
Artificial Intelligence 55 (1992) 193-258 193
Elsevier

A validation-structure-based
theory of plan modification and
reuse

Subbarao Kambhampati*
Center for Design Research and Department of Computer Science, Stanford University,
Bldg. 530, Duena Street, Stanford CA 94305-4026, USA

James A. Hendler
Computer Science Department, University of Maryland, College Park, MD 20742, USA

Received June 1990
Revised August 1991

Abstract

Kambhampati, S. and J.A. Hendler, A validation-structure-based theory of plan modifica-
tion and reuse, Artificial Intelligence 55 (1992) 193-258.

The ability to modify existing plans to accommodate a variety of externally imposed
constraints (such as changes in the problem specification, the expected world state, or the
structure of the plan) is a valuable tool for improving efficiency of planning by avoiding
repetition of planning effort. In this paper, we present a theory of incremental plan
modification suitable for hierarchical nonlinear planning, and describe its implementation in
a system called PRIAR. In this theory, the causal and teleological structure of the plans
generated by a planner are represented in the form of an explanation of correctness called
the "'validation structure". Individual planning decisions are justified in terms of their
relation to the validation structure. Plan modification is formalized as a process of removing
inconsistencies in the validation structure of a plan when it is being reused in a new or
changed planning situation. The repair of these inconsistencies involves removing un-
necessary parts of the plan and adding new nonprimitive tasks to the plan to establish
missing or failing validations. The result is a partially reduced plan with a consistent
validation structure, which is then sent to the planner for complete reduction. We discuss
this theory, present an empirical evaluation of the resulting plan modification system, and
characterize the coverage, efficiency and limitations of the approach.

* Department of Computer Science and Engineering, Arizona State University, Tempe, AZ
85287, USA.

Correspondence to: S. Kambhampati, Department of Computer Science and Engineering,
Arizona State University, Tempe, AZ 85287, USA.
E-mail: rao@asuvax.asu.edu.

0004-3702/92/$05.00 © 1992--Elsevier Science Publishers B.V. All rights reserved

194 S. Kambhampati, .I.A. Hendler

1. Introduction

Although efficient domain-dependent planning systems (those which use
knowledge particular to the domain of execution to limit planning search) can
be designed for particular applications, the more general problem of domain-
independent nonlinear planning has been shown to be intractable (NP-hard)
[3]. t Thus, approaches which may improve the cost of planning in general
planning systems are being widely sought. One promising avenue for increasing
efficiency is to investigate strategies that improve average-case planning ef-
ficiency by avoiding repetition of planning effort. Despite the long history of
planning systems, most planning work has been concentrated on generating
plans from scratch, without exploiting previous planning effort. Thus, much of
the classical work in planning has been "ahistoric'" and non-incremental--that
is, asked to solve a problem very similar to one it has solved before, the
planner performs no better than it did the first time. Recently, due both to
interest in improving planning efficiency, as well as the gains being made in
machine learning, the design of planning systems which can exploit previous
planning experience has become a topic gaining wide interest in the planning
community.

This paper focuses on an incremental plan modification strategy that allows a
planner to construct a plan for a new planning problem by conservatively
modifying a given p l a n I t h a t is, by retaining as many of the applicable parts of
the given plan as possible. Consider the following common scenario: Suppose a
planner has generated a plan for a particular initial and goal state specification.
It then encounters a change in the problem specification and wants to revise its
plan to make it work in the new situation. One obvious possibility is for the
planner to start from scratch again and find a plan for the changed problem
specification. However, given the high cost of planning, it is worth investigating
if the repetition of planning effort can be avoided by updating the existing plan
to deal with the changes in the specification. Such an ability to incrementally
modify existing plans, to make them conform to the constraints of a new or
changed planning situation, can provide substantial computational advantages
by avoiding repetition of computational effort and respecting previous commit-
ments, in particular, it can support replanning to handle execution time
failures or user-initiated specification changes, and reusing plans to exploit thc
typicality in the problem distribution. Finally, a planner's ability to incremen-
tally modify its plans can also significantly improve its interactions with other
modules in the problem solving environment whose analyses and commitments
depend on the current state of the plan.

This is a simplification of Chapman's results presented in [3]. A discussion of his results, and a
review of AI planning systems and techniques, as well as definitions for many of the planning-
related terms used ill this papcr, can be found in [1(I].

Theory of plan modification 195

We are interested in the computational framework for supporting such
incremental plan modification to accommodate changes in the problem specifi-
cations. Given an existing plan and a set of changes to be accommodated, there
are two central decisions surrounding the modification process: which parts of
the given plan can be salvaged, and in what ways should the other parts be
changed. Two important desiderata for the plan modification capability are
flexibility and conservatism. By "flexibility" we mean that the modification
strategy should be able to deal with a wide variety of specification changes in a
domain-independent fashion, reusing all applicable portions of the existing
plan and gracefully degenerating into planning from scratch as the changes
become more significant. By "conservatism" we mean that the strategy should
modify the plan minimally (i.e., salvage as much of the old plan as possible)
while accommodating the changes in the specification. The former is required
for effective coverage of modification,-" while the latter is needed to ensure
efficiency. Designing modification strategies with these characteristics requires
a systematic framework for maintaining and revising the dependencies under-
lying planning decisions, and the causal and teleological structure of the
plans.

We have developed a theory of plan modification that allows the flexible and
conservative modification of plans generated by a hierarchical nonlinear plan-
ner, and have implemented it in a system called PRIAR. In our theory, the
causal and teleological structure of generated plans are represented in a form
of explanation of plan correctness called a "validation structure". Individual
planning decisions made during the generation of the plan are justified in terms
of their relation to the validation structure. Modification is characterized as a
process of detecting and removing inconsistencies in the validation structure
resulting from the externally imposed constraints. Repair actions utilize the
dependency structures to transform a completed plan with an inconsistent
validation structure into a partially reduced plan with a consistent validation
structure. This partially reduced plan is then sent to the planner for comple-
tion, and a completed plan is produced.

This formalization of the modification process provides a general unified
framework for addressing many subproblems of planning and plan reuse,
including plan modification, execution monitoring and replanning, incremental
updating of plans (to accommodate externally imposed constraints), estimating
the similarity of plans during the retrieval of plans for reuse, and controlling
the choice of new actions to replace changed parts of existing plans. In this
paper, we present the plan modification framework and evaluate its per-
formance, coverage, correctness, efficiency and limitations.

: In other words, we do not want to be limited to some domain-dependent heuristics that may
allow the planner to deal with only a prespecified set of specification changes in an efficient way.

196 S. Kambhampati, J.,4. tlendler

1.1. Overview of the plan modification framework

The plan modification problem that is addressed by the PRIAR system is the
following:

Given
(i) a planning problem P" (specified by a partial description of the initial

state I" and goal state G"),
(ii) an existing plan R ° (generated by a hierarchical nonlinear planner), and

the corresponding planning problem P",

Produce a plan for P" by minimally modifying R '~.

Figure 1 shows the schematic overview of the PRIAR plan modification
framework.

In the PRIAR modification framework, the internal causal dependencies of
generated plans are represented as a form of plan explanation, called a
validation structure. The correctness of a plan is formally characterized in terms
of the consistency of its validation structure. The individual steps of a plan as
well as the planning decisions involved in the generation of that plan (e.g., task
reductions), are justified in terms of their relation to the plan validation
structure. In particular, the plan is annotated with information about the
inconsistencies that will arise in the validation structure in the event these
decisions have to be retracted. PRIAR provides efficient algorithms for au-
tomatically annotating and maintaining these justifications as a by-product of
planning.

External changes in the plan specification are handled by computing the

pn ~ R ° W [Annotation verification
pimN~nWln Id plan int. p l , n I
pIrao~le~m g - ~ R e t r l e v a , ~ma;ping-'~ Interpretation ~-- ÷ - ' ~ ~]] Suggest] I differences I~ lus i fy Ilppll- i---el appropriate I

i I ' G / / p a b l l l t y f l l lures j I reflt tasks I

." Plan Applicable Parts of the old plan
"~Library..." + Ra

Refit Tasks

[~ ~ ~ ~ [~ Refitting //,,.,,,.,.. ~
Planner

Reduction of
refit t l l k l

Annotated Plan R n
for the ne, w problem

Fig. 1. Schematic overview of PRIAR.

Theory of plan modification 197

ramifications of those changes on the plan validation structure, and repairing
any resulting inconsistencies. In particular, modification is formalized as a
process of repairing the inconsistencies in the validation structure of a given
plan when it is mapped into the new problem situation. Given a new problem
P", and an annotated plan R °, PRIAR's modification process proceeds in the

following steps:

(1) Mapping and interpretation: An appropriate mapping a between the
objects of [po, R o] and pn is chosen with the help of the validation
structure of R °, and R ° is mapped into pn with a. Next, the differences
between the initial and goal state specifications of po and Pn are marked.
The resulting interpreted plan, R ~, is typically a plan with an inconsistent
validation structure.

(2) Annotation verification: The inconsistencies in the validation structure of
R ~ are located and, based on their nature, a variety of repairs are
suggested for removing them. The repairs include removing parts of R ~
that are unnecessary and adding nonprimitive tasks (called refit tasks) to
establish any required new validations. The resulting annotation-verified
plan R a will have a consistent validation structure but is typically only
partially reduced. It consists of all the applicable parts of R i and any
newly introduced refit tasks.

(3) Refitting: The refit tasks specified during the annotation verification
phase constitute subplanning problems for the hierarchical planner. The
refitting process involves reducing them with the help of the planner.
Conservatism is ensured during this process through the use of a
heuristic control strategy which utilizes the plan validation structure to
estimate the disturbance caused by various reduction choices to the
applicable parts of R a, and prefers the choices expected to cause least
disturbance. Since the planner is allowed to backtrack over the refit
tasks just as it would over other tasks during generative planning, the
completeness of the underlying planner is not affected.

The computational savings of this approach stem from the fact that the
complexity of solving the subplanning problems during refitting is on the
average significantly less than the complexity of solving the entire planning
problem from scratch. Furthermore, we will show that the overhead costs
involved in augmenting generative planning with a plan modification capability
are very low (of polynomial complexity compared to the exponential complexi-
ty of planning from scratch). Thus, our formalism provides an efficient
framework for improving the run-time of domain-independent planning
through plan modification.

The PRIAR modification framework has been completely implemented. The
planner in the implementation is based on Tate's NONLIN [7, 26]. We modified
NONLIN tO handle partially reduced plans, and to automatically annotate the
generated plans according to the validation-structure-based dependency repre-

198 S. Kamhhampati. ,I.A. Hendler

sentation. The system has been tested in the blocks world domain and in a

manufacturing planning domain [14]. Experiments in the blocks world certainly

bear out the flexibility and efficiency of the incremental plan modification. Our

results show that plan modification can provide up to 1-2 orders of magnitude

reduction in planning cost, over a variety of specification changes (the details

of these studies are provided in Section 7). Similar improvements have also

been observed in a manufacturing planning domain [14, 15], where PRIAR's

ability to incrementally modify an existing plan in response to changes in the

specification also led to an improved interaction between the planner, and

other specialists in the environment that make their commitments based on the
plan.

1.2. Guide to this paper

The rest of this paper is organized as follows. The next section discusses
previous research in plan modification, and motivates the PRIAR framework.

Section 3 introduces some preliminary notation and terminology used through-

out the paper. Section 4 presents the notion of plan validation structure,
characterizes the correctness of a plan in terms of the consistency of its

validation structure, and develops a scheme for justifying the various planning

decisions in terms of their relation to the validation structure. Section 5
formally develops the modification processes for repairing various types of

inconsistencies in the validation structure. Section 6 discusses applications of

the modification f ramework to replanning and plan reuse. Section 7 discusses

the empirical evaluation of the modification strategies, and Section 8 provides
an analysis of the PRIAR plan modification techniques. Section 9 summarizes

the research. Appendix A contains an annotated trace of the PRIAR system

solving a problem and Appendix B contains the specification of the domain

used in the empirical evaluation.

2. Related work

Improving the efficiency of planning by exploiting previous planning ex-
perience has long been recognized as important in AI planning work; PRIAR

draws a great deal from this tradition. The earliest research on learning from
planning experience was done in conjunction with the STRIPS system [6], which
was used to plan the motion of a robot called Shakey and to control it as it
pushed a set of boxes through a number of interconnecting rooms. STRIPS had
the capability to recover from simple execution time failures 3 and to improve

~A well-known SRI film shows Shake)' following a STRIPS-generated plan using an execution
monitor callcd PLANEX. Charley Rosen, the SRI AI Lab founder, dressed in a sinister cloak,
appears and disrupts the position of thc boxes during execution. PLANEX is thcn able to make use
of information maintained by STRIPS to recover from this disruption and complete the plan.

Theory of plan modification 199

its performance by utilizing previous planning experience. It did this by
maintaining two types of information about the generated plans:

(i) macro-operators (also called macrops): generalized (variablized) se-
quences of operators, culled from the previous successful plans,

(ii) triangle-tables: data structures that recorded dependencies between the
state of the world and the operator structure of the plans (and macro-

operators).

However, this method of replanning left STRIPS incapable of modifying the
internal structure of its stored macro-operators to suit new problem situations.
Consequently the macro-operators could be used only when either the entire
macrop or one of its subsequences was applicable in the current situation.
Replanning in STRIPS consisted solely of attempts to restart the plan from an
appropriate previously executed step.

An important reason for the inflexibility of macro-operator-based reuse in
STRIPS was the impoverished plan representation which did not allow for
hierarchical abstraction and least commitment. A recent hierarchical linear
problem solver called ARGO [11] tries to partially overcome the former by
remembering macro-operators for each level of its hierarchical plan. However,
it too lacks the capability to modify the intermediate steps of a chosen
macro-operator, and is consequently unable to reuse all the applicable portions
of a plan.

The inflexibility of macrops-based reuse led to the investigation of richer
dependency structure representations (e.g. [5,9]), and a larger variety of
modification strategies (e.g. [31]). Hayes' [9] route planner was the first to
advocate explicitly represented internal dependencies for guiding replanning.
However, his framework was very domain-specific, and since his was a linear
planner, the only replanning action allowed was deletion of some parts of the
plan, thereby permitting the planner to re-achieve some higher-level in-
dependent subgoals in the hierarchical development of the plan.

NONLIN [26,27] was the first hierarchical nonlinear planner to advocate
explicit representation of goal dependencies to guide planning. Its GOST data
structure was essentially a list of protection intervals associated with the plan
which was used during planning to guide interaction detection and resolution.
Daniel [5] exploited NONLIN's plan structure to develop a framework for
representing decision dependencies to aid in backtracking during planning. The
intent was to enable NONt.IN tO do dependency-directed backtracking during
plan generation. While Daniel's research did not explicitly consider replanning
or reuse problems, it generalized Hayes' notion of decision graphs significantly
to capture the inter-decision dependencies induced by NONLIN.

Wilkins [31] extended the state of the art of domain-independent replanning
significantly in his SIPE system. SIPE used context-layered world models, and a
rich representation of plans to keep track of the dependencies between the

20(I S. Kambhampati, J.A. Hendler

plan, the specification, and intermediate planning decisions. To deal with
execution-time failures during replanning in SIPE, Wilkins proposed a tax-

onomy of repair actions, based on SIPE's dependency structures. The tech-
niques were largely planner-specific, in that they were designed with the
particulars of the SIPE program in mind.

The work described in this paper is to some extent a generalization of
Wilkins' framework. However, an important difference is that Wilkins did not

at tempt to provide a formal basis for his dependency structures and the
modification actions. This makes it very difficult to formally characterize the
coverage or correctness of the modification strategies he employed. In contrast,

our validation-structure-based theory presents a more formal representation of
the internal dependencies used during plan modification. In particular, the
correctness of the plan is defined in terms of the validation structure, and the
individual planning decisions are justified in terms of their relation to the plan
validation structure. This provides a clean framework to state, analyze and
evaluate the modification strategies. In addition, our framework is somewhat
more general than SlPE's in that it provides a unified basis for addressing
several other subproblems of plan modification and reuse, including retrieval
and mapping, and control of search during replanning--problems not ad-
dressed in Wilkins' model.

The framework described in this paper also relates to recent work in
case-based reasoning, which addresses the issues involved in the adaptation of
stored plans to new situations (e.g., [1,2, 8]). In these systems the aim has
been to make a majority of planning operations memory-based, so that plans
are constructed by retrieving old plans, and applying appropriate patches to
tailor them to specific circumstances. The emphasis of this work has typically
been on heuristic modification strategies, with the planner assessing the
correctness of modification only through external simulation or execution-time
feedback. This is to some extent a reflection of the characteristics of the
domains in which these systems were developed, where ensuring correctness of
modification and avoiding executing-time failures were not as critical as the
need to control access to planning knowledge.

Alterman's PLEXUS [1] system, for example, is an adaptive planner which
starts with a highly structured plan library, and relies on the placement of a
plan in the context of other plans in the library to guide adaptation. PLEXUS'
primary mode of detecting applicability failures is through execution-time
failures. When a failure is detected, the system attempts to exploit helpful cues
from the new problem situation to trigger appropriate refitting choices to repair
those applicability failures, and execute the result in turn. Similarly, Ham-
mond's CHEF' program [8] stores plans without an explicitly represented
dependency structure. To be applied to a new situation, the plans are modified
by domain-dependent modification rules to make the old plan satisfy all the
goals of a new problem. These modification strategies do not consider the

Theory of plan modification 201

internal causal dependency structure of the plan, and thus can lead to incorrect
plans even relative to the domain knowledge contained in the case base and the
modifier. C H E F relies on the assumption that the retrieval strategy and modifi-
cation rules are robust enough to prevent frequent occurrence of such incorrect
plans. To reduce the likelihood of failure of heuristically modified plans during
execution, case-based reasoning systems test the modified plan with respect to
an external domain model (simulator), and use the feedback to make repairs in
the event of failure. For example, Hammond's CHEF system uses a domain-
specific causal simulator to judge the correctness of a plan after it has been
modified [8]. Dependency-directed debugging work in planning, such as Sim-
mons' GORDIUS system [23, 25] also falls in this category. GORDIUS [23, 24]
uses a generate-test-debug methodology, with an external simulator used for
debugging the plans generated with the help of a set of heuristic associative
rules.

