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Abstract

It is important for robotic agents to be respectful of
the intentions of the human members cohabiting an en-
vironment and account for conflicts on the shared re-
sources in the environment, in order to be acceptable
members of human-robot ecosystems. In this paper we
look at how maintaining predictive models of the human
cohabitors in the environment can be used to inform the
planning process of the robotic agents. We introduce an
Integer Programming based planner as a general for-
mulation of the “human-aware” planning problem and
show how the proposed formulation can be used to
model different behaviors of the robotic agent, showcas-
ing compromise, opportunism or negotiation. Finally,
we show how the proposed approach scales with the dif-
ferent parameters involved, and provide empirical eval-
uations to illustrate the pros and cons associated with
the proposed style of planning.

In environments where multiple agents are working inde-
pendently, but utilizing shared resources, it is important for
these agents to maintain belief models of other agents so
as to act intelligently and prevent conflicts. In cases where
some of these agents are humans, as in assistive robots in
household environments, these are required (rather than de-
sired) capabilities of robots in order to be “socially accept-
able” - this has been studied extensively under the umbrella
of “human-aware” planning, both in the context of path
planning (Sisbot et al. 2007; Kuderer et al. 2012) and in
task planning (Cirillo, Karlsson, and Saffiotti 2009; Koeck-
emann, Pecora, and Karlsson 2014; Cavallo et al. 2014;
Tomic, Pecora, and Saffiotti 2014). Probabilistic plan recog-
nition can play an important role in this regard, because
by not committing to a plan, that pre-assumes a particu-
lar plan for the other agent, it might be possible to mini-
mize suboptimal (in terms of redundant or conflicting ac-
tions performed during the execution phase) behavior of the
autonomous agent. Here we look at possible ways to min-
imize such suboptimal behavior by ways of compromise,
opportunism or negotiation. There has been previous work
(Beaudry, Kabanza, and Michaud 2010; Cirillo, Karlsson,
and Saffiotti 2010) on some of the modeling aspects of the

Figure 1: Architecture diagram - the robot has partial beliefs
of the world, which it uses to predict and plan.

problem, in terms of planning with uncertainty in resources
and constraints. In this paper we provide a unified frame-
work of achieving these behaviors of the autonomous agents,
particularly in such scenarios of human robot cohabitation.

The general framework of the problem addressed in this
work is shown in Figure 1. The autonomous agent, or the
robot, is acting (with independent goals) in an environment
co-habited with other agents (humans), who are similarly
self-interested. The robot has a model of the other agents act-
ing independently in its environment. These models may be
partial and hence the robot can only make uncertain predic-
tions on how the world will evolve with time. However, the
resources in the environment are limited and are likely to be
constrained by the plans of the other agents. The robot thus
needs to reason about the future states of the environment in
order to make sure that its own plans do not produce conflict-
ing states with respect to the plans of the other agents. With
the involvement of humans, however, the problem is more
skewed against the robot, because humans would expect a
higher priority on their plans - robots that produce plans that
clash with those of the humans, without any explanation,
would be considered incompatible for such an ecosystem.
Thus the robot will be expected to follow plans that preserve
the human plans, rather than follow a globally optimal plan
for itself. This aspect makes the current setting distinct from
normal human robot teaming scenarios and produces a num-



Figure 2: The running example - a human commander and
a robot involved in an USAR setting, with constrained re-
sources (medkits).

ber of its own interesting challenges. How does the robot
model the humans’ behavior? How does it plan to avoid fric-
tion with the human plans? If it is possible to communicate,
how does it plan to negotiate and refine plans? These are
the questions that we seek to address in this work. Our ap-
proach models human beliefs and defines resource profiles
as abstract representations of the plans predicted on the ba-
sis of these beliefs of the human agents. The robot updates
its own beliefs about the world upon receiving every new
observation from its environment, and passes on the resul-
tant profiles onto its own planner as shown in Figure 1. For
the planning module, we introduce an IP-based planner that
minimizes the overlap between these resource profiles and
those produced by the robot’s own plan in order to maintain
least conflicts with the predicted human tasks in the future.

