Page

Listing for Subbarao Kambhampa Thu Sep 23 15:05:32 1993 1

The following is an unedited, and unpolished conpilation of notes from
a planning semnar that | ran at Arizona State University in the
spring of 93. The sem nar turned out to be nostly about classical

pl anni ng techni ques. Each cl ass, a designated student took notes and
neiled themto the class. A conpilation of these notes appears bel ow.
A couple of times, interesting mails fromoutside colleagues were cc’d
to the |ist.

Subbar ao Kanbhanpat i

Cl assi cal Pl anning:
Conpi |l ati on of notes froma
Semi nar course held at ASU in Spring 93
by

Subbar ao Kanbhanpat i

Departnent of Conputer Science and Engi neering
Arizona State University
Tenpe, AZ 85287-5406

Wor ki ng Notes, ASU CS- TR 93-003

(Pl ease send mail to rao@suvax. asu.edu, if you
retrieve this docunent. Thanks.)

Classical Planning: A compilation of Semniar Notes (Compiled by Subbarao Kambhampati)

Listing for Subbarao Kambhampa

Thu Sep 23 15:05:32 1993

Page
2

Fromrao Mn Feb 1 01:41:20 1993
Ret urn- Pat h: <rao>
Recei ved: by pari kal pi k. eas. asu. edu (4.1/SM-4.1)
id AA22452; Mon, 1 Feb 93 01:41:20 MST
Date: Mon, 1 Feb 93 01:41:20 MST
From rao (Subbarao Kanbhanpati)
Message- | d: <9302010841. AA22452@ar i kal pi k. eas. asu. edu>
To: plan-class
Subj ect: Notes for the first four classes --by Rao
Repl y- To: rao@suvax. asu. edu

Notes for the first four classes of Planning Sem nar
Witten by Subbarao Kanbhanpati [Feb 1, 1993]
-- 1 NTRO

Start with sone intro to planning (definition of the planning problem
what nekes it interesting, what makes it hard etc.)

Then go to classical planning assunptions (single agent, no
uncertainity, world stands still)

--Point out that these assunptions are nade to sinplify the
problem for the present, and that we will ultimately |ook at ways of
relaxing all these assunptions.

The issues in classical palnning are representation and
search/ reasoni ng

--SITUATIONAL LOG C

First obvious idea is to use logic as a representation |anguage and
l ogical inference (theorem proving) as a vehicle for doing planning.

di scuss situational cal culus representation,

-world represented as situational assertions
--actions represented as situational axions

--the idea of casting planning problemas one of shows that there does
exi st a situation where all the goal wifs will be true.

SHow a sinple planning exanple (e.g.,, blocks world putting A on top
of B when they are clear in the beginning)

What are the probl ens:

--Frame problem qualification problem ramnification problem
(relate the last one also to the use of situation | ndependent
axioms -- the socalled physicial laws -- to derive indierect
effects. This practice gives nodularity-- but al so adds the
probl em of having to do itra-situational theorenproving to

conpute the indirect effects)

-- point out that all the problens are in a sense fundanental

--tal k about how all the possible solutions to these problens
wi Il involve using default reasoning (eg. assune things don't

change by default, assune that the preconditions given are the only
ones by default, assune that the effects given are the only ones by
defaul t)

So, two options-- put planning on back bunrner and work on ways of
doi ng tenporal non-nonotonic reasoning, or try to short circuit the
frame/qualification/ramfication problens to the extent possible by
choosi ng sinpler representations.

We will take the second approach, and | ook at STRIPS representation:
- - STRI PS REPRESENTATI ON

in Strips representation, actions are represented with add del ete and
precond lists. States are represented "extensionally" by the set of
assertions (fluents) that are true in the state. State change is
described extensionally -- an action A can be applied to a state Sif
all the assertions in the precondition list of A are true (unify) in
in state S. In such a case the new state resulting fromapplication of
Ato S A(S) is conputed extentionally as S- D+ A

Qualification problemis short circuited by assumi ng that ALL
preconditions of an action are present in the P list of an action
(nothing is left out). Ranification problemis shortcircuited by
assum ng that every possible effect (either direct or indirect) of an
action is described inits A& D Ilists. Frameproblemis shortcircutied
by assuming that anything in S that doesn’t appear in A&RD will go
unscathed to the new state A(S).