In contrast to these approaches, our model is concerned with the flexibility
of the modification strategy and the correctness of the modified plan relative to
the planner's domain knowledge. Modification is closely integrated with
generative planning, and is guided by the causal dependencies of the plan being
modified, rather than by execution-time failures or by the results of external
simulation. Thus, unlike the debugging strategies, which aim to compensate for
the inadequacies of a generative planner, the primary motivation for modifica-
tion in P R I A R is tO improve the efficiency of planning without affecting the
correctness of the plans produced.

The ability to improve efficiency without recourse to execution-time failure
repair (or simulation thereof) is important in domains where execution-time
failures can have significant costs or where a simulator doesn't exist. Further-
more, even if detailed external simulators are available, given the high cost of
simulation and debugging (see [24]), it seems reasonable to ensure the correct-
ness of modification with respect to the planner's own model before going to
the simulation and debugging phase, as this increases the likelihood of the plan
being correct with respect to the simulator.

To summarize, in relationship to previous research, our work has empha-
sized the provision of a formal domain-independent basis for flexible and
conservative modification of plans. This approach allows us to better character-
ize the coverage and efficacy of the modification framework. In addition, our
formalization also provides a unified framework for addressing a number of
related subproblems of plan modification and reuse.

3. Preliminaries, notation and terminology

This paper develops a theory of plan modification in the context of hierarchi-
cal nonlinear planning. Hierarchical nonlinear planning (also known as hierar-

O
n(

A
,T

ab
le

)&
C

le
ar

(A
)

&
O

n(
B

,T
ab

le
)&

C
le

ar
(B

)
&O

n(
C

,T
ab

le
)&

C
le

ar
(C

)
B

Io
ck

(A
),B

lo
ck

(B
),B

lo
ck

(C
)

O
n(

A,
B)

&O
n(

B,
C

)

in
pu

t
st

at
e

n I

--
C

le
ar

(C
)

.~

C
le

ar
(B

)
_-

.._

C
le

ar
(A

)
~-

"-"

O
n(

B,
Ta

bl
e)

 "
-.

O
n(

A
,T

ab
le

)"

Ff

~n
l]A

1,
B)

&O
n(

B,
C

 1

n2
:A

[O
nl

B
,C

)]

I n
3:

A

[O
n(

A
,B

)]

!
Sc

h:
 M

ak
e-

on
(B

,C
)

I S
ch

: M
ak

e-
on

(A
,B

)
ef

t:
O

n(
B,

C
)

I e
ft:

 O
n(

A,
B)

~

""
-'

-~
..

.
_Z

~
~

_

__

/
\

~

L_
_

"7
"--

--.

n6
: D

O[
Pu

ton
(B

,C
)]

~O
N

'
AC

~O
N

AC

n(B
,C

)
ef

t
O

n(
A,

B)

~
~

PR
IM

ITI
VE

PR

IM
IT

IV
E'

~

"
~

 ~
.~

,~

ef
t:

O
n(B

.C)

ef
t

O
n(A

,e)
J

va
lid

at
io

ns

In
pu

t
S

it
u

at
io

n

pO
 3

a
s

go
al

 n G

G
o

al

st
at

e

/O
n(

A
,B

)

/O
n(

B
,C

)

2~

Fi
g.

 2
.

V
al

id
at

io
n

st
ru

ct
ur

e
of

 3
B

S
ph

in
.

Theory of plan modification 203

chical planning) is the most prevalent method of abstraction and least commit-
ment in domain-independent planning. A good introduction to this methodolo-
gy can be found in [4]. Some well-known hierarchical planners include N O A H

[22], NONLIN [27] and S1PE [30]. (For a review of these and other previous

approaches to planning, see [10].)
In hierarchical planning, a partial plan is represented as a task network

consisting of high-level tasks to be carried out. A task network is a set of tasks
with partial chronological ordering relations among the tasks. Planning in-
volves reducing these high-level tasks with the help of predefined "task
reduction schemas" to successively more concrete subtasks. The task reduction
schemas are given to the planner a priori as part of the domain specification.
The collection of task networks, at increasing levels of detail, shows the
development of the plan and is called the "hierarchical task network" or
"HTN" of the plan. Planning is considered complete when all the leaf nodes of
the HTN are either primitive tasks (tasks that cannot be decomposed any
further) or phantom goals (tasks whose intended effects are achieved as
side-effects of some other tasks). The entire tree structure in Fig. 2 shows the
hierarchical plan for a simple blocks world planning problem. In the following,
we provide formal definitions of some of these notions, to facilitate the
development in the rest of the paper.

3.1. Partial plans and task networks

A partial plan P is represented as a task network and can be formalized [33]
as a 3-tuple (T, O, H) , where T is a set of tasks, O defines a partial ordering
among elements of T, and / / i s a set of conditions along with specifications
about the ranges where the conditions must hold.

Task (action) representation
Each task T has a set of applicability conditions, denoted by conditions(T),

and a set of expected postconditions, denoted by effects(T). In this paper, we
will assume that both effects(T) and conditions(T) of each instantiated action
consist of quantifier-free literals in first-order predicate calculus. The non-
negated atomic formulas of effects(T) correspond to the operator "add-lists" in
STRIPS terminology, while the negated atomic formulas correspond to the
operator "delete-lists". It should be noted that this task representation does
not allow conditional effects and deductive effects [3] (see Section 8.1).

Protection intervals
Elements of / / are called protection intervals [4], and are represented by

3-tuples (E, t 1, t2), where tl, t 2 E T, E E effects(t~) and E has to necessarily
persist up to t 2.

204 S. Kambhampati..I.A. Hendler

3.2. Schemas and task reduction

A task reduction schema S can itself be formalized as a mini task network
template that can be used to replace some task t ¢ T of the plan P, when
certain applicability conditions of the schema are satisfied. Satisfying the

applicability conditions this way involves adding new protection intervals to the
resultant plan. Thus, when the set of applicability conditions {C~) of an
instance S i of a task reduction schema S can be satisfied at a task t in a partial
plan /9, then t can be reduced with S i. The reduction, denoted by Si(t), is
another task network (T s, Os, I1 s) . The task t will be linked by a parent
relation to each task of Ts. 4 The plan P' resulting from this task reduction is
constructed by incorporating Si(t) into P. During this incorporation step, some
harmful interactions may develop due to the violation of established protection
intervals of P. The planner handles these harmful interactions either by posting
additional partial ordering relations, or by backtracking over previous planning
decisions. When the planner is successful in incorporating S~(t) into P and
resolving all the harmful interactions, the resultant plan, P', can be represented
by the task network

P': (TU T,- { t } ,O 'UO~UO,, f / ') ,

where

(1) O ' is computed by appropriately redirecting the ordering relations
involving the reduced task t to its children;

(2) O~ are the ordering relations introduced during the interaction resolu-
tion phase;

(3) finally, the protection in te rva l s / / ' are computed by (i) combining H and
f/s, (ii) adding any protection intervals that were newly established to
support the applicability conditions of the schema instance S~, (iii)
appropriately redirecting the protection intervals involving the reduced
task t to its children.

During the redirection in the last step, the planner converts any protection
interval (E, t~, t 2) ~ II where t 1 = t to (C, tsh, t 2), and converts any protection
interval where t~ = t to (C, t~, ts~) (where tsb and ts~ are appropriate tasks
belonging to T s,). The various implemented planners follow different conven-
tions about how the appropriate tSb and ts~ are computed. For example,
irrespective of the protected condition E, NONLIN [26] makes tsb to be tbeg , and
ts~ to be t,~.j, where tbeg and t~, d are the beginning and ending tasks of T s (i.e.,
no tasks of T s precedes tb~g or follows t~,,d) respectively. Other conventions
might look at the effects and conditions of tasks belonging to T s to decide ts, ,

When the task t is of the form achieve(C), and C can be achieved directly by using the effects
of some other task t(E T, then t becomes a phantom task and its reduction becomes
({phantom(C)}, 0, ~3}. A new protection interval (C, q., t) will be added to the resultant plan.

Theory of plan modification 205

and tSb. For the purposes of this paper, either of these conventions is

admissible.

Search control
The planner uses a backtracking control strategy to explore its search space.

Thus, if the planner is unable to resolve any harmful interactions through
addition of ordering relations as above, then it backtracks to explore other

reduction choices.

3.3. Completed plan

A task network is said to represent a completed plan when none of its tasks
have to be reduced further, and none of its protection intervals are violated.
The planner cannot reduce certain distinguished tasks of the domain called
primitive tasks. (It is assumed that the domain agent already knows how to
execute such tasks.) Furthermore, if all the required effects of a task are
already true in a given partial plan, then that task does not have to be reduced
(such tasks are called phantom goals [4]).

3.4. Hierarchical task network (HTN)

The hierarchical development of a plan P: (T, O, H) is captured by its
hierarchical task network (abbreviated as HTN). HTN(P) is a 3-tuple
(P: (T, O, H) , T*, D) , where T* is the union of set of tasks in Tand all their
ancestors, and D represents the parent-child relations between the elements of
T*. The set H is the set of protection intervals associated with HTN(P). (For
convenience, we shall abbreviate HTN(P) with HTN when the reference to P is
unambiguous, and also refer to the members of T* as the nodes of HTN.) The
HTN of a plan captures the development of that plan in terms of the corre-
sponding task reductions. We shall refer to the number of leaf nodes in the
HTN, I TI, as the length of the corresponding plan, and denote it by N e.

For the sake of uniformity, we shall assume that there are two special
primitive nodes n~ and n~ in the HTN corresponding to the input state and the
goal state of the planning problem, such that effects(n 0 comprise the facts true
in the initial specification of the problem, and conditions(riG) contain the goals
of the problem. The notation "n~ < n2" (where n~ and n 2 are nodes of HTN) is
used to indicate that n I is ordered to precede n 2 in the partially ordered plan
represented by the HTN (i.e., n~ E predecessor*(n2), where the predecessor
relations enforce the partial ordering among the nodes of the HTN). Similarly,
"n~ > n2" denotes that nj is ordered to follow n 2, and "n~ II n2" denotes that
there is no ordering relation between the two nodes (nl is parallel to n2). The
set consisting of a node n and all its descendents in the HTN is defined as the
subreduction of n, and is denoted by R(n). Following [4, 27], we also dis-

206 S. Kambhampati , ,I. A. Hendler

tinguish two types of operator applicability conditions: the preconditions (such
as Clear(A) in the blocks world) which the planner can achieve, and the filter
conditions (such as Block(A)) which the planner can test for, but cannot

achieve. We shall use the notation "F ~ f " to indicate that f directly follows
from the set of facts in F. Finally, the modal operators " [] " and " ~ " denote
necessary and possible truth of an assertion.

4. Validation structure and annotations

Here we formally develop the notion of the validation structure of a plan as
an explicit representation of the internal dependencies of a plan, and provide
motivation for remembering such structures along with the stored plan. We will
begin the discussion by defining our notion of a validation, present a scheme
for representing the validation structure locally as annotations on individual

nodes of a HTN, and finally, discuss algorithms for efficient computation of
these node validations.

4.1. Validation structure

4.1.1. Validation
A validation v is a 4-tuple (E , n~, C, nd), where n~ and nj are leaf nodes

belonging to the HTN, and the effect E of node n~ (called the source) is used to
satisfy the applicability condition C of node nj (called the destination). C and E
are referred to as the supported condition and the supporting effect, respective-
ly, of the validation. As a necessary condition for the existence of the
validation v, the partial ordering among the tasks in the HTN must satisfy the
relation n~ < n,~.

Notice that every validation v: (E, n~, C, nd) corresponds to a protection
interval (E, n~, nd)CI1 of the HTN (that is, the effect E of node n~ is
protected from node n~ to node nd). This correspondence implies that there
will be a finite set of validations corresponding to a given HTN representing the
development of a plan; we shall call this set V. (If c is the maximum number of
applicability conditions for any action in the domain then IV I ~< ~Np, where Np
is the length of the plan as defined above [12].)

The validation structure can be seen as an explanation of how each proposi-
tion that is either a precondition of a plan step, or a goal of the overall plan,
satisfies the modal truth criterion used by the planner [3]. Given this, it is
straightforward to construct the validation structure of a given partially ordered
plan with the help of the relevant modal truth criterion, even if the information
corresponding to the protection intervals is not maintained by the planner. In
particular, for plans using TWEAK-like action representation, the validation
structure can be computed in polynomial time (see [16] for details).

Theory of plan modification 207

Figure 2 shows the validation structure of the plan for solving a block
stacking problem, 3BS (also shown in the figure). Validations are represented
graphically as links between the effect of the source node and the condition of
the destination node. (For the sake of exposition, validations supporting
conditions of the type Block(?x) have not been shown in the figure.) As an
example, (On(B, C), nxs, On(B, C), n~) is a validation belonging to this plan

since On(B, C) is required as the goal state n c, and is provided by the effect

On(B, C) of node n15.
Validations of a plan are distinguished by the type of conditions that they

support, as well as level at which they were introduced into the plan during the
reduction process. In particular, the type of a validation is defined as the type

of the applicability condition that the validation supports (one of filter condi-
tion, precondition, or phantom goal). The level of a validation is defined as the
reduction level at which it was first introduced into the blTY (see [12] for the
formalization of this notion). For example, in Fig. 2, the validation

(Block(A), n l, Block(A), nl~,)

is considered to be of a higher level than the validation

(On(A, Table), n~, On(A, Table), n16) ,

since the former is introduced into the HTN to facilitate the reduction of task n 3
while the latter is introduced during the reduction of task n 9. A useful
characteristic of hierarchical planning is that its domain schemas are written in
such a way that the more important validations are established at higher levels,
while the establishment of less important validations is delegated to lower
levels. Thus, the level at which a validation is first introduced into an HTN can
be taken to be predictive of the importance of that validation, and the effort
required to (re)establish it. 5 The validation levels can be pre-computed effi-
ciently at the time of annotation.

As the specification of the plan changes or as the planner makes new
planning decisions, the dependencies of the plan as represented in its validation
structure get affected. The notion of consistency of validation structure,
developed below, captures the effects of such changes on the plan validation
structure.

4.1.2. Consistency of validation structure
Let V be the set of validations of the HTN (P: (T, O, H), T*, D), and I and

G be the initial and goal state specifications of the HTN. We define a notion of
correctness of a partially reduced HTN in terms of its set of validations in the
following way:

• We assume that domain schemas having this type of abstraction property are supplied/encoded
by the user in the first place. What we are doing here is to exploit the notion of importance implicit
in that abstraction.

208 S. Kambhampati, J.A. Hendler

• For each g ¢ G, and each applicability condition C of the tasks t ¢ T,
there exists a validation v E V supporting that goal or condition. If this
condition is not satisfied, the plan is said to contain missing validations.

• None of the plan validations are violated. That is, Vv: E, n~, C, n d > E V,

and

E E effects(n~) (1)

~ n E T s.t. O(n~ < n < nd) ix effects(n) F- -7 C (2)

If this constraint is not satisfied, then the plan is said to contain failing
validations.

In addition, we introduce a relevance condition as follows:

• For each validation v: <E, n~, C, n d) E V , there exists a chain of valida-
tions the first of which is supported by the effects of n d and the last of
which supports a goal of the plan. (More formally, Vv: (E , n~, C, n~) E V
there exists a sequence [v 1, v 2 v k] of validations belonging to V, such
that (i) vk: <E k, n~, C ~;, n~) supports a goal of the plan (i.e., C ¢~ E G)
and (ii) v k ~' (E k ', n~ ~, C k, n~) supports an applicability condition C k

k k - 2 k - J I on n~, v supports an applicability condition of n~ and so on, with v
being supported by an effect of nd.) If this constraint is not satisfied, then
the plan is said to contain unnecessary validations.

A plan that satisfies all these conditions is said to have a consistent validation
structure. The missing, failing and unnecessary validations defined above are
collectively referred to as inconsistencies in the plan validation structure. Note
that this definition of correctness is applicable to both completely and partially
reduced HTNS. In particular, a completely reduced plan with a consistent
validation structure constitutes a valid executable plan.

Let us consider the example of the 3BS plan shown in Fig. 2. If the
specification of this plan is changed such that On(A, B) is no longer a goal,
then { On(A, B), nl~, On(A, B), nc;) will be an unnecessary validation. Fur-
ther, if the new specification contains a goal On(A, D), there will be no
validation supporting the condition node pair < On(A, D), n~;). There is then a
missing validation corresponding to this pair. Finally, if we suppose that the
new specification contains On(D, A) in its initial state, then the validation
(Clear(A), n., Clear(A), nT) will fail, as effect(n~)~ Clear(A).

4.2. Justifying planning decisions in terms of validation structure

To facilitate efficient reasoning about the correctness of a plan, and to guide
incremental modification, we characterize the role played by the individual
steps of the plan and planning decisions underlying its development in terms of
their relation to the validation structure of the plan. We accomplish this by

Theory of plan modification 209

annotating the individual nodes of the HTN of the plan with the set of
validations that encapsulates the role played by the subreduction below that
node in the validation structure of the overall plan. In particular, for each node

n E HTN we define the notions of

(i) e-conditions(n), which are the externally useful validations supplied by
the nodes belonging to R(n) (the sub-reduction below n)

(ii) e-preconditions(n), which are the externally established validations that
are consumed by nodes of R(n), and

(iii) p-conditions(n), which are the external validations of the plan that are
required to persist over the nodes of R(n).

4.2.1. E-conditions (external effect conditions)
The e-conditions of a node n correspond to the validations supported by the

effects of any node of R(n) which are used to satisfy applicability conditions of
the nodes that lie outside the subreduction. Thus,

e-conditions(n) = {v/: (E, n s, C, nd) I Vi E V; n s E R(n); n d ~ R(n)} .

For example, the e-conditions of the node n 3 of the H T N Of Fig. 2 contain just
the validation (On(A, B), n~6, On(A, B), n~) since that is the only effect of
R(n3) which is used outside of R(n3). The e-conditions provide a way of stating
the externally useful effects of subreduction. They can be used to decide when
a subreduction is no longer necessary, or how a change in its effects will affect
the validation structure of the parts of the plan outside the subreduction.

From this definition, the following relations between the e-conditions of a
node and the e-conditions of its children follow:

(1) If n is a leaf node, then R(n) = {n} and the e-conditions of n will simply
be all the validations of H T N whose source is n.