1 Planning with Resource Profiles
We will now go into details about each of the modules shown
in Figure 1. We will be using a similar setting as the one
described in (Talamadupula et al. 2014) (shown in Figure
2) as the running example throughout this discussion. The
setting involves a commander CommX and a robot in a USAR
(Urban Search and Rescue) scenario. The shared resources
here are the two medkits - some of the plans the commander
can execute will lock the use of and/or change the position
of these medkits, so that from the set of probable plans of the
commander we can extract a probability distribution over the
usage (or even the position) of the medkit over time based
on the fraction of plans that conform to these facts. These
resource availability profiles provide a way for the agents to
minimize conflicts with the other agents. Before going into
details about the planner that achieves this, we will first look
at how the agents are modeled and how these profiles are
computed in the next section.

1.1 The Belief Modeling Component
The notion of modeling beliefs introduced by the authors
in (Talamadupula et al. 2014) is adopted in this work and
described briefly here. Beliefs about state are defined in
terms of predicates bel(α, φ), where α is an agent with be-
lief φ = true. Goals are defined by predicates goal(α, φ),

where agent α has a goal φ. The set of all beliefs that the
robot ascribes to α together represents the perspective for
the robot of α. This is obtained by a belief model Belα
of agent α, defined as { φ | bel(α, φ) ∈ Belself },
where Belself are the first-order beliefs of the robot (e.g.,
bel(self, at(self, room1))). The set of goals ascribed to
α is similarly described by {goal(α, φ)|goal(α, φ) ∈
Belself}.

Next, we turn our attention to the domain model Dα of
the agent α that is used in the planning process. Formally,
a planning problem Π = 〈Dα, πα〉 consists of the domain
model Dα and the problem instance πα. The domain model
of α is defined as Dα = 〈Tα, Vα, Sα, Aα〉, where Tα is a set
of object types; Vα is a set of variables that describe objects
that belong to Tα; Sα is a set of named first-order logical
predicates over the variables Vα that describe the state; and
Aα is a set of operators available to the agent. The action
models a ∈ Aα are represented as a = 〈N,C,P,E〉where N
denotes the name of that action; C is the cost of that action;
P is the list of pre-conditions that must hold for the action
a to be applicable; and E = {eff+(a), eff−(a)} is a list
of predicates in Sα that indicates the effects of applying the
action. The transition function δ(·) determines the next state
after the application of action a in state s as δ(a, s) = (s \
eff−(a)) ∪ eff+(a), s ⊆ SR. For this work, we assume
that the action models available to an agent are completely
known to all the other agents in the scenario; that is, we rule
out the possibility of beliefs on the models of other agents.

The belief model, in conjunction with beliefs about the
goals / intentions of another agent, will allow the robot to
instantiate a planning problem πα = 〈Oα, Iα,Gα〉, where
Oα is a set of objects of type t ∈ Tα; Iα is the initial state of
the world, and Gα is a set of goals, which are both sets of the
predicates from Sα initialized with objects from Oα. First,
the initial state Iα is populated by all of the robot’s initial be-
liefs about the agent α, i.e. Iα = {φ | bel(α, φ) ∈ Belrobot}.
Similarly, the goal is set to Gα = {φ | goal(α, φ) ∈
Belrobot}. Finally, the set of objects Oα consists of all the
objects that are mentioned in either the initial state, or the
goal description: Oα = {o | o ∈ (φ | φ ∈ (Iα ∪Gα))}. This
planning problem instance (though not directly used in the
robot’s planning process) enables the goal recognition com-
ponent to solve the compiled problem instances.

1.2 The Goal Recognition Component
It is unlikely for the robot to be aware of the goals of other
humans in its environment completely, but it can be proac-
tive in updating its beliefs incrementally based on observa-
tions of what the other agents are doing. To accommodate
this, the robot’s current belief of α’s goal, Gα, is extended
to a hypothesis goal set Ψα. The computation of this goal
set can be done using planning graph (Blum and Furst 1995)
methods. In the worst case, Ψα corresponds to all possible
goals in the final level of the converged planning graph. Hav-
ing further (domain-dependent) knowledge (e.g. in our sce-
nario, information that CommX is only interested in triage-
related goals) can prune some of these goals by removing the
goal conditions that are not typed on the triage variable. At
this point we refer to the work of Ramirez and Geffner who