[Comment: original strips used a slightly nore expressive
representation than this-- rather than check if a precondition is
directly present, it checks to see if the precondtion is "derivable".
Shift fromone state to other is still acconplished by the S -D +A
rule. Thus seen fromsituational calculus viewpoint, Strips renpves
inter-situation theorem proving, but keeps intra-situation theorem
proving. See Liftschitz paper regarding semantic problens of this rep.]

[note: It is instructive to point out the various ways in which strips
representation is |ess expressive than situational calculus
representations: You don’'t have synergistic effects, you don’t have
domai n axioms, and in the vanilla strips representation, you also don't
have conditional effects.]

[While tal king about qualification problem we can talk about Simmon’s
work on using a sinpler domain nodel to do planning, and a nore conpl ex
domai n nodel to do simulation. The tradeoffs in that enterprise.]

- - GENERATI NG PLANS W TH STRI PS REPRESENTATI ON
Gven initial and goal states, and actions represented in strips

action representation, the first obvious idea is to cast planning as a
process of finding a path frominitial state to goal state. This is the

canoni cal graph-search problem which can be shown to be P-Space Conplete
(i.e., it belongs to the class of hardest problens solvable in polynonial

space. The result is attributed to Canny).

[clarify the phrases "search state" and "world state". Search state
may are may not correspond to world state.]

Two first ideas:

Classical Planning: A compilation of Semniar Notes (Compiled by Subbarao Kambhampati)

Listing for Subbarao Kambhampa

Thu Sep 23 15:05:32 1993

Forward pl anning (or Forward search in the space of states):

Initial state of the search: Initial state of the problem

Coal criterion: any state which subsumes the assertions in (i.e, is a
superset of goal state)

Children generation: given a search state S, generate one child for

each possible operator instance that is applicable in S. Child is

generated by the usual operator application rules S -D +A

Forward planning is sound and conplete. It can generate "opti nal
plans” if we use an admi ssible search strategy

Backward pl anning (or Backward search in the space of states)

Since the goal state of the search is extensionally represented, we
can al so do backward search fromgoal state towards initial state.

The initial state of the search will be the goal state of the problem
and the termnation condition of the search will be that the current
state is a subset of the initial state of the problem

The only tricky part is conputing the children states. Wen you are at
a state S, and you want to see what are the children states, you need
to think of all possible actions that could have got you this state,
and for each such action conpute the description of the state that
needs to be true before that action so that the current state would
result after the action. This latter conputation is known as

REGRESSI ON. You regress the current state over an action to conpute
the state that needs to be present before the action so that the
current state will happen after the action.

Regression is quite easy to formalize-- Suppose you have an actin A
and a state S and you want to find regression of S over A (R(S,A)).

We do this by regressing each individual assertion f in S over A
separately. For f to be true after A either A nust have made f true,
or f was already true before A was done, and A doesn’t delete f. In

ei ther case, preconditions of A nust also be true in the preceding
state so A can take place. Accordingly, if P(A) are teh preconditions
of A Then R(f,A) = P(A) if A adds f, and P(A) & f & Preserves(f,A) if
f is not added by A (here preserves(f,A) is the constraints that wll
ensure that Awll not delete f.) This process can be nechani zed quite
easily, and can formthe backbone of backward searching planners’s
child generation routine. Regression also has other possible uses in
planning-- we will see this below, when discussing neans ends pl anners.

[note: Regression of f over A may sonetinmes give rise to disjunctive
states. For exanple, in blocksworld suppose we want to regress On(x,A) over
the action Stack(B,y). If x=B and y=A, then On(x,A) regresses to true. If

=B and y=A, or x=B and y!=A, then On(x,A) regresses back as On(x,A) (but
will eventually lead to an inconsistent state since atnost one bl ock can
be on top of another and vice versa), and finally if y!=A and x!=B, then
On(x,A) regresses to on(x,A)]

--EXPLO TI NG SUBGOAL | NDEPENDENCE

Forward and Backward searching planning al gorithms, while being sound and
conpl ete, are not exactly custonized in any sense for planning problens.
They just look at planning problens as yet another search.