(2) If n is not a leaf node, and n¢ C children(n), and vc: (E , ns, C, rid) is an
e-condition of no, then v c will also be an e-condition of n as long as
n d ~_ R(n) (since R(n~) C_ R(n), [ns E R(nc)] ~ [n~ @ R(n)]).

(3) If v: (E , ns, C, rid) is an e-condition of n, then 3n¢E children(n) such
that v is an e-condition of n c. This follows from the fact that if n d ~ R(n)
then Vn~ E children(n), n d ~ R(nc), and that if n, E R(n), then 3n~ E
children(n) such that n~ ~ R(nc).

These relations allow P R I A R to first compute the e-conditions of all the leaf
nodes of the HTN, and then compute the e-conditions of the non-leaf nodes
from the e-conditions of their children (see Section 4.3).

4.2.2. E-preconditions (external preconditions)
The e-preconditions of a node n correspond to the validations supporting the

applicability conditions of any node of R(n) that are satisfied by the effects of

210 S. Kambhampati, J A. ttendler

the nodes that lie outside of R(n). Thus,

e-preconditions(n)

={ui : E,n~, C, n d)] u i E V ; n l ¢ R (n) ; n ~ R (n) } .

For example, the e-preconditions of the node n~ in the HTN of Fig. 2 will

include the validations

(Clear(A), n., Clear(A), nT) and (Clear(B), n~, Clear(B), ns) .

The e-preconditions of a node can be used to locate the parts of rest of the plan

that might become unnecessary or redundant, if the subreduction below that
node is changed.

From the definition, the following relations between the e-preconditions of a
node and the e-preconditions of its children follow:

(1) If n is a leaf node, then R(n) = {n} and the e-preconditions of n will
simply be all the validations of HTN whose destination is n.

(2) If n is not a leaf node, and n~ E children(n), and vc: (E , n~, C, na) is an

e-precondition of n~., then u,, will also be an e-precondition of n as long

as n~ ~ R(n) (since R(n~) C_ R(n), n d C R(n)).
(3) If v: (E , n~, C, nd) is an e-precondition of n, then 3n~¢children(n)

such that v is an e-precondition of n~. This follows from the fact that if

n~ ~ R(n) then Vn~, E children(n) n~ ~ R(n~) and that if n,i ~ R(n), then

3n~ E children(n) such that n d E R(n,).

From the definitions of e-conditions and e-preconditions, it should be clear

that they form the forward and backward validation dependency links in the
HTN. For the sake of uniformity, the set of validations of type (E , n~, G, n~;)
(where G is a goal of the plan) are considered e-preconditions of the goal node
nc;. Similarly, the set of validations of type (I, n~, C, n,) (where I is a fact that

is true in the input state of the plan) are considered e-conditions of the input

node n j.

4.2.3. P-conditions (persistence conditions)
P-conditions of a node n correspond to the protection intervals of the HTN

that are external to R(n), and have to persist over some part of R(n) for the

rest of the plan to have a consistent validation structure. We define them in the

following way:
A validation v,: (E, n~, C, n d) E V is said to intersect the subreduction R(n)

below a node n (denoted by "v i Q R(n)") if there exists a leaf node n' ~ R(n)
such that n ' falls between n~ and nj for some total ordering of the tasks in the

HTN. In other words,

u;: (E , t L, C , n d) ® R (n)

iff (3n' E R(n)) s.t. children(n') = ~ A ~(n~ < n < nd) .

Theory of plan modification 211

Given that n S < n d, the only cases in which O(ns < n' < ha) are:

(i) n' is already totally ordered between n~ and n d, i.e., E](n~ < n ' < nd),

(ii) n ' < n d A n ' l l n s ,
(iii) n~ < n' /x n' II nd,

(iv) n '[Ins^n ' l tn~ .

Using the transitivity of the " < " relation, we can simplify this disjunction to

ns<n ' < n d v n~l[n' v n d l l n ' .

Thus, we can re-express the " ® " relation as

vi: (E, n,, C, nd) @ R(n)

iff 3n' E R(n) s.t. children(n') = ~ ^

(n , < n ' < nd v nsll n ' v n~ l l n ') •

A validation vi: (E, n s, C, nd) ¢ V is considered a p-condition of a node n iff
vi intersects R(n) and neither the source nor the destination of the validation

belong to R(n). Thus,

p-conditions(n)

= {v i: (E, n S, C, n d) [v i ~V; n~, n d ~ R(n); v iQR(n) } .

From this definition, it follows that if the effects of any node of R(n) violate the
validations corresponding to the p-conditions of n, then there will be a
potential for harmful interactions. As an example, the p-conditions of the node

n 3 in the HTN of Fig. 2 will contain the validation (On(B, C), n 15, On(B, C), n G)
since the condition On(B, C), which is achieved at n~5 would have to persist
over R(n3) to support the condition (goal) On(B, C) at n G. The p-conditions
are useful in gauging the effect of changes made at the subreduction below a
node on the validations external to that subreduction. They are of particular
importance in localizing the changes to the plan during refitting [17].

From the definition of p-conditions, the following relations follow:

(1) p-conditions(n l) = p-conditions(nG) = f).
(2) When n is a leaf node, (i.e., children(n) = ~J), R(n) will be {n}, and the

definition of p-conditions(n) can be simplified as follows. From the
definition of ®,

v,: <E, n~, c, n~>®{n} =--n~lln v ndlln v (n~<n<nd)

=---n(n<n, v n > n d)

and, thus when n is a leaf node

p-conditions(n)

= {~,: <E, n~, c , n~) [v, ~ V; n~ # n; n~ ¢ n;

--n(n < n~ v n > nd) } .

212 S. Kambhampati, ,I.A. ttendler

(3) If n. C children(n), and v,: (E, n,, C, n d) C p-conditions(n~),
then

v, E p-conditions(n) iff n~, n d ~_ R(n) .

This follows from the fact that if vc@R(nc) then 3 n ' E R(nc) which

satisfies the ordering restriction of "@". Since R(n~)C_ R(n), we also

have n' ~ R(n) and thus v,. @ R(n). So, as long as n~, n d ~ R(n), v c will

also be a p-condition of n.

(4) If n is not a leaf node and v ~ p-conditions(n), then

3n~ E children(n) s.t. u E p-conditions(n,,).

This follows from the fact that for v to be a p-condition of n, there
should exist a leaf node n ' belonging to R(n) such that the ordering

restriction of the " ® " relation is satisfied. But, from the definition of

subreduction, any leaf node of R(n) should also have to be a leaf node
of the subreduction of one of its children. So,

3n,, E children(n) s.t. n' C R(n~) .

Moreover , as the source and destination nodes of v do not belong to

R(n), they will also not belong to R(nc).

4.2.4. Validation states

If n is a primitive task belonging to the HTN, then we define structures called

preceding validation state, AV(n), and succeeding validation state, A~(n), as

follows:

AV(n) = e-preconditions(n) U p-conditions(n) ,

AS(n) = e-conditions(n) U p-conditions(n) .

Thus, the validation states AP(n) and A'(n) are collections of validations that
should be preserved by the state of the world preceding and following the

execution of task n, respectively, for the rest of the plan to have a consistent
validation structure. In other words, the plan can be successfully executed from

any state W of the world such that

Vv: { E, n~, C, nd) E A~(nl) , W k E .

Validation states can be used to gauge how a change in the expected state of
the world will affect the validation structure of the plan. This is useful both in
reuse, where an existing plan is used in a new problem situation, and in
replanning, where the current plan needs to be modified in response to
execution time expectation failures. The validation states can be seen as a
generalization of STRIPS' triangle-tables [6], for partially ordered plans. In
Section 6, we will show that the validation states also provide a clean
f ramework for execution monitoring for partially ordered plans.

Theory of plan modification 213

4.3. Computing annotations

In the PRIAR framework, at the end of a planning session, the HTN showing
the development of the plan at various levels of abstraction is retained, and
each node n of the HTN is annotated with the following information:

(1) Schema(n), the schema instance that reduces node n,
(2) Orderings(n), the ordering relations that were imposed during the

expansion of n (see Section 3.2), 6
(3) e-preconditions(n),
(4) e-conditions(n),
(5) p-conditions(n).

Schema(n) and Orderings(n) are recorded in a straightforward way during
the planning itself. The rest of the node annotations are computed in two
phases: First, the annotations for the leaf nodes of the HTN are computed with
the help of the plan's set of validations, 7 V, and the partial ordering relations of
the HTN. Next, using relations between the annotations of a node and its
children, the annotations are propagated to non-leaf nodes in a bottom-up
breadth-first fashion. The exact algorithms are given in [12], and are fairly
straightforward to understand given the development of the previous sections.
If N e is the length of the plan (as measured by the number of leaf nodes of the
HTN), the time complexity of annotation computation can be shown to be
O(N 2) [12]. Note that the ease of annotation computation reinforces the
advantages to be gained by integrating planning and plan modification, as all
the relevant information is available in the plan-time data structures. With
respect to storage, the important point to be noted is that PRIAR essentially
remembers only the HTN representing the development of the plan and not the
whole explored search space. If the individual validations are stored in one
place, and the node annotations are implemented as pointers to these, the
increase in storage requirements (as compared to the storage of the un-
annotated HTN) is insignificant.

While the procedures discussed above compute the annotations of a HTN in
one shot, often during plan modification, PRIAR needs to add and remove
validations from the HTN one at a time. To handle this, PR1AR also provides
algorithms called Add-Validation and Remove-Validation (shown in Figs. 3 and
4 respectively) to update node annotations consistently when incrementally

Alternately, orderings can also be justified independently in terms of the validation structure;
with each ordering relation, we can associate a set of validations that would be violated if that
ordering is removed. This information is useful for undoing task reductions during plan modifica-
tions; see Section 5.2.1.

7 As mentioned previously, the set of validations can be computed directly from the set of
protection intervals associated with the plan. Most hierarchical planners keep an explicit record of
the protection intervals underlying the plan. PRIAR's NONLIN-based planner maintains this
information in its GOST data structure.

214 S. Kamhhampati. ,I.A. ltendler

Procedure Add-Validation(v: (E, n~, C, nd}, HTN: { P: (T , O, II}, T*, D })
1 begin

2 V~-V U {v}

3 foreach n ' ~ {n~} U ancestors(n~) do

4 if n d ~ R(n')
5 then

6 e-conditions(n') ~-- e-conditions(n') U { v } fi od

7 foreach n ' ~ {n~l } U ancestors(nd) do

8 if n~ f~ R(n')
9 then

10 e-preconditions(n') ~-- e-preconditions(n') U { v } fi od

11 f o r e a c h n E T * s.t. n # n , ~ A n # n ~ A

12 children(n) = 0 A ~(n < n~ v n > nj) do

13 foreaeh n ' E {n} U ancestors(n) do

14 if n~, n d ~ R(n')
15 then

16 p-conditions(n') ~--p-conditions(n') U { v} fi od od

17 end

Fig. 3. Procedure for incremcntally adding validations to the HTN.

P rocedure Remove-Validation(v: (E, n~, C, nd), HTN: { P: (T , O, I1), T*, D })
1 begin

2 V ~ V - {v}

3 foreach n ' ~ {n~} U ancestors(n~) do

4 if n d ~ R(n')
5 then
6 e-conditions(n') ~ e-conditions(n') - { v } fi od

7 foreach n ' E {nd} U ancestors(nd) do

8 if n ~ R(n')
9 then

10 e-preconditions(n') ~-- e-preconditions(n') - { v } fi od

11 foreach n ~ T* do
12 p-conditions(n) ~-- p-conditions(n) - { v } fi od

13 end

Fig. 4. Procedure for incrementally removing validations from the HTN.

Theory of plan modification 215

adding or deleting validations from the HTN. 8 PRIAR uses these procedures to
re-annotate the HTN when changes are made to it during the modification
process. They can also be called by the planner any time it establishes or
removes a new validation (or protection interval) during the development of
the plan, to dynamically annotate the HTN. The time complexity of these
algorithms is O(Np).

5. Modification by annotation verification

We will now turn to the plan modification process, and demonstrate the
utility of the annotated validation structure in modifying a plan in response to a
specification change. Throughout the ensuing discussion, we will be following
the blocks world example case of modifying the plan for the three-block-
stacking problem 3BS (i.e., R °= 3BS) shown on the left side in Fig. 5 to
produce a plan for a five-block-stacking problem S5BS1 (i.e., pn= 85B81),9
shown on the right side. We shall refer to this as the 3BS--~ S5BS1 example.

5.1. Mapping and interpretation

In PRIAR, the set of possible mappings between [P°, R °] and pn are found
through a partial unification of the goals of the two problems. There are
typically several semantically consistent mappings between the two planning
situations. While the PRIAR modification framework would be able to succeed
with any of those mappings, selecting the right mapping can considerably
reduce the cost of modification. The mapping and retrieval methodology used
by PRIAR [12, 13] achieves this by selecting mappings based on the number and
type of inconsistencies that would be caused in the validation structure of R °.

On(J.Table)&Clear(J) On(L,K)&On(K.J)
&On (I.Table)&Clear(K) &On(J,I)&Clear(M)

&On(K,I)&Clear(L)
On(A,B)&On(B,C) &On(L.M)&On(M,Table)

On (A,Table)&Clear(A) Block(I)&Block(J)

Block(A),Block(B),Block(C) &On(C &On(B,Table)&Clear (B) ,Table)&Clear(C) ~ ~ &Block(K)&Block(L)&Block(M) ~ ~

~ - ~ ~ roused~ ~
Input Situation Goal Input situation Goal

n
pO 3BS P SSBS1

Fig. 5. The 3BS---~S5BSI modification problem.

s Note that any addition and removal of validations is always accompanied by a corresponding
change to the set of protection intervals, H, of the plan.

It may be interesting to note that S5BS1 contains an instance of what is known as the Sussman
Anomaly [31.

216 S. Karnbhampati, J.A. tlendler

While the details of this strategy are beyond the scope of this paper, a brief
discussion appears in Section 6.2. For the present, we shall simply assume that
such a mapping is provided to us. (It should be noted that the mapping stage is

not important when PRIAR is used to modify a plan in response to incremental
changes in its specification, as is the case during incremental planning or
replanning.)

The purpose of the interpretation procedure is to map the given plan R °,
along with its annotations, into the new planning situation pn marking the
differences between the old and new planning situations. These differences
serve to focus the annotation verification procedure (see Section 5.2.1) on the
inconsistencies in the validation structure of the interpreted plan. Let I" and
G o be the description of the initial state, and the set of goals to be achieved by
R ° respectively. Similarly, let I n and G" be the corresponding descriptions for
the new problem P". The interpreted plan R ~ is constructed by mapping the
given plan R ° along with its annotations into the new problem situation, with
the help of the mapping a. Next, the interpreted initial state 1 ~, and the
interpreted goal state, G ~, are computed as

I i = I n U I " ' a and G i = G" U G " . a

(where " . " refers to the operation of object substitution). Finally, some facts
of I ~ and G i are marked to point out the following four types of differences
between the old and new planning situations:

(1) A description (f a c t) f E I i is marked an out fact iff

(f C I ° ' a) A(in~ f) .

(2) A description (fact) f E I i is marked a new fact iff

(f C l") /x (l° . e~ ~t f) .

(3) A description (goal) g E G ~ is marked an extra goal iff

(grOG °" ~) /~ (g

(4) A description (goal) (g E

(g E G ° . a) A (g

At the end of this processing,
verification procedure.

E G n) .

G i) is marked an unnecessary goal iff

~c") .

R ~, 1 ~ and G ~ are sent to the annotation

5.1. I. Example
Let us assume that the mapping strategy selects a = [A--~ K, B---~ J, C"-~ I]

as the mapping from 3BS to S5BS1. Figure 6 shows the result of interpreting
the 3BS plan for the S5BS1 problem. With this mapping, the facts Clear(L)
and On(K, Table), which are true in the interpreted 3BS problem, are not true

Interpreted Input state
1 i

~ W" Facts "EXTRA"

goal state
Mapping (~

(X =[A->K, B->J, C->l]

~)~ (J.I)~&On (K,J)

. t , _
- - C l e a r (K) ~ ' ~ ~ -.---_~.~.._~----~__~._.. Z \ \ ~ _

C , e a r (, I - - - y . ~ ~ _ ~ . . ~ _ ~ . _ _ _ ~ ~ " - - . . . ~ . ~ Io0:~= ng: DO[Puton(K,J)]

goal state

on(~J)

Puton-A~on 1~ ..I ',E "oo ,,v~¢
On(J,I) ~ On(K,J) S~.,.,,,~....~

/On(K,J)

i" On(J,I)

Fig. 6. Interpreted plan for 3BS----~ S5BSI.
. . . j

218 S. Kambhampati, J .A. ttemlh, r

in the input specification of S5BSI So they are marked out in F. The facts
Clear(L), On(M, Table), On(l, Table), On(L, M) and On(K, 1) are true in
S5BSI but not in the interpreted 3BS. These are marked as new facts in F.
Similarly, the goals On(L, K) and Clear(M) of S5BSI are not goals of the
interpreted 3BS plan. So, they are marked extra goals in G ~. There are no
unnecessary goals.

5.2. Annotation verification and refit task specification

At the end of the interpretation procedure, R ~ may not have a consistent
validation structure (see Section 4.1.2) as the differences between the old and
the new problem situations (as marked in 1 ~ and G ~) may be causing inconsis-
tencies in the validation structure of R i. These inconsistencies will be referred

to as applicability failures; they are the reasons why R ~ cannot be directly
applied to P". The purpose of the annotation verification procedure is to
modify R ~ such that the result, R ~, will be a partially reduced HTN with a
consistent validation structure.

The annotation verification procedure achieves this goal by first localizing
and characterizing the applicability failures caused by the differences in I ~ and
G ~, and then appropriately modifying the validation structure of R ~ to repair
those failures. It groups the applicability failures into one of several classes
depending on the type of the inconsistencies and the type of the conditions
involved in those inconsistencies. Based on this classification, it then suggests
appropriate repairs. The repairs involve removal of unnecessary parts of the
HTN and/or addition of nonprimitive tasks (called "refit tasks") to establish
missing and failing validations. In addition to repairing the inconsistencies in
the plan validation structure, the annotation verification process also uses the
notion of p-phantom validations (see below) to exploit any serendipitous
effects to shorten the plan. Figure 7 provides the top-level control structure of
the annotation verification process. The different subprocedures specialize in
repairing specific types of inconsistencies in the validation structure. At the end
of the annotation verification process, the HTN will be a partially (and perhaps
totally) reduced task network with a consistent validation structure.

