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Abstract 

Kambhampati, S. and J.A. Hendler, A validation-structure-based theory of plan modifica- 
tion and reuse, Artificial Intelligence 55 (1992) 193-258. 

The ability to modify existing plans to accommodate a variety of externally imposed 
constraints (such as changes in the problem specification, the expected world state, or the 
structure of the plan) is a valuable tool for improving efficiency of planning by avoiding 
repetition of planning effort. In this paper, we present a theory of incremental plan 
modification suitable for hierarchical nonlinear planning, and describe its implementation in 
a system called PRIAR. In this theory, the causal and teleological structure of the plans 
generated by a planner are represented in the form of an explanation of correctness called 
the "'validation structure". Individual planning decisions are justified in terms of their 
relation to the validation structure. Plan modification is formalized as a process of removing 
inconsistencies in the validation structure of a plan when it is being reused in a new or 
changed planning situation. The repair of these inconsistencies involves removing un- 
necessary parts of the plan and adding new nonprimitive tasks to the plan to establish 
missing or failing validations. The result is a partially reduced plan with a consistent 
validation structure, which is then sent to the planner for complete reduction. We discuss 
this theory, present an empirical evaluation of the resulting plan modification system, and 
characterize the coverage, efficiency and limitations of the approach. 
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1. Introduction 

Although efficient domain-dependent planning systems (those which use 
knowledge particular to the domain of execution to limit planning search) can 
be designed for particular applications, the more general problem of domain- 
independent nonlinear planning has been shown to be intractable (NP-hard) 
[3]. t Thus, approaches which may improve the cost of planning in general 
planning systems are being widely sought. One promising avenue for increasing 
efficiency is to investigate strategies that improve average-case planning ef- 
ficiency by avoiding repetition of planning effort. Despite the long history of 
planning systems, most planning work has been concentrated on generating 
plans from scratch, without exploiting previous planning effort. Thus, much of 
the classical work in planning has been "ahistoric'" and non-incremental--that 
is, asked to solve a problem very similar to one it has solved before, the 
planner performs no better than it did the first time. Recently, due both to 
interest in improving planning efficiency, as well as the gains being made in 
machine learning, the design of planning systems which can exploit previous 
planning experience has become a topic gaining wide interest in the planning 
community. 

This paper focuses on an incremental plan modification strategy that allows a 
planner to construct a plan for a new planning problem by conservatively 
modifying a given p l a n I t h a t  is, by retaining as many of the applicable parts of 
the given plan as possible. Consider the following common scenario: Suppose a 
planner has generated a plan for a particular initial and goal state specification. 
It then encounters a change in the problem specification and wants to revise its 
plan to make it work in the new situation. One obvious possibility is for the 
planner to start from scratch again and find a plan for the changed problem 
specification. However, given the high cost of planning, it is worth investigating 
if the repetition of planning effort can be avoided by updating the existing plan 
to deal with the changes in the specification. Such an ability to incrementally 
modify existing plans, to make them conform to the constraints of a new or 
changed planning situation, can provide substantial computational advantages 
by avoiding repetition of computational effort and respecting previous commit- 
ments, in particular, it can support replanning to handle execution time 
failures or user-initiated specification changes, and reusing plans to exploit thc 
typicality in the problem distribution. Finally, a planner's ability to incremen- 
tally modify its plans can also significantly improve its interactions with other 
modules in the problem solving environment whose analyses and commitments 
depend on the current state of the plan. 

This is a simplification of Chapman's results presented in [3]. A discussion of his results, and a 
review of AI planning systems and techniques, as well as definitions for many of the planning- 
related terms used ill this papcr, can be found in [1(I]. 
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We are interested in the computational framework for supporting such 
incremental plan modification to accommodate changes in the problem specifi- 
cations. Given an existing plan and a set of changes to be accommodated, there 
are two central decisions surrounding the modification process: which parts of 
the given plan can be salvaged, and in what ways should the other parts be 
changed. Two important desiderata for the plan modification capability are 
flexibility and conservatism. By "flexibility" we mean that the modification 
strategy should be able to deal with a wide variety of specification changes in a 
domain-independent fashion, reusing all applicable portions of the existing 
plan and gracefully degenerating into planning from scratch as the changes 
become more significant. By "conservatism" we mean that the strategy should 
modify the plan minimally (i.e., salvage as much of the old plan as possible) 
while accommodating the changes in the specification. The former is required 
for effective coverage of modification,-" while the latter is needed to ensure 
efficiency. Designing modification strategies with these characteristics requires 
a systematic framework for maintaining and revising the dependencies under- 
lying planning decisions, and the causal and teleological structure of the 
plans. 

We have developed a theory of plan modification that allows the flexible and 
conservative modification of plans generated by a hierarchical nonlinear plan- 
ner, and have implemented it in a system called PRIAR. In our theory, the 
causal and teleological structure of generated plans are represented in a form 
of explanation of plan correctness called a "validation structure". Individual 
planning decisions made during the generation of the plan are justified in terms 
of their relation to the validation structure. Modification is characterized as a 
process of detecting and removing inconsistencies in the validation structure 
resulting from the externally imposed constraints. Repair actions utilize the 
dependency structures to transform a completed plan with an inconsistent 
validation structure into a partially reduced plan with a consistent validation 
structure. This partially reduced plan is then sent to the planner for comple- 
tion, and a completed plan is produced. 

This formalization of the modification process provides a general unified 
framework for addressing many subproblems of planning and plan reuse, 
including plan modification, execution monitoring and replanning, incremental 
updating of plans (to accommodate externally imposed constraints), estimating 
the similarity of plans during the retrieval of plans for reuse, and controlling 
the choice of new actions to replace changed parts of existing plans. In this 
paper, we present the plan modification framework and evaluate its per- 
formance, coverage, correctness, efficiency and limitations. 

: In other words, we do not want to be limited to some domain-dependent heuristics that may 
allow the planner to deal with only a prespecified set of specification changes in an efficient way. 
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1.1. Overview of the plan modification framework 

The plan modification problem that is addressed by the PRIAR system is the 
following: 

Given 
(i) a planning problem P" (specified by a partial description of the initial 

state I" and goal state G"), 
(ii) an existing plan R ° (generated by a hierarchical nonlinear planner), and 

the corresponding planning problem P", 

Produce a plan for P" by minimally modifying R '~. 

Figure 1 shows the schematic overview of the PRIAR plan modification 
framework. 

In the PRIAR modification framework, the internal causal dependencies of 
generated plans are represented as a form of plan explanation, called a 
validation structure. The correctness of a plan is formally characterized in terms 
of the consistency of its validation structure. The individual steps of a plan as 
well as the planning decisions involved in the generation of that plan (e.g., task 
reductions), are justified in terms of their relation to the plan validation 
structure. In particular, the plan is annotated with information about the 
inconsistencies that will arise in the validation structure in the event these 
decisions have to be retracted. PRIAR provides efficient algorithms for au- 
tomatically annotating and maintaining these justifications as a by-product of 
planning. 

External changes in the plan specification are handled by computing the 

pn ~ R ° W [Annotation verification 
pimN~nWln Id plan int. p l ,  n I 
pIrao~le~m g - ~ R e t r l e v a ,  ~ma;ping-'~ Interpretation ~-- ÷ - ' ~ ~  ] ] Suggest ] I differences I~ lus i fy  Ilppll- i---el appropriate I 

i I  ' G / / p a b l l l t y  f l l lures j I reflt tasks I 

." Plan Applicable Parts of the old plan 
"~Library..." + Ra 

Refit Tasks 

[~ ~ ~ ~ [~ Refitting //,,.,,,.,.. ~ 
Planner 

Reduction of 
refit t l l k l  

Annotated Plan R n 
for the ne, w problem 

Fig. 1. Schematic overview of PRIAR. 
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ramifications of those changes on the plan validation structure, and repairing 
any resulting inconsistencies. In particular, modification is formalized as a 
process of repairing the inconsistencies in the validation structure of a given 
plan when it is mapped into the new problem situation. Given a new problem 
P", and an annotated plan R °, PRIAR's modification process proceeds in the 

following steps: 

(1) Mapping and interpretation: An appropriate mapping a between the 
objects of [po, R o] and pn is chosen with the help of the validation 
structure of R °, and R ° is mapped into pn with a. Next, the differences 
between the initial and goal state specifications of po and Pn are marked. 
The resulting interpreted plan, R ~, is typically a plan with an inconsistent 
validation structure. 

(2) Annotation verification: The inconsistencies in the validation structure of 
R ~ are located and, based on their nature, a variety of repairs are 
suggested for removing them. The repairs include removing parts of R ~ 
that are unnecessary and adding nonprimitive tasks (called refit tasks) to 
establish any required new validations. The resulting annotation-verified 
plan R a will have a consistent validation structure but is typically only 
partially reduced. It consists of all the applicable parts of R i and any 
newly introduced refit tasks. 

(3) Refitting: The refit tasks specified during the annotation verification 
phase constitute subplanning problems for the hierarchical planner. The 
refitting process involves reducing them with the help of the planner. 
Conservatism is ensured during this process through the use of a 
heuristic control strategy which utilizes the plan validation structure to 
estimate the disturbance caused by various reduction choices to the 
applicable parts of R a, and prefers the choices expected to cause least 
disturbance. Since the planner is allowed to backtrack over the refit 
tasks just as it would over other tasks during generative planning, the 
completeness of the underlying planner is not affected. 

The computational savings of this approach stem from the fact that the 
complexity of solving the subplanning problems during refitting is on the 
average significantly less than the complexity of solving the entire planning 
problem from scratch. Furthermore, we will show that the overhead costs 
involved in augmenting generative planning with a plan modification capability 
are very low (of polynomial complexity compared to the exponential complexi- 
ty of planning from scratch). Thus, our formalism provides an efficient 
framework for improving the run-time of domain-independent planning 
through plan modification. 

The PRIAR modification framework has been completely implemented. The 
planner in the implementation is based on Tate's NONLIN [7, 26]. We modified 
NONLIN tO handle partially reduced plans, and to automatically annotate the 
generated plans according to the validation-structure-based dependency repre- 
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sentation. The system has been tested in the blocks world domain and in a 

manufacturing planning domain [14]. Experiments in the blocks world certainly 

bear  out the flexibility and efficiency of the incremental plan modification. Our 

results show that plan modification can provide up to 1-2 orders of magnitude 

reduction in planning cost, over a variety of specification changes (the details 

of these studies are provided in Section 7). Similar improvements  have also 

been observed in a manufacturing planning domain [14, 15], where PRIAR's 

ability to incrementally modify an existing plan in response to changes in the 

specification also led to an improved interaction between the planner, and 

other  specialists in the environment  that make their commitments  based on the 
plan. 

1.2. Guide to this paper 

The rest of this paper  is organized as follows. The next section discusses 
previous research in plan modification, and motivates the PRIAR framework.  

Section 3 introduces some preliminary notation and terminology used through- 

out the paper.  Section 4 presents the notion of plan validation structure, 
characterizes the correctness of a plan in terms of the consistency of its 

validation structure, and develops a scheme for justifying the various planning 

decisions in terms of their relation to the validation structure. Section 5 
formally develops the modification processes for repairing various types of 

inconsistencies in the validation structure. Section 6 discusses applications of 

the modification f ramework to replanning and plan reuse. Section 7 discusses 

the empirical evaluation of the modification strategies, and Section 8 provides 
an analysis of the PRIAR plan modification techniques. Section 9 summarizes 

the research. Appendix A contains an annotated trace of the PRIAR system 

solving a problem and Appendix B contains the specification of the domain 

used in the empirical evaluation. 

2. Related work 

Improving the efficiency of planning by exploiting previous planning ex- 
perience has long been recognized as important  in AI  planning work; PRIAR 

draws a great deal from this tradition. The earliest research on learning from 
planning experience was done in conjunction with the STRIPS system [6], which 
was used to plan the motion of a robot called Shakey and to control it as it 
pushed a set of boxes through a number  of interconnecting rooms. STRIPS had 
the capability to recover from simple execution time failures 3 and to improve 

~A well-known SRI film shows Shake)' following a STRIPS-generated plan using an execution 
monitor callcd PLANEX. Charley Rosen, the SRI AI Lab founder, dressed in a sinister cloak, 
appears and disrupts the position of thc boxes during execution. PLANEX is thcn able to make use 
of information maintained by STRIPS to recover from this disruption and complete the plan. 
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its performance by utilizing previous planning experience. It did this by 
maintaining two types of information about the generated plans: 

(i) macro-operators (also called macrops): generalized (variablized) se- 
quences of operators, culled from the previous successful plans, 

(ii) triangle-tables: data structures that recorded dependencies between the 
state of the world and the operator structure of the plans (and macro- 

operators). 

However, this method of replanning left STRIPS incapable of modifying the 
internal structure of its stored macro-operators to suit new problem situations. 
Consequently the macro-operators could be used only when either the entire 
macrop or one of its subsequences was applicable in the current situation. 
Replanning in STRIPS consisted solely of attempts to restart the plan from an 
appropriate previously executed step. 

An important reason for the inflexibility of macro-operator-based reuse in 
STRIPS was the impoverished plan representation which did not allow for 
hierarchical abstraction and least commitment. A recent hierarchical linear 
problem solver called ARGO [11] tries to partially overcome the former by 
remembering macro-operators for each level of its hierarchical plan. However, 
it too lacks the capability to modify the intermediate steps of a chosen 
macro-operator, and is consequently unable to reuse all the applicable portions 
of a plan. 

The inflexibility of macrops-based reuse led to the investigation of richer 
dependency structure representations (e.g. [5,9]), and a larger variety of 
modification strategies (e.g. [31]). Hayes' [9] route planner was the first to 
advocate explicitly represented internal dependencies for guiding replanning. 
However, his framework was very domain-specific, and since his was a linear 
planner, the only replanning action allowed was deletion of some parts of the 
plan, thereby permitting the planner to re-achieve some higher-level in- 
dependent subgoals in the hierarchical development of the plan. 

NONLIN [26,27] was the first hierarchical nonlinear planner to advocate 
explicit representation of goal dependencies to guide planning. Its GOST data 
structure was essentially a list of protection intervals associated with the plan 
which was used during planning to guide interaction detection and resolution. 
Daniel [5] exploited NONLIN's plan structure to develop a framework for 
representing decision dependencies to aid in backtracking during planning. The 
intent was to enable NONt.IN tO do dependency-directed backtracking during 
plan generation. While Daniel's research did not explicitly consider replanning 
or reuse problems, it generalized Hayes' notion of decision graphs significantly 
to capture the inter-decision dependencies induced by NONLIN. 

Wilkins [31] extended the state of the art of domain-independent replanning 
significantly in his SIPE system. SIPE used context-layered world models, and a 
rich representation of plans to keep track of the dependencies between the 
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plan, the specification, and intermediate planning decisions. To deal with 
execution-time failures during replanning in SIPE, Wilkins proposed a tax- 

onomy of repair actions, based on SIPE's dependency structures. The tech- 
niques were largely planner-specific, in that they were designed with the 
particulars of the SIPE program in mind. 

The work described in this paper is to some extent a generalization of 
Wilkins' framework. However,  an important difference is that Wilkins did not 

at tempt to provide a formal basis for his dependency structures and the 
modification actions. This makes it very difficult to formally characterize the 
coverage or correctness of the modification strategies he employed. In contrast, 

our validation-structure-based theory presents a more formal representation of 
the internal dependencies used during plan modification. In particular, the 
correctness of the plan is defined in terms of the validation structure, and the 
individual planning decisions are justified in terms of their relation to the plan 
validation structure. This provides a clean framework to state, analyze and 
evaluate the modification strategies. In addition, our framework is somewhat 
more general than SlPE's in that it provides a unified basis for addressing 
several other  subproblems of plan modification and reuse, including retrieval 
and mapping, and control of search during replanning--problems not ad- 
dressed in Wilkins' model. 

The framework described in this paper also relates to recent work in 
case-based reasoning, which addresses the issues involved in the adaptation of 
stored plans to new situations (e.g., [1,2, 8]). In these systems the aim has 
been to make a majority of planning operations memory-based, so that plans 
are constructed by retrieving old plans, and applying appropriate patches to 
tailor them to specific circumstances. The emphasis of this work has typically 
been on heuristic modification strategies, with the planner assessing the 
correctness of modification only through external simulation or execution-time 
feedback. This is to some extent a reflection of the characteristics of the 
domains in which these systems were developed, where ensuring correctness of 
modification and avoiding executing-time failures were not as critical as the 
need to control access to planning knowledge. 

Alterman's PLEXUS [1] system, for example, is an adaptive planner which 
starts with a highly structured plan library, and relies on the placement of a 
plan in the context of other plans in the library to guide adaptation. PLEXUS' 
primary mode of detecting applicability failures is through execution-time 
failures. When a failure is detected, the system attempts to exploit helpful cues 
from the new problem situation to trigger appropriate refitting choices to repair 
those applicability failures, and execute the result in turn. Similarly, Ham- 
mond's CHEF' program [8] stores plans without an explicitly represented 
dependency structure. To be applied to a new situation, the plans are modified 
by domain-dependent  modification rules to make the old plan satisfy all the 
goals of a new problem. These modification strategies do not consider the 
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internal causal dependency structure of the plan, and thus can lead to incorrect 
plans even relative to the domain knowledge contained in the case base and the 
modifier. C H E F  relies on the assumption that the retrieval strategy and modifi- 
cation rules are robust enough to prevent frequent occurrence of such incorrect 
plans. To reduce the likelihood of failure of heuristically modified plans during 
execution, case-based reasoning systems test the modified plan with respect to 
an external domain model (simulator), and use the feedback to make repairs in 
the event of failure. For example, Hammond's CHEF system uses a domain- 
specific causal simulator to judge the correctness of a plan after it has been 
modified [8]. Dependency-directed debugging work in planning, such as Sim- 
mons' GORDIUS system [23, 25] also falls in this category. GORDIUS [23, 24] 
uses a generate-test-debug methodology, with an external simulator used for 
debugging the plans generated with the help of a set of heuristic associative 
rules. 