Figure 3: Different types of profiles corresponding to the two
recognized plans.

in (Ramrez and Geffner 2010) provided a technique to com-
pile the problem of goal recognition into a classical planning
problem. Given a sequence of observations θ, the probabil-
ity distribution Θ over G ∈ Ψα is recomputed by using a
Bayesian update P (G|θ) ∝ P (θ|G), where the prior is ap-
proximated by the function P (θ|G) = 1/(1 + e−β∆(G,θ))
where ∆(G, θ) = Cp(G− θ) − Cp(G+ θ). Thus, solving
two planning problems, with goalsG−θ andG+θ, gives the
posterior distribution Θ over possible goals of α. We then
compute the optimal plans for the goals in Ψα, which are
used to compute the resource profiles described in the next
section. Note here that one immediate advantage of using
this specific goal recognition approach is that while comput-
ing the plan to a particular goalGwe can reuse the compiled
problem instance with the goal G+ θ to ensure that the pre-
dicted plan conforms to the existing observations.

1.3 Resources and Resource Profiles
As we discussed previously, since the plans of the agents
are in parallel execution, the uncertainty introduced by the
commander’s actions cannot be mapped directly between the
commander’s final state and the robot’s initial state. How-
ever, given the commander’s possible plans recognized by
the robot, we can extract information about at what steps,
or at what points of time, the shared resources in the envi-
ronment are likely to be locked by the commander (given
that we know what these shared resources are). This infor-
mation can be represented by resource usage profiles that
capture the expected (over all the recognized plans) varia-
tion of probability of usage or availability over time. The
robot can, in turn, use this information to make sure that the
profile imposed by its own plan has minimal conflicts with
those of the commander’s.

Formally, a profile is defined as a mapping from time step
T to a real number between 0 and 1, and is represented by a
set of tuples as follows G : N→ [0, 1] ≡ {(t, g) : t ∈ N, g ∈
[0, 1], such that G(t) = g at time step t}.

The idea of the resource profiles can be handled at two

levels of abstraction. Going back to our running example,
shared resources that can come under conflict are the two
(locatable typed objects) medkits, and the profiles over the
medkits can be over both usage and location, as shown in
Figure 3. These different types of profiles can be used (pos-
sibly in conjunction if needed) for different purposes. For
example, just the usage profile shown on top is more help-
ful in identifying when to use the specific resource, while
the resource when bound with the location specific ground-
ings, as shown at the bottom can lead to more complicated
higher order reasoning (e.g. the robot can decide to wait for
the commander’s plans to be over, as he inadvertently brings
the medkit closer to it it with high probability as a result of
his own plans). We will look at this again in Section 2.

Let the domain model of the robot be DR =
〈TR, VR, SR, AR〉 with the action models a = 〈N,C,P,E〉
defined in the same way as described in Section 1.1. Also,
let Λ ⊆ VR be the set of shared resources and for each λ ∈ Λ
we have a set of predicates fλ ⊆ SR that are influenced by
λ, and let Γ : Λ → ξ be a function that maps the resource
variables to the set of predicates ξ = ∪λfλ they influence.
Without any external knowledge of the environment, we can
set Λ = Vα ∩ VR and ξ = Sα ∩ SR, though in most cases
these sets are much smaller. In the following discussion, we
will look at how the knowledge from the hypothesis goal set
can be modeled in terms of resource availability graphs for
each of the constrained resources λ ∈ Λ.

Consider the set of plans ΨP
α containing optimal

plans corresponding to each goal in the hypothesis goal
set, i.e. ΨP

α = {πG = 〈a1, a2, . . . at〉 | G =
δ(at, . . . δ(a2, δ(a1, Iα))) ∀ G ∈ Ψα and ai ∈ Aα∀i}
and let l(π) be the likelihood of the plan π modeled on
the goal likelihood distribution ∀ G ∈ Ψα, p(G) ∼ Θ as
l(πG) = c|πG| × p(G), where c is a normalization constant.