The individual repair actions taken to repair the different types of inconsis-
tencies are described below: they make judicious use of the node annotations
to modify R ~ appropriately.

5.2.1. Unnecessary validations--pruning unrequired parts"
If the supported condition of a validation is no longer required, then that

validation can be removed from the plan along with all the parts of the plan
whose sole purpose is supplying those validations. The removal can be
accomplished in a clean fashion with the help of the annotations on R ~. After
removing an unnecessary validation from the HTN (which will also involve

Theory of plan modification 219

Procedure Annotation-Verification()
1 input: R~: in terpreted plan,

2 I~: in terpreted input state,

3 Gi: in terpreted goal state

4 begin
5 foreach g ~ G ~ s.t.
6 g is marked as an unnecessary-goal do

7 find v: (E , n s, C, n o) E AP(nG) s.t. C = g

8 Prune-Validation(v) od

9 foreach g E G i s.t.
10 g is marked as an extra-goal do

11 Repair-Missing-Validation(g: condition, n o : node) od

12 foreach f ~ I i s.t.

13 f is marked as an out-fact do
14 foreach v: (E , n I, C, nd) @ AS(hi) s.t. E = f do
15 if E ' E I ~ s.t. E ' is marked new A E' F C
16 / *Verification* /

17 then do
18 Remove-Validation(v)
19 Add-Validation(v': (E', n l, C, rid)) od

20 eiseif type(C) = Precondition
21 then
22 Repair-Failing-Precondition-Validation(v)
23 elseif type(C) = Phantom
24 /*n d is a phantom node* /

25 then
26 Repair-Failing-Phantom-Validation(v)
27 elseif type(C) = Filter-Condition
28 then
29 Repair-Failing-Filter-Condition-Validation(v) od od

30 foreach v: (E, ns, C, na) C V s.t.
31 n s ~ n 1 A E E I i ^ E i s marked new in I i

32 /*checking for serendipitous effects* /do

33 Exploit-p-Phantom-Validation(v) od

34 end

Fig. 7. Annotation verification procedure.

incrementa l ly re -annota t ing the HTN, see Section 4.3), the HTN is searched for

any node n o that has no e-conditions. If such a node is found, then its
subreduct ion , R(n v), has no useful purpose , and thus can be r emoved f rom the

HTN. This removal turns the e-precondi t ions of n o into unnecessary validations,

and they are handled in the same way, recursively.

220 A. Kambhampati, J.A. Hendler

The procedure Prune-Validation in Fig. 8 gives the details of this process.
After removing the unnecessary validation v from the plan, it checks to see if
there are any subreductions that have no useful effects (lines 3-6). (Because of
the explicit representation of the validation structure as annotations on the
plan, this check is straightforward.) If there are such subreductions, they have
to be removed from the HTN (lines 8-17). This involves removing all the
internal validations of that subreduction from the HTN (lines 9-10), and
recursively pruning the validations corresponding to the external preconditions
of that subreduction (lines 11-12). This latter action is performed to ensure
that there won't be any parts of the HTN whose sole purpose is to supply
validations to the parts that are being removed. The Remove-Validation
procedure (line 10) not only removes the given validation, but also updates the
validation structure (V) and the protection intervals (H) of the HTN consistent-
ly. Finally, the subreduction is unlinked from the HTN (lines 13-16), and the
partial ordering on the HTN (O) is updated so that the ordering relations that
were imposed because of the expansions involved in R(n) are retracted. This
retraction is accomplished with the help of the Orderings field of each node in
R(n) (see Section 4.3) which stores the ordering relations that were imposed
because of the expansion below that node. The procedure involves:

Procedure Prune-Validation (v: (E, n~, C, nd}, HTN: {P: { T, O, l I} , T*,D})
1 begin
2 Remove-Validation(v)
3 if e-conditions(n~) = 0
4 then do
5 find n ~ {n~} U ancestors(n~) s.t.
6 e-conditions(n) = 0 A e-conditions(parent(n)) ~ 0
7 /*Remove the subreduction below n'*/
8 foreach n' E R(n) s.t. children(n') = ~ do
9 foreach v' E e-conditions(n') do

10 Remove-Validation(v') od
1 1 foreach v" E e-preconditions(n) do
12 Prune-Validation(v") od
13 /* unlinking R(n) from HTN */
14 T* ~-- T* - R(n)
15 T <-- T - R(n)
16 D e - - D - { d [d E D A d C _ R (n) }
17 Update-Orderings(O, R(n)) od fi
18 end

Fig. 8. Procedure for repairing unnecessary validations.

Theory of plan modification 221

(i) retracting from O all the ordering relations that are stored in the
Orderings field of the removed nodes (R(n)),

(ii) appropriately redirecting ~° any remaining ordering relations of O involv-
ing the removed nodes (these correspond to the orderings that were

inherited from the ancestors of n; see Section 3.2).

The structure of the HTN at the end of this procedure depends to a large
extent on the importance of the validation that is being removed (that is, how
much of the HTN is directly or indirectly present solely for achieving this
validation). The Prune-Validation procedure removes exactly those parts of the
plan that become completely redundant because of the unnecessary validation.
It will not remove any subreduction that has at least one e-condition (corre-
sponding to some useful effect). There is, however, a trade-off involved here:
the strategy adopted by the Prune-Validation procedure is appropriate as long
as the goal is to reduce the cost of planning (refitting). However, if the cost of
execution of the plan were paramount, then it would be necessary to see if the
remaining useful effects of the subreduction could be achieved in an alternate
way that would incur a lower cost of execution. To take an extreme example,
suppose the plan R ° achieves two of its goals, taking a flight and reading a
paper, by buying a paper at the airport. If R ° is being reused in a situation
where the agent does not have to take a flight, it will be better to satisfy the
goal of buying the paper in an alternate way, rather than going to the airport.
This type of analysis can be done with the help of the "levels" of validations
(see Section 4.1): we might decide to remove a subreduction R(n) and achieve
its useful effects in an alternate way if the levels of e-conditions of n which are
removed are "significantly" higher than the levels of the remaining e-condi-
tions of n. P R I A R currently does not do this type of analysis while pruning a
validation.

5.2.2. Missing validations--adding tasks for achieving extra goals
If a condition G of a node n d is not supported by any validation belonging to

the set of validations of the plan, V, then there is a missing validation
corresponding to that condi t ion-node pair. Since, an extra goal is any goal of
the new problem that is not a goal of the old plan, it is un-supported by any
validation in R i. The general procedure for repairing missing validations
(including the extra goals, which are considered conditions of riG) is to create a
refit task of the form nm: Achieve[G], and to add it to the HTN in such a way

that n t < n m < nd, and parent(nm) = parent(nd). The new validation Urn:
(G, n m, G, n~) will now support the condition G. Before establishing a new
validation in this way, PRIAR uses the planner's truth criterion (interaction
detection mechanisms) to determine whether that validation introduces any

"' To a sibling of n in case of pruned reduction, and to n in the case of a replaced reduction (see
(3) in Section 3.2).

222 S. Kambhampati..I.A. Hendler

new failing validations into the plan (by causing harmful interactions with

already established protection intervals of the plan). If it does, then those will
be treated as additional inconsistencies to be handled by the annotation
verification process. Finally, the incremental annotation procedures (Section
4.3) are used to add the new validation to the HTN. Notice that no a priori
commitment is made regarding the order or the way in which the condition G
would be achieved; such commitments are made by the planner itself during
the refitting stage.

5.2.3. Failing validations
The facts of I ~, which are marked "out" during the interpretation process,

may be supplying validations to the applicability conditions or goals of the
interpreted plan R ~. For each failing validation, the annotation verification
procedure first attempts to see if that validation can be re-established locally by
a new effect of the same node. If this is possible, the validation structure will
be changed to reflect this. A simple example would be the following. Suppose
there is a condition Greater(B, 7) on some node, and the fact Equal(B, 10) in
the initial state was used to support that condition. Suppose further that in the
new situation Equal(B, 10) is marked out and Equal (B, 8) is marked new. In
such a case, it would still be possible to establish the condition just by
redirecting the validation to Equal(B, 8).

When the validations cannot be established by such local adjustments, the
structure of the HTN has to be changed to account for the failing validations.
The treatment of such failing validations depends upon the types of the
conditions that are being supported by the validation. We distinguish three
types of validation failures--validations supporting preconditions, phantom
goals, ~ and filter condit ions--and discuss each of them in turn below.

5.2.3.1. Failing precondition validations
If a validation v: (E , n~, C, n a) supporting a precondition of some node in

the HTN is found to be failing because its supporting effect E is marked out, it
can simply be re-achieved. The procedure involves creating a refit task,
n~,: Achieve[E], to re-establish the validation v, and adding it to the HTN in
such a way that n~<n~. <n~ and parent(n~,)=parent(nd). The validation
structure of the plan is updated so that the failing validation v is removed and
an equivalent validation v': (E , n,,, C, n~j) is added. (This addition does not

" The difference between a precondition validation and a phantom goal validation is largely a
mat ter of how the corresponding conditions are specified in the task reduction schemas. In
NONLIN terminology [26], phan tom goal validations support the "supervised conditions" of a
schema (i.e., applicability conditions for which subgoals to establish the conditions are explicitly
specified in the schema), while the precondition validations support the "unsupervised conditions"
of a schema (i.e., applicability conditions for which no explicit subgoals are specified inside the
schema).

Theory of plan modification 223

introduce any further inconsistencies into the validation structure (see Section
8.1).) Finally, the annotations on other nodes of the HTN are adjusted

incrementally to reflect this change.

5.2.3.2. Failing phantom validations
If a validation Vp: (E , n~, C, np) is found to be failing and np is a phantom

goal, then Vp is considered a failing phantom validation. If the validation
supporting a phantom goal node is failing, then the node cannot remain
phantom. The repair involves undoing the phantomization, so that the planner
will know that it has to re-achieve that goal. This step essentially involves
retracting the phantomization decision (by adding a refit task to achieve the
phantom goal), and updating the HTN appropriately (similar to the process
done in the Prune-Validation procedure (Fig. 8, lines 13-17)). Once this
change is made, the failing validation v o is no longer required by the node np,
and so it is removed and the node annotations are updated appropriately.

5.2.3.3. Failing filter condition validations
In contrast to the validations supporting the preconditions and the phantom

goals, the validations supporting failing filter conditions cannot be re-achieved
by the planner. Instead, the planning decisions which introduced those filter
conditions into the plan have to be undone. That is, if a validation vf: (E , n~,
Cf, n d) supporting a filter condition Cf of a node n d is failing, and n' is the
ancestor of n d whose reduction introduced Cf into the HTN originally, then the
subreduction R(n') has to be replaced, and n' has to be re-reduced with the
help of an alternate schema instance. So as to least affect the validation
structure of the rest of the HTN, any new reduction of n' would be expected to
supply (or consume) the validations previously supplied (or consumed) by the
replaced reduction. Any validations not supplied by the new reduction would
have to be re-established by alternate means, and the validations not consumed
by the new reduction would have to be pruned. Since there is no way of
knowing what the new reduction will be until the refitting time, this processing
is deferred until then (see Section 5.3). ~2

The procedure shown in Fig. 9 details the treatment of this type of validation
failure during annotation verification. In lines 3-4, it finds the node n' that
should be re-reduced by checking the filter conditions of the ancestors of n.
Lines 6-18 detail changes to the validation structure of the HTN. Any e-
conditions of the nodes belonging to R(n') are redirected to n', if they support
nodes outside R(n') (lines 7-11). Otherwise, such e-conditions represent
internal validations of R(n'), and are removed from the validation structure
(line 12). At the end of this processing, all the useful external effects of R(n')

~: This type of applicability failure is very serious as it may require replacement of potentially
large parts of the plan being reused, thereby increasing the cost of refitting. In [12, 13], we show
that PRIAR's retrieval and mapping strategy tends to prefer reuse candidates that have fewer
applicability failures of this type.

224 S. Kambhampati, ,I.A. ftendh'r

Procedure Repair-Failing-Filter-Condition-Validation
(t{t: (E , ns, C, nd) ,HTN: (P : (T , O, l l) , T*, O))

1 begin
2 Remove-Validation(v¢)
3 find n ' E Ancestors(nd) U {rid} s.t.
4 C E fi l ter-conditions(n ')
5 /*replace reduction below n '* /
6 foreach n~ C R (n ') s.t. children (n~) = ~J do
7 foreaeh u'" (E ' , n~, C', n'a) ~ e-conditions(n,,) do
8 if v ' E e-condit ions(n ')
9 then do

10 R em o re- Validation (v ')
11 Add-Validation(v": { E', n', C', n'd)) od
12 else Remove-Val idat ion(v ') fi od
13 foreach v': {E' , n ~, C', n ~l) E e-preconditions(n ~) do
14 if v' E e-precondit ions(n')
15 then do
16 R emo v e- Validation(v ')
17 Add-Validation(v": (E', n~, C', n ')) od

18 else Remove-Val idat ion(v ') fi od od
19 /* unlinking descendents(n ') from HTN */
20 T* *--- T* - descendents(n ')
21 T ~-- T - descendents(n ')
22 D ~-- D - { d I d E D/x d C descendents(n ')}
23 Update-Ordering(O, descendents(n)) od fi
24 /*Mark n' as a refit-task of type replace-reduction*
25 T~-- T U {n'}
26 refit task-type(n') +---" replace-reduction"
27 end

Fig. 9. Procedure for repairing failing filter condition validations.

have n ' as their source. Similar processing is done for the e-preconditions of
the nodes of R(n ') (lines 13-18). Finally, all the descendents of n' are
removed from the HTN (lines 20-22), and the partial orderings of HTN are
updated to reflect this removal (line 23). Apart from removing the orderings
imposed by the expansions of nodes in descendents(n ') , this step also involves
redirecting any ordering relations that were inherited from ancestors of n' back
to n' (see Section 3.2). Finally, n' now constitutes an unreduced refit task and
so it is added to T (lines 25-26). (Notice that a difference between this and the
Prune-Validation procedure is that, in this case, the e-preconditions of the
replaced subreduction are redirected rather than pruned.)

Theory of plan modification 225

5. 2.4. P-phantom-validations---exploiting serendipitous effects
When R ° is being reused in the new planning situation of P", it is possible

that after the interpretation, some of the validations that R ~ establishes via step
addition can now be established directly from the new initial state. Such

validations are referred to as p-phantom validations. More formally, a valida-

tion Vp" (E, n~, C, rid) is considered a p-phantom validation of R i if n~ ~ n I and

I ~ ~- E. Exploiting such serendipitous effects and removing the parts of the plan

rendered redundant by such effects can potentially reduce the length of the

plan. Once the annotation verification procedure locates such validations,
PRIAR checks to see if they can actually be established from the new initial

state. This analysis involves reasoning over the partially ordered tasks of the

HTN tO see if, through possible introduction of new ordering relations, an effect

of n~ can be made to satisfy the applicability condition supported by this
validation. The reasoning facilities of typical nonlinear planners can be used to

carry out this check. When a p-phantom validation vp is found to be establish-

able from nj, the parts of the plan that are currently establishing this validation

can be pruned. This is achieved by pruning Vp (see Section 5.2.1). Currently,
we do not allow PRIAR tO add steps (cf. white knights [3]) or cause new

interactions while establishing a p-phantom validation, and will thus exploit the
serendipitous effects only if doing so will not cause substantial revisions to the

plan.

5.2.5. Example
Figure 10 shows R ~, the HTN produced by the annotation verification

procedure for the 3BS---~ S5BS1 example. The input to the annotation verifica-
tion procedure is the interpreted plan R i discussed in Section 5.1. In this

example , R ~ contains two missing validations corresponding to extra goals, a

failing phantom validation and a failing filter condition validation. The fact
On(K, Table), which is marked out in I i, causes the validation

(On(K, Table), nl, On(K, Table), nl6)

in R ~ to fail. Since this is a failing filter condition validation, ~3 the reduction
that first introduced this condition into the HTN would have to be replaced. In
this case, the condition On(K, Table) came into the HTN during the reduction

of node n9: Do[Puton(K, J)]. Thus, the annotation verification process re-

~ We follow the convention of [27] and classify On(K, ?x) as a filter condition rather than a
precondition. Since some effects of the Put-Block-on-Block schema depend on the binding of ?x
(in particular, it has an effect Clear(?x)), whenever the binding changes, it has to be propagated
consistently throughout the plan. A way of doing this correctly is to treat this reduction-time
assumption as a filter condition, and re-do the reduction at that level when the assumption fails to
hold in a new situation.

in
pu

t
st

at
e

n
I

C
le

ar
(K

)

O
n(

J,
Ta

bl
e)

A[
Oa

(,I
,I)

]

: M
ak

e-
on

(J.
I)

On
(J,

I)

Ff

n
l

O
n(

K
,J

)&
O

n(
L,

K
) n3

: A
[O

n(
K,

J)
]

~v
~

Sc
h:

Ma
ke

*o
n(L

,K
)

f~

ef
t: O

n(
L,K

)
n

lO
:

D
ep

ha
nt

om
lz

e
re

fi
t

ta
sk

In
6:

 D
O[

Pu
ton

(J.
I)]

 A
A[

A:

TI
ON

 On
(J,

i)

I

Fi
g,

I(

).
 A

nn
ot

at
io

n-
ve

ri
fi

ed
 p

la
n

fo
r

3B
S-

--
~ S

5B
S

I.

n1
1:

A

[C
le

ar
(M

~

re

g
o

a
l

re
fi

t
ta

sk

g
o

a
l

re
fi

t
ta

sk

9:

D
o[

P
ut

on
(K

F

le
p

la
ce

R
e

d
u

c~
o

n

re
fi

t
ta

sk

go
al

st

a
te

C
le

ar
(M

)

O
n

(L
,K

)

O
n

(K
,J

)

O
n

(J
,I

)

i

Theory of plan modification 227

moves R(ng) from the HTN, and adds a replace reduction refit task
ng: Do[Puton(K, J)]. The e-preconditions of replaced reduction, (Clear(K),
n 7, Clear(K), n~6) and (Clear(J) , n~, Clear(J), nj6), are redirected such that
the refit task n 9 becomes their destination. Similarly the e-condition of the
replaced reduction, (On(K, J), n~6, On(K, J), nc;) is redirected such that n9
becomes the source. These last two steps ensure than any possible reduction of
n9 will be aware of the fact that it is expected to supply the e-conditions and

consume e-preconditions of the replaced reduction.
Next, the fact Clear(I), which is marked out in I ~ causes the validation

(Clear(l), n~, Clear(l), n 5) to fail. Since this validation supports the phantom
goal node n,, the annotation verification procedure undoes the phantomization
and converts n 5 into a refit task ns: Achieve[Clear(l)] to be reduced. Once this
conversion is made, n 5 no longer needs the failing validation from n~, and it is

removed.
Finally, the goals Clear(M) and On(L, K) of G ~ are extra goals, and are

not supported by any validation of the HTN. So, the refit tasks n~,:
Achieve[On(L, K)] and n~t:Achieve[Clear(M)] are created, and added to the

HTN in parallel to the existing plan such that n I < nl0 < n~ and n~ < nl~ < n G.
The node nl0 now supports the validation (O n (L , K), nlo, On(L, K), nc;) and

the node nll supplies the validation (Clear(M), nlj, Clear(M), no;).
Notice that the HTN shown in this figure corresponds to a partially reduced

task network which consists of the applicable parts of the old plan and the four
refit tasks suggested by the annotation verification procedure. It has a consis-
tent validation structure, but it contains the unreduced refit tasks n~0, n ~ , n9

and n 5.