In contrast to these approaches, our model is concerned with the flexibility 
of the modification strategy and the correctness of the modified plan relative to 
the planner's domain knowledge. Modification is closely integrated with 
generative planning, and is guided by the causal dependencies of the plan being 
modified, rather than by execution-time failures or by the results of external 
simulation. Thus, unlike the debugging strategies, which aim to compensate for 
the inadequacies of a generative planner, the primary motivation for modifica- 
tion in P R I A R  is tO improve the efficiency of planning without affecting the 
correctness of the plans produced. 

The ability to improve efficiency without recourse to execution-time failure 
repair (or simulation thereof) is important in domains where execution-time 
failures can have significant costs or where a simulator doesn't exist. Further- 
more, even if detailed external simulators are available, given the high cost of 
simulation and debugging (see [24]), it seems reasonable to ensure the correct- 
ness of modification with respect to the planner's own model before going to 
the simulation and debugging phase, as this increases the likelihood of the plan 
being correct with respect to the simulator. 

To summarize, in relationship to previous research, our work has empha- 
sized the provision of a formal domain-independent basis for flexible and 
conservative modification of plans. This approach allows us to better character- 
ize the coverage and efficacy of the modification framework. In addition, our 
formalization also provides a unified framework for addressing a number of 
related subproblems of plan modification and reuse. 

3. Preliminaries, notation and terminology 

This paper develops a theory of plan modification in the context of hierarchi- 
cal nonlinear planning. Hierarchical nonlinear planning (also known as hierar- 
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chical planning) is the most prevalent method of abstraction and least commit- 
ment in domain-independent planning. A good introduction to this methodolo- 
gy can be found in [4]. Some well-known hierarchical planners include N O A H  

[22], NONLIN [27] and S1PE [30]. (For a review of these and other previous 

approaches to planning, see [10].) 
In hierarchical planning, a partial plan is represented as a task network 

consisting of high-level tasks to be carried out. A task network is a set of tasks 
with partial chronological ordering relations among the tasks. Planning in- 
volves reducing these high-level tasks with the help of predefined "task 
reduction schemas" to successively more concrete subtasks. The task reduction 
schemas are given to the planner a priori as part of the domain specification. 
The collection of task networks, at increasing levels of detail, shows the 
development of the plan and is called the "hierarchical task network" or 
"HTN" of the plan. Planning is considered complete when all the leaf nodes of 
the HTN are either primitive tasks (tasks that cannot be decomposed any 
further) or phantom goals (tasks whose intended effects are achieved as 
side-effects of some other tasks). The entire tree structure in Fig. 2 shows the 
hierarchical plan for a simple blocks world planning problem. In the following, 
we provide formal definitions of some of these notions, to facilitate the 
development in the rest of the paper. 

3.1. Partial plans and task networks 

A partial plan P is represented as a task network and can be formalized [33] 
as a 3-tuple ( T, O, H ) ,  where T is a set of tasks, O defines a partial ordering 
among elements of T, and / / i s  a set of conditions along with specifications 
about the ranges where the conditions must hold. 

Task (action) representation 
Each task T has a set of applicability conditions, denoted by conditions(T), 

and a set of expected postconditions, denoted by effects(T). In this paper, we 
will assume that both effects(T) and conditions(T) of each instantiated action 
consist of quantifier-free literals in first-order predicate calculus. The non- 
negated atomic formulas of effects(T) correspond to the operator "add-lists" in 
STRIPS terminology, while the negated atomic formulas correspond to the 
operator "delete-lists". It should be noted that this task representation does 
not allow conditional effects and deductive effects [3] (see Section 8.1). 

Protection intervals 
Elements of / /  are called protection intervals [4], and are represented by 

3-tuples (E,  t 1, t2), where tl, t 2 E T, E E effects(t~) and E has to necessarily 
persist up to t 2. 
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3.2. Schemas and task reduction 

A task reduction schema S can itself be formalized as a mini task network 
template that can be used to replace some task t ¢  T of the plan P, when 
certain applicability conditions of the schema are satisfied. Satisfying the 

applicability conditions this way involves adding new protection intervals to the 
resultant plan. Thus, when the set of applicability conditions {C~) of an 
instance S i of a task reduction schema S can be satisfied at a task t in a partial 
plan /9, then t can be reduced with S i. The reduction, denoted by Si(t), is 
another  task network ( T  s, Os, I1 s) .  The task t will be linked by a parent 
relation to each task of Ts. 4 The plan P' resulting from this task reduction is 
constructed by incorporating Si(t ) into P. During this incorporation step, some 
harmful interactions may develop due to the violation of established protection 
intervals of P. The planner handles these harmful interactions either by posting 
additional partial ordering relations, or by backtracking over previous planning 
decisions. When the planner is successful in incorporating S~(t) into P and 
resolving all the harmful interactions, the resultant plan, P', can be represented 
by the task network 

P': (TU T,- { t } ,O 'UO~UO,, f / ' ) ,  

where 

(1) O '  is computed by appropriately redirecting the ordering relations 
involving the reduced task t to its children; 

(2) O~ are the ordering relations introduced during the interaction resolu- 
tion phase; 

(3) finally, the protection in te rva l s / / '  are computed by (i) combining H and 
f/s, (ii) adding any protection intervals that were newly established to 
support the applicability conditions of the schema instance S~, (iii) 
appropriately redirecting the protection intervals involving the reduced 
task t to its children. 

During the redirection in the last step, the planner converts any protection 
interval ( E, t~, t 2 ) ~ II  where t 1 = t to ( C, tsh, t 2), and  converts any protection 
interval where t~ = t to (C,  t~, ts~ ) (where tsb and ts~ are appropriate tasks 
belonging to T s, ). The various implemented planners follow different conven- 
tions about how the appropriate tSb and ts~ are computed. For example, 
irrespective of the protected condition E, NONLIN [26] makes tsb to be tbeg , and 
ts~ to be t,~.j, where tbeg and t~, d are the beginning and ending tasks of T s (i.e., 
no tasks of T s precedes tb~g or follows t~,,d ) respectively. Other conventions 
might look at the effects and conditions of tasks belonging to T s to decide ts, , 

When the task t is of the form achieve(C), and C can be achieved directly by using the effects 
of some other task t(E T, then t becomes a phantom task and its reduction becomes 
({phantom(C)}, 0, ~3}. A new protection interval (C, q., t) will be added to the resultant plan. 
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and tSb. For the purposes of this paper, either of these conventions is 

admissible. 

Search control 
The planner uses a backtracking control strategy to explore its search space. 

Thus, if the planner is unable to resolve any harmful interactions through 
addition of ordering relations as above, then it backtracks to explore other 

reduction choices. 

3.3. Completed plan 

A task network is said to represent a completed plan when none of its tasks 
have to be reduced further, and none of its protection intervals are violated. 
The planner cannot reduce certain distinguished tasks of the domain called 
primitive tasks. (It is assumed that the domain agent already knows how to 
execute such tasks.) Furthermore, if all the required effects of a task are 
already true in a given partial plan, then that task does not have to be reduced 
(such tasks are called phantom goals [4]). 

3.4. Hierarchical task network (HTN) 

The hierarchical development of a plan P: (T, O, H )  is captured by its 
hierarchical task network (abbreviated as HTN). HTN(P) is a 3-tuple 
(P:  (T,  O, H ) ,  T*, D ) ,  where T* is the union of set of tasks in Tand  all their 
ancestors, and D represents the parent-child relations between the elements of 
T*. The set H is the set of protection intervals associated with HTN(P). (For 
convenience, we shall abbreviate HTN(P) with HTN when the reference to P is 
unambiguous, and also refer to the members of T* as the nodes of HTN.) The 
HTN of a plan captures the development of that plan in terms of the corre- 
sponding task reductions. We shall refer to the number of leaf nodes in the 
HTN, I TI, as the length of the corresponding plan, and denote it by N e. 

For the sake of uniformity, we shall assume that there are two special 
primitive nodes n~ and n~ in the HTN corresponding to the input state and the 
goal state of the planning problem, such that effects(n 0 comprise the facts true 
in the initial specification of the problem, and conditions(riG) contain the goals 
of the problem. The notation "n~ < n2" (where n~ and n 2 are nodes of HTN) is 
used to indicate that n I is ordered to precede n 2 in the partially ordered plan 
represented by the HTN (i.e., n~ E predecessor*(n2), where the predecessor 
relations enforce the partial ordering among the nodes of the HTN). Similarly, 
"n~ > n2" denotes that nj is ordered to follow n 2, and "n~ II n2" denotes that 
there is no ordering relation between the two nodes (nl is parallel to n2). The 
set consisting of a node n and all its descendents in the HTN is defined as the 
subreduction of n, and is denoted by R(n). Following [4, 27], we also dis- 
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tinguish two types of operator  applicability conditions: the preconditions (such 
as Clear(A) in the blocks world) which the planner can achieve, and the filter 
conditions (such as Block(A)) which the planner can test for, but cannot 

achieve. We shall use the notation "F ~ f "  to indicate that f directly follows 
from the set of facts in F. Finally, the modal operators " [ ] "  and " ~ "  denote 
necessary and possible truth of an assertion. 

4. Validation structure and annotations 

Here we formally develop the notion of the validation structure of a plan as 
an explicit representation of the internal dependencies of a plan, and provide 
motivation for remembering such structures along with the stored plan. We will 
begin the discussion by defining our notion of a validation, present a scheme 
for representing the validation structure locally as annotations on individual 

nodes of a HTN, and finally, discuss algorithms for efficient computation of 
these node validations. 

4.1. Validation structure 

4.1.1. Validation 
A validation v is a 4-tuple (E ,  n~, C, nd),  where n~ and nj  are leaf nodes 

belonging to the HTN, and the effect E of node n~ (called the source) is used to 
satisfy the applicability condition C of node nj (called the destination). C and E 
are referred to as the supported condition and the supporting effect, respective- 
ly, of the validation. As a necessary condition for the existence of the 
validation v, the partial ordering among the tasks in the HTN must satisfy the 
relation n~ < n,~. 

Notice that every validation v: (E,  n~, C, nd) corresponds to a protection 
interval (E, n~, nd)CI1 of the HTN (that is, the effect E of node n~ is 
protected from node n~ to node nd). This correspondence implies that there 
will be a finite set of validations corresponding to a given HTN representing the 
development  of a plan; we shall call this set V. (If c is the maximum number of 
applicability conditions for any action in the domain then IV I ~< ~Np, where Np 
is the length of the plan as defined above [12].) 

The validation structure can be seen as an explanation of how each proposi- 
tion that is either a precondition of a plan step, or a goal of the overall plan, 
satisfies the modal truth criterion used by the planner [3]. Given this, it is 
straightforward to construct the validation structure of a given partially ordered 
plan with the help of the relevant modal truth criterion, even if the information 
corresponding to the protection intervals is not maintained by the planner. In 
particular, for plans using TWEAK-like action representation, the validation 
structure can be computed in polynomial time (see [16] for details). 
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Figure 2 shows the validation structure of the plan for solving a block 
stacking problem, 3BS (also shown in the figure). Validations are represented 
graphically as links between the effect of the source node and the condition of 
the destination node. (For the sake of exposition, validations supporting 
conditions of the type Block(?x) have not been shown in the figure.) As an 
example,  (On(B, C), nxs, On(B, C), n~) is a validation belonging to this plan 

since On(B, C) is required as the goal state n c, and is provided by the effect 

On(B, C) of node n15. 
Validations of a plan are distinguished by the type of conditions that they 

support,  as well as level at which they were introduced into the plan during the 
reduction process. In particular, the type of a validation is defined as the type 

of the applicability condition that the validation supports (one of filter condi- 
tion, precondition, or phantom goal). The level of a validation is defined as the 
reduction level at which it was first introduced into the blTY (see [12] for the 
formalization of this notion). For example, in Fig. 2, the validation 

(Block(A), n l, Block(A), nl~,) 

is considered to be of a higher level than the validation 

(On(A, Table), n~, On(A, Table), n16 ) , 

since the former is introduced into the HTN to facilitate the reduction of task n 3 
while the latter is introduced during the reduction of task n 9. A useful 
characteristic of hierarchical planning is that its domain schemas are written in 
such a way that the more important validations are established at higher levels, 
while the establishment of less important validations is delegated to lower 
levels. Thus, the level at which a validation is first introduced into an HTN can 
be taken to be predictive of the importance of that validation, and the effort 
required to (re)establish it. 5 The validation levels can be pre-computed effi- 
ciently at the time of annotation. 

As the specification of the plan changes or as the planner makes new 
planning decisions, the dependencies of the plan as represented in its validation 
structure get affected. The notion of consistency of validation structure, 
developed below, captures the effects of such changes on the plan validation 
structure. 

4.1.2. Consistency of validation structure 
Let V be the set of validations of the HTN (P:  ( T, O, H ), T*, D ), and I and 

G be the initial and goal state specifications of the HTN. We define a notion of 
correctness of a partially reduced HTN in terms of its set of validations in the 
following way: 

• We assume that domain schemas having this type of abstraction property are supplied/encoded 
by the user in the first place. What we are doing here is to exploit the notion of importance implicit 
in that abstraction. 
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• For each g ¢  G, and each applicability condition C of the tasks t ¢  T, 
there exists a validation v E V supporting that goal or condition. If this 
condition is not satisfied, the plan is said to contain missing validations. 

• None of the plan validations are violated. That is, Vv: E, n~, C, n d > E V, 

and 

E E effects(n~) (1) 

~ n  E T s.t. O(n~ < n < nd) ix effects(n) F- -7 C (2) 

If this constraint is not satisfied, then the plan is said to contain failing 
validations. 

In addition, we introduce a relevance condition as follows: 

• For each validation v: <E, n~, C, n d ) E V ,  there exists a chain of valida- 
tions the first of which is supported by the effects of n d and the last of 
which supports a goal of the plan. (More formally, Vv: (E ,  n~, C, n~) E V 
there exists a sequence [v 1, v 2 . . . . .  v k] of validations belonging to V, such 
that (i) vk: <E k, n~, C ~;, n~) supports a goal of the plan (i.e., C ¢~ E G) 
and (ii) v k ~' ( E  k ', n~ ~, C k, n~) supports an applicability condition C k 

k k - 2  k - J  I on n~, v supports an applicability condition of n~ and so on, with v 
being supported by an effect of nd. ) If this constraint is not satisfied, then 
the plan is said to contain unnecessary validations. 

A plan that satisfies all these conditions is said to have a consistent validation 
structure. The missing, failing and unnecessary validations defined above are 
collectively referred to as inconsistencies in the plan validation structure. Note 
that this definition of correctness is applicable to both completely and partially 
reduced HTNS. In particular, a completely reduced plan with a consistent 
validation structure constitutes a valid executable plan. 

Let us consider the example of the 3BS plan shown in Fig. 2. If the 
specification of this plan is changed such that On(A, B) is no longer a goal, 
then { On(A, B), nl~, On(A, B), nc;) will be an unnecessary validation. Fur- 
ther, if the new specification contains a goal On(A, D), there will be no 
validation supporting the condition node pair < On(A, D), n~; ). There is then a 
missing validation corresponding to this pair. Finally, if we suppose that the 
new specification contains On(D, A) in its initial state, then the validation 
(Clear(A), n., Clear(A), nT) will fail, as effect(n~)~ Clear(A). 

4.2. Justifying planning decisions in terms of  validation structure 

To facilitate efficient reasoning about the correctness of a plan, and to guide 
incremental modification, we characterize the role played by the individual 
steps of the plan and planning decisions underlying its development in terms of 
their relation to the validation structure of the plan. We accomplish this by 
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annotating the individual nodes of the HTN of the plan with the set of 
validations that encapsulates the role played by the subreduction below that 
node in the validation structure of the overall plan. In particular, for each node 

n E HTN we define the notions of 

(i) e-conditions(n), which are the externally useful validations supplied by 
the nodes belonging to R(n) (the sub-reduction below n) 

(ii) e-preconditions(n), which are the externally established validations that 
are consumed by nodes of R(n), and 

(iii) p-conditions(n), which are the external validations of the plan that are 
required to persist over the nodes of R(n). 

4.2.1. E-conditions (external effect conditions) 
The e-conditions of a node n correspond to the validations supported by the 

effects of any node of R(n) which are used to satisfy applicability conditions of 
the nodes that lie outside the subreduction. Thus, 

e-conditions(n) = {v/: ( E, n s, C, nd) I Vi E V; n s E R(n); n d ~ R(n)} . 

For example, the e-conditions of the node n 3 of the H T N  Of Fig. 2 contain just 
the validation (On(A,  B), n~6, On(A, B), n~) since that is the only effect of 
R(n3) which is used outside of R(n3). The e-conditions provide a way of stating 
the externally useful effects of subreduction. They can be used to decide when 
a subreduction is no longer necessary, or how a change in its effects will affect 
the validation structure of the parts of the plan outside the subreduction. 