The next step is to see if there are any particular type of

regul arities/assunptions that are nore reasonable for planning problens,
and if so, think of ways of exploiting them

One of the assunptlons about planning problens is what is called "subgoal
i ndependence” -- that is, given a conjunct of goals, you can work on each
goal separately, find a pI an for solving it, and concatenate all the
plans in sonme arbitrary sequence to solve t he conj unctive goal .

To the extent we believe that subgoal independence is nore the rule
rather than the exception for planing problems, we will do better by
witing our planning algorithns to _exploit_ subgoal independence.

O course, independence is really only an idealization in that not every
problemis going to have independent subgoals. So, what we really want is
to for our algorithms to exploit independence where avail able, but still
sol ve the probl em even otherw se.

One possibility is to nmake the al gorithm assune subgoal independence by
default, but have a recovery strategy, when the assunption is seen to be
wr ong.

STRIPS is one the earliest and nost fanmous planning al gorithnms that used
this idea. Strips actually uses a Means Ends Analysis algorithm 1t does
goal directed forward search. Strips search state contains the current
state, the current stack of subgoals.

Describe STRIPS in a sinple exanple. Show how it solves the problens (Once
it picks a goal to achieve, it wll work on the goal and all its subgoals,
before it picks another goal at the same level). recovers fromthe subgoal

i ndependence assunptions [Wen it splits a conjuctive goal into indpendent
parts and puts themon the stack in sone order, it keeps the conjunctive
goal on the stack, as a check. After the individual conjuncts are nmade true
separately, the full conjunctive goal is checked once again. If it is not
true, then the independence assunption is violated. Strips attenpts to
split the conjuncts into a different order.]

Choi ce points for strips: (1) Wich order to split the conjunct into (2)
whi ch operator instance to use to neke a conjunct true (the latter is
split into selecting the operator schemn, and sel ecting bindings).

STRIPS is a sound but not a conplete planner--i.e, if strips returns a plan
it will be a correct plan. But, even with an adni ssible search strategy
STRIPS nay sonetimes _fail_ to find optimal plan (e.g. sussman anonaly) and

sonetine fail to solve the problem (e.g. register swapping problem

What is the best characterization of the problens that strips CAN solve and
give optimal solutions? Is it independent subgoal s? | ndependence of

subgoal s is sufficient but not necessary. The necessary and sufficient
condition turns out to be "Serializable Subgoals" (Korf) -- Strips can
solve a probl em and give optimal solutions (npbdul o an adm ssi bl e basel evel
search strategy) if and only if there exists at |east once sequence in

whi ch the individual goals can be attacked one after other, without

undoi ng previously achi eved subgoal s.

[Di gression: Some of the classic problems with Non-serializable subgoal s
-- such as Sussnman ananoly and Regi ster Swappi ng probl em can be nade
serializable by augnenting the set of goals with additional subgoals --
eg, in sussman anomaly, the subgoal of putting C on table, and in

regi ster swappi ng the subgoal of making the third register have the val ue
of one of the first two registers. However, this is not the case for all
non-serial i zabl e subgoal problenms -- eg. the one way rocket problem

Classical Planning: A compilation of Semniar Notes (Compiled by Subbarao Kambhampati)

Listing for Subbarao Kambhampa

Thu Sep 23 15:05:32 1993

Page
4

cannot be augnented with any additional subgoals such that it becones
serializable. Finally, serializability is a global property and is
affected by the initial state, the goal state and the action
representation-- exanple, register swapping problemis nonserializable,
while a very sinilar block swapping problemis serializable.]

Not e that although STRIPS is not Conplete, the normal forward searching
planning algorithmIS conplete. So, why shoul d anyone even | ook at STRIPS
instead of a forward searching planning algorithn? The answer is that
STRIPS and simlar algorithms are witten to exploit subgoal independence
if it is present, where as normal forward search does not differentiate
bet ween problens with i ndependent and problens with dependent subgoals.
So, it takes the same tinme no matter what. [At this point, it can be said
that forward searching planner can be inproved through a heuristic which
makes it exploit subgoal indepndence. Two points can be made in response
1. it is quite hard to do this unless the forward searchi ng pl anner keeps
track of the goal stack and 2. once it keeps the goal stack, it is acting
very simlar to STRIPS...]