5.2.6. Complexity of annotation verification
As we saw above, the core of the repair actions consists of tracking down

validation dependencies, pruning inapplicable subreductions from the plan,
adding new refit tasks and adjusting the node annotations. In [12], we show
that the individual repair actions involved in the annotation verification process
can each be carried out in O(N~) time, except for the steps involving
interaction detection when new validations are introduced during the repair of
missing validations and p-phantom validations. This latter step essentially
involves checking for the truth of an assertion in a partially ordered plan. It is
known that under the TWEAK representation (which does not allow conditional
effects and state-independent domain axioms), this step can be carried out in
O(N 3) time [3]. Thus, the worst-case complexity of the repair actions is
O(N~). Since there cannot be more than IvI failing validations in a plan, the
complexity of the overall annotation verification process itself is O(IvlN~)
(where Iv l as mentioned previously). Thus, the annotation verification
process is of polynomial (O(N~)) complexity in the length of the plan.

228 S. Kambhampati, J.A. Hendler

5.3. Refitting

At the end of the annotation verification, R ~' represents an incompletely
reduced HTN with a consistent validation structure. To produce an executable
plan for pn, R ~, has to be completely reduced. This process, called refitting,
essentially involves reduction of the refit tasks that were introduced into R ~'
during the annotation verification process. The responsibility of reducing the
refit tasks is delegated to the planner by sending R '~ to the planner. An
important difference between refitting and from-scratch (or generative) plan-
ning is that in refitting the planner starts with an already partially reduced HTN.

For this reason, solving pn by reducing R ~' is less expensive on the average than
solving pn from scratch.

The planner treats the refit tasks in the same way as it treats other
nonprimitive tasks--it attempts to reduce them with the help of the task
reduction schemas. It is also allowed to backtrack over the refit tasks (includ-
ing, ultimately, beyond R") to explore other parts of the search space, if
required. The procedure used for reducing refit tasks is fairly similar to the one
the planner normally uses for reducing nonprimitive tasks (see Section 3), with

the following extension:

Refitting control
An important consideration in refitting is to minimize the disturbance to the

applicable parts of R ~' during the reduction of the refit tasks. Ideally, the
refitting should leave any currently established protection intervals of the HTN

unaffected. Of course, it may not be feasible to avoid interactions altogether
and thus it is important to be able to compare the relative disturbances caused
by various reduction choices, and select the best. Since the annotations on a
node encapsulate the validations that were required to be preserved by the
subreduction below a node to keep the validation structure of the HTN
consistent, we can use them to estimate the relative disturbance caused by the
various task reduction choices. Specifically, we measure the number and type
of inconsistencies caused by the various reduction choices. In contrast to
heuristics that are only concerned with minimizing the number of conflicts (cf.
the "min-conflict" heuristics of Minton [211), our strategy also weights the
inconsistencies in terms of the estimated difficulty of repairing the inconsisten-
cy. The reduction choice ranked best by this strategy is used to reduce the refit
task. A more detailed description of this control strategy can be found in

[12,171.
Once the planner selects an appropriate schema instance by this strategy, it

reduces the refit task by that schema instance in the normal way, detecting and
resolving any interactions arising in the process.

A special consideration arises during the reduction of refit tasks of type
replace-reduction. After selecting a schema instance to reduce such refit tasks,

Theory of plan modification 229

PRIAR might have to do some processing on the HTN before starting the task
reduction. As we pointed out during the discussion of failing filter condition
validations (Section 5.2.3.3), when a node n is being re-reduced it is expected
that the new reduction will supply all the e-conditions of n and will consume all
the e-preconditions of n. If the chosen schema instance does not satisfy these
expectations, then the validation structure of the plan has to be re-adjusted.
PRIAR does this by comparing the chosen schema instance, S i, and the
e-conditions and e-preconditions of node n being reduced, to take care of any
validations that Si does not promise to preserve. It will (i) add refit tasks to
take care of the e-conditions of n that are not guaranteed by S~, and (ii) prune
parts of the HTN whose sole purpose is to achieve e-preconditions of n that are

not required by S~.
An alternative way of treating the failing filter condition validations, which

would obviate the need for this type of adjustment, would be to prune the
e-preconditions of n at the time of annotation verification itself, and add
separate refit tasks to achieve each of the e-conditions of n at that time.
However, this can lead to wasted effort on two counts:

(1) Some of the e-preconditions of n might actually be required by any new
reduction of n, and thus the planner might wind up re-achieving them
during refitting, after first pruning them all during the annotation
verification phase.

(2) Some of the e-conditions of n might be promised by any alternate
reduction of n, and thus adding separate refit tasks to take care of them
would add unnecessary overhead of reducing the extra refit tasks.

In contrast, the only possible wasted effort in the way PR|AR treats the failing
filter condition validations is that the annotation verification procedure might
be adding refit tasks to achieve validations (say to support the conditions of the
parts of the plan which provide e-preconditions to the replaced reduction) that
might eventually be pruned away during this latter adjustment.

5.3.1. Example
Figure 11 shows the hierarchical task reduction structure of the plan for the

S5BS1 problem that P R I A R produces by reducing the annotation-verified task
network shown in Fig. 10. The top part of the figure shows the hierarchical
structure of the task reductions underlying the development of the plan
(abstract tasks are shown on the left, with their reductions shown to the right).
The bottom part shows the chronological partial ordering relations among the
leaf nodes of the HTN. The black nodes correspond to the parts of the
interpreted plan that were salvaged by the reuse process, while the white nodes
represent the refit tasks added during the annotation verification process and
their subsequent reductions.

While reducing the refit tasks Achieve[Clear(I)], the planner has the choice

n~
1 t

g m
 i~

 =
÷r

=~
i~

- -
 r,

 llllm
Ul

 n
~1

1
, N

d-
14

 I
:P

H~
NT

OM
] ~

/
J~

E'
-3

°~
 p

--
--

:
:~

;;
_

[:R
EP

LA
CE

-R
ED

UC
TI

O
N]

N

~3

[:P
RI

M
IT

IV
E]

)O

K-
 O

N-
BL

OO
K

K
J)

(P

UT
-B

LO
CK

-O
N-

BL
OC

K-
AC

T
ON

 K
 J

)

(C

LE
4e

LR
TO

P K
)

[:
O

E
~O

M
iZ

IE
]

/
] (O

i'E
N~

TO
P

IO

~
.

.
.

.
.

.
.

.
.

.
.

.
.

Rt

'[s
k-

 I 0

(O
..E

AR
TO

PI
)

I~
'~

"'~
N

e-
'O

i:.

,~
"r

m
Ni

i

Je
e~

-io

I:P
Ri

M
IT

IV
'E

 I
I

] (
PU

T-
BL

OO
<-

 O
N-

T.
e~

LE
 K

 T
.e~

BL
E)

i
i (

PU
T-

BL
O

a(
-O

~T
,O

, B
LE

-,,
~C

rlO
N

K
TA

BL
E

) i

(O
H

L
K)

: (

O
N

L
K)

..

..
..

..
..

..
.

I

,~
 .

..
.

i:~
,~

o~
]l/

I
...

...

I
"_

L.
.~

.. °
~ .

~)
_..

_:

(O
-E

AR
TO

PM
)

I~
J~

.-
12

[:A

CT
IO

N]

~N
d-

lZ

I:P
fll

M
IT

IV
E]

J

I (
Pt

/T
-B

LO
O

K-
O

N-
BI

O
O

(
L

K)
 ~

(P
UT

-B
 LO

CK
- O

 I~
 B

LO
 O

K-
~'

TI
O

 N
 L

 K
) J

[:l~
lie

rT
I,v

lE
]

I
~

I N
d~

3
I:P

RI
M

IT
IV

E1

,•

eU
-tz

|:
Pt
RI
MI
TR
'~
'J

(P
UT

- m
L O

~K
- O

N-
SL

O C
K-

AC
r] O

 N
l
K

>-

Fi
g.

11

.
T

he
 p

la
n

pr
od

uc
ed

 b
y

PR
IA

R
 f

or
 3

B
S

-*
S

5B
S

1.

Theory of plan modification 231

of putting K on Table, L, M or J. The control strategy recommends putting K
on Table since this causes the least number of conflicts with the validation
structure of Ra. 14 Similarly, the refitting control strategy recommends that the
extra goal refit tasks Achieve[Clear(M)] be reduced by putting L on K (rather
than on Table, the other choice). At this point, the other extra goal refit task
Achieve[On(L, K)] is achieved as a side-effect. As K is on Table by this point,
the planner finds that the replace reduction refit task Do[Puton(K, J)] can,
after all, be reduced by another instantiation of the same schema that was used

to reduce it previously. L~

6. Replanning and retrieval

An important contribution of PR1AR'S modification strategy is that it provides
a uniform framework for addressing various subproblems related to modifica-
tion and reuse of plans. In this section we describe how the strategy can be
used for dealing with failures that may arise during planning (replanning) and
in helping to choose candidates (and mappings) for plan reuse.

6.1. Replanning

There are two facets of dealing with plan failures which arise in many typical
planning domains: execution monitoring, in which the system executing a plan
must notice that the state of the world deviates from that assumed during the
planning process, and replanning, changing the plan to deal with such devia-
tions.

6.1.1. Execution monitoring
The validation states (see Section 4.2.4) provide a precise framework for

monitoring the state of the world during the execution of partially ordered
plans. If EXEC denotes the set of actions of the plan P that have been executed
by the agent until now, and W denotes the current world state, then the set of
actions of the plan P that may be executed next, E(P, W, EXEC), is computed
as :

~4 Notice that putting K on J looks like a more optimal choice at this point. However, doing so at
this juncture would lead to backtracking, as it affects the executability of the Puton(J, I) action.
The locally suboptimal choice of putting K on Table is a characteristic of the Sussman Anomaly.

~" If the planner chooses to reduce this refit task in the beginning itself, then it would have bound
the location of K as being on top of 1. In this case, since the location of K changes during the
planning, the planner would have had to re-reduce that task. Such a re-reduction should not be
surprising as it is a natural consequence of hierarchical promiscuity allowed in most traditional
hierarchical planners (see [32] for a discussion).

232 ~. Kamhhampati, .I.,4. llendler

E(P, W, EXEC)

= { n c I pr imi t ive(n .) A

(vv: (E, n~, C, nd) e AP(n~) s.t. nd ~EXEC, W~E)} .~

As long as the agent executes any of the actions in E(P, W, EXEC) next, it
is assured of following the plan, while taking into account any unexpected
changes in the world state. In particular, when E(P, W, EXEC) contains the goal
node nG, we say that the plan has been executed successfully. Note that this
execution model allows the planner to exploit parallelism in the plan: the
primitive tasks can be executed in any way consistent with the partial ordering
relations among them. The model also enables the planner to take advantage
of any serendipitous effects to skip execution of parts of the plan that are
rendered redundant, or to re-execute steps whose effects have been undone
unexpectedly. Thus, we see that our model provides an extension of the
STRIPS's triangle-table-based execution monitoring strategy which only worked
for total orders, and could not be used for partially ordered plans.

6,1.2. Replanning

When the planner finds that none of its actions can be executed in the
current world state (E(P, W, EXEC) = 0), then replanning (or modification of
the current plan P) is necessary. Efficiency considerations demand that as
much of the existing plan be reused as possible to achieve the goals from the
current situation. One obvious possibility is to modify the unexecuted portion
of the plan to deal with the unexpected events; this is essentially the method
used by previous replanning systems such as SIPE [31]. However, a replanning
strategy that only attempts to salvage the unexecuted parts of the plan may be
suboptimal in situations where the already executed parts of the plan are also
reusable. For example, suppose that in the current world state some of the
previously achieved goals have been undone. It may then be possible to
re-achieve those goals efficiently by simply reusing (and appropriately modify-
ing) some of the already executed portions of the plan, without having to plan
for those goals again from scratch.

PRIAR'S approach to this general replanning problem is to consider it as a
special case of plan reuse. In particular, if R ° is the HTN being executed, G °
the set of original goals of the plan, and W the current state of the world
(which necessitated the replanning), then PR1AR converts the replanning
problem into the following plan reuse problem:

Construct a plan to achieve G" from the current world state W,
reusing the plan R ° and retaining as many of its applicable parts as
possible.

That is, instead of trying to repair the validation failures that are present in the

~ See Note added in proof at the cnd of the paper.

Theory of plan modification 233

validation state preceding the current execution point in the original plan,
PR1AR tries to reuse the entire original plan and modify it to achieve the
original goals starting from the current situation. The resultant plan will be a
minimally modified version of the original plan that can be executed from the
current world state to achieve the intended goals. This approach has been used
successfully to model execution monitoring and replanning in the blocks world.

This model of conservative replanning is best suited to situations where it is
reasonable to assume that the execution-time failures are caused by one-time-
only accidents and unanticipated events. In particular, it is inadequate when
the agent is faced with systematic repetitive failures (e.g. a greasy block keeps
slipping from the robot's fingers), or failures arising from incorrectness and
incompleteness of the planner's own domain models. In such cases, the scope
of replanning needs to be broadened to include techniques such as debugging
the planner's domain model (e.g. [23]), or planning to stop external interfer-
ence. PRIAR's conservative replanning capability can however play an im-
portant role in these more general replanning frameworks.

6.2. Mapping and retrieval during reuse

While mapping is not a serious problem if the current plan itself is being
modified due to some change in the specification (as in replanning), it becomes
an important consideration in the case of modification during plan reuse. (In
fact, the problem of choosing plans from a library and picking appropriate
mappings to the current situation is the main problem being attacked in
case-based planning [1, 8, 18].) There are typically several semantically consis-
tent mappings between objects of the two planning situations, P° and pn and
the selection of the right mapping can considerably reduce the cost of
modifying the chosen plan to conform to the constraints of the new problem.
Such a selection requires an efficient similarity metric that is capable of
estimating the expected cost of modifying R ° to solve P".

Using the framework we have described in this paper, the cost of refitting R °
to pn can be estimated b y analyzing the degree of match between the
validations of R" and the specification of pn for various mappings {ai}. We
have developed a computational measure of similarity which ranks the differ-
ent mappings based on the number and the type of inconsistencies they will
introduce into the validation structure of the plan when it is reused in the new
problem situation. The rationale behind this similarity metric--that the cost of
refitting depends both on the number and on the type of validations of the old
plan that have to be re-established in the new problem situation--follows from
our discussion of annotation verification. In the 3BS--~S5BS example, this
strategy enables PRIAR t o choose the mapping [A--~L, B--~ K, C--~ J] over
the mapping [A-~ K, B--~ J, C--~I] while reusing the 3BS plan to solve the
S5BS1 problem, as the former causes fewer inconsistencies in the validation
structure of the interpreted 3BS plan.

234),. Kamhhampati, .I.A. Hendh'r

In addition to being used to choose between mappings, this strategy can also
be used to choose between several reuse candidates (i.e. different plans that
might be modified for the current situation). By basing the retriewfl on the
estimated cost of modifying the old plan in the new problem situation, this
strategy strikes a balance between purely syntactic feature-based retrieval
methods, and methods which require a comparison of the solutions of the new
and old problems to guide the retrieval (e.g. [2]). Further details on this
retrieval and mapping strategy can be found in [12, 13].

7. Empirical evaluation

The modification techniques described in this paper have been completely
implemented in the PR1AR system, which runs as compiled COMMON LISP code
on a Texas Instruments EXPLORER-II Lisp Machine. The hierarchical planner
used in this system is a version of N O N L I N [27, 7] which has been re-
implemented in COMMON LISP. PRIAR has been used to modify plans in an
extended blocks world domain as well as in a manufacturing planning domain
[14], where the objective is to construct a partially ordered sequence of
machining operations for manufacturing simple machinable mechanical parts.

To empirically evaluate the performance of plan modification using the
techniques described previously, we have conducted experiments using blocks
world ~ planning problems. The evaluation trials consisted of solving blocks
world problems by reusing a range of similar to dissimilar stored plans. In each
trial, statistics were collected regarding the amount of effort involved in solving
each problem from scratch versus solving it by modifying a given plan (in each
c a s e , P R I A R automatically computed mapping between R" and P"). Approxi-
mately 80 sets of trials were conducted over a variety of problem situations and
problem sizes. A comprehensive listing of these statistics can be found in [12].

Table 1 presents representative statistics from the experiments. The entries
compare planning times (measured in cpu seconds), the number of task
reductions (denoted by xn), and the number of detected interactions (denoted
by xi), for from-scratch planning and for planning with reuse, in some
representative experiments. The problems 3BS, 4BS, 6BS, 8BS etc. are block
stacking problems with three, four, six, eight, etc. blocks respectively on the
table in the initial state, and stacked on top of each other in the final state.
Problems 4BS1, 5BS1, 6BS1 etc. correspond to blocks world problems where
all the blocks are in some arbitrary configuration in the initial state, and
stacked in some order in the goal state. In particular, the entry 3BS--> S5BS1 in
Table 1 corresponds to the example discussed in the previous sections. A
complete listing of the test problem specifications can be found in [12]. The last

k,, Scc A p p e n d i x B for a specif icat ion of the ax iomat i za t ion used.