From this definition, the following relations between the e-conditions of a 
node and the e-conditions of its children follow: 

(1) If n is a leaf node, then R(n) = {n} and the e-conditions of n will simply 
be all the validations of H T N  whose source is n. 

(2) If n is not a leaf node, and n¢ C children(n), and vc: (E ,  ns, C, rid) is an 
e-condition of no, then v c will also be an e-condition of n as long as 
n d ~_ R(n) (since R(n~) C_ R(n), [ns E R(nc) ] ~ [n~ @ R(n)]). 

(3) If v: (E ,  ns, C, rid) is an e-condition of n, then 3n¢E children(n) such 
that v is an e-condition of n c. This follows from the fact that if n d ~ R(n) 
then Vn~ E children(n), n d ~ R(nc), and that if n, E R(n), then 3n~ E 
children(n) such that n~ ~ R(nc). 

These relations allow P R I A R  to first compute the e-conditions of all the leaf 
nodes of the HTN, and then compute the e-conditions of the non-leaf nodes 
from the e-conditions of their children (see Section 4.3). 

4.2.2. E-preconditions (external preconditions) 
The e-preconditions of a node n correspond to the validations supporting the 

applicability conditions of any node of R(n) that are satisfied by the effects of 
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the nodes that lie outside of R(n). Thus, 

e-preconditions(n) 

={ui :  E,n~, C, n d ) ] u i E V ; n l ¢ R ( n ) ; n ~ R ( n ) } .  

For example,  the e-preconditions of the node n~ in the HTN of Fig. 2 will 

include the validations 

(Clear(A), n., Clear(A), nT) and (Clear(B), n~, Clear(B), ns) . 

The e-preconditions of a node can be used to locate the parts of rest of the plan 

that might become unnecessary or redundant,  if the subreduction below that 
node is changed. 

From the definition, the following relations between the e-preconditions of a 
node and the e-preconditions of its children follow: 

(1) If n is a leaf node, then R(n) = {n} and the e-preconditions of n will 
simply be all the validations of HTN whose destination is n. 

(2) If n is not a leaf node, and n~ E children(n), and vc: (E ,  n~, C, na) is an 

e-precondition of n~., then u,, will also be an e-precondition of n as long 

as n~ ~ R(n) (since R(n~) C_ R(n), n d C R(n)). 
(3) If v: (E ,  n~, C, nd) is an e-precondition of n, then 3n~¢children(n) 

such that v is an e-precondition of n~. This follows from the fact that if 

n~ ~ R(n) then Vn~, E children(n) n~ ~ R(n~) and that if n,i ~ R(n), then 

3n~ E children(n) such that n d E R(n,). 

From the definitions of e-conditions and e-preconditions, it should be clear 

that they form the forward and backward validation dependency links in the 
HTN. For the sake of uniformity, the set of validations of type (E ,  n~, G, n~; ) 
(where G is a goal of the plan) are considered e-preconditions of the goal node 
nc;. Similarly, the set of validations of type ( I, n~, C, n,) (where I is a fact that 

is true in the input state of the plan) are considered e-conditions of the input 

node n j. 

4.2.3. P-conditions (persistence conditions) 
P-conditions of a node n correspond to the protection intervals of the HTN 

that are external to R(n), and have to persist over some part of R(n) for the 

rest of the plan to have a consistent validation structure. We define them in the 

following way: 
A validation v,: (E, n~, C, n d) E V is said to intersect the subreduction R(n) 

below a node n (denoted by "v i Q R(n)") if there exists a leaf node n' ~ R(n) 
such that n '  falls between n~ and nj for some total ordering of the tasks in the 

HTN. In other words, 

u;: ( E , t  L, C , n d ) ® R ( n  ) 

iff (3n' E R(n)) s.t. children(n') = ~ A ~(n~ < n < nd) . 
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Given that n S < n d, the only cases in which O(ns < n'  < ha) are: 

(i) n'  is already totally ordered between n~ and n d, i.e., E](n~ < n ' <  nd), 

(ii) n ' < n d A n ' l l n s ,  
(iii) n~ < n'  /x n' II nd, 

(iv) n '[ Ins^n ' l tn~ .  

Using the transitivity of the " < "  relation, we can simplify this disjunction to 

ns<n '  < n d  v n~l[n' v n d l l n ' .  

Thus, we can re-express the " ® "  relation as 

vi: ( E, n,, C, nd) @ R(n) 

iff 3n' E R(n) s.t. children(n') = ~ ^ 

( n , <  n '  < nd v nsll n '  v n~ l l n ' )  • 

A validation vi: ( E, n s, C, nd) ¢ V is considered a p-condition of a node n iff 
vi intersects R(n) and neither the source nor the destination of the validation 

belong to R(n). Thus, 

p-conditions(n) 

= {v i: (E, n S, C, n d) [ v i ~V; n~, n d ~ R(n); v iQR(n ) } .  

From this definition, it follows that if the effects of any node of R(n) violate the 
validations corresponding to the p-conditions of n, then there will be a 
potential for harmful interactions. As an example, the p-conditions of the node 

n 3 in the HTN of Fig. 2 will contain the validation ( On(B, C), n 15, On(B, C), n G ) 
since the condition On(B, C), which is achieved at n~5 would have to persist 
over R(n3) to support the condition (goal) On(B, C) at n G. The p-conditions 
are useful in gauging the effect of changes made at the subreduction below a 
node on the validations external to that subreduction. They are of particular 
importance in localizing the changes to the plan during refitting [17]. 

From the definition of p-conditions, the following relations follow: 

(1) p-conditions(n l) = p-conditions(nG) = f). 
(2) When n is a leaf node, (i.e., children(n) = ~J), R(n) will be {n}, and the 

definition of p-conditions(n) can be simplified as follows. From the 
definition of ®, 

v,: <E, n~, c, n~>®{n} =--n~lln v ndlln v (n~<n<nd)  

=---n(n<n, v n > n d )  

and, thus when n is a leaf node 

p-conditions(n) 

= {~,: <E, n~, c ,  n~) [ v, ~ V; n~ # n; n~ ¢ n; 

--n(n < n~ v n > nd) } . 
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(3) If n. C children(n), and v,: ( E, n,, C, n d ) C p-conditions(n~), 
then 

v, E p-conditions(n) iff n~, n d ~_ R(n) . 

This follows from the fact that if vc@R(nc) then 3 n ' E  R(nc) which 

satisfies the ordering restriction of "@". Since R(n~)C_ R(n),  we also 

have n' ~ R(n) and thus v,. @ R(n). So, as long as n~, n d ~ R(n),  v c will 

also be a p-condition of n. 

(4) If n is not a leaf node and v ~ p-conditions(n), then 

3n~ E children(n) s.t. u E p-conditions(n,,). 

This follows from the fact that for v to be a p-condition of n, there 
should exist a leaf node n '  belonging to R(n) such that the ordering 

restriction of the " ® "  relation is satisfied. But, from the definition of 

subreduction, any leaf node of R(n) should also have to be a leaf node 
of the subreduction of one of its children. So, 

3n,, E children(n) s.t. n' C R(n~) . 

Moreover ,  as the source and destination nodes of v do not belong to 

R(n),  they will also not belong to R(nc). 

4.2.4. Validation states 

If n is a primitive task belonging to the HTN, then we define structures called 

preceding validation state, AV(n), and succeeding validation state, A~(n), as 

follows: 

AV(n) = e-preconditions(n) U p-conditions(n) , 

AS(n) = e-conditions(n) U p-conditions(n) . 

Thus, the validation states AP(n) and A'(n)  are collections of validations that 
should be preserved by the state of the world preceding and following the 

execution of task n, respectively, for the rest of the plan to have a consistent 
validation structure. In other words, the plan can be successfully executed from 

any state W of the world such that 

Vv: { E, n~, C, nd) E A~(nl) , W k E . 

Validation states can be used to gauge how a change in the expected state of 
the world will affect the validation structure of the plan. This is useful both in 
reuse, where an existing plan is used in a new problem situation, and in 
replanning, where the current plan needs to be modified in response to 
execution time expectation failures. The validation states can be seen as a 
generalization of STRIPS' triangle-tables [6], for partially ordered plans. In 
Section 6, we will show that the validation states also provide a clean 
f ramework  for execution monitoring for partially ordered plans. 
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4.3. Computing annotations 

In the PRIAR framework, at the end of a planning session, the HTN showing 
the development of the plan at various levels of abstraction is retained, and 
each node n of the HTN is annotated with the following information: 

(1) Schema(n), the schema instance that reduces node n, 
(2) Orderings(n), the ordering relations that were imposed during the 

expansion of n (see Section 3.2), 6 
(3) e-preconditions(n), 
(4) e-conditions(n), 
(5) p-conditions(n). 

Schema(n) and Orderings(n) are recorded in a straightforward way during 
the planning itself. The rest of the node annotations are computed in two 
phases: First, the annotations for the leaf nodes of the HTN are computed with 
the help of the plan's set of validations, 7 V, and the partial ordering relations of 
the HTN. Next, using relations between the annotations of a node and its 
children, the annotations are propagated to non-leaf nodes in a bottom-up 
breadth-first fashion. The exact algorithms are given in [12], and are fairly 
straightforward to understand given the development of the previous sections. 
If N e is the length of the plan (as measured by the number of leaf nodes of the 
HTN), the time complexity of annotation computation can be shown to be 
O(N 2) [12]. Note that the ease of annotation computation reinforces the 
advantages to be gained by integrating planning and plan modification, as all 
the relevant information is available in the plan-time data structures. With 
respect to storage, the important point to be noted is that PRIAR essentially 
remembers only the HTN representing the development of the plan and not the 
whole explored search space. If the individual validations are stored in one 
place, and the node annotations are implemented as pointers to these, the 
increase in storage requirements (as compared to the storage of the un- 
annotated HTN) is insignificant. 

While the procedures discussed above compute the annotations of a HTN in 
one shot, often during plan modification, PRIAR needs to add and remove 
validations from the HTN one at a time. To handle this, PR1AR also provides 
algorithms called Add-Validation and Remove-Validation (shown in Figs. 3 and 
4 respectively) to update node annotations consistently when incrementally 

Alternately, orderings can also be justified independently in terms of the validation structure; 
with each ordering relation, we can associate a set of validations that would be violated if that 
ordering is removed. This information is useful for undoing task reductions during plan modifica- 
tions; see Section 5.2.1. 

7 As mentioned previously, the set of validations can be computed directly from the set of 
protection intervals associated with the plan. Most hierarchical planners keep an explicit record of 
the protection intervals underlying the plan. PRIAR's NONLIN-based planner maintains this 
information in its GOST data structure. 
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Procedure  Add-Validation(v: ( E, n~, C, nd}, HTN: { P: (T ,  O, II}, T*, D }) 
1 begin 

2 V~-V  U {v} 

3 foreach n ' ~  {n~} U ancestors(n~) do 

4 if n d ~ R(n') 
5 then 

6 e-conditions(n') ~-- e-conditions(n') U { v } fi od 

7 foreach n ' ~  {n~l } U ancestors(nd) do 

8 if n~ f~ R(n') 
9 then 

10 e-preconditions(n') ~-- e-preconditions(n') U { v } fi od 

11 f o r e a c h n E T *  s.t. n # n , ~ A n # n ~ A  

12 children(n) = 0 A ~(n < n~ v n > nj) do 

13 foreaeh n '  E {n} U ancestors(n) do 

14 if n~, n d ~ R(n')  
15 then 

16 p-conditions(n') ~--p-conditions(n') U { v} fi od od 

17 end 

Fig. 3. Procedure for incremcntally adding validations to the HTN. 

P rocedure  Remove-Validation(v: (E, n~, C, nd), HTN: { P: (T ,  O, I1), T*, D }) 
1 begin 

2 V ~ V -  {v} 

3 foreach n '  ~ {n~} U ancestors(n~) do 

4 if n d ~ R(n')  
5 then 
6 e-conditions(n') ~ e-conditions(n') - { v } fi od 

7 foreach n '  E {nd} U ancestors(nd) do 

8 if n ~  R(n') 
9 then 

10 e-preconditions(n') ~-- e-preconditions(n') - { v } fi od 

11 foreach n ~ T* do 
12 p-conditions(n) ~-- p-conditions(n) - { v } fi od 

13 end 

Fig. 4. Procedure for incrementally removing validations from the HTN. 
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adding or deleting validations from the HTN. 8 PRIAR uses these procedures to 
re-annotate the HTN when changes are made to it during the modification 
process. They can also be called by the planner any time it establishes or 
removes a new validation (or protection interval) during the development of 
the plan, to dynamically annotate the HTN. The time complexity of these 
algorithms is O(Np). 

5. Modification by annotation verification 

We will now turn to the plan modification process, and demonstrate the 
utility of the annotated validation structure in modifying a plan in response to a 
specification change. Throughout the ensuing discussion, we will be following 
the blocks world example case of modifying the plan for the three-block- 
stacking problem 3BS (i.e., R °=  3BS) shown on the left side in Fig. 5 to 
produce a plan for a five-block-stacking problem S5BS1 (i.e., pn=  85B81),9 
shown on the right side. We shall refer to this as the 3BS--~ S5BS1 example. 

5.1. Mapping and interpretation 

In PRIAR, the set of possible mappings between [P°, R °] and pn are found 
through a partial unification of the goals of the two problems. There are 
typically several semantically consistent mappings between the two planning 
situations. While the PRIAR modification framework would be able to succeed 
with any of those mappings, selecting the right mapping can considerably 
reduce the cost of modification. The mapping and retrieval methodology used 
by PRIAR [12, 13] achieves this by selecting mappings based on the number and 
type of inconsistencies that would be caused in the validation structure of R °. 

On(J.Table)&Clear(J) On(L,K)&On(K.J) 
&On (I.Table)&Clear(K) &On(J,I)&Clear(M) 

&On(K,I)&Clear(L) 
On(A,B)&On(B,C) &On(L.M)&On(M,Table) 

On (A,Table)&Clear(A) Block(I)&Block(J) 

Block(A),Block(B),Block(C) &On(C &On(B,Table)&Clear (B) ,Table)&Clear(C) ~ ~ &Block(K)&Block(L)&Block(M) ~ ~ 

~ - ~ ~  roused~ ~ 
Input Situation Goal Input situation Goal 

n 
pO 3BS P SSBS1 

Fig. 5. The 3BS---~S5BSI modification problem. 

s Note that any addition and removal of validations is always accompanied by a corresponding 
change to the set of protection intervals, H, of the plan. 

It may be interesting to note that S5BS1 contains an instance of what is known as the Sussman 
Anomaly [31. 
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While the details of this strategy are beyond the scope of this paper, a brief 
discussion appears in Section 6.2. For the present, we shall simply assume that 
such a mapping is provided to us. (It should be noted that the mapping stage is 

not important when PRIAR is used to modify a plan in response to incremental 
changes in its specification, as is the case during incremental planning or 
replanning.) 

The purpose of the interpretation procedure is to map the given plan R °, 
along with its annotations, into the new planning situation pn  marking the 
differences between the old and new planning situations. These differences 
serve to focus the annotation verification procedure (see Section 5.2.1) on the 
inconsistencies in the validation structure of the interpreted plan. Let I" and 
G o be the description of the initial state, and the set of goals to be achieved by 
R ° respectively. Similarly, let I n and G" be the corresponding descriptions for 
the new problem P". The interpreted plan R ~ is constructed by mapping the 
given plan R ° along with its annotations into the new problem situation, with 
the help of the mapping a. Next, the interpreted initial state 1 ~, and the 
interpreted goal state, G ~, are computed as 

I i = I n U I " '  a and G i = G" U G " .  a 

(where " . "  refers to the operation of object substitution). Finally, some facts 
of I ~ and G i are marked to point out the following four types of differences 
between the old and new planning situations: 

(1) A description ( f a c t ) f  E I i is marked an out fact iff 

( f C I ° ' a )  A( in~ f ) .  

(2) A description (fact) f E I i is marked a new fact iff 

( f C l" ) /x ( l° . e~ ~t f ) . 

(3) A description (goal) g E  G ~ is marked an extra goal iff 

(grOG °" ~) /~ (g  

(4) A description (goal) (g  E 

( g E G ° . a )  A ( g  

At the end of this processing, 
verification procedure. 

E G n ) .  

G i) is marked an unnecessary goal iff 

~c") .  