At each time step t, a plan π ∈ ΨP
α may lock one or

more of the resources λ. Each plan thus provides a profile of
usage of a resource with respect to the time step t as Gλπ :
N → {0, 1} = {(t, g) | t ∈ [1, |π|] and g = 1 if λ is locked
by π at step t, 0 otherwise} such that Gλπ(t) = g ∀ (t, g) ∈
Gλπ . The resultant usage profile of a resource λ due to all
the plans in ΨP

α is obtained by summing over (weighted by
the individual likelihoods) all the individual profiles as Gλ :
N → [0, 1] = {(t, g) | t = 1, 2, . . . ,max(|π|) and g ∝

1
|ΨPα |

∑
π Gλπ(t)× l(π) ∀ π ∈ ΨP

α}.
Similarly, we can define profiles over the actual ground-

ings of a variable (shown in the lower part of Figure 3) as
Gfλπ = {(t, g) | t ∈ [1, |π|] and fλ = 1 at step t of plan π,
0 otherwise}, and the resultant usage profile due to all the
plans in ΨP

α is obtained as before as Gfλ = {(t, g) | t =

1, 2, . . . ,max(|π|) and g ∝ 1
|ΨPα |

∑
π Gf

λ

π (t) × l(π) ∀ π ∈
ΨP
α}. These profiles are helpful when actions in the robot’s

domain are conditioned on these variables, and the values
of these variables are conditioned on the plans of the other
agents in the environment currently under execution.

One important aspect of this formulation that should be
noted here is that the notion of “resources” is described here
in terms of the subset of the common predicates in the do-



main of the agents (ξ ⊆ Sα ∩ SR) and can thus be used
as a generalized definition to model different types of con-
flict between the plans between two agents. In as much as
these predicates are descriptions (possibly instantiated) of
the typed variables in the domain and actually refer to the
physical resources in the environment that might be shared
by the agents, we will stick to this nomenclature of calling
them “resources”. We will now look at how an autonomous
agent can use these resource profiles to minimize conflicts
during plan execution with other agents in its environment.

1.4 Conflict Minimization
The planning problem of the robot - given by Π =

〈DR, πR,Λ, {Gλ | ∀λ ∈ Λ}, {Gfλ | ∀f ∈ Γ(λ),∀λ ∈ Λ}〉 -
consists of the domain model DR and the problem instance
πR = 〈OR, IR,GR〉 similar to that described in section 1.3,
and also the constrained resources and all the profiles corre-
sponding to them. This is because the planning process must
take into account both goals of achievement as also conflict
of resource usages as described by the profiles. Traditional
planners provide no direct way to handle such profiles within
the planning process. Note here that since the execution of
the plans of the agents is occurring in parallel, the uncer-
tainty is evolving at the time of execution, and hence the
uncertainty cannot be captured from the goal states of the
recognized plans alone, and consequently cannot be simply
compiled away to the initial state uncertainty for the robot
and solved as a conformant plan. Similarly, the problem does
not directly compile into action costs in a metric planning in-
stance because the profiles themselves are varying with time.
Thus we need a planner that can handle these resource con-
straints that are both stochastic and non-stationary due to the
uncertainty in the environment. To this end we introduce the
following IP-based planner (partly following the technique
for IP encoding for state space planning outlined in (Vossen
et al. 1999)) as an elegant way to sum over and minimize
overlaps in profiles during the plan generation process. The
following formulation finds such T-step plans in case of non-
durative or instantaneous actions.

For action a ∈ AR at step t we have an action variable:

xa,t =

{
1, if action a is executed in step t
0, otherwise; ∀a ∈ AR, t ∈ {1, 2, . . . , T}

Also, for every proposition f at step t a binary state vari-
able is introduced as follows:

yf,t =

{
1, if proposition is true in plan step t
0, otherwise; ∀f ∈ SR, t ∈ {0, 1, . . . , T}

Note here that the plan being computed for the robot in-
troduces a new resource consumption profile itself, and thus
one optimizing criterion would be to minimize the overlap
between the usage profile due to the computed plan with
those established by the predicted plans of the other agents
in the environment. Let us introduce a new variable to model
the resource usage graph imposed by the robot as follows:

gf,t =

{
1, if f ∈ ξ is locked at plan step t
0, otherwise; ∀f ∈ ξ, t ∈ {0, 1, . . . , T}