Theory of plan modification 235

Table 1
Sample statistics for PRIAR reuse

R~'----~ P" P" from scratch Reuse R" Savings
(%)

3BS---~ 4BS1 [4.0s, 12n, 5i] [2.4s, 4n li] 39
3BS----, S5BS1 [12.4s, 17n, 22i]]5.2s, 8n, 12i] 58
5BS----, 7BS1 [38.6s, 24n, 13i] [l l . ls , 12n, 19i] 71
4BS1---~ 8BS1 [79.3s, 28n, 14i] [22.2s, 18n, 18i] 71
5BS----, 8BS1 [79.3s, 28n, 14i] [10.1s, 14n, 7i] 87
6BS----~ 9BS1 [184.6s, 32n, 17i] [18.1s, 17n, 17i] 90
10BS---~ 9BS1 [184.6s, 32n, 17i] [6.5s, 5n, 2i] 96
4BS---~ 10BS1 [401.5s, 36n, 19i] [52.9s, 30n, 33i] 86
8BS----~ 10BS1 [401.5s, 36n, 19i] [14.5s, 12n, 7i] 96
3BS---~ 12BSI [1758.6s, 44n, 23i] [77.1s, 40n, 38i] 95
5BS----~ 1 2 BS1 [1758.6s~ 44n, 23i] [51.8s, 32n, 26i] 97
10BS---~ 12BS1 [1758.6s, 44n, 23i] [21.2s, 13n, 7i] 98

column of the table presents the computational savings gained through reuse as
compared to from-scratch planning (as a percentage of from-scratch planning
time).

The entries in the table show that the overall planning times improve
significantly with reuse. This confirms that reuse and modification in the PRIAR
framework can lead to substantial savings over generative planning alone. The
relative savings over the entire corpus of experiments ranged from 30% to 98%
(corresponding to speedup factors of 1.5 to 50), with the highest gains shown
for the more difficult problems tested. The average relative savings over the
entire corpus was 79%. 17

We also analyzed the variation in savings accrued by reuse in terms of the
similarity between the problems and the size of the constructed plans. The plot
in Fig. 12 shows the computational savings achieved when different blocks
world problems are solved by reusing a range of existing blocks world plans.
For example, the curve marked "7BSI" in the figure shows the savings
afforded by solving a particular seven-block problem by reusing several
different blocks world plans (shown along the x-axis). Figure 13 summarizes all
the individual variations by plotting (in logarithmic scale) the from-scratch
planning time, and the best and worst-case reuse planning times observed for
the set of blocks world problems used in our experiments. It shows an observed
speedup of one to two orders of magnitude.

Apart from the obvious improvement in the planning performance with
respect to similarity between P" and po, these plots bring out some other
interesting characteristics of the PRIAR reuse behavior. As we pointed out
earlier, a flexible and conservative modification strategy allows the planner to

~7 The cumulative savings were much higher, but they are biased by the higher gains of the more
difficult problems.

236 S. Kamhhampati, ,I.A. Hendler

p 10000

I
8
n 1000

n

i
n l oo

g

T

I

m

e

2 "

10

1 a I I I I I I I
4BS1 5BS1 6BS1 7BS1 8BS1 9BS1 lOBS1 12BS1

Blocks Wor ld Prob lems

4 . From Scra tch -o- Reuse (Worst Case) - ' - Reuse (Best case) I

i

Fig. 12. Variation of performance with problem size and similarity.

100 12BS1

90

% 80 /

70
S

60 , ~ e
v 50 ~,

I 40
n
g 30

$ 20

10

0 I I

3Be 4Be 4BS1

I I I I I I I
5BS 6BS 7BS 7BS1 8BS 8BS1 9BS

Reused Prob lems

I - ' - 7 B S 1 - 0 - 8 B S 1 - ' - l O B S 1 " 0 - 1 2 B S 1 I

Fig. 13. From-scratch versus best and worst-case reuse performance.

effectively reuse any applicable parts of a partially relevant plan in solving a
new planning problem. Because of this, reuse with such a strategy will be able
to provide significant performance gains over a wide range of specification
changes. The plots in Figs. 12 and 13 show that modification in PR1AR exhibits
this property. Consider, for example, the plot for 12BS1 in Fig. 12. As we go
from a dissimilar plan R ° = 3BS to a more similar plan R ° = 9BS, the savings
vary between 95% and 98% (corresponding to a variation in the speedup factor

of 20 to 50).

Theory of plan modification 237

Table 2
Variation of reuse performance with problem size

R°---~ P" P" from scratch Reuse R" Savings
(cpu seconds) (cpu seconds) (%) Speedup

3BS ~ 4BS1 4.0 2.4 39 1.6
3BS ~ 5BS1 8.4 4.3 49 1.9
3BS----~ 7BSI 38.6 15.6 59 2.5
3BS--~ 8BS1 79.3 17.4 78 4.6
3BS ---~ 10BS1 401.5 71.4 86 5.6
3BS ----~ 12BS1 1758.6 77.1 95 22.8

A related pattern in PRIAR's performance is that when it modifies the same
plan R ° to solve several different problems, the computational savings increase
with the size of the problem being solved. Consider for example the cases of
3BS---~7BS1 versus 3BS--~12BS1 in Fig. 12. The improvement with size is
further characterized by the statistics in Table 2, which lists the performance
statistics when the 3BS plan is used to solve a set of increasingly complex
blocks world problems. This shows that as the complexity of the planning
problems increases, the ability to solve new planning problems by flexibility
modifying existing plans can lead to substantial computational savings.

In Section 8.3, we will provide a qualitative explanation for these empirical
performance characteristics in terms of the search process in the space of the

plans.

8. Discussion

Before we conclude this paper, we wish to present an assessment of the
effectiveness of the modification framework. For example, we would like to
characterize its coverage, correctness, and efficiency, in effect of the complete-
ness of the underlying planning strategy, and, finally, discuss some of its
limitations.

8.1. Coverage and correctness

Here we are interested in assessing the adequacy of PRIAR's repair actions in
conservatively accommodating all possible specification changes in a given
plan. As we have seen, PRIAR handles the changes in specifications by
computing the ramifications of those changes on the validation structure of the
plan, and modifying it to repair any resultant inconsistencies in the validation
structure. The inconsistencies themselves are enumerated by characterizing the
correctness of the plan in terms of its validation structure (Section 4.1.2). The
validation structure of a plan can be shown to constitute an explanation of
correctness of that plan with respect to the modal truth criterion [3, 16]. Thus,

238 S. Kamhhampati, J.A. Hendler

the various inconsistencies in the validation structure correspond to the differ-
ent ways in which a plan can fail to satisfy the modal truth criterion, t~' Since
PRIAR provides repair actions for handling each of these types of inconsisten-
cies (Section 5), we claim that it is capable of modifying any plan (describable
within its action representation) to accommodate any changes in its specifica-

tions.
A related question concerns the expressiveness of the action representation

itself. Our action representation (Section 3) largely covers the basic set of
actions expressible by the hierarchical, nonlinear planners developed to date,
although without modification it does not necessarily cover some of the more
complex interactions found in certain planners, such as the resource bounds of
SIPE [30] or the temporal windows of DIV|SER [29]. Our experience in applying
the system to the manufacturing planning domain [14] has shown that extend-
ing the modification framework to richer action representations (involving, for
example, context-dependent effects, etc.) is in itself not as difficult as making
the generative planner handle such actions efficiently and systematically. (In
[12] a method for handling context-dependent effects during annotation verifi-
cation is provided, l')

Another important issue is the correctness and conservatism of the modifica-
tion strategies. The modification strategies described here are "correct" in the
sense that they do not introduce any new inconsistencies into the validation
structure while repairing existing ones. In particular, there are three kinds of
changes made to the validation structure of R ~ during these repair tasks:

(i) some existing validations are removed,
(ii) some existing validations are re-directed (to the ancestors of the source

of destination nodes), or
(iii) some new validations are added.

We have pointed out in Section 5.2.1 that the repair actions remove only the
validations supporting the subreductions of the plan that do not have any
externally useful effects (specifically, no e-conditions). Thus, this removal does
not introduce any inconsistencies into the validation structure. Next, from
Section 3.2, it follows that, if a validation is holding in an HTN, then redirecting
it to one of its ancestors does not introduce any new inconsistencies. Finally,
new validations are added to the HTN either to re-establish failing validations
(as in failing precondition and phantom validations), or to provide missing
validations. Any failing precondition validation v: (E, n~, C, n~,) is repaired by

~* The detinition of "failing validations" would however need to be modified slightly to admit
plans that are correct with respect to Chapman's "white knight" conditions. In other words, the
consistency of validation structure, as defined, is a sufficient, but not a necessary condition for the
correctness of plans representable in TWEAK action representation.

'~ Of course, as we allow richer action representations, the complexity of annotation verification
may also increase.

Theory of plan modification 239

adding a new validation, vr: (E , n r, C, nd) , where n r is a refit task added to

achieve C, such that n I < n r < n d (Section 5.2.3). Since n r has no expected

effects o ther than C, its addit ion does not cause violation of any existing

validations. Thus , the only possible inconsistency that could be caused by this

change is the violation of v r itself, and we can show that v r will not be

violated, z° Similarly, when new validations are in t roduced into HTN tO take

care of missing validations or p -phan tom validations, the repair actions invoke

the p lanner ' s truth cri terion to make sure that the new validation does not lead

to the failure of any existing validations. Thus none of the repair actions

in t roduce new inconsistencies into the HTN.

The modif icat ion strategies are "conserva t ive" in the sense that they do not

r emove any por t ion of the plan that can be reused in the new situation. In

part icular , the Prune-Validation procedure never removes a subreduct ion that

has a non -empty set of e-condit ions. Similarly, the Repair-Failing-Filter-Condi-
tion-Validation procedure replaces exactly the subreduct ion that was dependent

on the failing filter (unachievable) condit ion. Finally, as we noted in Section

5.3, conservat ism is also fostered by the refitting control strategy.

W h a t all this amounts to is that, given a plan and a new problem specifica-

t ion, PRIAR can return a partially reduced HTN with a consistent validation

s t ructure for the new problem, which retains all the applicable port ions of the

given plan and contains refit tasks to establish any required validations. The

p lanner can treat this HTN as if it were an intermediate point encounte red

dur ing its search process, and can proceed to reduce it to find a complete plan

for the new problem.

8.2. Effect on the completeness of the underlying planner

A n impor tan t considerat ion in augment ing a generat ive planner with the

PRIAR modification strategies is the effect of such an augmenta t ion on the

comple teness of the planner. We will start by addressing the effect on the class

of problems that are solvable by the planner. If a given problem P" is solvable

by the p lanner f rom scratch, then it is easy to see that the addit ion of
modif icat ion strategies does not affect its solvability. This is because whatever

may be the plan R ° that PRIAR starts with, in the worst case, the p lanner can

always backt rack over the annotat ion-verif ied HTN, R a, to other parts of the
overall search space for solving p.1 (in o ther words, the overall search space

dur ing plan modificat ion is the same as the search space during planning f rom

scratch; no por t ions of the search space are pruned f rom considerat ion a
priori).

-'" For v~ to fail, there should exist a node n such that ©(n r < n < nd) and effects(n) F~E. Since
n I < n r < n d (see Section 5.2.3.1), this will also imply that ~(n~ < n <nd). That is, v itself could
not have been established originally. Since v was established previously, by refutation we know
that v r cannot be failing.

240 S. K a m b h a m p a t i , .I. A . t t e n d l e r

A more interesting question is regarding the "'quality" of the plan con-
structed. Note that depending upon the domain theory, there may be many
correct plans for solving a problem P", and if the planner is solving this
problem from scratch, it may find any of those correct plans. The effect of
modification strategies (and the refitting control strategy) is to bias the
planner's search in such a way that it will find a plan that is structurally closer
to the plan R '' that it is asked to modify. There is, however, no guarantee that
the plan found by modifying a particular plan R" will be as preferable as a plan
that might have been found by solving P" from scratch. This is not surprising,
as the validation structure and the modification strategies do not capture any
information about optimality considerations (such as relative preferences
among plans). This is, however, not a serious limitation vis h vis hierarchical
nonlinear planning, as it (as well as much of the rest of research work on
domain-independent planning) concentrates on "satisficing'" rather than "op-
timizing" search strategies.

8.3. Efficiency

The techniques described in this paper provide a methodology by which a
planner can improve its performance over t ime--by reusing existing plans at
plan generation time, or by modifying the current plan in response to specifica-
tion changes during planning or execution. A planner which uses these
techniques can do no better than a from-scratch planner if it is provided an
inappropriate plan to reuse, or if the changes in the specification are so drastic
as to render most of the current plan inapplicable. Thus, the worst-case
complexity of planning with modification will still be the same as that of
planning from scratch. What we do expect from the use of this incre-
mental modification strategy is an improvement of average-case planning
behavior--in particular the ability to handle a variety of specification changes
incrementally, reusing any applicable portions of the given plan, while grace-
fully degrading to from-scratch planning performance as the differences
become significant.

It is difficult to characterize average-case improvement formally without
knowing the precise distribution of specification changes that can be expected
in typical planning situations. Another complication is that while the con-
sistency of the annotation-verified plan R ~' allows the planner is solve for P" by
reducing R ~ rather than starting from scratch, it cannot by itself ensure that a
plan for P" can be found without backtracking over R ~'. For this latter property
to hold, the abstraction used in the task reduction schemas representing the
domain would have to satisfy the "downward solution" property [28] (where
the existence of an abstract plan implies the existence of specializations of the
abstract plan at each lower level). However, guaranteeing this property for a

Theory of plan modification 241

domain formalization, while still retaining an effective abstraction hierarchy,
may turn out to be infeasible in practice for most domains [28, 32].

Although formal characterization of average-case improvement is difficult,
we can get a practical understanding of the effectiveness of our incremental
strategy by looking at its coverage, the overhead involved in facilitating it, and
finally the empirical performance gains afforded by the incremental strategy.
We have already discussed the coverage of PRIAR'S plan modification strategies
(Section 8.1). In terms of the overhead incurred in facilitating incremental
modification, we have shown that the dependency structures can be annotated
efficiently as a by-product of planning, and that the storage requirements for
maintaining the dependency structures is not significant (Section 4.3). Further-
more, generating the annotation-verified plan is inexpensive since all of the
repair procedures can be run in polynomial time (Section 5.2.6). Considering
the exponential complexity of from-scratch planning and the performance gains
promised by the incremental modification framework, the overhead involved in
augmenting the generative planner with an incremental modification capability

seems eminently justifiable.
Finally, in terms of performance, by starting with a partially reduced plan

containing all the applicable parts of an existing plan, and conservatively
controlling the search such that the already-reduced (applicable) parts of R a are
left undisturbed, PRIAR attempts to minimize the repetition of planning effort
in response to specification changes. We can develop a qualitative understand-
ing of the effect of this on the search process in the space of plans. If/3 is the
effective branching factor of the search space,-" A is the operator distance
between the problem specification pn (which itself can be seen as an abstract
plan) and the plan R n, and a ' is the operator distance between the R ~ and R",

then we can quantify the relative reduction in the explored search space during
plan reuse as 0(/3 j - j ') when A~< A' [12, 19]. Since annotation verification
tries to retain all parts of R ° that are applicable in Pn, we typically have A ~< A'.
Thus, any similarity between p,1 and [po, R o] can lead to a possibly exponential

reduction in explored search space.
Of course, this expected exponential reduction may not always be realized

for two reasons (see the discussion in Section 8.2):

(i) If the domain reduction schemas do not have the downward solution
property (as is typically the case), the interactions between the reduc-
tions of the refit tasks and the rest of R ~' can, in theory, force the
planner to backtrack over R ~' and explore the whole search space.

2t Note that here/3 corresponds to both the choice in reducing tasks and the choice in resolving
interactions. In terms of Chapman's model of nonlinear planning [3], this can be best understood
as the average number of ways of interpreting the modal truth criterion to achieve a goal for that
particular problem and domain.

242 5. Kamhhampati , ,I. A. Hendh'r

(ii) If the domain is such that there are multiple correct solutions to a given
planning problem, then left to itself, the planner might find a plan R"'
that is closer to pn, in terms of operator distance, than R H.

In both these cases, the cost of solving the new problem through incremental
modification can exceed that of solving it from scratch.

However, as the results described in Section 7 show, the modification
strategies do, on the average, afford a significant reduction in the explored
search space, resulting in high performance gains for a variety of specification
changes. Furthermore, as problem size increases, the effective branching factor
of the search space also increases. (One way of understanding this is that as the
size of the planning problem increases, the number of ways of interpreting the
modal truth criterion to achieve a goal also increases.) As/3 increases, so will
the relative reduction in the search space. Thus, the savings afforded by reuse
tend to become more significant with increase in problem size (as demonstrated
by the entries in Table 2).

8.4. Limitations, extensions and future work

Viewed as an integrated theory of learning to improve planning performance
from experience, PRIAR has some obvious shortcomings. In particular, such a
theory would have to account for the issues of storage and organization of
generated plans--i.e. , when it is worth storing a generated plan for future
rescue and how best to organize stored plans in memory for efficient retrieval
in the future. Indiscriminate storage of plans can degrade a planner's per-
formance by making it spend an inordinate amount of time in the retrieval
phase. (Recent work in machine learning (e.g. [20]) has amply demonstrated
the practical importance of this utility problem.)

While PRIAR provides an integral building block for any scheme to integrate
planning and learning--viz., a framework for incrementally modifying existing
plans to solve new problems--it does not directly address the issues of storage
and organization. We believe, however, that the flexibility of the PRIAR
modification framework may facilitate significantly simpler solutions to these
problems. For example, typically, much of the complexity of retrieval is due to
the insistence on best-match retrieval. By being able to flexibly reuse any
partially applicable portions of a retrieved plan, PRIAR can mitigate the
criticality of best-match retrieval. Similarly, the PRIAR modification frame-
work, based as it is on a systematic characterization of the explanation of
correctness of the plan, is amenable to seamless integration with explanation-
based generalization techniques. In particular, we have recently developed
provably sound algorithms for generalizing partially ordered plans based on the
validation structure representations discussed in this paper [16]. Such strategies
constitute a first step towards addressing the storage issues, as they allow
PRIAR to avoid storing two instances of the same general plan.