--Linearity Assunption/Linear planning

The assunption that a conjunctive goal can be solved by solving the
conjuncts I1n sone arbitrary linear order (i.e., wthout any
interl eaving of subgoals) has been called "linearity assunption".
Clearly, planners using linearity assunption can only (optimally)
solve problenms if they have serializable subgoals.

Oiginally, the term"linear planning" has been used for planners
whi ch use linearity assunption, and nonlinear planning is thus used
for planners which used no linearity assunption (i.e., allow subgoal
interleaving during planning).

Over tine however, "linear planning" has also conme to be identified with
all total ordering planners, while nonlinear planning came to be identified
with planning with partially ordered (and partially instantiated) plans.
This is highly misleading since sone total ordering planners (such as

Wal di nger’s planner, RSTRIPS etc) don't nmeke linearity assunption and are
thus abl e generate optinmal plans for even problenms iwth non-serializable
subgoal s.

I would recormend that the terns "linear planning"” and "nonlinear

pl anni ng" be avoided. |nstead, we could use phrases like "Total ordering
planner with linearity assunption" (STRIPS), "Total ordering planner

wi thout l|inearity assunption” (Waldinger’'s), "Partial ordering planner"
etc.

- GO NG BEYOND STRI PS

I'n going beyond strips, our inmediate interest is to see if STRIPS can be
made COVPLETE in addition to being sound.

What possi bl e changes can we do to STRIPS such that this can be
acconpl i shed?

One obvi ous choice of course is to renounce the linearity assunption and
start using the goal stack as nore like a goal list. If we do this, then
we essentially go back to a version of forward searching planner.

What ot her possible changes can be made to STRIPS such that it can avoid

the inconpl eteness while retaining, as nuch as possi bl e, the advantages

of goal -directed reasoning under linearit

One possibility is to note that when STRI
and | ooks for another possible goal order

y assunption?

PS fails, it often the whole plan
ing, even though the plan it has

until that point is probably alnmst correct, if only certain steps are
switched. What we would really like to do is to pick any order of

achi eving the goals, and conpl ete planning w thout giving up and changi ng
the order (thereby redoing a lot of planning).

To be able to do the above however, we need to stop confoundi ng PLANNI NG
ORDER, i.e., the order in which i ndi vi dual goal s are achi eved during

planning in a particular search path, wt
ready to MODIFY the current plan m dway
This requires keeping plan in the search

h the execution order, and be
through a search path.
space, and meking sone of the

pl anni ng deci si ons based on the current plan. (Al though STRI PS does keep

the current plan in the search state, it

never really USES the plan--it

is just an appendage to the search state).

[Thus, the only way to separate planning
keep "Plan" in the search state, and nodi

order from execution order is to
fy it during planning.]

--State based planners that nodify current plan during planning

The above discussion brings us to Wl dinger’s planner and RSTRI PS, which
are state-based planners which nodify the plan during the search.

Consi der W&l di nger’s planner (WP) working on making On(A B)&n(B,C) true from

base state where all three bl ocks are on

table. The planner starts by

pi cki ng some random order in which to achi eve goals. However, once it
pi cks an order, it NEVER has to backtrack on the goal order (| e., plans
can be produced in any planning order). Suppose it starts by picki ng

(B, C) --> On(A B) as the planning order.

like STRIPS, and conpletes the plan.

In this case, WP acts verymuch

Suppose, WP picks the opposne order On(A,B) --> On(B,C). Wen it makes

On(A, B) true using the plan
Pi ckup(A) - - >St ack(A,

B)

It renenbers that On(A B) needs to be true by the tine planning is
conplete--so it needs to be protected (such protections are al so done for
preconditions of the of Pickup(A) --> Stack(A B) true). Next, it decides to
work on On(B,C). It continues to add steps for making On(B,C) ture until it

finds that one of the steps undoes the pr
point, it realizes that On(B,C) can't be

otected assertion On(A B). At this
made true after the action

Stack(A,B). So, it attenpts to find another place wthin the current

pl an where On(B, C) can be nade true.