For every resource λ ∈ Λ, the actions in the domain
of the robot are divided into three sets - Ω+

f = {a ∈
AR such that xa,t = 1 =⇒ yf,t = 1}, Ω−f = {a ∈
AR such that xa,t = 1 =⇒ yf,t = 0} and Ωof =

AR \ (Ω+
f ∪ Ω−f ). These then specify respectively those ac-

tions in the domain that lock, free up, or do not affect the
current use of a particular resource, and are used to calculate
gf,t as part of the IP. Further, we introduce a variable hf,t to
track preconditions required by actions in the generated plan
that are conditioned on the plans of the other agents (e.g. po-
sition of the medkits are changing, and the action pickup
is conditioned on it) as follows:

hf,t =

{
1, if f ∈ Pa and xa,t+1 = 1

0, otherwise; ∀f ∈ ξ, t ∈ {0, 1, . . . , T − 1}

Then the solution to the IP should ensure that the robot
only uses these resources when they are in fact most ex-
pected to be available (as obtained by maximizing the over-
lap between hf,t and Gf

λ

). These act like demand profiles
from the perspective of the robot.

We also add a new “no-operation” action AR ← AR ∪ aφ
such that aφ = 〈N,C,P,E〉 where N = NOOP, C = 0,
P = {} and E = {}.

The IP formulation is given by:

min k1

∑
a∈AR

∑
t∈{1,2,...,T}Ca × xa,t

+k2

∑
λ∈Λ

∑
f∈Γ(λ)

∑
t∈{1,2,...,T} gf,t ×Gλ(t)

−k3

∑
λ∈Λ

∑
f∈Γ(λ)

∑
t∈{0,1,...,T−1} hf,t ×Gf

λ

(t)

such that

yf,0 = 1 ∀f ∈ IR \ ξ (1)

yf,0 = 0 ∀f /∈ IR or f ∈ ξ (2)

yf,T = 1 ∀f ∈ GR (3)

xa,t ≤ yf,t−1 ∀a s.t. f ∈ Pa,∀f /∈ ξ, t ∈ {1, . . . , T} (4)

hf,t−1 = xf,t ∀a s.t. f ∈ Pa,∀f ∈ ξ, t ∈ {1, . . . , T} (5)

yf,t ≤ yf,t−1 +
∑
a∈add(f) xa,t

s.t. add(f) = {a|f ∈ eff+(a)},∀f, t ∈ {1, . . . , T} (6)

yf,t ≤ 1−
∑
a∈del(f) xa,t

s.t. del(f) = {a|f ∈ eff−(a)},∀f, t ∈ {1, . . . , T} (7)∑
a∈AR xa,t = 1, t ∈ {1, 2, . . . , T} (8)∑
a∈Ω+

f

∑
t xa,t ≤ 1 ∀f ∈ ξ, t ∈ {1, 2, . . . , T} (9)

gf,t =
∑
a∈Ω+

f
xa,t

+(1−
∑
a∈Ω+

f
xa,t −

∑
a∈Ω−

f
xa,t)× gf,t−1

∀f ∈ ξ, t ∈ {1, . . . , T} (10)

hf,t ×Gf
λ

(t) ≥ ε ∀f ∈ ξ, t ∈ {0, 1, . . . , T − 1} (11)



yf,t ∈ {0, 1} ∀f ∈ SR, t ∈ {0, 1, . . . , T} (12)

xa,t ∈ {0, 1} ∀a ∈ AR, t ∈ {1, 2, . . . , T} (13)

gf,t ∈ {0, 1} ∀f ∈ SR, t ∈ {0, 1, . . . , T} (14)

hf,t ∈ {0, 1} ∀f ∈ SR, t ∈ {0, 1, . . . , T − 1} (15)

where k1, k2, k3 are constants (set manually) that determine
the relative importance of each of the optimization criteria
and ε is a small constant.

