing (gcommunicated-soil-data ?) ?)

(take-image ? (have-rock-analysis athing ?)
athing athing athing)

Figure 6: Taxonomic Features found for Rover domain
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Figure 7: Results on Rovers Domain: The X-axis is for the
problem numbers. There were 20 problems. The Y-axis
shows net-benefit obtained by each system. As can be seen
in the figure, Taxonomic system significantly outperformed
SPUDS for most of the problems.

to tune the machine learner, while our systems learn online
fashion. This enables our system to compete in the domain
independent competition realm.

For further analysis, it is helpful to see how the the net
benefit of the best incumbent plan varies as the search pro-
gresses. Note that the baseline planner, SPUDS, performs an
incrementally improving “anytime” search. Figure 8 shows
how the net benefit changes over time for SPUDS as well
as the Stage-OSP method using the two feature sets (Taxo-
nomic and Propositional). The effectiveness of the restarts
provided by the S-SEARCH can be seen by observing the
staircase pattern of the net benefit improvement in Stage-
OSP. In the instances where SPUDS outperformed Stage-
OSP, the learned value function could not reveal a better
projected state and led the search into a local minimum of
the evaluation function, while SPUDS was able to improve
the plans through a systematic search.

Finally, Figure 6 lists some of the selected features by the
wrapper method with the Taxonomic system. The first listed
feature indicates the number of locations traveled where soil
data is to be communicated is located. The second provides
the number of “take image” actions with rock-analysis in
hand. As can be seen in these expressions, the Taxonomic
syntax can express more relationally expressive notions than
ground facts and we suspect that is the reason why the Taxo-
nomic system outperformed Propositional system. Note also
that these features make sense: Moving to a location where
soil data will likely move us to improved net benefit. Addi-
tionally, taking a goal image while already having finished
analysis also moves us toward a goal (and therefore higher
net benefit).



Domain Measure SPUDS Stage-OSP (Propositional) Stage-OSP (Taxonomic)
Rover Net Benefit 3.0×105 6.0×105 6.5×105

No. Features 14336 2874
Satellite Net Benefit 0.89×106 0.92×106 1.06×106

No. Features 6161 466
Zenotravel Net Benefit 4.3×105 4.1×105 4.5×105

No. Features 22595 971

Figure 5: Summary of the cumulative Net Benefit and number features for each domain
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Figure 8: Anytime Behavior of Systems on Rover Problem
6. The X axis shows the CPU time used in minutes.

(cpointing ? athing)

(turn-to (cpointing ? athing) athing ?)

Figure 9: Taxonomic Features found for Satellite domain

Satellite Domain: In the Satellite domain, the objective is
to take as many pictures or measurements as possible with-
out consuming too much energy. To perform an operation,
a Satellite needs to turn to the right direction, calibrate its
instruments and finally take a photo or perform a measure-
ment. Figure 10 shows the results on Satellite domain. The
performance of Stage-OSP using either of the feature sets
does not dominate as strongly as seen in the Rovers domain.
However, Stage-OSP still outperformed the baseline planner
in cumulative net benefit measure on the problems, as can be
verified through Figure 5.

Figure 9 lists the features of Taxonomic system found
by the wrapper method. The first one feature expresses
correctly-pointing facts (note thatc-predicates were used)
and the second one expresses the number of actions that turn
to the correctly pointing areas, these features help with find-
ing end-state “pointing” goals.

Zenotravel Domain: Figure 12 shows the results of Zeno-
travel domain. Zenotravel’s objective is getting as many
people to their goal location as possible. The plane involved
has fuel cost associated with it and if there is no fuel left,
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Figure 10: Results on Satellite Domain

(fuel-level ? (fly athing athing athing athing ?))

(gat ? (zoom athing athing ? athing athing athing))

Figure 11: Taxonomic Features found for Zenotravel do-
main

the plane needs to refuel. Thus, reducing refueling actions
while serving as many people as possible is the key objective
to achieve. The learners did not fare as well in this domain.
As can be seen in Figure 12, the learning systems lost to
SPUDS on the same number of problems as the number of
problems they won. The cumulative net benefit across prob-
lems are shown in Figure 5. The numbers show a slight edge
using the Taxonomic features. The margin is much smaller
than the other domains.

Figure 11 shows the features found in the Taxonomic sys-
tem. The first feature listed expresses the number of refuel
actions taken (and is thus negatively weighted) and the sec-
ond expresses the number of zooming actions taken to the
goal location.

When the learning system fared well, for example, in the
Rovers domain, we found that the learned value function led
the S-SEARCH to a quite deeper states, that requires many
actions to reach from the initial state but achieves the key
goal facts.

Although we provided the action features to take the ac-
tion cost structure into account, the learned value function
is not too sensitive to the actions used. One possible reason
for this may be that the Taxonomic syntax uses set seman-
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Figure 12: Results on Zenotravel Domain

tics rather than bag semantics. That is, when the partial plan
corresponding to a search node contains multiple instances
of the same action, they are counted only once. We suspect
that this is why the learning systems did not fare well in the
Zenotravel domain, where the cost structure of the action
space needs careful consideration of the number of actions
involved. We plan to improve the semantics of Taxonomic
syntax to account for bag semantics.

Related Work
There has been very little prior work focused on learning
to improve plan quality. The closest learning system for
planning that tried to improve the quality of plans produced
was the work by Perez (P’erez 1996) almost a decade back.
In contrast to our approach, theirs used explanation-based
learning techniques to learn search control rules. As we dis-
cussed, one reason Stage-OSP outperforms SPUDS is that
the S-SEARCHwith learned evaluation function allows it to
go to deeper parts of the search tree (and probe those regions
with SPUDS search). Prior work, such as YAHSP (Vidal
2004) and BBOP-LP (Benton, van den Briel, and Kamb-
hampati 2007), achieve a similar effect by using the relaxed
plan as a macro-operator (and thus access deeper parts of
the search space). One important difference is that while S-
SEARCH uses an evaluation function that is learned online
from the current problem episode (and is thus potentially
more adaptive to the problem), YAHSP and BBOP-LP were
guided by relaxed plan, whose effectiveness could vary with
the domains, depending on the importance of deleted facts.

Conclusion
Motivated by the success of the STAGE approach in learn-
ing to improve search in optimization problems, we adapted
it to OSP. The critical challenge in the adaptation was the
need to provide automated features for the learning phase of
STAGE. We experimented with two automated feature gen-
eration methods. One of them–the Taxonomic feature set–
is especially well suited to planning problems because of
its object-oriented nature. Our experiments with Stage-OSP
show that it is able to provide significant improvements over
SPUDS–a state of the art heuristic planning approach for
solving OSP problems.

One immediate task is developing a feature space that pro-
vides a bag rather than set semantics for the actions taken.
As we have argued, this seems to be important for domains
like Zenotravel. Another direction we plan to explore in the
near future is to investigate the utility of features derived
from relaxed plans. Recent work in learning to improve clas-
sical planners (Yoon, Fern, and Givan 2006) shows that such
features are quite effective.
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