R ~, 1 ~ and G ~ are sent to the annotation 

5.1. I. Example 
Let us assume that the mapping strategy selects a = [A--~ K, B---~ J, C"-~ I] 

as the mapping from 3BS to S5BS1. Figure 6 shows the result of interpreting 
the 3BS plan for the S5BS1 problem. With this mapping, the facts Clear(L) 
and On(K, Table), which are true in the interpreted 3BS problem, are not true 



Interpreted Input state 
1 i 

~ W" Facts "EXTRA" 

goal state 
Mapping (~ 

(X =[A->K, B->J, C->l] 

~)~ (J.I)~&On (K,J) 

. t , _  
- - C l e a r ( K ) ~ ' ~  ~ -.---_~.~.._~----~__~._.. Z \ \  ~ _  

C , e a r ( , I - - - y . ~ ~ . . . . . . . _ ~ . .  ~ _ ~ . _ _ _ ~ . . . . . . . ~ " - - . . . ~ .  ~ Io0:~= ng: DO[Puton(K,J)] 

goal state 

on(~J) 

Puton-A~on 1~ ..I ',E "oo ,,v~¢ 
On(J,I) ~ On(K,J) S~.,.,,,~....~ 

/On(K,J) 

i" On(J,I) 

Fig. 6. Interpreted plan for 3BS----~ S5BSI. 
. . . j  
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in the input specification of S5BSI So they are marked out in F. The facts 
Clear(L), On(M, Table), On(l, Table), On(L, M) and On(K, 1) are true in 
S5BSI but not in the interpreted 3BS. These are marked as new facts in F. 
Similarly, the goals On(L, K) and Clear(M) of S5BSI are not goals of the 
interpreted 3BS plan. So, they are marked extra goals in G ~. There are no 
unnecessary goals. 

5.2. Annotation verification and refit task specification 

At the end of the interpretation procedure,  R ~ may not have a consistent 
validation structure (see Section 4.1.2) as the differences between the old and 
the new problem situations (as marked in 1 ~ and G ~) may be causing inconsis- 
tencies in the validation structure of R i. These inconsistencies will be referred 

to as applicability failures; they are the reasons why R ~ cannot be directly 
applied to P". The purpose of the annotation verification procedure is to 
modify R ~ such that the result, R ~, will be a partially reduced HTN with a 
consistent validation structure. 

The annotation verification procedure achieves this goal by first localizing 
and characterizing the applicability failures caused by the differences in I ~ and 
G ~, and then appropriately modifying the validation structure of R ~ to repair 
those failures. It groups the applicability failures into one of several classes 
depending on the type of the inconsistencies and the type of the conditions 
involved in those inconsistencies. Based on this classification, it then suggests 
appropriate repairs. The repairs involve removal of unnecessary parts of the 
HTN and/or  addition of nonprimitive tasks (called "refit tasks") to establish 
missing and failing validations. In addition to repairing the inconsistencies in 
the plan validation structure, the annotation verification process also uses the 
notion of p-phantom validations (see below) to exploit any serendipitous 
effects to shorten the plan. Figure 7 provides the top-level control structure of 
the annotation verification process. The different subprocedures specialize in 
repairing specific types of inconsistencies in the validation structure. At the end 
of the annotation verification process, the HTN will be a partially (and perhaps 
totally) reduced task network with a consistent validation structure. 

The individual repair actions taken to repair the different types of inconsis- 
tencies are described below: they make judicious use of the node annotations 
to modify R ~ appropriately. 

5.2.1. Unnecessary validations--pruning unrequired parts" 
If the supported condition of a validation is no longer required, then that 

validation can be removed from the plan along with all the parts of the plan 
whose sole purpose is supplying those validations. The removal can be 
accomplished in a clean fashion with the help of the annotations on R ~. After 
removing an unnecessary validation from the HTN (which will also involve 
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Procedure Annotation-Verification( ) 
1 input: R~: in terpreted plan, 

2 I~: in terpreted input state, 

3 Gi:  in terpreted goal state 

4 begin 
5 foreach g ~ G ~ s.t. 
6 g is marked  as an unnecessary-goal do 

7 find v: ( E ,  n s, C, n o )  E AP(nG) s.t. C = g 

8 Prune-Validation(v) od 

9 foreach g E G i s.t. 
10 g is marked  as an extra-goal do 

11 Repair-Missing-Validation( g: condition, n o : node) od 

12 foreach f ~ I i s.t. 

13 f is marked  as an out-fact do 
14 foreach v: (E ,  n I, C, nd) @ AS(hi) s.t. E = f do 
15 if E '  E I ~ s.t. E '  is marked  new A E' F C 
16 / *Verification* / 

17 then do 
18 Remove-Validation(v) 
19 Add-Validation(v': ( E', n l, C, rid) ) od 

20 eiseif type(C) = Precondition 
21 then 
22 Repair-Failing-Precondition-Validation(v) 
23 elseif type(C) = Phantom 
24 /*n d is a phantom node* /  

25 then 
26 Repair-Failing-Phantom-Validation(v) 
27 elseif type(C) = Filter-Condition 
28 then 
29 Repair-Failing-Filter-Condition-Validation(v) od od 

30 foreach v: ( E, ns, C, na) C V s.t. 
31 n s ~ n  1 A E E I  i ^ E i s  marked  new in I i 

32 /*checking for serendipitous effects* /do 

33 Exploit-p-Phantom-Validation(v) od 

34 end 

Fig. 7. Annotation verification procedure. 

incrementa l ly  re -annota t ing  the HTN, see Section 4.3), the HTN is searched for 

any node  n o that has no e-conditions.  If  such a node  is found,  then its 
subreduct ion ,  R(n v), has no useful purpose ,  and thus can be r emoved  f rom the 

HTN. This removal  turns the e-precondi t ions  of  n o into unnecessary validations,  

and they are handled in the same way, recursively. 



220 A. Kambhampati, J.A. Hendler 

The procedure Prune-Validation in Fig. 8 gives the details of this process. 
After removing the unnecessary validation v from the plan, it checks to see if 
there are any subreductions that have no useful effects (lines 3-6). (Because of 
the explicit representation of the validation structure as annotations on the 
plan, this check is straightforward.) If there are such subreductions, they have 
to be removed from the HTN (lines 8-17). This involves removing all the 
internal validations of that subreduction from the HTN (lines 9-10), and 
recursively pruning the validations corresponding to the external preconditions 
of that subreduction (lines 11-12). This latter action is performed to ensure 
that there won't be any parts of the HTN whose sole purpose is to supply 
validations to the parts that are being removed. The Remove-Validation 
procedure (line 10) not only removes the given validation, but also updates the 
validation structure (V) and the protection intervals (H) of the HTN consistent- 
ly. Finally, the subreduction is unlinked from the HTN (lines 13-16), and the 
partial ordering on the HTN (O) is updated so that the ordering relations that 
were imposed because of the expansions involved in R(n) are retracted. This 
retraction is accomplished with the help of the Orderings field of each node in 
R(n) (see Section 4.3) which stores the ordering relations that were imposed 
because of the expansion below that node. The procedure involves: 

Procedure Prune-Validation (v: (E,  n~, C, nd}, HTN: {P: { T, O, l I} ,  T*,D}) 
1 begin 
2 Remove-Validation(v) 
3 if e-conditions(n~) = 0 
4 then do 
5 find n ~ {n~} U ancestors(n~) s.t. 
6 e-conditions(n) = 0 A e-conditions(parent(n)) ~ 0 
7 /*Remove the subreduction below n'*/ 
8 foreach n' E R(n) s.t. children(n') = ~ do 
9 foreach v' E e-conditions(n') do 

10 Remove-Validation(v') od 
1 1 foreach v" E e-preconditions(n) do 
12 Prune-Validation(v") od 
13 /* unlinking R(n) from HTN */ 
14 T* ~-- T* - R(n) 
15 T <-- T -  R(n) 
16 D e - - D - { d [ d E D A d C _ R ( n ) }  
17 Update-Orderings(O, R(n)) od fi 
18 end 

Fig. 8. Procedure for repairing unnecessary validations. 
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(i) retracting from O all the ordering relations that are stored in the 
Orderings field of the removed nodes (R(n)), 

(ii) appropriately redirecting ~° any remaining ordering relations of O involv- 
ing the removed nodes (these correspond to the orderings that were 

inherited from the ancestors of n; see Section 3.2). 

The structure of the HTN at the end of this procedure depends to a large 
extent on the importance of the validation that is being removed (that is, how 
much of the HTN is directly or indirectly present solely for achieving this 
validation). The Prune-Validation procedure removes exactly those parts of the 
plan that become completely redundant because of the unnecessary validation. 
It will not remove any subreduction that has at least one e-condition (corre- 
sponding to some useful effect). There is, however, a trade-off involved here: 
the strategy adopted by the Prune-Validation procedure is appropriate as long 
as the goal is to reduce the cost of planning (refitting). However,  if the cost of 
execution of the plan were paramount,  then it would be necessary to see if the 
remaining useful effects of the subreduction could be achieved in an alternate 
way that would incur a lower cost of execution. To take an extreme example, 
suppose the plan R ° achieves two of its goals, taking a flight and reading a 
paper,  by buying a paper at the airport. If R ° is being reused in a situation 
where the agent does not have to take a flight, it will be better to satisfy the 
goal of buying the paper in an alternate way, rather than going to the airport. 
This type of analysis can be done with the help of the "levels" of validations 
(see Section 4.1): we might decide to remove a subreduction R(n) and achieve 
its useful effects in an alternate way if the levels of e-conditions of n which are 
removed are "significantly" higher than the levels of the remaining e-condi- 
tions of n. P R I A R  currently does not do this type of analysis while pruning a 
validation. 

5.2.2. Missing validations--adding tasks for achieving extra goals 
If a condition G of a node n d is not supported by any validation belonging to 

the set of validations of the plan, V, then there is a missing validation 
corresponding to that condi t ion-node pair. Since, an extra goal is any goal of 
the new problem that is not a goal of the old plan, it is un-supported by any 
validation in R i. The general procedure for repairing missing validations 
(including the extra goals, which are considered conditions of riG) is to create a 
refit task of the form nm: Achieve[G], and to add it to the HTN in such a way 

that n t < n m < nd, and parent(nm) = parent(nd). The new validation Urn: 
( G, n m, G, n~) will now support the condition G. Before establishing a new 
validation in this way, PRIAR uses the planner's truth criterion (interaction 
detection mechanisms) to determine whether that validation introduces any 

"' To a sibling of n in case of pruned reduction, and to n in the case of a replaced reduction (see 
(3) in Section 3.2). 
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new failing validations into the plan (by causing harmful interactions with 

already established protection intervals of the plan). If it does, then those will 
be treated as additional inconsistencies to be handled by the annotation 
verification process. Finally, the incremental annotation procedures (Section 
4.3) are used to add the new validation to the HTN. Notice that no a priori 
commitment  is made regarding the order or the way in which the condition G 
would be achieved; such commitments are made by the planner itself during 
the refitting stage. 

5.2.3. Failing validations 
The facts of I ~, which are marked "out"  during the interpretation process, 

may be supplying validations to the applicability conditions or goals of the 
interpreted plan R ~. For each failing validation, the annotation verification 
procedure first attempts to see if that validation can be re-established locally by 
a new effect of the same node. If this is possible, the validation structure will 
be changed to reflect this. A simple example would be the following. Suppose 
there is a condition Greater(B, 7) on some node, and the fact Equal(B, 10) in 
the initial state was used to support that condition. Suppose further that in the 
new situation Equal(B, 10) is marked out and Equal (B, 8) is marked new. In 
such a case, it would still be possible to establish the condition just by 
redirecting the validation to Equal(B, 8). 

When the validations cannot be established by such local adjustments, the 
structure of the HTN has to be changed to account for the failing validations. 
The treatment of such failing validations depends upon the types of the 
conditions that are being supported by the validation. We distinguish three 
types of validation failures--validations supporting preconditions, phantom 
goals, ~ and filter condit ions--and discuss each of them in turn below. 

5.2.3.1. Failing precondition validations 
If a validation v: (E ,  n~, C, n a ) supporting a precondition of some node in 

the HTN is found to be failing because its supporting effect E is marked out, it 
can simply be re-achieved. The procedure involves creating a refit task, 
n~,: Achieve[E], to re-establish the validation v, and adding it to the HTN in 
such a way that n~<n~. <n~ and parent(n~,)=parent(nd). The validation 
structure of the plan is updated so that the failing validation v is removed and 
an equivalent validation v': (E ,  n,,, C, n~j) is added. (This addition does not 

" The difference between a precondition validation and a phantom goal validation is largely a 
mat ter  of how the corresponding conditions are specified in the task reduction schemas.  In 
NONLIN terminology [26], phan tom goal validations support  the "supervised conditions" of a 
schema (i.e.,  applicability conditions for which subgoals to establish the conditions are explicitly 
specified in the schema),  while the precondition validations support  the "unsupervised conditions" 
of a schema (i.e.,  applicability conditions for which no explicit subgoals are specified inside the 
schema).  
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introduce any further inconsistencies into the validation structure (see Section 
8.1).) Finally, the annotations on other nodes of the HTN are adjusted 

incrementally to reflect this change. 

5.2.3.2. Failing phantom validations 
If a validation Vp: (E ,  n~, C, np) is found to be failing and np is a phantom 

goal, then Vp is considered a failing phantom validation. If the validation 
supporting a phantom goal node is failing, then the node cannot remain 
phantom. The repair involves undoing the phantomization, so that the planner 
will know that it has to re-achieve that goal. This step essentially involves 
retracting the phantomization decision (by adding a refit task to achieve the 
phantom goal), and updating the HTN appropriately (similar to the process 
done in the Prune-Validation procedure (Fig. 8, lines 13-17)). Once this 
change is made, the failing validation v o is no longer required by the node np, 
and so it is removed and the node annotations are updated appropriately. 

5.2.3.3. Failing filter condition validations 
In contrast to the validations supporting the preconditions and the phantom 

goals, the validations supporting failing filter conditions cannot be re-achieved 
by the planner. Instead, the planning decisions which introduced those filter 
conditions into the plan have to be undone. That is, if a validation vf: (E ,  n~, 
Cf, n d) supporting a filter condition Cf of a node n d is failing, and n'  is the 
ancestor of n d whose reduction introduced Cf into the HTN originally, then the 
subreduction R(n') has to be replaced, and n'  has to be re-reduced with the 
help of an alternate schema instance. So as to least affect the validation 
structure of the rest of the HTN, any new reduction of n'  would be expected to 
supply (or consume) the validations previously supplied (or consumed) by the 
replaced reduction. Any validations not supplied by the new reduction would 
have to be re-established by alternate means, and the validations not consumed 
by the new reduction would have to be pruned. Since there is no way of 
knowing what the new reduction will be until the refitting time, this processing 
is deferred until then (see Section 5.3). ~2 

The procedure shown in Fig. 9 details the treatment of this type of validation 
failure during annotation verification. In lines 3-4,  it finds the node n'  that 
should be re-reduced by checking the filter conditions of the ancestors of n. 
Lines 6-18 detail changes to the validation structure of the HTN. Any e- 
conditions of the nodes belonging to R(n') are redirected to n', if they support 
nodes outside R(n') (lines 7-11). Otherwise, such e-conditions represent 
internal validations of R(n'), and are removed from the validation structure 
(line 12). At the end of this processing, all the useful external effects of R(n') 

~: This type of applicability failure is very serious as it may require replacement of potentially 
large parts of the plan being reused, thereby increasing the cost of refitting. In [12, 13], we show 
that PRIAR's retrieval and mapping strategy tends to prefer reuse candidates that have fewer 
applicability failures of this type. 
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Procedure Repair-Failing-Filter-Condition-Validation 
(t{t: ( E ,  ns, C, nd) ,HTN:  (P :  ( T ,  O, l l ) ,  T*, O))  

1 begin 
2 Remove-Validation(v¢) 
3 find n ' E  Ancestors(nd)  U {rid} s.t. 
4 C E fi l ter-conditions(n ') 
5 /*replace reduction below n '* /  
6 foreach n~ C R ( n ' )  s.t. children (n~) = ~J do 
7 foreaeh u'" (E ' ,  n~, C', n'a) ~ e-conditions(n,,) do 
8 if v ' E  e-condit ions(n ')  
9 then do 

10 R em o re- Validation ( v ' ) 
11 Add-Validation(v": { E',  n', C', n'd) ) od 
12 else Remove-Val idat ion(v ' )  fi od 
13 foreach v': {E' ,  n ~, C', n ~l ) E e-preconditions( n ~ ) do 
14 if v' E e-precondit ions(n')  
15 then do 
16 R emo v e- Validation( v ') 
17 Add-Validation(v":  ( E',  n~, C', n ' )  ) od 

18 else Remove-Val idat ion(v ' )  fi od od 
19 /* unlinking descendents(n ' )  from HTN */ 
20 T* *--- T* - descendents(n ') 
21 T ~-- T - descendents(n ' )  
22 D ~-- D - { d I d E D/x  d C descendents(n ' )}  
23 Update-Ordering(O,  descendents(n))  od fi 
24 /*Mark n'  as a refit-task of type replace-reduction* 
25 T~-- T U {n'} 
26 refit task-type(n'  ) +---" replace-reduction" 
27 end 

Fig. 9. Procedure for repairing failing filter condition validations. 

have n '  as their source. Similar processing is done for the e-preconditions of 
the nodes of R(n ' )  (lines 13-18). Finally, all the descendents of n' are 
removed from the HTN (lines 20-22),  and the partial orderings of HTN are 
updated to reflect this removal (line 23). Apart from removing the orderings 
imposed by the expansions of nodes in descendents(n ' ) ,  this step also involves 
redirecting any ordering relations that were inherited from ancestors of n'  back 
to n'  (see Section 3.2). Finally, n'  now constitutes an unreduced refit task and 
so it is added to T (lines 25-26). (Notice that a difference between this and the 
Prune-Validation procedure is that, in this case, the e-preconditions of the 
replaced subreduction are redirected rather than pruned.) 
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5. 2.4. P-phantom-validations---exploiting serendipitous effects 
When R ° is being reused in the new planning situation of P", it is possible 

that after the interpretation,  some of the validations that R ~ establishes via step 
addition can now be established directly from the new initial state. Such 

validations are referred to as p-phantom validations. More formally, a valida- 

tion Vp" (E, n~, C, rid) is considered a p-phantom validation of R i if n~ ~ n I and 

I ~ ~- E. Exploiting such serendipitous effects and removing the parts of the plan 

rendered redundant  by such effects can potentially reduce the length of the 

plan. Once the annotation verification procedure locates such validations, 
PRIAR checks to see if they can actually be established from the new initial 

state. This analysis involves reasoning over the partially ordered tasks of the 

HTN tO see if, through possible introduction of new ordering relations, an effect 

of n~ can be made to satisfy the applicability condition supported by this 
validation. The reasoning facilities of typical nonlinear planners can be used to 

carry out this check. When a p-phantom validation vp is found to be establish- 

able from nj, the parts of the plan that are currently establishing this validation 

can be pruned. This is achieved by pruning Vp (see Section 5.2.1). Currently, 
we do not allow PRIAR tO add steps (cf. white knights [3]) or cause new 

interactions while establishing a p-phantom validation, and will thus exploit the 
serendipitous effects only if doing so will not cause substantial revisions to the 

plan. 