There are two other spots in teh current
Stack(A, B) and i nredi ately before Pi ckup(
consi der both the possibilities.

plan -- inmmedi ately before
A). For conpl eteness, WP has to

Suppose it picks the choice of attenpting to achieve On(B, C) before
Pi ckup(A). O course, since what WP wants is for On(B,C) to be true at the

end, it really needs to achieve R(R(On(B,

C), Stack(A B)), Pickup(A))

rather than On(B, C) at Pickup(A) (Were R(a,b) is the operation of

regressing a over the action b).

In this case, the regressed value of On(B,C) before Pickup(A) is On(B, Q.

So, we attenpt to nmake On(B,C) true here,

by backward chai ning. W

Classical Planning: A compilation of Semniar Notes (Compiled by Subbarao Kambhampati)

Page

Listing for Subbarao Kambham pa Thu Sep 23 15:05:33 1993 5
introduce the actions Pickup(B) and Stack(B,C) in that order (detail: when frominitial state to the final state. In this view, the planis
we introduce Pickup(B), it deletes armenpty(), which is being protected as inplicit as the sequence of state transitions. The correctness of

it is required at Pickup(A). However, all is not |ost since, the next
action Stack(B,C) will restore armenpty back. Thus, tenporary protection
violations can be tolerated.).

a plan is judged essentially by sinulating the execution of its
individual steps fromthe initial state, and checking to see if the final
state subsumes the goal state.

At this point, as long as we didn't undo any protections setup while
maki ng On(A, B) true, we are done solving the problem

There is an alternative view of planning--that of characterizing it as a
search in the space of plans. In this view, we start planning with a null
plan which is a plan with two dunmmy actions a-1 and a-G where a-1 is the
dummy action corresponding to initial state--it has no preconditions, and
has only effects corresponding to all the assertions in the initial state.
The dummy action a-G corresponds to teh goal state-- it has no effects,
[Simlar discussion can be done for Register Swappi ng probl em al so, which and has only preconditions corresponding to all the assertions in the
again is solvable for WP. Left as an exercise.] goal state.

Note that we didn;t ever have to backtrack and consider the goals in a
different order.

[Detail: WP will not be conplete if it doesn't |ook at all possible ways
of making an assertion true. In particular, just because an assertion iIs
already true doesn’t nmean that NOOP is the only action that need be
considered. WP has to also | ook at choices of mmking the assertion true by
addi ng actual actions. Exanple: On(A B)&n(C Table) in initial state, and
On(A B)&n(B,C) are the goals, and suppose WP picks the order On(A B) and To operationalize this, we need to precisely define the correctness of a
(B, C) for planning. If it attenpts to make On(A, B) true through NO OP, pl an.
then it will get stuck for the next goal. If however, it also notes that
On(A, B) can be made true either by the action No-Op or by the action A plan is correct, as long as every precondition of every action of the
sequence "Pickup(A)-->Stack(A B)", then, the other goal, ON(B,C can be plan is necessarily correct in the situation preceding that action. Note
regressed over this plan..] that in this view, we are only asked to guarantee that the preconditions of an

action are necessarily true-- we don’t need to provide a conplete

description of the STATE preceding the action!!! This view thus

effectively gets us out of state-based representations.

Starting with this null plan, the idea of planning is to REFINE the null
pl an (add steps, orderings and other constraints) such that the plan
beconmes nore and nore correct.

--going fromstate based search to plan based search

Qbviously, the null plan is not correct, since the preconditions of a-G are
One of the annoying things about all the previous planners is that while not in general true in the beginning. Preconditions of an action which are
sonme of them do avoid confounding planning order with execution order, not yet necessarily true are called Open-conditions of that action.
all of theminsist on ordering the actions totally. Oten times, we don't
know apriori what the execution order of the actions corresponding to two
goals are. In such cases, we would really like to keep the actions true. For exanple, we nay add a new action a-] to nake one of the open
unordered to begin with, and put orderings between them as and when conditions of a-Gtrue. Wien we do this, of course, we are also introducing
required. the preconditions of a-j as open-conditions of the plan. Wen there are no
nore open conditions in a plan (i.e, all of themare made necessarily true
simul taneously), then we wll say that planning is conplete.

Pl anni ng proceeds by trying to make all the open-conditions necessarily

What do we need to do to make this possible in a systematic way?