Here, the objective function minimizes the sum of the cost
of the plan and the overlap between the cumulative resource
usage profiles of the predicted plans and that imposed by the
current plan of the robot itself while maximizing the valid-
ity of the demand profiles. Constraints (1) through (3) model
the initial and goal conditions, while the value of the con-
strained variables are kept uninitialized (and are determined
by their profiles). Constraints (4) and (5), depending on the
particular predicate, enforces the preconditions, or produces
the demand profiles respectively, while (6) and (7) enforces
the state equations that maintain the add and delete effects
of the actions. Constraint (8) imposes non concurrency on
the actions, and (9) ensures that the robot does not repeat
the same action indefinitely to increase its utility. Constraint
(10) generates the resource profile of the current plan, while
(11) maintains that actions are only executed if there is at
least a small probability ε of success. Finally (12) to (15)
provide the binary ranges of the variables.

2 Modulating the Behavior of the Robot
The IP-planner has been implemented on the IP-solver
guorbi and integrates Ramirez et. al. (Ramrez and Geffner
2010) and fast-downward (Helmert 2011) respectively
for goal recognition and plan prediction for the recognized
goals. We will now go through a simplified use case, and
illustrate how the resource profiles can be used to produce
different behaviors of the robot by appropriately configuring
the objective function and the length of the planning horizon
of the IP formulation.

2.1 Compromise vs Opportunism
Let us look back at the setting in Figure 2. Consider that
the robot recognizes that the goal of the commander is to
perform triage in room1, computes his optimal plan (which
ends up using medkit1 at time steps 7 through 12) and
updates the resource profiles accordingly. If now, it has its
own goal to perform triage in hall3, the plan that it comes
up with given a 12 step lookahead is shown below. Notice
that the robot now opts to use the other medkit (medkit2
in room3) even though its plan now incurs a higher cost
in terms of execution. The robot thus can adopt a policy of
compromise if it is possible for it to preserve the comman-
der’s (expected) plan.

01 - MOVE_ROBOT_ROOM1_HALL1
02 - MOVE_ROBOT_HALL1_HALL2
03 - MOVE_ROBOT_HALL2_HALL3
04 - MOVE_ROBOT_HALL3_HALL4
05 - MOVE_REVERSE_ROBOT_HALL4_ROOM4

06 - MOVE_REVERSE_ROBOT_ROOM4_ROOM3
07 - PICK_UP_MEDKIT_ROBOT_MK2_ROOM3
08 - MOVE_ROBOT_ROOM3_ROOM4
09 - MOVE_ROBOT_ROOM4_HALL4
10 - MOVE_REVERSE_ROBOT_HALL4_HALL3
11 - CONDUCT_TRIAGE_ROBOT_HALL3
12 - DROP_OFF_ROBOT_MK2_HALL3

Notice, however, that the commander is actually bring-
ing the medkit to room1 as predicted by the robot, and
this is a favorable change in the world, because robot can
use this medkit once the commander is done and incur a
much lower cost of achieving its goal. The robot, indeed,
realizes this once we give it a bigger time horizon to plan
with, as shown below. Thus, in this case, the robot shows
opportunism based on how it believes the world state will
change.

01 - NOOP
02 - NOOP
03 - NOOP

...
12 - NOOP
13 - NOOP
14 - PICK_UP_MEDKIT_ROBOT_MK1_ROOM1
15 - MOVE_ROBOT_ROOM1_HALL1
16 - MOVE_ROBOT_HALL1_HALL2
17 - MOVE_ROBOT_HALL2_HALL3
18 - CONDUCT_TRIAGE_ROBOT_HALL3
19 - DROP_OFF_ROBOT_MK1_HALL3

2.2 Negotiation
In many cases, the robot will have to eventually produce
plans that will have potential points of conflict with the
expected plans of the commander. This occurs when there
is no feasible plan with zero overlap between profiles
(specifically

∑
gf,t ×Gλ(t) = 0) or if the alternative plans

for the robot are too costly (as determined by the objective
function). If, however, the robot is equipped with the ability
to communicate with the human, then it can negotiate a plan
that suits both. To this end, we introduce a new variable
Hλ(t) and update the IP as follows:

min k1

∑
a∈AR

∑
t∈{1,2,...,T} Ca × xa,t

+k2

∑
λ∈λ

∑
f∈Γ−1(λ)

∑
t∈{1,2,...,T} gf,t ×Hλ(t)