5.2.5. Example 
Figure 10 shows R ~, the HTN produced by the annotation verification 

procedure  for the 3BS---~ S5BS1 example.  The input to the annotation verifica- 
tion procedure  is the interpreted plan R i discussed in Section 5.1. In this 

example ,  R ~ contains two missing validations corresponding to extra goals, a 

failing phantom validation and a failing filter condition validation. The fact 
On(K, Table), which is marked out in I i, causes the validation 

(On(K, Table), nl, On(K, Table), nl6 ) 

in R ~ to fail. Since this is a failing filter condition validation, ~3 the reduction 
that  first introduced this condition into the HTN would have to be replaced. In 
this case, the condition On(K, Table) came into the HTN during the reduction 

of node n9: Do[ Puton( K, J)].  Thus, the annotation verification process re- 

~ We follow the convention of [27] and classify On(K, ?x) as a filter condition rather than a 
precondition. Since some effects of the Put-Block-on-Block schema depend on the binding of ?x 
(in particular, it has an effect Clear(?x)), whenever the binding changes, it has to be propagated 
consistently throughout the plan. A way of doing this correctly is to treat this reduction-time 
assumption as a filter condition, and re-do the reduction at that level when the assumption fails to 
hold in a new situation. 
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moves R(ng) from the HTN, and adds a replace reduction refit task 
ng: Do[ Puton( K, J)]. The e-preconditions of replaced reduction, (Clear(K), 
n 7, Clear(K), n~6 ) and (Clear(J) ,  n~, Clear(J), nj6 ), are redirected such that 
the refit task n 9 becomes their destination. Similarly the e-condition of the 
replaced reduction, (On(K, J), n~6, On(K, J), nc; ) is redirected such that n9 
becomes the source. These last two steps ensure than any possible reduction of 
n9 will be aware of the fact that it is expected to supply the e-conditions and 

consume e-preconditions of the replaced reduction. 
Next,  the fact Clear(I), which is marked out in I ~ causes the validation 

(Clear(l), n~, Clear(l), n 5) to fail. Since this validation supports the phantom 
goal node n,, the annotation verification procedure undoes the phantomization 
and converts n 5 into a refit task ns: Achieve[Clear(l)] to be reduced. Once this 
conversion is made, n 5 no longer needs the failing validation from n~, and it is 

removed.  
Finally, the goals Clear(M) and On(L, K) of G ~ are extra goals, and are 

not supported by any validation of the HTN. So, the refit tasks n~,: 
Achieve[On(L, K)] and n~t:Achieve[Clear(M) ] are created, and added to the 

HTN in parallel to the existing plan such that n I < nl0 < n~ and n~ < nl~ < n G. 
The node nl0 now supports the validation (O n (L ,  K), nlo, On(L, K), nc; ) and 

the node nll supplies the validation (Clear(M),  nlj, Clear(M), no;). 
Notice that the HTN shown in this figure corresponds to a partially reduced 

task network which consists of the applicable parts of the old plan and the four 
refit tasks suggested by the annotation verification procedure. It has a consis- 
tent validation structure, but it contains the unreduced refit tasks n~0, n ~ ,  n9 

and n 5. 

5.2.6. Complexity of annotation verification 
As we saw above, the core of the repair actions consists of tracking down 

validation dependencies, pruning inapplicable subreductions from the plan, 
adding new refit tasks and adjusting the node annotations. In [12], we show 
that the individual repair actions involved in the annotation verification process 
can each be carried out in O(N~) time, except for the steps involving 
interaction detection when new validations are introduced during the repair of 
missing validations and p-phantom validations. This latter step essentially 
involves checking for the truth of an assertion in a partially ordered plan. It is 
known that under the TWEAK representation (which does not allow conditional 
effects and state-independent domain axioms), this step can be carried out in 
O( N  3) time [3]. Thus, the worst-case complexity of the repair actions is 
O(N~).  Since there cannot be more than IvI failing validations in a plan, the 
complexity of the overall annotation verification process itself is O(IvlN~) 
(where Iv l as mentioned previously). Thus, the annotation verification 
process is of polynomial (O(N~)) complexity in the length of the plan. 
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5.3. Refitting 

At the end of the annotation verification, R ~' represents an incompletely 
reduced HTN with a consistent validation structure. To produce an executable 
plan for pn, R ~, has to be completely reduced. This process, called refitting, 
essentially involves reduction of the refit tasks that were introduced into R ~' 
during the annotation verification process. The responsibility of reducing the 
refit tasks is delegated to the planner by sending R '~ to the planner. An 
important  difference between refitting and from-scratch (or generative) plan- 
ning is that in refitting the planner starts with an already partially reduced HTN. 

For this reason, solving pn by reducing R ~' is less expensive on the average than 
solving pn from scratch. 

The planner treats the refit tasks in the same way as it treats other 
nonprimitive tasks--it  attempts to reduce them with the help of the task 
reduction schemas. It is also allowed to backtrack over the refit tasks (includ- 
ing, ultimately, beyond R") to explore other parts of the search space, if 
required. The procedure used for reducing refit tasks is fairly similar to the one 
the planner normally uses for reducing nonprimitive tasks (see Section 3), with 

the following extension: 

Refitting control 
An important consideration in refitting is to minimize the disturbance to the 

applicable parts of R ~' during the reduction of the refit tasks. Ideally, the 
refitting should leave any currently established protection intervals of the HTN 

unaffected. Of course, it may not be feasible to avoid interactions altogether 
and thus it is important to be able to compare the relative disturbances caused 
by various reduction choices, and select the best. Since the annotations on a 
node encapsulate the validations that were required to be preserved by the 
subreduction below a node to keep the validation structure of the HTN 
consistent, we can use them to estimate the relative disturbance caused by the 
various task reduction choices. Specifically, we measure the number and type 
of inconsistencies caused by the various reduction choices. In contrast to 
heuristics that are only concerned with minimizing the number of conflicts (cf. 
the "min-conflict" heuristics of Minton [211), our strategy also weights the 
inconsistencies in terms of the estimated difficulty of repairing the inconsisten- 
cy. The reduction choice ranked best by this strategy is used to reduce the refit 
task. A more detailed description of this control strategy can be found in 

[12,171. 
Once the planner selects an appropriate schema instance by this strategy, it 

reduces the refit task by that schema instance in the normal way, detecting and 
resolving any interactions arising in the process. 

A special consideration arises during the reduction of refit tasks of type 
replace-reduction. After selecting a schema instance to reduce such refit tasks, 
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PRIAR might have to do some processing on the HTN before starting the task 
reduction. As we pointed out during the discussion of failing filter condition 
validations (Section 5.2.3.3), when a node n is being re-reduced it is expected 
that the new reduction will supply all the e-conditions of n and will consume all 
the e-preconditions of n. If the chosen schema instance does not satisfy these 
expectations, then the validation structure of the plan has to be re-adjusted. 
PRIAR does this by comparing the chosen schema instance, S i, and the 
e-conditions and e-preconditions of node n being reduced, to take care of any 
validations that Si does not promise to preserve. It will (i) add refit tasks to 
take care of the e-conditions of n that are not guaranteed by S~, and (ii) prune 
parts of the HTN whose sole purpose is to achieve e-preconditions of n that are 

not required by S~. 
An alternative way of treating the failing filter condition validations, which 

would obviate the need for this type of adjustment, would be to prune the 
e-preconditions of n at the time of annotation verification itself, and add 
separate refit tasks to achieve each of the e-conditions of n at that time. 
However, this can lead to wasted effort on two counts: 

(1) Some of the e-preconditions of n might actually be required by any new 
reduction of n, and thus the planner might wind up re-achieving them 
during refitting, after first pruning them all during the annotation 
verification phase. 

(2) Some of the e-conditions of n might be promised by any alternate 
reduction of n, and thus adding separate refit tasks to take care of them 
would add unnecessary overhead of reducing the extra refit tasks. 

In contrast, the only possible wasted effort in the way PR|AR treats the failing 
filter condition validations is that the annotation verification procedure might 
be adding refit tasks to achieve validations (say to support the conditions of the 
parts of the plan which provide e-preconditions to the replaced reduction) that 
might eventually be pruned away during this latter adjustment. 

5.3.1. Example 
Figure 11 shows the hierarchical task reduction structure of the plan for the 

S5BS1 problem that P R I A R  produces by reducing the annotation-verified task 
network shown in Fig. 10. The top part of the figure shows the hierarchical 
structure of the task reductions underlying the development of the plan 
(abstract tasks are shown on the left, with their reductions shown to the right). 
The bottom part shows the chronological partial ordering relations among the 
leaf nodes of the HTN. The black nodes correspond to the parts of the 
interpreted plan that were salvaged by the reuse process, while the white nodes 
represent the refit tasks added during the annotation verification process and 
their subsequent reductions. 

While reducing the refit tasks Achieve[Clear(I)], the planner has the choice 
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of putting K on Table, L, M or J. The control strategy recommends putting K 
on Table since this causes the least number of conflicts with the validation 
structure of Ra. 14 Similarly, the refitting control strategy recommends that the 
extra goal refit tasks Achieve[Clear(M)] be reduced by putting L on K (rather 
than on Table, the other choice). At this point, the other extra goal refit task 
Achieve[On(L, K)] is achieved as a side-effect. As K is on Table by this point, 
the planner finds that the replace reduction refit task Do[ Puton( K, J)] can, 
after all, be reduced by another instantiation of the same schema that was used 

to reduce it previously. L~ 

6. Replanning and retrieval 

An important contribution of PR1AR'S modification strategy is that it provides 
a uniform framework for addressing various subproblems related to modifica- 
tion and reuse of plans. In this section we describe how the strategy can be 
used for dealing with failures that may arise during planning (replanning) and 
in helping to choose candidates (and mappings) for plan reuse. 

6.1. Replanning 

There are two facets of dealing with plan failures which arise in many typical 
planning domains: execution monitoring, in which the system executing a plan 
must notice that the state of the world deviates from that assumed during the 
planning process, and replanning, changing the plan to deal with such devia- 
tions. 

6.1.1. Execution monitoring 
The validation states (see Section 4.2.4) provide a precise framework for 

monitoring the state of the world during the execution of partially ordered 
plans. If EXEC denotes the set of actions of the plan P that have been executed 
by the agent until now, and W denotes the current world state, then the set of 
actions of the plan P that may be executed next, E(P, W, EXEC), is computed 
as :  

~4 Notice that putting K on J looks like a more optimal choice at this point. However, doing so at 
this juncture would lead to backtracking, as it affects the executability of the Puton(J, I) action. 
The locally suboptimal choice of putting K on Table is a characteristic of the Sussman Anomaly. 

~" If the planner chooses to reduce this refit task in the beginning itself, then it would have bound 
the location of K as being on top of 1. In this case, since the location of K changes during the 
planning, the planner would have had to re-reduce that task. Such a re-reduction should not be 
surprising as it is a natural consequence of hierarchical promiscuity allowed in most traditional 
hierarchical planners (see [32] for a discussion). 
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E( P, W, EXEC) 

= { n c I pr imi t ive(n . )  A 

(vv: (E, n~, C, nd) e AP(n~) s.t. nd ~EXEC, W~E)} .~ 

As long as the agent executes any of the actions in E(P, W, EXEC) next, it 
is assured of following the plan, while taking into account any unexpected 
changes in the world state. In particular, when E(P, W, EXEC) contains the goal 
node nG, we say that the plan has been executed successfully. Note that this 
execution model allows the planner to exploit parallelism in the plan: the 
primitive tasks can be executed in any way consistent with the partial ordering 
relations among them. The model also enables the planner to take advantage 
of any serendipitous effects to skip execution of parts of the plan that are 
rendered redundant,  or to re-execute steps whose effects have been undone 
unexpectedly. Thus, we see that our model provides an extension of the 
STRIPS's triangle-table-based execution monitoring strategy which only worked 
for total orders, and could not be used for partially ordered plans. 

6,1.2. Replanning 

When the planner finds that none of its actions can be executed in the 
current world state (E(P,  W, EXEC) = 0), then replanning (or modification of 
the current plan P) is necessary. Efficiency considerations demand that as 
much of the existing plan be reused as possible to achieve the goals from the 
current situation. One obvious possibility is to modify the unexecuted portion 
of the plan to deal with the unexpected events; this is essentially the method 
used by previous replanning systems such as SIPE [31]. However,  a replanning 
strategy that only attempts to salvage the unexecuted parts of the plan may be 
suboptimal in situations where the already executed parts of the plan are also 
reusable. For example, suppose that in the current world state some of the 
previously achieved goals have been undone. It may then be possible to 
re-achieve those goals efficiently by simply reusing (and appropriately modify- 
ing) some of the already executed portions of the plan, without having to plan 
for those goals again from scratch. 

PRIAR'S approach to this general replanning problem is to consider it as a 
special case of plan reuse. In particular, if R ° is the HTN being executed, G ° 
the set of original goals of the plan, and W the current state of the world 
(which necessitated the replanning), then PR1AR converts the replanning 
problem into the following plan reuse problem: 

Construct a plan to achieve G" from the current world state W, 
reusing the plan R ° and retaining as many of its applicable parts as 
possible. 

That  is, instead of trying to repair the validation failures that are present in the 

~ See Note added in proof at the cnd of the paper. 
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validation state preceding the current execution point in the original plan, 
PR1AR tries to reuse the entire original plan and modify it to achieve the 
original goals starting from the current situation. The resultant plan will be a 
minimally modified version of the original plan that can be executed from the 
current world state to achieve the intended goals. This approach has been used 
successfully to model execution monitoring and replanning in the blocks world. 

This model of conservative replanning is best suited to situations where it is 
reasonable to assume that the execution-time failures are caused by one-time- 
only accidents and unanticipated events. In particular, it is inadequate when 
the agent is faced with systematic repetitive failures (e.g. a greasy block keeps 
slipping from the robot's fingers), or failures arising from incorrectness and 
incompleteness of the planner's own domain models. In such cases, the scope 
of replanning needs to be broadened to include techniques such as debugging 
the planner's domain model (e.g. [23]), or planning to stop external interfer- 
ence. PRIAR's conservative replanning capability can however play an im- 
portant role in these more general replanning frameworks. 

6.2. Mapping and retrieval during reuse 

While mapping is not a serious problem if the current plan itself is being 
modified due to some change in the specification (as in replanning), it becomes 
an important consideration in the case of modification during plan reuse. (In 
fact, the problem of choosing plans from a library and picking appropriate 
mappings to the current situation is the main problem being attacked in 
case-based planning [1, 8, 18].) There are typically several semantically consis- 
tent mappings between objects of the two planning situations, P° and pn  and 
the selection of the right mapping can considerably reduce the cost of 
modifying the chosen plan to conform to the constraints of the new problem. 
Such a selection requires an efficient similarity metric that is capable of 
estimating the expected cost of modifying R ° to solve P". 

Using the framework we have described in this paper, the cost of refitting R ° 
to pn can be estimated b y  analyzing the degree of match between the 
validations of R" and the specification of pn  for various mappings {ai}. We 
have developed a computational measure of similarity which ranks the differ- 
ent mappings based on the number and the type of inconsistencies they will 
introduce into the validation structure of the plan when it is reused in the new 
problem situation. The rationale behind this similarity metric--that the cost of 
refitting depends both on the number and on the type of validations of the old 
plan that have to be re-established in the new problem situation--follows from 
our discussion of annotation verification. In the 3BS--~S5BS example, this 
strategy enables PRIAR t o  choose the mapping [A--~L, B--~ K, C--~ J] over 
the mapping [A-~ K, B--~ J, C--~I] while reusing the 3BS plan to solve the 
S5BS1 problem, as the former causes fewer inconsistencies in the validation 
structure of the interpreted 3BS plan. 
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In addition to being used to choose between mappings, this strategy can also 
be used to choose between several reuse candidates (i.e. different plans that 
might be modified for the current situation). By basing the retriewfl on the 
estimated cost of modifying the old plan in the new problem situation, this 
strategy strikes a balance between purely syntactic feature-based retrieval 
methods, and methods which require a comparison of the solutions of the new 
and old problems to guide the retrieval (e.g. [2]). Further details on this 
retrieval and mapping strategy can be found in [12, 13]. 