Theory of plan modification 243

Next, while PRIAR'S strategy of handling specification changes ensures
correctness of the modified plan with respect to the planner, it cannot
guarantee the actual executability of the plan in the real world, any more than
a from-scratch planner itself can. In particular, failures arising from the
incompleteness of the planner's domain model cannot be rectified in this
framework. To handle such failures, the planning strategy would still have to
be complemented by simulation and debugging strategies such as those used in
GORDIUS [23] and CHEF [8]. However, as we remarked in Section 2, the PRIAn
framework c a n be gainfully integrated with these debugging strategies, as it
increases the likelihood of generated plans being correct.

A related issue is that sometimes it is not enough to ensure correctness of the
modified plan with respect to the planner. For example, in many domains,
planning is best characterized as a hybrid activity involving interaction between
a general purpose planner and a set of specialized reasoners. The ability to
incrementally modify plans can play a very important role in such hybrid
planning architectures as it can provide substantial computational advantages
both by avoiding repetition of computational effort and by respecting previous
commitments. However, here, we are no longer concerned solely with the
internal consistency of the revised plan, but with the global consistency--both
the planner and the specialists must be satisfied with the current state of the
overall plan. In particular, to avoid costly ripple effects, the planner must keep
track of any implicit constraints imposed by the specialists, through appropriate
interfaces, and respect them during any plan revision. We are exploring these
issues in our ongoing work in hybrid planning architectures [15].

Finally, a minor limitation of the current implementation is the relation
between the planner's search control strategy and the modification framework.
In the current implementation, PRIAR's NONLIN-based planner uses a
chronological backtracking regime to explore its search space during planning.
As has been noted in the literature [26], chronological backtracking is a very
inefficient control strategy in hierarchical nonlinear planning. The plan modifi-
cation framework we describe can be seen as introducing a dependency-
directed component into the backtracking. Given a set of inconsistencies in a
validation structure, the modification strategy essentially allows the planner to
restart with the part of the plan that has a consistent validation structure.
However, in the current system, validation structures are not used for that
purpose. A logical extension to PRIAR would be to augment the planner such
that the modification component would be invoked whenever the planner has
to do backtracking. This can be easily accomplished by making the planner
utilize the incremental annotation algorithms to maintain the internal depen-
dency structures of the plan throughout planning. Every time the planner
reaches a backtracking point, instead of using chronological backtracking, it
can use PRIAR's modification strategies to remove the inconsistencies in the
validation structure that led to the failure and then resume planning.

244 5'. K am bh am pa t i , ,I. A . t lendler

9. Conclusion

In this paper, we have presented a formal basis for flexible and conservative
modification of existing plans to handle changes in problem specifications. This
ability can provide substantial computational advantages by respecting previous
commitments and avoiding repetition of planning effort. Plan modification is
characterized as a process of removing inconsistencies in the validation struc-
ture of a plan, when it is being reused in a new (changed) planning situation.
We have discussed the development of a planning system based on this theory,
PR1AR, and characterized its coverage, efficiency and limitations. In addition,
we have described empirical experimentation showing significant performance
gains using this system. We have also shown that this theory provides a general
unified framework for addressing several subproblems of planning and plan
reuse, particularly execution monitoring and replanning, estimating the simi-
larity of plans during the retrieval of plans for reuse, and controlling the choice
of new actions to replace changed parts of existing plans.

Appendix A. Trace output by PRIAR

This appendix contains an annotated trace of the PRIAR program as it plans
for a blocks world problem by reusing an existing plan. Specifically, it follows
PRIAR in solving the 5BP problem shown on the right in Fig. A.1 by reusing an
existing plan for solving the 6BS problem shown on the left. This example is
specifically designed to show how PR|AR handles failing filter condition valida-
tions, unnecessary validations, and p-phantom validations (the capabilities that
were not brought out in the example discussed in the paper).

In this example, PR1AR'S partial unification procedure generates two plaus-
ible reuse candidates for solving the 5BP problem from the 6BS plan (lines
1-11). The mapping and retrieval strategy (Section 6.2) prefers one of those
candidates

(6BS, c~ = [A--~ L, C---~ O, B---~ P, D---~ M, E--+ N])

as better suited for solving the 5BP problem (lines 13-19).

Input Situation
pC, 6BS

Goal

reused in~
Input Situation Goal

pn5B P

Fig. A.I. The 6BS---~5BP modification problem.

Theory of plan modification 245

1 PRIAR> (plan-for :problem '5bs-phantom-pyramid :reuse t)
2 Trying to solve the problem by reusing old plans

3 Calling.. .
4 (REUSE-PLAN :GOALS ((ON P O) (ON M N) (ON L P) (ON O M))
5 :INPUT ((BLOCK P) (CLEARTOP O) (ON O P) (ON L TABLE)
6 (ON P TABLE) (BLOCK O) (BLOCK N) (BLOCK M)
7 (PYRAMID L) (CLEARTOP M) (ON M N)))
8 ********************************* similar old ***************************

9 RETRIEVE: There are 2 possible Complete Matches. They a r e . . .
10 (({(Plan::6BS)} (LA) (NE) (MD) (OC) (PB)))
11 ({(Plan::6BS)} ((LB) (NF) (ME) (OD) (PC))))
12 . . .
13 * **PLAN-KERNEL-BASED-ORDERING
14 The Plan Choices ranked best by the Plan-kernel based retrieval Process are
15 ([({(Plan::6BS)} (LA) (NE) (MD) (OC) (PB)))]{18})
16 Choosing
17 [({(Plan::6BS)} ((LA) (NE) (MD) (OC) (PB)))]{18}
18 to be reused to solve the current problem
19 Copying and Loading plan into memory

20 using the following plan
21 Plan Name: 6BS
22 Goals: ((ON B C) (ON C D) (ON D E) (ON E F) (ON A B))
23 Initial State:((BLOCK D) (BLOCK B) (BLOCK A) (CLEARTOP A)
24 (BLOCK C) (CLEARTOP D) (CLEARTOP C) (CLEARTOP B)
25 (ON D TABLE) (ON C TABLE) (ON B TABLE) (ON A TABLE)
26 (BLOCK F) (BLOCK E) (CLEARTOP F) (CLEARTOP E)
27 (ON E TABLE))
28 Plan Kernel: #(PLANKERNEL 10733054)
29 The plan i s . . .
30 ***********************
31 7: :PRIMITIVE (PUT-BLOCK-ON-BLOCK-ACTION E F)
32 22)] [Succnodes: (6 1)]
33 (PUT-BLOCK-ON-BLOCK-ACTION D E)
34 19 7)] [Succnodes: (5 1)]
35 (PUT-BLOCK-ON-BLOCK-ACTION C D)
36 16 6) [Succnodes: (4 1)]
37 (PUT-BLOCK-ON-BLOCK-ACTION B C)
38 13 5)] [Succnodes: (3 1)]
39 3: :PRIMITIVE (PUT-BLOCK-ON-BLOCK-ACTION A B)
40 [Prenodes:(9 104)] [Succnodes: (1)]
41 ***********************

[Prenodes:(21
6: :PRIMITIVE

[Prenodes:(18
5: :PRIMITIVE

[Prenodes:(15
4: :PRIMITIVE

[Prenodes:(12

42 The mapping is [A---~ L E---~ N D--* M C--~ O B---~ P]

Next, the 6BS plan is interpreted in the 5BP problem situation with the
chosen mapping. The interpretation process, apart from marking various facts
as in and out, finds that one of the goals of the 6BS problem, On(N, F), is
unnecessary for solving the 5BP problem (line 58).

Figure A.2 shows the H T N of the 6BS plan after the interpretation process.

246 5. Kamhhantpati. J.A. Hemller

Mapping the retrieved plan into the current problem
T hc m a p p i n g used is: [A--+ L E ~ N D---, M (' ~ O B---, P]

INTERPRET: adding fact (O N O P) to the initial state

43

44

45

46

47 INTERPRET:

48 INTERPRET:

49 INTERPRET:

50 INTERPRET: Marking the
51 INTERPRET: Marking the
52 INTERPRET: Mark ing the
53 INTERPRET: Mark ing the

54 INTERPRET: Mark ing

55 INTERPRET: Mark ing

56 INTERPRET: Mark ing

57 INTERPRET: Mark ing

58 INTERPRET: Mark ing

59 I N T E R P R E T a t i o n is

adding fact (P Y R A M I D L) to the initial slate
adding fact (O N M N) to the initial state
Marking the fact (B L O C K L) in init-stutc :out

fact (C L E A R T O P L) in init-state :out

fact (C L E A R T O P P) in init-state :out
fact (O N M T A B L E) m init-statc :out

fact (O N O T A B L E) in init-state :out
the fact (B L O C K F) in init-state :out

the fact (C L E A R T O P F) in init-state :out
the fact (C L E A R T O P N) in init-state :out

the fact (O N N T A B L E) in inil-state :out

the goal (O N N F) in goal-s ta te :unnecessary
o v e r

Next, PRIAR starts the annotation verification process; Fig. A.3 shows the
HTN after this process is complete. During the annotation verification process,
PRIAR first considers the unnecessary validation supporting the unnecessary
goal On(N, F) (lines 60-66) . The appropriate repair action is to recursively
remove the parts of the plan whose sole purpose is to achieve this validation.
In this case, PRIAR finds that the subreduction below the intermediate level
node ND0110: On(N, F) (the node with label "I" in Fig. A.2) will have to be
removed from the plan to take care of this unnecessary validation. Conse-
quently, the annotation-verified plan, shown in Fig. A.3, does not contain any
nodes of this subreduction.

611 * ~: * ;~ * +: * * ' '= * * :~ * ;~ * * * * * * * * A n notatio n Ve rification * * * * * ,' * * * * * * * * * * :; * * * * * *

61 ANNOTNERIFY: Starl

62 ANNOT-VERIFY: Processing unnecessary goals (if any)
63 Tile goal (O N N F) is U N N E C E S S A R Y

(74 Remove Unnecessary Goal: Pruning the reduction below the node
(,5 { (7 : : N D I) 1 1 0) [: G O A L (O N N F)] . . . }

66 To take care of this unnecessary goal.

Next, annotation verification checks for any p-phantom validations. It finds
that the validation supporting the goal On(M, N) is a p-phantom validation
since On(M, N) was achieved through task reduction in the 6BS plan, while it
is now true in the initial state of the new problem situation. PRIAR uses the
planner's goal achievement procedures to check whether On(M, N) can now
be established from the initial state. As this check is successful, PRIAR decides
to shorten the plan by pruning the validation that is currently supporting the
goal On(M, N), and to support On(M, N) by the new fact from the initial
state. This pruning will remove the subreduction below the node for achieving
On(M, N) (see the node with the label "1I" in Fig. A.2) from the interpreted
plan. Consequently, the annotation-verified plan, shown in Fig. A.3, does not
contain any nodes of this subreduction.

Theory of plan modification 247

FN graph al 6[~$2fl3'

[]

0

'G

Fig. A.2. 6BS plan after interpretation.

67 ANNOT-VERIFY: Processing p-phantom validations (if any)
68 The goal (ON M N) is supported by a p-phantom validation
69 Checking to see if it can be phantomized
70 Check-p-Phantom-Validation: the condition (ON M N)
71 can be established from new initial state!!!
72 Check-p-Phantom-Validation: Pruning the other contributor
73 { (6::NDO268)[:PRIMITIVE(PUT-BLOCK-ON-BLOCK-ACTION M N)] . . . }
74 from the HTN

~,
 g

a a
l:)

h
of

 6
B

S7
74

] 1~
-.:

,
[:D

,:~
o.

m
q

I
(a.

JE
AR

TO
P P

)
I

"•
 Iql

rT
alk

4
[:R

EP
LA

CE
- RE

DU
CT

IO
N]

 i
(P

UT
-B

LO
CK

-O
N-

BL
OC

K 0
 M

)
]

ON
Lp)

I'Ts
k:-3

 I:R
EP

I.A
CE

-R
ED

UC
TIO

N]
I

7i
g.

 A
.3

.
6B

S
 p

la
n

af
te

r
an

no
ta

ti
on

 v
er

if
ic

at
io

n.

Theory of plan modification 249

75 Pruning the reduction below the node
76 { (6::ND0109)[:GOAL(ON M N)] . . . }
77 To take care of this p-phantom validation

After taking care of unnecessary and p-phantom validations, the annotation
verification procedure finds that the validation supporting the filter condition
Block(L) is failing, because L is a Pyramid in the new problem situation. The
appropriate repair action is to replace the subreduction below the node which
first posted that filter condition. In this case, PRIAR finds that the node for
achieving the goal On(L, P) (see the node with the label "III" in Fig. A.3)
which is an ancestor of the node with the failing condition validation, first
posted the filter condition Block(L) into the plan. So it decides to replace the
subreduction below this node. Consequently, the annotation verified plan in
Fig. A.3 contains a refit task to re-achieve the goal On(L, P) in place of the
replaced subreduction.

78 ANNOT-VERIFY: Processing extra goals (if any)
79 ANNOT-VERIFY: Looking for failed validations.
80 The FILTER (:use-when) condition (BLOCK L) at node
81 { (3::ND0232)[:PRIMITIVE(PUT-BLOCK-ON-BLOCK-ACTION L P)I...}
82 is failing because of :out fact (BLOCK L) in (INIT-STATE)
83
84 REFIT-F1LTER-COND-FA1LURE: Adding a refit-task
85 { (REFIT-TASK004) [: REPLACE-REDUCTION(ON L P)] . . . }
86 to re-reduce the node
87 { (3::ND0106)[:GOAL(ON L P)] . . . }
88 REFIT-FILTER-COND-FAILURE: Removing the replaced reduction from the plan

The annotation verification procedure goes on to find a second failing filter
condition validation and a failing phantom condition validation (lines 89-106).
It repairs them by adding a second replace reduction refit task and a de-
phantomize refit task to the annotation-verified plan. Figure A.3 shows the
partially reduced HTN after the annotation verification process. The top part of
the figure shows the hierarchical structure of the task reduction while the
bottom part shows the chronological partial ordering relations among the leaf
nodes of the HTN. The black nodes correspond to the parts of the interpreted
plan while the white nodes represent the refit tasks added during the annota-
tion verification process. This partially reduced HTN is then sent to the planner
for refitting.

89 The FILTER (:use-when) condition (ON O TABLE) at node
90 {(5::ND0251)[:PRIMITIVE(PUT-BLOCK-ON-BLOCK-ACTION O M)] . . .}
91 is failing because of :out fact (O N O T A B L E) in (INIT-STATE)

92 REFIT-FILTER-COND-FAILURE: Adding a refit-task
93 { (REFIT-TASK0002) [:REPLACE-REDUCTION(PUT-BLOCK-ON-

BLOCKO M)] . . .}
94 to re-reduce the node
95 { (5::ND0176)[:ACTION(PUT-BLOCK-ON-BLOCK O M) . . . }
96 REFIT-FILTER-COND-FA|LURE: Removing the replaced reduction from the plan

',
~-

ap
h

t,i
6~

s2
04

5

t II;
W

I'~
- 1

2
I:D

EP
HA

NT
O

M
IZ

E]

{C
LE

AR
TO

P P
)

(C
LE

AR
TO

P P
)

..
..

..
..

..
..

.
i

iR
f'l'

=k
-s

[:R

EF
q.

.A
CE

-R
EO

UC
TI

O
N]

I
IN

d-
5

[:P
R

IM
ffl

VE
]

J
(P

UT
-B

LO
CK

-O
N-

BL
O

CK
 O

 M
)

[-
-J

(P

UT
-B

LO
CK

-O
N-

BL
O

CK
-A

CT
IO

N
O

 M
)I

',lT
Sk

 3

[:R
EP

1J
~C

E-
RE

DU
CT

IO
I~

ON

 L
 P

)
Ill I

••C
•_A

_R
_'O

 P_
-PL

 _
__

',

11
11

3
I:.~

o2
rlO

lq
I

Ilia
-3

[:P
mM

ITI
VI+

 I
]

(P
UT

- P
/I~

M
ID

-O
I'4

-B
LO

CK
 L

 P
) J

(P

U
T-

P'
C

R
AM

 D-
O

N-
BL

O
CK

-A
CT

IO
N

L
P)

 I

IA
L-

O
R

D
U

R
 g

l ~
ph

 d

¢
II

'~
P

~

:i
g.

 A
.4

.
R

es
ul

t
of

 r
ef

it
ti

ng
 6

B
S

ph
m

 t
o

5B
P

 p
ro

bl
em

.

Theory of plan modification 251

97
98
99

100
101
102
103
104
105

The :PRECOND condition (CLEARTOP P) at node
{ (4::ND0106) [:PRIMITIVE(PUT-BLOCK-ON-BLOCK-ACTION P O)]
is failing because of :out fact (CLEARTOP P) in (INIT-STATE)

DEPHANTOMIZE-GOAL: Adding refit-task
{ < REFIT-TASK0006)[:DEPHANTOMIZE(CLEARTOP P)] . . -}
in the place of the phantom goal
{ < 12::ND0154)[:GOAL(CLEARTOP P)] . . .}

106 annot-verify: Entering refit-tasks into the planners TASK-QUEUE in correct order

107 Entering { (REFIT-TASK0004)[:REPLACE-REDUCTION(ON L P)] . . .}
108 Entering {{REFIT-TASK0002)[:REPLACE-REDUCTION(PUT-BLOCK-ON-BLOCK

O M) I . . . }
109 Entering {{REFIT-TASK0006)[:DEPHANTOMIZE(CLEARTOP P)] . . .}
110 ANNOT-VERIFY: END

The planner starts by reducing the replace-reduction refit task corresponding
to On(L, P) (lines 112-130). Since L is a pyramid, the planner finds that the
only appropriate schema instance for reducing this refit task is MAKE-PYRAMID-
ON-BLOCK(L, P). Next, since the refit task is a replace-reduction refit task,
PmAR finds during installation (Section 5.3) that the e-precondition of the refit
task that was supporting the condition Clear(L) is no longer required by the
new schema instance (the reason being that L, which is a pyramid, is always
clear). So the e-precondition is pruned from the HTN. After this, the planner
goes on to reduce the refit task with the chosen schema. The other two refit
tasks are also reduced in turn by a similar process (lines 136-142).