−k3

∑
λ∈Λ

∑
f∈Γ−1(λ)

∑
t∈{0,1,...,T−1} hf,t ×Gf

λ

(t)

+k4

∑
λ∈Λ

∑
t∈{0,1,...,T} ||Gλ(t)−Hλ(t)||

yf,T ≥ hf,t−1 ∀ a s.t. f ∈ Pa,∀f ∈ ξ, t ∈ {1, . . . , T} (5a)

Hλ(t) ∈ [0, 1] ∀λ ∈ Λ, t ∈ {0, 1, . . . , T} (16)

Hλ(t) ≤ Gλ(t) ∀λ ∈ Λ, t ∈ {0, 1, . . . , T} (17)

Constraint (5a) now complements constraint (5) from the
existing formulation, by promising to restore the world state
every time a demand is made on a variable. The variable
Hλ(t), maintained by constraints (16) and (17), determine
the desired deviation from the given profiles. The objective
function has been updated to reflect that overlaps are now
measured with the desired profile of usage, and there is a



T Number of Observations
1 2 3 4 5 6 7 8 9

T
=1

0 C 9 9 9 9 9 9 8.84 8.81 8.84
U 0.39 0.417 0.394 0.399 0.406 0.35 0.36 0.484 0.429
S 1 1 1 1 1 1 0.96 0.955 0.96

T
=1

5 C 5.5 5.23 5.26 5.27 5.3 5.38 5.2 5.39 5.41
U 0.007 0.008 0.007 0.008 0.006 0.002 0.008 0.01 0.009
S 0.5 0.467 0.456 0.464 0.453 0.442 0.457 0.55 0.508

T
=2

0 C 5.34 5.23 5.26 5.27 5.3 5.2 4.86 5.09 5.19
U 0.004 0.004 0.004 0.004 0.003 0.001 0.004 0.008 0.006
S 0.46 0.467 0.457 0.464 0.453 0.412 0.394 0.495 0.465

T
=2

5 C 5.28 5.16 5.21 5.207 5.24 5.2 4.857 5.095 5.15
U 0.003 0.003 0.003 0.003 0.002 0.001 0.003 0.007 0.004
S 0.46 0.458 0.455 0.455 0.444 0.412 0.397 0.499 0.459

Table 1: Performance metrics w.r.t. number of observations

cost associated with the deviation from the real one. The re-
vised plan now produced by the robot is shown below.

01 - MOVE_ROBOT_ROOM1_HALL1
02 - MOVE_ROBOT_HALL1_HALL2
03 - MOVE_REVERSE_ROBOT_HALL2_ROOM2
04 - PICK_UP_MEDKIT_ROBOT_MK1_ROOM2
05 - MOVE_ROBOT_ROOM2_HALL2
06 - MOVE_ROBOT_HALL2_HALL3
07 - CONDUCT_TRIAGE_ROBOT_HALL3
08 - MOVE_REVERSE_ROBOT_HALL3_HALL2
09 - MOVE_REVERSE_ROBOT_HALL2_ROOM2
10 - DROP_OFF_ROBOT_MK1_ROOM2

Notice that the robot restores the world state that the hu-
man is believed to expect, and can now communicate to him
“Can you please not use medkit1 from time 7 to 9?” based
on how the real and the ideal profiles diverge, i.e. t such that
Hλ(t) < Gλ(t) for each resource λ.

3 Evaluation
We ran our scenario (with one human and one robot, and
two medkits) on 400 problem instances, randomly generated
by varying the specific (as well as the number of probable)
goals of the human, and evaluated how the planner behaved
with the number of observations it can start with to build
its profiles. To generate the test cases, we first fix the do-
main description, location and goal of the agents, and the
position of the resources. Then we consider 10×6 randomly
generated hypothesis goal sets each of size 1 through to 6.
The goals of the commander were assumed to be known
to be triage related, but the location of the triage was al-
located randomly, and one of the possible goals were again
picked at random as the real goal. Finally for each of these
problems, we generate 1-9 observations for each of these
problems by simulating the commander’s plan over the real
goal, and plan with these observations knowna priori the
robot’s plan generation process. The experiments were con-
ducted on a Intel Xeon(R) CPU E5-1620 v2 3.70GHz×8
processor with a 62.9GiB memory. The planner is available
at http://bit.ly/1QHt21Q.