7. Empirical evaluation 

The modification techniques described in this paper have been completely 
implemented in the PR1AR system, which runs as compiled COMMON LISP code 
on a Texas Instruments EXPLORER-II Lisp Machine. The hierarchical planner 
used in this system is a version of N O N L I N  [27, 7] which has been re- 
implemented in COMMON LISP. PRIAR has been used to modify plans in an 
extended blocks world domain as well as in a manufacturing planning domain 
[14], where the objective is to construct a partially ordered sequence of 
machining operations for manufacturing simple machinable mechanical parts. 

To empirically evaluate the performance of plan modification using the 
techniques described previously, we have conducted experiments using blocks 
world ~ planning problems. The evaluation trials consisted of solving blocks 
world problems by reusing a range of similar to dissimilar stored plans. In each 
trial, statistics were collected regarding the amount of effort involved in solving 
each problem from scratch versus solving it by modifying a given plan (in each 
c a s e ,  P R I A R  automatically computed mapping between R" and P"). Approxi- 
mately 80 sets of trials were conducted over a variety of problem situations and 
problem sizes. A comprehensive listing of these statistics can be found in [12]. 

Table 1 presents representative statistics from the experiments. The entries 
compare planning times (measured in cpu seconds), the number of task 
reductions (denoted by xn), and the number of detected interactions (denoted 
by xi), for from-scratch planning and for planning with reuse, in some 
representative experiments. The problems 3BS, 4BS, 6BS, 8BS etc. are block 
stacking problems with three, four, six, eight, etc. blocks respectively on the 
table in the initial state, and stacked on top of each other in the final state. 
Problems 4BS1, 5BS1, 6BS1 etc. correspond to blocks world problems where 
all the blocks are in some arbitrary configuration in the initial state, and 
stacked in some order in the goal state. In particular, the entry 3BS--> S5BS1 in 
Table 1 corresponds to the example discussed in the previous sections. A 
complete listing of the test problem specifications can be found in [12]. The last 

k,, Scc A p p e n d i x  B for a specif icat ion of the ax iomat i za t ion  used. 
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Table 1 
Sample statistics for PRIAR reuse 

R~'----~ P" P" from scratch Reuse R" Savings 
(%) 

3BS---~ 4BS1 [4.0s, 12n, 5i] [2.4s, 4n li] 39 
3BS----, S5BS1 [12.4s, 17n, 22i] ]5.2s, 8n, 12i] 58 
5BS----, 7BS1 [38.6s, 24n, 13i] [ l l . ls ,  12n, 19i] 71 
4BS1---~ 8BS1 [79.3s, 28n, 14i] [22.2s, 18n, 18i] 71 
5BS----, 8BS1 [79.3s, 28n, 14i] [10.1s, 14n, 7i] 87 
6BS----~ 9BS1 [184.6s, 32n, 17i] [18.1s, 17n, 17i] 90 
10BS---~ 9BS1 [184.6s, 32n, 17i] [6.5s, 5n, 2i] 96 
4BS---~ 10BS1 [401.5s, 36n, 19i] [52.9s, 30n, 33i] 86 
8BS----~ 10BS1 [401.5s, 36n, 19i] [14.5s, 12n, 7i] 96 
3BS---~ 12BSI [1758.6s, 44n, 23i] [77.1s, 40n, 38i] 95 
5BS----~ 1 2 BS1  [1758.6s~ 44n, 23i] [51.8s, 32n, 26i] 97 
10BS---~ 12BS1 [1758.6s, 44n, 23i] [21.2s, 13n, 7i] 98 

column of the table presents the computational savings gained through reuse as 
compared to from-scratch planning (as a percentage of from-scratch planning 
time). 

The entries in the table show that the overall planning times improve 
significantly with reuse. This confirms that reuse and modification in the PRIAR 
framework can lead to substantial savings over generative planning alone. The 
relative savings over the entire corpus of experiments ranged from 30% to 98% 
(corresponding to speedup factors of 1.5 to 50), with the highest gains shown 
for the more difficult problems tested. The average relative savings over the 
entire corpus was 79%. 17 

We also analyzed the variation in savings accrued by reuse in terms of the 
similarity between the problems and the size of the constructed plans. The plot 
in Fig. 12 shows the computational savings achieved when different blocks 
world problems are solved by reusing a range of existing blocks world plans. 
For example, the curve marked "7BSI" in the figure shows the savings 
afforded by solving a particular seven-block problem by reusing several 
different blocks world plans (shown along the x-axis). Figure 13 summarizes all 
the individual variations by plotting (in logarithmic scale) the from-scratch 
planning time, and the best and worst-case reuse planning times observed for 
the set of blocks world problems used in our experiments. It shows an observed 
speedup of one to two orders of magnitude. 

Apart from the obvious improvement in the planning performance with 
respect to similarity between P" and po, these plots bring out some other 
interesting characteristics of the PRIAR reuse behavior. As we pointed out 
earlier, a flexible and conservative modification strategy allows the planner to 

~7 The cumulative savings were much higher, but they are biased by the higher gains of the more 
difficult problems. 



236 S. Kamhhampati, ,I.A. Hendler 

p 10000 

I 
8 
n 1000 

n 

i 
n l oo  

g 

T 

I 

m 

e 

2 "  

10  

1 a I I I I I I I 
4BS1 5BS1 6BS1 7BS1 8BS1 9BS1 lOBS1 12BS1 

Blocks Wor ld  Prob lems 

4 .  From Scra tch  -o- Reuse (Worst  Case)  - ' -  Reuse  (Best  case)  I 

i 

Fig. 12. Variation of performance with problem size and similarity. 

100 12BS1 

90 

% 80 / 

70 
S 

60 , ~  e 
v 50 ~,  

I 40 
n 
g 30 

$ 20 

10 

0 I I 

3Be 4Be 4BS1 

I I I I I I I 
5BS 6BS 7BS 7BS1 8BS 8BS1 9BS 

Reused Prob lems 

I - ' - 7 B S 1  - 0 - 8 B S 1  - ' - l O B S 1  " 0 - 1 2 B S 1  I 

Fig. 13. From-scratch versus best and worst-case reuse performance. 

effectively reuse any applicable parts of a partially relevant plan in solving a 
new planning problem. Because of this, reuse with such a strategy will be able 
to provide significant performance gains over a wide range of specification 
changes. The plots in Figs. 12 and 13 show that modification in PR1AR exhibits 
this property.  Consider, for example,  the plot for 12BS1 in Fig. 12. As we go 
from a dissimilar plan R ° = 3BS to a more similar plan R ° = 9BS, the savings 
vary between 95% and 98% (corresponding to a variation in the speedup factor 

of 20 to 50). 
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Table 2 
Variation of reuse performance with problem size 

R°---~ P" P" from scratch Reuse R" Savings 
(cpu seconds) (cpu seconds) (%) Speedup 

3BS ~ 4BS1 4.0 2.4 39 1.6 
3BS ~ 5BS1 8.4 4.3 49 1.9 
3BS----~ 7BSI 38.6 15.6 59 2.5 
3BS--~ 8BS1 79.3 17.4 78 4.6 
3BS ---~ 10BS1 401.5 71.4 86 5.6 
3BS ----~ 12BS1 1758.6 77.1 95 22.8 

A related pattern in PRIAR's performance is that when it modifies the same 
plan R ° to solve several different problems, the computational savings increase 
with the size of the problem being solved. Consider for example the cases of 
3BS---~7BS1 versus 3BS--~12BS1 in Fig. 12. The improvement with size is 
further  characterized by the statistics in Table 2, which lists the performance 
statistics when the 3BS plan is used to solve a set of increasingly complex 
blocks world problems. This shows that as the complexity of the planning 
problems increases, the ability to solve new planning problems by flexibility 
modifying existing plans can lead to substantial computational savings. 

In Section 8.3, we will provide a qualitative explanation for these empirical 
performance characteristics in terms of the search process in the space of the 

plans. 

8. Discussion 

Before we conclude this paper, we wish to present an assessment of the 
effectiveness of the modification framework. For example, we would like to 
characterize its coverage, correctness, and efficiency, in effect of the complete- 
ness of the underlying planning strategy, and, finally, discuss some of its 
limitations. 

8.1. Coverage and correctness 

Here  we are interested in assessing the adequacy of PRIAR's repair actions in 
conservatively accommodating all possible specification changes in a given 
plan. As we have seen, PRIAR handles the changes in specifications by 
computing the ramifications of those changes on the validation structure of the 
plan, and modifying it to repair any resultant inconsistencies in the validation 
structure. The inconsistencies themselves are enumerated by characterizing the 
correctness of the plan in terms of its validation structure (Section 4.1.2). The 
validation structure of a plan can be shown to constitute an explanation of 
correctness of that plan with respect to the modal truth criterion [3, 16]. Thus, 
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the various inconsistencies in the validation structure correspond to the differ- 
ent ways in which a plan can fail to satisfy the modal truth criterion, t~' Since 
PRIAR provides repair actions for handling each of these types of inconsisten- 
cies (Section 5), we claim that it is capable of modifying any plan (describable 
within its action representation) to accommodate any changes in its specifica- 

tions. 
A related question concerns the expressiveness of the action representation 

itself. Our action representation (Section 3) largely covers the basic set of 
actions expressible by the hierarchical, nonlinear planners developed to date, 
although without modification it does not necessarily cover some of the more 
complex interactions found in certain planners, such as the resource bounds of 
SIPE [30] or the temporal windows of DIV|SER [29]. Our experience in applying 
the system to the manufacturing planning domain [14] has shown that extend- 
ing the modification framework to richer action representations (involving, for 
example, context-dependent effects, etc.) is in itself not as difficult as making 
the generative planner handle such actions efficiently and systematically. (In 
[12] a method for handling context-dependent effects during annotation verifi- 
cation is provided, l' ) 

Another  important issue is the correctness and conservatism of the modifica- 
tion strategies. The modification strategies described here are "correct"  in the 
sense that they do not introduce any new inconsistencies into the validation 
structure while repairing existing ones. In particular, there are three kinds of 
changes made to the validation structure of R ~ during these repair tasks: 

(i) some existing validations are removed, 
(ii) some existing validations are re-directed (to the ancestors of the source 

of destination nodes), or 
(iii) some new validations are added. 

We have pointed out in Section 5.2.1 that the repair actions remove only the 
validations supporting the subreductions of the plan that do not have any 
externally useful effects (specifically, no e-conditions). Thus, this removal does 
not introduce any inconsistencies into the validation structure. Next, from 
Section 3.2, it follows that, if a validation is holding in an HTN, then redirecting 
it to one of its ancestors does not introduce any new inconsistencies. Finally, 
new validations are added to the HTN either to re-establish failing validations 
(as in failing precondition and phantom validations), or to provide missing 
validations. Any failing precondition validation v: (E,  n~, C, n~, ) is repaired by 

~* The detinition of "failing validations" would however need to be modified slightly to admit 
plans that are correct with respect to Chapman's "white knight" conditions. In other words, the 
consistency of validation structure, as defined, is a sufficient, but not a necessary condition for the 
correctness of plans representable in TWEAK action representation. 

'~ Of course, as we allow richer action representations, the complexity of annotation verification 
may also increase. 
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adding  a new validation,  vr: ( E ,  n r, C, nd) ,  where n r is a refit task added  to 

achieve C, such that  n I < n r < n d (Section 5.2.3). Since n r has no expected 

effects o ther  than C, its addit ion does not cause violation of  any existing 

validations.  Thus ,  the only possible inconsistency that could be caused by this 

change  is the violation of  v r itself, and we can show that v r will not  be 

violated,  z° Similarly, when new validations are in t roduced into HTN tO take 

care of  missing validations or p -phan tom validations, the repair  actions invoke 

the p lanner ' s  truth cri terion to make sure that the new validation does not  lead 

to the failure of  any existing validations. Thus none of  the repair  actions 

in t roduce  new inconsistencies into the HTN. 

The  modif icat ion strategies are "conserva t ive"  in the sense that they do not  

r emove  any por t ion of  the plan that can be reused in the new situation. In 

part icular ,  the Prune-Validation procedure  never  removes  a subreduct ion that 

has a non -empty  set of  e-condit ions.  Similarly, the Repair-Failing-Filter-Condi- 
tion-Validation procedure  replaces exactly the subreduct ion that was dependent  

on the failing filter (unachievable) condit ion.  Finally, as we noted in Section 

5.3, conservat ism is also fostered by the refitting control  strategy. 

W h a t  all this amounts  to is that,  given a plan and a new problem specifica- 

t ion, PRIAR can return a partially reduced HTN with a consistent validation 

s t ructure  for the new problem,  which retains all the applicable port ions of  the 

given plan and contains refit tasks to establish any required validations. The  

p lanner  can treat this HTN as if it were an intermediate  point  encounte red  

dur ing its search process,  and can proceed  to reduce it to find a complete  plan 

for  the new problem.  

8.2. Effect on the completeness of the underlying planner 

A n  impor tan t  considerat ion in augment ing  a generat ive planner  with the 

PRIAR modification strategies is the effect of  such an augmenta t ion  on the 

comple teness  of  the planner.  We will start by addressing the effect on the class 

of  problems that are solvable by the planner.  If a given problem P" is solvable 

by the p lanner  f rom scratch, then it is easy to see that the addit ion of  
modif icat ion strategies does not affect its solvability. This is because whatever  

may  be the plan R ° that PRIAR starts with, in the worst case, the p lanner  can 

always backt rack  over  the annotat ion-verif ied HTN, R a, to  other  parts of  the 
overall  search space for solving p.1 (in o ther  words,  the overall search space 

dur ing plan modificat ion is the same as the search space during planning f rom 

scratch;  no por t ions  of  the search space are pruned f rom considerat ion a 
priori). 

-'" For v~ to fail, there should exist a node n such that ©(n r < n < nd) and effects(n) F~E. Since 
n I < n r < n d (see Section 5.2.3.1), this will also imply that ~(n~ < n <nd). That is, v itself could 
not have been established originally. Since v was established previously, by refutation we know 
that v r cannot be failing. 
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A more interesting question is regarding the "'quality" of the plan con- 
structed. Note that depending upon the domain theory, there may be many 
correct plans for solving a problem P", and if the planner is solving this 
problem from scratch, it may find any of those correct plans. The effect of 
modification strategies (and the refitting control strategy) is to bias the 
planner's search in such a way that it will find a plan that is structurally closer 
to the plan R '' that it is asked to modify. There is, however, no guarantee that 
the plan found by modifying a particular plan R" will be as preferable as a plan 
that might have been found by solving P" from scratch. This is not surprising, 
as the validation structure and the modification strategies do not capture any 
information about optimality considerations (such as relative preferences 
among plans). This is, however, not a serious limitation vis h vis hierarchical 
nonlinear planning, as it (as well as much of the rest of research work on 
domain-independent planning) concentrates on "satisficing'" rather than "op- 
timizing" search strategies. 

8.3. Efficiency 

The techniques described in this paper provide a methodology by which a 
planner can improve its performance over t ime--by reusing existing plans at 
plan generation time, or by modifying the current plan in response to specifica- 
tion changes during planning or execution. A planner which uses these 
techniques can do no better than a from-scratch planner if it is provided an 
inappropriate plan to reuse, or if the changes in the specification are so drastic 
as to render most of the current plan inapplicable. Thus, the worst-case 
complexity of planning with modification will still be the same as that of 
planning from scratch. What we do expect from the use of this incre- 
mental modification strategy is an improvement of average-case planning 
behavior--in particular the ability to handle a variety of specification changes 
incrementally, reusing any applicable portions of the given plan, while grace- 
fully degrading to from-scratch planning performance as the differences 
become significant. 

It is difficult to characterize average-case improvement formally without 
knowing the precise distribution of specification changes that can be expected 
in typical planning situations. Another complication is that while the con- 
sistency of the annotation-verified plan R ~' allows the planner is solve for P" by 
reducing R ~ rather than starting from scratch, it cannot by itself ensure that a 
plan for P" can be found without backtracking over R ~'. For this latter property 
to hold, the abstraction used in the task reduction schemas representing the 
domain would have to satisfy the "downward solution" property [28] (where 
the existence of an abstract plan implies the existence of specializations of the 
abstract plan at each lower level). However, guaranteeing this property for a 
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domain formalization, while still retaining an effective abstraction hierarchy, 
may turn out to be infeasible in practice for most domains [28, 32]. 

Although formal characterization of average-case improvement is difficult, 
we can get a practical understanding of the effectiveness of our incremental 
strategy by looking at its coverage, the overhead involved in facilitating it, and 
finally the empirical performance gains afforded by the incremental strategy. 
We have already discussed the coverage of PRIAR'S plan modification strategies 
(Section 8.1). In terms of the overhead incurred in facilitating incremental 
modification, we have shown that the dependency structures can be annotated 
efficiently as a by-product of planning, and that the storage requirements for 
maintaining the dependency structures is not significant (Section 4.3). Further- 
more,  generating the annotation-verified plan is inexpensive since all of the 
repair procedures can be run in polynomial time (Section 5.2.6). Considering 
the exponential complexity of from-scratch planning and the performance gains 
promised by the incremental modification framework, the overhead involved in 
augmenting the generative planner with an incremental modification capability 

seems eminently justifiable. 
Finally, in terms of performance, by starting with a partially reduced plan 

containing all the applicable parts of an existing plan, and conservatively 
controlling the search such that the already-reduced (applicable) parts of R a are 
left undisturbed, PRIAR attempts to minimize the repetition of planning effort 
in response to specification changes. We can develop a qualitative understand- 
ing of the effect of this on the search process in the space of plans. If/3 is the 
effective branching factor of the search space,-" A is the operator  distance 
between the problem specification pn (which itself can be seen as an abstract 
plan) and the plan R n, and a '  is the operator  distance between the R ~ and R", 

then we can quantify the relative reduction in the explored search space during 
plan reuse as 0( /3  j - j ' )  when A~< A' [12, 19]. Since annotation verification 
tries to retain all parts of R ° that are applicable in Pn, we typically have A ~< A'. 
Thus, any similarity between p,1 and [po, R o] can lead to a possibly exponential 

reduction in explored search space. 
Of course, this expected exponential reduction may not always be realized 

for two reasons (see the discussion in Section 8.2): 

(i) If the domain reduction schemas do not have the downward solution 
property (as is typically the case), the interactions between the reduc- 
tions of the refit tasks and the rest of R ~' can, in theory, force the 
planner to backtrack over R ~' and explore the whole search space. 