Figure A.4 shows the result of refitting, which is a completely reduced HTN
for solving the 5BP problem. The black nodes represent the parts of the 6BS
plan that remained applicable to the 5BP problem and the white nodes
represent the reductions of refit tasks. There is no separate subplan for
achieving the goal On(M, N) in this HTN since this is made true from the initial
state 5BP problem. The bottom part of the figure shows the partial ordering
relations among the steps of the developed plan.

111 *************************** Generative Planner************************

112 PLANNER: Expanding refit task Achieve [(ON L P)]

113 PLANNER: The schema choices to reduce the refit task are:
114 ({SCH0021}: MAKE-PYRAMID-ON-BLOCK00140018::(ON L P)
115 BY {(I::ND0020)[:ACTION(PUT-PYRAMID-ON-BLOCK LP)] . . . }
116 The chosen schema is:
117 {SCH0021 }
118 MAKE-PYRAMID-ON-BLOCK00140018::(ON L P)
119 Expansion:
120 0 { (0::ND0019)[:GOAL(CLEARTOP P)]}
121 1 { { 1 ::ND0020) [:ACTION(PUT-PYRAMID-ON-BLOCK L P)]}
122 Conditions:
123 ((SC5125)) :PRECOND (CLEARTOPP) :at 1 :from (0)

252 S. Kambharnpati, J.A. Hendler

124
125
126

((SC5126}) :USE-WHEN (PYRAMID L) :at 0 :from (-24)
((SC5127)) :USE-WHEN (BLOCKP):at 1 :from (-24)

127 Install Choice: Installing the schema ({SCHOI)21}
128 MAKE-PYRAMID-ON-BLOCK00140018::(ON L P) BY
129 { (1 ::ND()()20)[:ACTION(PUT-PYRAMID-ON-BLOCK L P)] . . .}
130 to Re-reduce the task ({(REFIT TASK(X)04}[:REPLACE-REDUCTION(ON L P)]})

131
132
133
134
135
136
137
138
139

The c-precondition (CLEARTOP L) of the task
({ (REFIT-TASK0004) [:REPLACE-REDUCTION(ON L P)]})
is not required by the chosen schema

So, pruning the validation corresponding to this ncondition
PLANNER: Expanding Refit-task Achieve [(PUT-BLOCK-ON-BLOCK O M)]
PLANNER: The schema choices to reduce the refit-task are:
({ SCHI)I)27} :: PUT-BLOCK-ON-BLOCK00220025: :(PUT-BLOCK-ON-BLOCK O M)

BY { (0::ND0026)[:PRIMITIVE(PUT-BLOCK-ON-BLOCK-ACTION O M)]})

140 PLANNER: Expanding Refit-task Achieve [(CLEARTOP P)]
141 The refit-task is PHANTOMIZED with an effect of the node(s)
142 ({ (5::ND(1026)[:PRIMITIVE(PUT-BLOCK-ON-ACTION O M)]})

143 ****The planning is OVER
144 The plan i s . . .

145
146
147 5: :PRIMITIVE (PUT-BLOCK-ON-BLOCK-ACTION O M)
148 [Prenodes:(6 15 16)] [Succnodes: (3 1 4)]
149 4: :PRIMITIVE (PUT-BLOCK-ACTION P O)
15(J [Prenodes:(12 5 13)] [Succnodes: (23 1)]
151 3: :PRIMITIVE (PUT-PYRAMID-ON-BLOCK-ACTION L P)
152 [Prenodes:(23 I) 5)] [Succnodes: (1)]

153 ***********GOAL STATE***********
154 ((SC0062)) :PRECOND (ON O M) :at 1 :from (5)
155 ((SC0061)) :PRECOND (ONPO) :at 1 :from (4)
156 ((SC0060)) :PRECOND (ONLP) :at 1 :from (3)
157 ((SC0059)) :PRECOND (ON M N) :at I :from (0)

Appendix B. The blocks world domain specification

(serf * a u t o c o n d * t)

;;;Automatically fill in sub-goals as preconditions of main goal steps

(opschema m a k e - p y r a m i d - o n - b l o c k

:todo (on ?x ?y)
:expansion ((s t ep l :goal (c lea r top ?y))

(s tep2 :ac t ion (p u t - p y r a m i d - o n - b l o c k ?x ?y)))

:orderings ((s t ep l --* s tep2))

Theory of plan modification 253

:conditions ((:filter (pyramid ?x) :at stepl)
(:filter (block ?y) : at step2))

:effects ((step2 :delete (cleartop ?y))
(step2 :assert (on ?x ?y)))

(?x ?y))

make-pyramid-on-table
(on ?x table)
((stepl :action (put-pyramid-on-table ?x ?y)))
((:filter (pyramid ?x) :at stepl))
(stepl :assert (on ?x table)))
(?x ?y))

make-block-on-block
(on ?x ?y)
((stepl :goal (cleartop ?x))
(step2 :goal (cleartop ?y))
(step3 :action (put-block-on-block ?x ?y)))

:orderings ((stepl ---> step3) (step2---> step3))
:conditions ((:filter (block ?x) :at stepl)

(:filter (block ?y) :at step 2))
:effects ((step3 :delete (cleartop ?y))

(step3 :assert (on ?x ?y)))
(?x ?y))

make-block-on-table
(on ?x table)
((stepl :goal (cleartop ?x))
(step2 :action (put-block-on-table ?x table)))

:conditions ((:filter (block ?x) :at step 1))
:orderings ((stepl-->step2))
:effects ((step2 :assert (on ?x table)))
:variables (?x ?y))

(opscbema make-clear-table
:todo (cleartop ?x)
:expansion ((stepl :goal (cleartop ?y))

(step2 :action (put-block-on-table ?y table)))
:orderings ((stepl--~ step2))
:conditions ((:filter (block ?x) :at step 1)

(:filter (block ?y) :at step2)
(:filter (on ?y ?x) :at step2))

:effects ((step2 :assert (cleartop ?x))
(step2 :assert (on ?y table)))

:variables (?x ?y))

:variables

(opschema
:todo
:expansion
:conditions
:effects
:variables

(opschema
:todo
:expansion

:variables

(opschema
:todo
:expansion

254 S, Karnbhampati, J.A. ttendler

(opschema makeclear-block
:todo (cleartop ?x)
:expansion ((stepl :goal (cleartop ?y))

(step2 :action (put-block-on-block ?y ?z)))
:orderings ((step l~s tep2))
:conditions ((:filter (block ?x) :at step 1)

(:filter (block ?y) :at stepl)
(:filter (block ?z) :at stepl)
(:filter (on ?y ?x) :at step2)
(:filter (cleartop ?z) :at step2)
(:filter (not (equal ?z ?y)) :at stepl)
(:filter (not (equal ?x ?z)) :at stepl))

:effects ((step2 :assert (cleartop ?x))
(step2 :assert (on ?y ?z))
(step2 :delete (cleartop ?z)))

:variables (?x ?y ?z))

(actschema
:todo
:expansion
:conditions

:effects

:variables

put-block-on-block
(put-block-on-block ?x ?y)
((stepl :primitive (put-block-on-block-action ?x ?y)))
((:filter (block ?x) :at stepl)
(:filter (block ?y) :at step 1)
(:filter (cleartop ?x) :at stepl)
(:filter (cleartop ?y) :at step 1)
(:filter (on ?x ?z) :at stepl))

((stepl :assert (on ?x ?y))
(stepl :assert (cleartop ?z))
(stepl :delete (cleartop ?y))
(stepl :delete (on ?x ?z)))

(?x ?y ?z))

(actschema
:todo
:expansion
:conditions

:effects

:variables

put-pyramid-on-block
(put-pyramid-on-block ?x ?y)
((stepl :primitive (put-pyramid-on-block-action ?x ?y)))
((:filter (pyramid ?x) :at stepl)
(:filter (block ?y) :at stepl)
(:filter (cleartop ?y) :at stepl)
(:filter (on ?x ?z) :at stepl))

((stepl :assert (on ?x ?y))
(stepl :assert (cleartop ?z))
(stepl :delete (cleartop ?y))
(stepl :delete (on ?x ?z)))

(?x ?y ?z))

Theory of plan modification 255

(actschema
:todo
:expansion
:conditions

:effects

:variables

put-block-on-table
(put-block-on-table ?x table)
((stepl :primitive (put-block-on-table-action ?x table)))
((:filter (block ?x) :at stepl)
(:filter (cleartop ?x) :at stepl)
(:filter (on ?x ?z) :at step1))

((stepl :assert (on ?x table))
(stepl :assert (cleartop ?z))

(stepl :delete (on ?x ?z)))
(?x ?z))

(actschema
:todo
:expansion
:conditions

put-pyramid-on-table
(put-pyramid-on-table ?x table)
((stepl :primitive (put-pyramid-on-table-action ?x table)))
((:filter (pyramid ?x) :at step1)
(:filter

:effects ((stepl
(stepl
(stepl

:variables (?x ?z)

(on ?x ?z) :at stepl))
:assert (on ?x table))
:assert (cleartop ?z))
:delete (on ?x ?z)))

(domain-axioms
(<---(cleartop table)

t)
;;(cleartop table) is always derivable

(*--(not (cleartop ?x))
(on ?y ?x)) ;;if ?y is on ?x then ?x cannot be clear

(<--(not (on ?other ?x))
(and (block ?x)(on ?z ?x)))

;;if ?x is a block and ?z is on top o f ?x, nothing else is on its top

(*-(not (on ?z ?other))
(on ?z ?x))

;;if ?z is on ?x it is not on any other block

(<---(not (on ?x ?y))
(pyramid ?y)

;;nothing can be on the top of a pyramid
(<--(equal ?x ?x)

t)
;;equality axiom)

(closed-world-predicate 'equal :set t)
;;record that equality is a closed-world predicate

256 S. Karnbharnpati, .I.A. Hendler

Acknowledgement

Bulk of this research was done while the first author was a graduate research
assistant at the Center for Automation Research, University of Maryland,
College Park. Lindley Darden and Larry Davis have significantly influenced
the early development of this work. Mark Drummond, Amy Lansky, Jack
Mostow, Austin Tate, David Wilkins, and the reviewers of IJCAI-89, AAA1-
90 have provided several helpful comments on previous drafts. The paper also
benefited from the extensive comments from one of the AI Journal referees.

Dr. Kambhampati has been supported in part by the Defense Advanced
Research Projects Agency and the U.S. Army Engineer Topographic Lab-
oratories under contract DACA76-88-C-0008 (to the University of Maryland
Center for Automation Research), the Office of Naval Research under contract
N00014-88-K-0620 (to Stanford University Center for Design Research), and
the Washington D.C. Chapter of A.C.M. through the "1988 Samuel N.
Alexander A.C.M. Doctoral Fellowship Grant". Dr. Hendler is also affiliated
with the UM Systems Research Center (an NSF supported engineering re-
search center) and the UM Institute for Advanced Studies, and support for this
research comes from ONR grant N00014-88-K-0560 and NSF grant IR1-
8907890.

References

[1] R. Alterman, Adaptive planning. Cogn. Sci. 12 (1988) 393-421.
[2] J.G. Carbonell, Derivational analogy and its role in problem solving, in: Proceedings

AAA1-83, Washington, DC (1983) 64-69.
[3] D. Chapman, Planning for conjunctive goals, Artif. lntell. 32 (1987) 333-377.
[4] E. Charniak and D. McDermott, Managing plans of actions, in: Introduction to Artificial

Intelligence (Addison-Wesley, Reading, MA, 1984) Chapter 9, 485-554.
[5] L. Daniel, Planning: modifying non-linear plans, DAI Working Paper 24, University of

Edinburgh, Edinburgh, Scotland (1977); also as: Planning and operations research, in:
Artificial Intelligence: Tools, Techniques and Applications (Harper and Row, New York,
1983).

[6] R.E. Fikes, P.E. Hart and N.J. Nillsson, Learning and executing generalized robot plans,
Artif. lntell. 3 (1972) 251-288.

[7] S. Ghosh, S. Kambhampati and J.A. Hendler, Common Lisp implementatkm of a NONLIN-
based hierarchical planner: a user manual, Tech. Report (in preparation).

[8] K.J. Hammond, Explaining and repairing plans that fail, Artif. lntell. 45 (1990) 173-228.
[9] P.J. Hayes, A representation for robot plans, in: Proceedings lJCA1-75, Tblisi, Georgia

(1975).
[10] J.A. Hendler, A. Tate and M. Drummond, AI planning: systems and techniques, AI Mag. 11

(2) (1990).
[11] M.N. Huhns and R.D. Acosta, ARGO: a system for design by analogy, 1EEE Expert (Fall

1988) 53-68; also in: Proceedings of 4th IEEE Conference on Applications of A l (1988).
[12] S. Kambhampati, Flexible reuse and modification in hierarchical planning: a validation

structure based approach, Ph.D. Dissertation, CS-Tech. Report 2334, CAR-Tech. Report

Theory of plan modification 257

469, Center for Automation Research, Department of Computer Science, University of
Maryland, College Park, MD (1989).

[13] S. Kambhampati, Mapping and retrieval during plan reuse: a validation-structure based
approach, in: Proceedings AAAI-90, Boston, MA (1990) 170-175.

[14] S. Kambhampati and M.R. Cutkosky, An approach toward incremental an interactive
planning for concurrent product and process design, in: Proceedings ASME Winter Annual
Meeting on Computer Based Approaches to Concurrent Engineering, Dallas, TX (1990).

[15] S. Kambhampati, M.R. Cutkosky, J.M. Tenenbaum and S.H. Lee, Combining specialized
reasoners and general purpose planners: a case study, in: Proceedings AAA1-91, Anaheim,
CA (1991) 199-205.

[16] S. Kambhampati and S. Kedar, Explanation based generalization of partially ordered plans,
in: Proceedings AAAI-91, Annaheim, CA (1991) 679-685.

[17] S. Kambhampati and J.A. Hendler, Control of refitting during plan reuse, in: Proceedings
HCA1-89, Detroit, MI (1989) 943-948.

[18] J.L. Kolodner, Maintaining organization in a dynamic long-term memory, Cogn. Sci. 7 (1983)
243 -280.

[19] R.E. Korf, Planning as search: a quantitative approach, Artif. lntell. 33 (1987) 65-88.
[20] S. Minton, Quantitative results concerning the utility of explanation-bassed learning, Artif.

lntell. 42 (1990) 363-391.
[21] S. Minton, A.B. Philips, P. Laird and M.D. Johnston, Solving large-scale constraint-

satisfaction and scheduling problems using a heuristic repair method, in: Proceedings AAA1-
90, Boston, MA (1990) 17-24.

[22] E.D. Sacerdoti, A Structure for Plans and Behavior (Elsevier North-Holland, New York,
1977).

[23] R. Simmons, A theory of debugging plans and interpretations, in: Proceedings AAA1-88, St.
Paul, MN (1988) 94-99.

[24] R. Simmons and R. Davis, Generate, test and debug: combining associational rules and
causal models, in: Proceedings HCA1-87, Milan, Italy (1987) 1071-1078.

[25] G.J. Sussman, HACKER: a computational model of skill acquisition, Memo 297, AI Lab,
MIT, Cambridge, MA (1973).

[26] A. Tate, Project planning using a hierarchic non-linear planner, Research Report 25,
Department of AI, University of Edinburgh, Edinburgh, Scotland (1976).

[27] A. Tare, Generating project networks, in: Proceedings HCAL77, Cambridge, MA (1977)
888-893.

[28] J. Tenenberg, Abstraction in planning, Doctoral Dissertation, Tech. Report 250, Rochester
University, Rochester, NY (1988).

[29] S.A. Vere, Planning in time: windows and durations for activities and goals, IEEE Trans.
Pattern Anal. Mach. lntell. 5 (3) (1983) 246-247.

[30] D.E. Wilkins, Domain-independent planning: representation and plan generation, Artif.
lntell. 22 (1984) 269-301.

[31] D.E. Wilkins, Recovering from execution errors in SIPE, Comput. Intell. 1 (1985).
[32] D. Wilkins, Practical Planning (Morgan Kaufmann, San Mateo, CA, 1989).
[33] Q. Yang, Improving the efficiency of planning, Doctoral Dissertation, Department of

Computer Science, University of Maryland, College Park, MD (1989).

Note added in proof

After the paper has gone to the printers, we have noticed a minor error in
our formulation of validation-structure-based execution monitoring in Section
6.1.1. The definition of E(P, W, EXEC) has to be modified to account for the
fact that parallel steps can be executed in any order. The correct formulation
would be

258 S. Kambhampati. J.A. ltendler

P E(P, W, EXEC)= {riI primitive(n)/x matvhes(A (ri), W)}

P where matches(A (n), W) is true as long as both the following clauses are
satisfied:

(1) for all the validations v: {E,n~, C,n~t)¢AP(n) such that rq(n < n <

rid), holds(v, W) is true;

(2) for each node np such that nplln,
either holds(v, W) is true for every validation v: (E, n~, C, rid) ¢ A~'(ri)
such that n~ = np, and ~ (n < rid).

or holds(v, W) is true for every validation v: (E, n~, C, rid) E AP(n)
such that ri,j np, and [] (n~< ri)"

(where holds(v: {E, n~, C, rid), W) is true if and only if WI- C).

The second clause captures the notion that n can be executed if for every
action np that is parallel to n:

• either rip has already been executed successfully (in which case each of its

e-conditions supporting the applicability conditions of any of the succes-
sors of n must hold in W),

• or np can still be executed successfully after n, without re-executing any
step that is necessarily before n in the plan (and thus logically could

already have been executed).

(When the plan P is totally ordered, the second clause will not be applicable,

as no two nodes in the plan will be unordered, and the formulation reduces to

that of STRIPS/PLANEX triangle-table-based execution monitoring f ramework

[6].)
Intuitively, matches(A~'(n), W) tries to capture the notion that all the

validation links in at least one cutset of the plan graph that separates n from all

its predecessor nodes, must hold in the current world state.
Note that this formulation of E(P, W, EXEC) allows for the possibility that

the parallel nodes that have already been executed may have to be re-
executed, if their intended effects are not holding. It can be used to define a
simple nondeterministic automaton that represents all the possible behaviors

(sequences of world states) that one can get out of the partially ordered plan P.
Given a world state W, this automaton nondeterministically selects and exe-
cutes an action from the set of executable actions, given by E(P, W, EXEC).

The automaton terminates with failure when the set E(P, W, EXEC) is empty,
and with success when this set contains the goal node n(;.