3.1 Scaling Up
Note that our primary contribution is the IP-formulation for
planning with resource profiles, while the goal recognition
component can be any off-the-shelf algorithm, and as such

Time Size of the Hypothesis Goal Set |Ψα|
1 2 3 4 5 6

T=10
C 9 8.95 8.74 8.95 8.75 8.73
U 0.345 0.364 0.54 0.228 0.55 0.42
S 1 0.988 0.93 0.98 0.94 0.93

T=15
C 7.32 6.34 5.26 5.65 3.65 4.44
U 0.015 0.004 0.012 0.005 0.011 0.004
S 1 0.683 0.45 0.365 0.322 0.27

T=20
C 7.32 6.34 5.1 5.14 3.35 4.07
U 0.009 0.002 0.007 0.003 0.006 0.002
S 1 0.68 0.431 0.255 0.27 0.192

T=25
C 7.32 6.18 5.1 5.14 3.35 4.07
U 0.006 0.002 0.005 0.002 0.004 0.002
S 1 0.663 0.432 0.255 0.27 0.192

Table 2: Performance metrics w.r.t. size of the goal set

Figure 4: Performance of the planner with increasing num-
ber of possible goals and with increasing planning horizon.

we compare the scalability with respect to the planning com-
ponent only. Indeed, our planner only consumes 0.2-27%
(for T = 10 to 25 steps) of the total CPU time.

w.r.t. the Number of Agents and the Size of the Hypoth-
esis Goal Set The IP formulation is independent of the
number of agents being modeled. In fact, this is one of the
major advantages of using abstractions like resource profiles
in lieu of actual plans of each of the agents. On the other
hand, the time spent on recognition, and on calculating the
profiles, is significantly affected. However, observations on
multiple agents are asynchronous, and goal recognition can
operate in parallel, so that this is not a huge concern be-
yond the complexity of a single instance. Similarly the per-
formance is also largely unaffected by the number of possi-
ble goals in Ψα, as shown in Figure 4.

w.r.t. Length of the Planning Horizon The performance
of the planner with respect to the length of the planning
horizon is shown in Figure 4 in terms of a box plot. This
is the biggest bottleneck in the computation due to the
exponential growth in the size of the IP.

3.2 Quality of the Plans Produced
Tables 1 and 2 point out some interesting aspects of plan-
ning with resource profiles. We define the U as the aver-
age conflict per step of the plan when a demand on a re-
source is placed by the robot, and S as the success proba-
bility per plan step that the demand is met. Notice that the
average conflict goes down with increasing planning hori-
zon T , which indicates opportunistic behavior on the part of

http://github.com/TathagataChakraborti/resource-conflicts


the robot, while the average cost C of the plans is higher
for lower T , which indicates that the robot has to compro-
mise towards higher cost plans in case of conflicts. Also note
how the algorithm is quite robust with respect to the number
of observations available a priori, indicating that the robot
need not wait long to find good plans. Further, U falls dras-
tically with higher T , which indicates that given longer plan
lengths the robot is able to effectively identify lower conflict
time steps to act. However, S also falls with higher T which
might seems unintuitive at first, but it really means that with
lesser options the robot chooses safer plans at a higher exe-
cution cost. Indeed the exact tradeoff in this behavior can be
modulated by appropriately configuring the objective func-
tion of the planner.

4 Conclusions
In this paper we look at how plans may be affected by con-
flicts on shared resources in an environment cohabited by
humans and robots, and introduce the concept of resource
profiles to model the usage of such resources. We also pro-
pose a general formulation to plan in such scenarios and
provide a complete framework of obtaining and using these
profiles in conjunction with this planner. Finally, we show
how the planner can be used to model different types of be-
havior of the autonomous agents. One interesting research
question would be to extend the current formulation to con-
sider nested beliefs on the agents; after all, humans are rarely
completely aloof of other agents in its environment. Also,
currently we only assume non-durative actions, and com-
pletely known models of the human and completely observ-
able worlds, which we hope to relax in future works.
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