2t Note that here/3 corresponds to both the choice in reducing tasks and the choice in resolving 
interactions. In terms of Chapman's model of nonlinear planning [3], this can be best understood 
as the average number of ways of interpreting the modal truth criterion to achieve a goal for that 
particular problem and domain. 
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(ii) If the domain is such that there are multiple correct solutions to a given 
planning problem, then left to itself, the planner might find a plan R"' 
that is closer to pn, in terms of operator distance, than R H. 

In both these cases, the cost of solving the new problem through incremental 
modification can exceed that of solving it from scratch. 

However, as the results described in Section 7 show, the modification 
strategies do, on the average, afford a significant reduction in the explored 
search space, resulting in high performance gains for a variety of specification 
changes. Furthermore, as problem size increases, the effective branching factor 
of the search space also increases. (One way of understanding this is that as the 
size of the planning problem increases, the number of ways of interpreting the 
modal truth criterion to achieve a goal also increases.) As/3 increases, so will 
the relative reduction in the search space. Thus, the savings afforded by reuse 
tend to become more significant with increase in problem size (as demonstrated 
by the entries in Table 2). 

8.4. Limitations, extensions and future work 

Viewed as an integrated theory of learning to improve planning performance 
from experience, PRIAR has some obvious shortcomings. In particular, such a 
theory would have to account for the issues of storage and organization of 
generated plans--i.e. ,  when it is worth storing a generated plan for future 
rescue and how best to organize stored plans in memory for efficient retrieval 
in the future. Indiscriminate storage of plans can degrade a planner's per- 
formance by making it spend an inordinate amount of time in the retrieval 
phase. (Recent work in machine learning (e.g. [20]) has amply demonstrated 
the practical importance of this utility problem.) 

While PRIAR provides an integral building block for any scheme to integrate 
planning and learning--viz., a framework for incrementally modifying existing 
plans to solve new problems--it does not directly address the issues of storage 
and organization. We believe, however, that the flexibility of the PRIAR 
modification framework may facilitate significantly simpler solutions to these 
problems. For example, typically, much of the complexity of retrieval is due to 
the insistence on best-match retrieval. By being able to flexibly reuse any 
partially applicable portions of a retrieved plan, PRIAR can mitigate the 
criticality of best-match retrieval. Similarly, the PRIAR modification frame- 
work, based as it is on a systematic characterization of the explanation of 
correctness of the plan, is amenable to seamless integration with explanation- 
based generalization techniques. In particular, we have recently developed 
provably sound algorithms for generalizing partially ordered plans based on the 
validation structure representations discussed in this paper [16]. Such strategies 
constitute a first step towards addressing the storage issues, as they allow 
PRIAR to avoid storing two instances of the same general plan. 
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Next, while PRIAR'S strategy of handling specification changes ensures 
correctness of the modified plan with respect to the planner, it cannot 
guarantee the actual executability of the plan in the real world, any more than 
a from-scratch planner itself can. In particular, failures arising from the 
incompleteness of the planner's domain model cannot be rectified in this 
framework. To handle such failures, the planning strategy would still have to 
be complemented by simulation and debugging strategies such as those used in 
GORDIUS [23] and CHEF [8]. However, as we remarked in Section 2, the PRIAn 
framework c a n  be gainfully integrated with these debugging strategies, as it 
increases the likelihood of generated plans being correct. 

A related issue is that sometimes it is not enough to ensure correctness of the 
modified plan with respect to the planner. For example, in many domains, 
planning is best characterized as a hybrid activity involving interaction between 
a general purpose planner and a set of specialized reasoners. The ability to 
incrementally modify plans can play a very important role in such hybrid 
planning architectures as it can provide substantial computational advantages 
both by avoiding repetition of computational effort and by respecting previous 
commitments. However, here, we are no longer concerned solely with the 
internal consistency of the revised plan, but with the global consistency--both 
the planner and the specialists must be satisfied with the current state of the 
overall plan. In particular, to avoid costly ripple effects, the planner must keep 
track of any implicit constraints imposed by the specialists, through appropriate 
interfaces, and respect them during any plan revision. We are exploring these 
issues in our ongoing work in hybrid planning architectures [15]. 

Finally, a minor limitation of the current implementation is the relation 
between the planner's search control strategy and the modification framework. 
In the current implementation, PRIAR's NONLIN-based planner uses a 
chronological backtracking regime to explore its search space during planning. 
As has been noted in the literature [26], chronological backtracking is a very 
inefficient control strategy in hierarchical nonlinear planning. The plan modifi- 
cation framework we describe can be seen as introducing a dependency- 
directed component into the backtracking. Given a set of inconsistencies in a 
validation structure, the modification strategy essentially allows the planner to 
restart with the part of the plan that has a consistent validation structure. 
However, in the current system, validation structures are not used for that 
purpose. A logical extension to PRIAR would be to augment the planner such 
that the modification component would be invoked whenever the planner has 
to do backtracking. This can be easily accomplished by making the planner 
utilize the incremental annotation algorithms to maintain the internal depen- 
dency structures of the plan throughout planning. Every time the planner 
reaches a backtracking point, instead of using chronological backtracking, it 
can use PRIAR's modification strategies to remove the inconsistencies in the 
validation structure that led to the failure and then resume planning. 
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9. Conclusion 

In this paper, we have presented a formal basis for flexible and conservative 
modification of existing plans to handle changes in problem specifications. This 
ability can provide substantial computational advantages by respecting previous 
commitments and avoiding repetition of planning effort. Plan modification is 
characterized as a process of removing inconsistencies in the validation struc- 
ture of a plan, when it is being reused in a new (changed) planning situation. 
We have discussed the development of a planning system based on this theory, 
PR1AR, and characterized its coverage, efficiency and limitations. In addition, 
we have described empirical experimentation showing significant performance 
gains using this system. We have also shown that this theory provides a general 
unified framework for addressing several subproblems of planning and plan 
reuse, particularly execution monitoring and replanning, estimating the simi- 
larity of plans during the retrieval of plans for reuse, and controlling the choice 
of new actions to replace changed parts of existing plans. 

Appendix A. Trace output by PRIAR 

This appendix contains an annotated trace of the PRIAR program as it plans 
for a blocks world problem by reusing an existing plan. Specifically, it follows 
PRIAR in solving the 5BP problem shown on the right in Fig. A.1 by reusing an 
existing plan for solving the 6BS problem shown on the left. This example is 
specifically designed to show how PR|AR handles failing filter condition valida- 
tions, unnecessary validations, and p-phantom validations (the capabilities that 
were not brought out in the example discussed in the paper). 

In this example, PR1AR'S partial unification procedure generates two plaus- 
ible reuse candidates for solving the 5BP problem from the 6BS plan (lines 
1-11). The mapping and retrieval strategy (Section 6.2) prefers one of those 
candidates 

(6BS, c~ = [A--~ L, C---~ O, B---~ P, D---~ M, E--+ N]) 

as better suited for solving the 5BP problem (lines 13-19). 

Input Situation 
pC, 6BS 

Goal 

reused in~ 
Input Situation Goal 

pn5B P 

Fig. A.I. The 6BS---~5BP modification problem. 



Theory of plan modification 245 

1 PRIAR> (plan-for :problem '5bs-phantom-pyramid :reuse t) 
2 Trying to solve the problem by reusing old plans 

3 Calling.. .  
4 (REUSE-PLAN :GOALS ((ON P O) (ON M N) (ON L P) (ON O M)) 
5 :INPUT ((BLOCK P) (CLEARTOP O) (ON O P) (ON L TABLE) 
6 (ON P TABLE) (BLOCK O) (BLOCK N) (BLOCK M) 
7 (PYRAMID L) (CLEARTOP M) (ON M N))) 
8 ********************************* similar old *************************** 

9 RETRIEVE: There are 2 possible Complete Matches. They a r e . . .  
10 (({(Plan::6BS)} (LA) (NE) (MD) (OC) (PB))) 
11 ({(Plan::6BS)} ((LB) (NF) (ME) (OD) (PC)))) 
12 . . .  
13 * . . . .  **PLAN-KERNEL-BASED-ORDERING 
14 The Plan Choices ranked best by the Plan-kernel based retrieval Process are 
15 ([({(Plan::6BS)} (LA) (NE) (MD) (OC) (PB)))]{18}) 
16 Choosing 
17 [({(Plan::6BS)} ((LA) (NE) (MD) (OC) (PB)))]{18} 
18 to be reused to solve the current problem 
19 Copying and Loading plan into memory 

20 using the following plan 
21 Plan Name: 6BS 
22 Goals: ((ON B C) (ON C D) (ON D E) (ON E F) (ON A B)) 
23 Initial State:((BLOCK D) (BLOCK B) (BLOCK A) (CLEARTOP A) 
24 (BLOCK C) (CLEARTOP D) (CLEARTOP C) (CLEARTOP B) 
25 (ON D TABLE) (ON C TABLE) (ON B TABLE) (ON A TABLE) 
26 (BLOCK F) (BLOCK E) (CLEARTOP F) (CLEARTOP E) 
27 (ON E TABLE)) 
28 Plan Kernel: #(PLANKERNEL 10733054) 
29 The plan i s . . .  
30 *********************** 
31 7: :PRIMITIVE (PUT-BLOCK-ON-BLOCK-ACTION E F) 
32 22)] [Succnodes: (6 1)] 
33 (PUT-BLOCK-ON-BLOCK-ACTION D E) 
34 19 7)] [Succnodes: (5 1)] 
35 (PUT-BLOCK-ON-BLOCK-ACTION C D) 
36 16 6) [Succnodes: (4 1)] 
37 (PUT-BLOCK-ON-BLOCK-ACTION B C) 
38 13 5)] [Succnodes: (3 1)] 
39 3: :PRIMITIVE (PUT-BLOCK-ON-BLOCK-ACTION A B) 
40 [Prenodes:(9 104)] [Succnodes: (1)] 
41 *********************** 

[Prenodes:(21 
6: :PRIMITIVE 

[Prenodes:(18 
5: :PRIMITIVE 

[Prenodes:(15 
4: :PRIMITIVE 

[Prenodes:(12 

42 The mapping is [A---~ L E---~ N D--* M C--~ O B---~ P] 

Next, the 6BS plan is interpreted in the 5BP problem situation with the 
chosen mapping. The interpretation process, apart from marking various facts 
as in and out, finds that one of the goals of the 6BS problem, On(N, F), is 
unnecessary for solving the 5BP problem (line 58). 

Figure A.2 shows the H T N  of the 6BS plan after the interpretation process. 
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Mapping the retrieved plan into the current problem 
T hc  m a p p i n g  used is: [A--+ L E ~  N D---, M ( ' ~  O B---, P] 

INTERPRET: adding fact ( O N  O P) to the initial state 

43 

44 

45 

46 

47 INTERPRET: 

48 INTERPRET: 

49 INTERPRET: 

50 INTERPRET: Marking the 
51 INTERPRET: Marking the 
52 INTERPRET: Mark ing  the 
53 INTERPRET: Mark ing  the 

54 INTERPRET: Mark ing  

55 INTERPRET: Mark ing  

56 INTERPRET: Mark ing  

57 INTERPRET: Mark ing  

58 INTERPRET: Mark ing  

59 I N T E R P R E T a t i o n  is 

adding fact ( P Y R A M I D  L) to the initial slate 
adding fact ( O N  M N) to the initial state 
Marking the fact ( B L O C K  L) in init-stutc :out 

fact ( C L E A R T O P  L) in init-state :out 

fact ( C L E A R T O P  P) in init-state :out 
fact ( O N  M T A B L E )  m init-statc :out 

fact ( O N  O T A B L E )  in init-state :out 
the fact ( B L O C K  F) in init-state :out 

the fact ( C L E A R T O P  F) in init-state :out 
the fact ( C L E A R T O P N )  in init-state :out 

the fact ( O N  N T A B L E )  in inil-state :out 

the goal ( O N  N F) in goal-s ta te  :unnecessary 
o v e r  

Next, PRIAR starts the annotation verification process; Fig. A.3 shows the 
HTN after this process is complete. During the annotation verification process, 
PRIAR first considers the unnecessary validation supporting the unnecessary 
goal On(N, F) (lines 60-66) .  The appropriate repair action is to recursively 
remove the parts of the plan whose sole purpose is to achieve this validation. 
In this case, PRIAR finds that the subreduction below the intermediate level 
node ND0110: On(N, F) (the node with label "I" in Fig. A.2)  will have to be 
removed from the plan to take care of this unnecessary validation. Conse- 
quently, the annotation-verified plan, shown in Fig. A.3,  does not contain any 
nodes of this subreduction. 

611 * ~: * ;~ * +: * * ' '= * * :~ * ;~ * * * * * * * * A n notatio n Ve rification * * * * * ,' * * * * * * * * * * :; * * * * * * 

61 ANNOTNERIFY: Starl 

62 ANNOT-VERIFY: Processing unnecessary goals (if any) 
63 Tile goal  ( O N  N F) is U N N E C E S S A R Y  

(74 Remove Unnecessary Goal: Pruning the reduction below the node 
(,5 { ( 7 : : N D I ) 1 1 0 ) [ : G O A L ( O N  N F ) ] . . . }  

66 To  take  care  of  this unnecessary goal. 

Next, annotation verification checks for any p-phantom validations. It finds 
that the validation supporting the goal On(M, N) is a p-phantom validation 
since On(M, N) was achieved through task reduction in the 6BS plan, while it 
is now true in the initial state of the new problem situation. PRIAR uses the 
planner's goal achievement procedures to check whether On(M, N) can now 
be established from the initial state. As this check is successful, PRIAR decides 
to shorten the plan by pruning the validation that is currently supporting the 
goal On(M, N), and to support On(M, N) by the new fact from the initial 
state. This pruning will remove the subreduction below the node for achieving 
On(M, N) (see the node with the label "1I" in Fig. A.2)  from the interpreted 
plan. Consequently,  the annotation-verified plan, shown in Fig. A.3,  does not 
contain any nodes of this subreduction. 
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FN graph al 6[~$2fl3' 

[] 

0 

'G 

Fig. A.2. 6BS plan after interpretation. 

67 ANNOT-VERIFY: Processing p-phantom validations (if any) 
68 The goal (ON M N) is supported by a p-phantom validation 
69 Checking to see if it can be phantomized 
70 Check-p-Phantom-Validation: the condition (ON M N) 
71 can be established from new initial state!!! 
72 Check-p-Phantom-Validation: Pruning the other contributor 
73 { (6::NDO268)[:PRIMITIVE(PUT-BLOCK-ON-BLOCK-ACTION M N ) ] . . .  } 
74 from the HTN 
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75 Pruning the reduction below the node 
76 { (6::ND0109)[:GOAL(ON M N ) ] . . . }  
77 To take care of this p-phantom validation 

After taking care of unnecessary and p-phantom validations, the annotation 
verification procedure finds that the validation supporting the filter condition 
Block(L) is failing, because L is a Pyramid in the new problem situation. The 
appropriate repair action is to replace the subreduction below the node which 
first posted that filter condition. In this case, PRIAR finds that the node for 
achieving the goal On(L, P) (see the node with the label "III" in Fig. A.3) 
which is an ancestor of the node with the failing condition validation, first 
posted the filter condition Block(L) into the plan. So it decides to replace the 
subreduction below this node. Consequently, the annotation verified plan in 
Fig. A.3 contains a refit task to re-achieve the goal On(L, P) in place of the 
replaced subreduction. 

78 ANNOT-VERIFY: Processing extra goals (if any) 
79 ANNOT-VERIFY: Looking for failed validations. 
80 The FILTER (:use-when) condition (BLOCK L) at node 
81 { (3::ND0232)[:PRIMITIVE(PUT-BLOCK-ON-BLOCK-ACTION L P)I...} 
82 is failing because of :out fact (BLOCK L) in (INIT-STATE) 
83 
84 REFIT-F1LTER-COND-FA1LURE: Adding a refit-task 
85 { (REFIT-TASK004) [: REPLACE-REDUCTION(ON L P ) ] . . .  } 
86 to re-reduce the node 
87 { (3::ND0106)[:GOAL(ON L P ) ] . . . }  
88 REFIT-FILTER-COND-FAILURE: Removing the replaced reduction from the plan 

The annotation verification procedure goes on to find a second failing filter 
condition validation and a failing phantom condition validation (lines 89-106). 
It repairs them by adding a second replace reduction refit task and a de- 
phantomize refit task to the annotation-verified plan. Figure A.3 shows the 
partially reduced HTN after the annotation verification process. The top part of 
the figure shows the hierarchical structure of the task reduction while the 
bottom part shows the chronological partial ordering relations among the leaf 
nodes of the HTN. The black nodes correspond to the parts of the interpreted 
plan while the white nodes represent the refit tasks added during the annota- 
tion verification process. This partially reduced HTN is then sent to the planner 
for refitting. 

89 The FILTER (:use-when) condition (ON O TABLE) at node 
90 {(5::ND0251)[:PRIMITIVE(PUT-BLOCK-ON-BLOCK-ACTION O M)] . . .}  
91 is failing because of :out fact ( O N O T A B L E )  in (INIT-STATE) 

92 REFIT-FILTER-COND-FAILURE: Adding a refit-task 
93 { (REFIT-TASK0002) [:REPLACE-REDUCTION(PUT-BLOCK-ON- 

BLOCKO M)] . . .}  
94 to re-reduce the node 
95 { (5::ND0176)[:ACTION(PUT-BLOCK-ON-BLOCK O M) . . . }  
96 REFIT-FILTER-COND-FA|LURE: Removing the replaced reduction from the plan 



', 
~-

ap
h 

t,i 
6~

s2
04

5 

t II;
W

I'~
- 1

2 
I:D

EP
HA

NT
O

M
IZ

E]
 

{C
LE

AR
TO

P P
) 

(C
LE

AR
TO

P P
) 

..
..

..
..

..
..

. 
i 

iR
f'l'

=k
-s

 
[:R

EF
q.

.A
CE

-R
EO

UC
TI

O
N]

I 
IN

d-
5 

[:P
R

IM
ffl

VE
] 

J 
(P

UT
-B

LO
CK

-O
N-

BL
O

CK
 O

 M
) 

[-
-J

 
(P

UT
-B

LO
CK

-O
N-

BL
O

CK
-A

CT
IO

N 
O

 M
)I 

',lT
Sk

 3
 

[:R
EP

1J
~C

E-
RE

DU
CT

IO
I~

 
ON

 L
 P

) 
Ill I 

••C
•_A

_R
_'O

 P_ 
-PL

 _ 
__

 
', 

11
11

3 
I:.~

o2
rlO

lq 
I 

Ilia
-3 

[:P
mM

ITI
VI+

 I 
] 

(P
UT

- P
/I~

M
ID

-O
I'4

-B
LO

CK
 L

 P
) J

 
(P

U
T-

P'
C

R
AM

 D-
O

N-
BL

O
CK

-A
CT

IO
N 

L 
P)

 I 

IA
L-

O
R

D
U

R
 g

l ~
ph

 d
 

¢ 
II

'~
P

~
 

:i
g.

 A
.4

. 
R

es
ul

t 
of

 r
ef

it
ti

ng
 6

B
S 

ph
m

 t
o 

5B
P

 p
ro

bl
em

. 



Theory of plan modification 251 

97 
98 
99 

100 
101 
102 
103 
104 
105 

The :PRECOND condition (CLEARTOP P) at node 
{ (4::ND0106) [:PRIMITIVE(PUT-BLOCK-ON-BLOCK-ACTION P O)] 
is failing because of :out fact (CLEARTOP P) in (INIT-STATE) 

DEPHANTOMIZE-GOAL: Adding refit-task 
{ < REFIT-TASK0006)[:DEPHANTOMIZE(CLEARTOP P)] . .  -} 
in the place of the phantom goal 
{ < 12::ND0154)[:GOAL(CLEARTOP P)] . . .}  

106 annot-verify: Entering refit-tasks into the planners TASK-QUEUE in correct order 

107 Entering { (REFIT-TASK0004)[:REPLACE-REDUCTION(ON L P) ] . . .}  
108 Entering {{REFIT-TASK0002)[:REPLACE-REDUCTION(PUT-BLOCK-ON-BLOCK 

O M ) I . . . }  
109 Entering {{REFIT-TASK0006)[:DEPHANTOMIZE(CLEARTOP P)] . . .}  
110 ANNOT-VERIFY: END 

The planner starts by reducing the replace-reduction refit task corresponding 
to On(L, P) (lines 112-130). Since L is a pyramid, the planner finds that the 
only appropriate schema instance for reducing this refit task is MAKE-PYRAMID- 
ON-BLOCK(L, P). Next, since the refit task is a replace-reduction refit task, 
PmAR finds during installation (Section 5.3) that the e-precondition of the refit 
task that was supporting the condition Clear(L) is no longer required by the 
new schema instance (the reason being that L, which is a pyramid, is always 
clear). So the e-precondition is pruned from the HTN. After this, the planner 
goes on to reduce the refit task with the chosen schema. The other two refit 
tasks are also reduced in turn by a similar process (lines 136-142). 

Figure A.4 shows the result of refitting, which is a completely reduced HTN 
for solving the 5BP problem. The black nodes represent the parts of the 6BS 
plan that remained applicable to the 5BP problem and the white nodes 
represent the reductions of refit tasks. There is no separate subplan for 
achieving the goal On(M, N) in this HTN since this is made true from the initial 
state 5BP problem. The bottom part of the figure shows the partial ordering 
relations among the steps of the developed plan. 

111 *************************** Generative Planner************************ 

112 PLANNER: Expanding refit task Achieve [(ON L P)] 

113 PLANNER: The schema choices to reduce the refit task are: 
114 ({SCH0021}: MAKE-PYRAMID-ON-BLOCK00140018::(ON L P) 
115 BY {(I::ND0020)[:ACTION(PUT-PYRAMID-ON-BLOCK LP) ] . . . }  
116 The chosen schema is: 
117 {SCH0021 } 
118 MAKE-PYRAMID-ON-BLOCK00140018::(ON L P) 
119 Expansion: 
120 0 { (0::ND0019)[:GOAL(CLEARTOP P)]} 
121 1 { { 1 ::ND0020) [:ACTION(PUT-PYRAMID-ON-BLOCK L P)]} 
122 Conditions: 
123 ((SC5125))  :PRECOND (CLEARTOPP) :at 1 :from (0) 
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124 
125 
126 

((SC5126}) :USE-WHEN (PYRAMID L) :at 0 :from (-24) 
((SC5127)) :USE-WHEN (BLOCKP):at  1 :from (-24) 

127 Install Choice: Installing the schema ({SCHOI)21} 
128 MAKE-PYRAMID-ON-BLOCK00140018::(ON L P) BY 
129 { (1 ::ND()()20)[:ACTION(PUT-PYRAMID-ON-BLOCK L P)] . . .}  
130 to Re-reduce the task ({(REFIT TASK(X)04}[:REPLACE-REDUCTION(ON L P)]}) 

131 
132 
133 
134 
135 
136 
137 
138 
139 

The c-precondition (CLEARTOP L) of the task 
( { (REFIT-TASK0004) [:REPLACE-REDUCTION(ON L P)]} ) 
is not required by the chosen schema 

So, pruning the validation corresponding to this ncondition 
PLANNER: Expanding Refit-task Achieve [(PUT-BLOCK-ON-BLOCK O M)] 
PLANNER: The schema choices to reduce the refit-task are: 
( { SCHI)I)27} :: PUT-BLOCK-ON-BLOCK00220025: :(PUT-BLOCK-ON-BLOCK O M ) 

BY { (0::ND0026)[:PRIMITIVE(PUT-BLOCK-ON-BLOCK-ACTION O M)]}) 

140 PLANNER: Expanding Refit-task Achieve [(CLEARTOP P)] 
141 The refit-task is PHANTOMIZED with an effect of the node(s) 
142 ({ (5::ND(1026)[:PRIMITIVE(PUT-BLOCK-ON-ACTION O M)]}) 

143 ****The planning is OVER 
144 The plan i s . . .  

145 
146 
147 5: :PRIMITIVE (PUT-BLOCK-ON-BLOCK-ACTION O M) 
148 [Prenodes:(6 15 16)] [Succnodes: (3 1 4)] 
149 4: :PRIMITIVE (PUT-BLOCK-ACTION P O) 
15(J [Prenodes:(12 5 13)] [Succnodes: (23 1)] 
151 3: :PRIMITIVE (PUT-PYRAMID-ON-BLOCK-ACTION L P) 
152 [Prenodes:(23 I) 5)] [Succnodes: (1)] 

153 ***********GOAL STATE*********** 
154 ((SC0062)) :PRECOND (ON O M) :at 1 :from (5) 
155 ((SC0061)) :PRECOND (ONPO) :at 1 :from (4) 
156 ((SC0060)) :PRECOND (ONLP)  :at 1 :from (3) 
157 ((SC0059)) :PRECOND (ON M N) :at I :from (0) 

Appendix B. The blocks world domain specification 

(serf * a u t o c o n d *  t) 

;;;Automatically fill in sub-goals as preconditions of main goal steps 

(opschema m a k e - p y r a m i d - o n - b l o c k  

:todo (on ?x ?y) 
:expansion ( ( s t ep l  :goal  (c lea r top  ?y))  

(s tep2 :ac t ion  ( p u t - p y r a m i d - o n - b l o c k  ?x ?y)))  

:orderings ( ( s t ep l  --* s tep2))  
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:conditions ((:filter (pyramid ?x) :at stepl) 
(:filter (block ?y) : at step2)) 

:effects ((step2 :delete (cleartop ?y)) 
(step2 :assert (on ?x ?y))) 

(?x ?y)) 

make-pyramid-on-table 
(on ?x table) 
((stepl :action (put-pyramid-on-table ?x ?y))) 
((:filter (pyramid ?x) :at stepl)) 
(stepl :assert (on ?x table))) 
(?x ?y)) 

make-block-on-block 
(on ?x ?y) 
((stepl :goal (cleartop ?x)) 
(step2 :goal (cleartop ?y)) 
(step3 :action (put-block-on-block ?x ?y))) 

:orderings ((stepl ---> step3) (step2---> step3)) 
:conditions ((:filter (block ?x) :at stepl) 

(:filter (block ?y) :at step 2)) 
:effects ((step3 :delete (cleartop ?y)) 

(step3 :assert (on ?x ?y))) 
(?x ?y)) 

make-block-on-table 
(on ?x table) 
((stepl :goal (cleartop ?x)) 
(step2 :action (put-block-on-table ?x table))) 

:conditions ((:filter (block ?x) :at step 1)) 
:orderings ((stepl-->step2)) 
:effects ((step2 :assert (on ?x table))) 
:variables (?x ?y)) 

(opscbema make-clear-table 
:todo (cleartop ?x) 
:expansion ((stepl :goal (cleartop ?y)) 

(step2 :action (put-block-on-table ?y table))) 
:orderings ((stepl--~ step2)) 
:conditions ((:filter (block ?x) :at step 1) 

(:filter (block ?y) :at step2) 
(:filter (on ?y ?x) :at step2)) 

:effects ((step2 :assert (cleartop ?x)) 
(step2 :assert (on ?y table))) 

:variables (?x ?y)) 

:variables 

(opschema 
:todo 
:expansion 
:conditions 
:effects 
:variables 

(opschema 
:todo 
:expansion 

:variables 

(opschema 
:todo 
:expansion 
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(opschema makeclear-block 
:todo (cleartop ?x) 
:expansion ((stepl :goal (cleartop ?y)) 

(step2 :action (put-block-on-block ?y ?z))) 
:orderings ((step l~s tep2))  
:conditions ((:filter (block ?x) :at step 1) 

(:filter (block ?y) :at stepl) 
(:filter (block ?z) :at stepl) 
(:filter (on ?y ?x) :at step2) 
(:filter (cleartop ?z) :at step2) 
(:filter (not (equal ?z ?y)) :at stepl) 
(:filter (not (equal ?x ?z)) :at stepl)) 

:effects ((step2 :assert (cleartop ?x)) 
(step2 :assert (on ?y ?z)) 
(step2 :delete (cleartop ?z))) 

:variables (?x ?y ?z)) 

(actschema 
:todo 
:expansion 
:conditions 

:effects 

:variables 

put-block-on-block 
(put-block-on-block ?x ?y) 
((stepl :primitive (put-block-on-block-action ?x ?y))) 
((:filter (block ?x) :at stepl) 
(:filter (block ?y) :at step 1) 
(:filter (cleartop ?x) :at stepl) 
(:filter (cleartop ?y) :at step 1 ) 
(:filter (on ?x ?z) :at stepl)) 

((stepl :assert (on ?x ?y)) 
(stepl :assert (cleartop ?z)) 
(stepl :delete (cleartop ?y)) 
(stepl :delete (on ?x ?z))) 

(?x ?y ?z)) 

(actschema 
:todo 
:expansion 
:conditions 

:effects 

:variables 

put-pyramid-on-block 
(put-pyramid-on-block ?x ?y) 
((stepl :primitive (put-pyramid-on-block-action ?x ?y))) 
((:filter (pyramid ?x) :at stepl) 
(:filter (block ?y) :at stepl) 
(:filter (cleartop ?y) :at stepl) 
(:filter (on ?x ?z) :at stepl)) 

((stepl :assert (on ?x ?y)) 
(stepl :assert (cleartop ?z)) 
(stepl :delete (cleartop ?y)) 
(stepl :delete (on ?x ?z))) 

(?x ?y ?z)) 
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(actschema 
:todo 
:expansion 
:conditions 

:effects 

:variables 

put-block-on-table 
(put-block-on-table ?x table) 
((stepl :primitive (put-block-on-table-action ?x table))) 
((:filter (block ?x) :at stepl) 
(:filter (cleartop ?x) :at stepl) 
(:filter (on ?x ?z) :at step1)) 

((stepl :assert (on ?x table)) 
(stepl :assert (cleartop ?z)) 

(stepl :delete (on ?x ?z))) 
(?x ?z)) 

(actschema 
:todo 
:expansion 
:conditions 

put-pyramid-on-table 
(put-pyramid-on-table ?x table) 
((stepl :primitive (put-pyramid-on-table-action ?x table))) 
((:filter (pyramid ?x) :at step1) 
(:filter 

:effects ((stepl 
(stepl 
(stepl 

:variables (?x ?z) 

(on ?x ?z) :at stepl)) 
:assert (on ?x table)) 
:assert (cleartop ?z)) 
:delete (on ?x ?z))) 

(domain-axioms 
(<---(cleartop table) 

t) 
;;(cleartop table) is always derivable 

(*--(not (cleartop ?x)) 
(on ?y ?x)) ;;if ?y is on ?x then ?x cannot be clear 

(<--(not (on ?other ?x)) 
(and (block ?x)(on ?z ?x))) 

;;if ?x is a block and ?z is on top o f  ?x, nothing else is on its top 

(*-(not (on ?z ?other)) 
(on ?z ?x)) 

;;if ?z is on ?x it is not on any other block 

(<---(not (on ?x ?y)) 
(pyramid ?y) 

;;nothing can be on the top of  a pyramid 
(<--(equal ?x ?x) 

t) 
;;equality axiom) 

(closed-world-predicate 'equal :set t) 
;;record that equality is a closed-world predicate 
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Note added in proof 

After  the paper has gone to the printers, we  have noticed a minor error in 
our formulation of  validation-structure-based execution monitoring in Section 
6.1.1. The definition of  E(P, W, EXEC) has to be modified to account for the 
fact that parallel steps can be executed in any order. The correct formulation 
would  be 
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P E(P, W, EXEC)= {riI primitive(n)/x matvhes(A (ri), W)} 

P where matches(A (n), W) is true as long as both the following clauses are 
satisfied: 

(1) for all the validations v: {E,n~,  C,n~t)¢AP(n) such that rq(n < n <  

rid), holds(v, W) is true; 

(2) for each node np such that nplln, 
either holds(v, W) is true for every validation v: ( E, n~, C, rid) ¢ A~'(ri) 
such that n~ = np, and ~ ( n  < rid). 

or holds(v, W) is true for every validation v: (E, n~, C, rid) E AP(n) 
such that ri,j np, and [] (n~< ri)" 

(where holds(v: {E, n~, C, rid), W) is true if and only if WI- C). 

The second clause captures the notion that n can be executed if for every 
action np that is parallel to n: 

• either rip has already been executed successfully (in which case each of its 

e-conditions supporting the applicability conditions of any of the succes- 
sors of n must hold in W), 

• or np can still be executed successfully after n, without re-executing any 
step that is necessarily before n in the plan (and thus logically could 

already have been executed).  

(When the plan P is totally ordered,  the second clause will not be applicable, 

as no two nodes in the plan will be unordered,  and the formulation reduces to 

that of STRIPS/PLANEX triangle-table-based execution monitoring f ramework 

[6].) 
Intuitively, matches(A~'(n), W) tries to capture the notion that all the 

validation links in at least one cutset of the plan graph that separates n from all 

its predecessor nodes, must hold in the current world state. 
Note that this formulation of E(P, W, EXEC) allows for the possibility that 

the parallel nodes that have already been executed may have to be re- 
executed, if their intended effects are not holding. It can be used to define a 
simple nondeterministic automaton that represents all the possible behaviors 

(sequences of world states) that one can get out of the partially ordered plan P. 
Given a world state W, this automaton nondeterministically selects and exe- 
cutes an action from the set of executable actions, given by E(P, W, EXEC). 

The automaton terminates with failure when the set E(P, W, EXEC) is empty,  
and with success when this set contains the goal node n(;. 