To begin with, we should note that all state-based planners discussed The di scussion above gets us into planning as a search in the space of

above insist on totally ordered plans, since they need conplete plan. It is instructive to note that search in the space of plans SUBSUVES
description of the state preceding an action so they can sinulate the search in the space of states. |If we use totally ordered plans and insist on
action and conpute the state after the action. If we go to partially addi ng steps to the beginning or end of the plan, then we are essentially
ordered plans, the state before an action is NOT conpletely defined bei ng equival ent to Wal dinger’s planner, and other regression based MEA
(although we can tell that certain things will be necessarily true before pl anners (such as RSTRIPS described in Nilsson).

an action, there may be certain other things that may or may not be true
based on the exact total order in which a partially ordered plan is
executed.)

---Truth criteria

In the di scussion above, we noticed that making a plan correct
invol ves making its open-conditions necessarily true before the
respective actions. To do this, we need to know two things:

[While able to shift the order of the steps (through regression) within a
search branch, it still assumes total ordering plans for doing the
backward chaining part of its planning.]

1. how do we tell if a condition c is necessarily true before an action
a-j in aplan ?
The question is: do we really need the state-based representati ons? Do we
really need conplete description of the state preceding actions? and
The reason we needed states has been that from the beginning, we | ooked 2. if c is not necessarily true before a-j in P, HONDO VWE make it true?

at planning as a process of searching in the space of world-states, going

Classical Planning: A compilation of Semniar Notes (Compiled by Subbarao Kambhampati)

Listing for Subbarao Kambhampa

Page
Thu Sep 23 15:05:33 1993 6

The first question is answered by providing the necessary and sufficient
conditions (i.e., weakest conditions) that need to be satisfied by the
plan for c to be necessarily true before a-j. Specification of such
conditions is called a TRUTH CRI TERI ON of a pl an.

Once the truth criterion is known, ONE answer to gn 2, ie., ways of
making a condition necessarily ture, is available by sinply inverting
the truth criterion.

Truth criterion of a plan depends on the representation of the plan (i.e.,
is it totally ordered? partially ordered? what sort of action
representation is it using? etc.)

Consider a totally ordered and totally instantiated plan P which is nade up
of actions in strips representation.

In such a plan a condition c is necessarily true before at an action a-j
if and only if some action a-k which precedes a-j has an effect (add |ist
el ement) ¢ and no actions com ng between a-k and a-j deletes c.

[Al though we coul d have said that
I medi ately before a-j adds c,
necessary condition].

cis true at a-j as long as the action
that would only be a sufficient, but not

Next, we will look at a truth criterion for partially ordered plans.

From catrava@ei ne. eas. asu. edu Wed Feb 3 14:07:01 1993
Status: RO
X-VMv5-Data: ([nil nil nil nil nil nil nil nil nil
[nil nil nil nil nil nil nil nil nil nil nil nil nill)
Ret urn- Pat h: <catrava@ei ne. eas. asu. edu>
Recei ved: from sei ne. eas. asu. edu (enws293. EAS. ASU. EDU) by pari kal pi k. eas. asu. edu
(4.1/SM - 4. 1)
id AA25442; Wed, 3 Feb 93 14:07: 00 MST
Recei ved: from severn. eas. asu. edu (enws295) by seine. eas.asu.edu (4.1/SM-4.1)
id AA23328; Wed, 3 Feb 93 14:04:06 MST
Message-1d: <9302032104. AA23328@ei ne. eas. asu. edu>
From catrava@ei ne. eas. asu. edu (Serban Catrava)
To: cohen@nws318, annaredd@ei ne, catrava@ei ne.eas. asu. edu,
dchen@i becue. azo5. bul | . com pashupat @ei ne, gary@nws320. eas. asu. edu,
wt sai @nws320. eas. asu. edu, | hrig@nuxha, suresh@nuxha, gopi @nuxha,
el der @nuxha
Cc: rao@nws228. eas. asu. edu
Date: Wed, 3 Feb 93 14:04:06 MST

"AFrom" nil nil

Notes for the Feb, 2 class of Planning Sem nar
Witten by Serban Catrava
-- GENERAL TOPICS

Partial Ordering vs. Total

1. Ordering in planning
2. Heuristics in planning

1) Mtivations to switch from State to Plan based pl anni ng

-- in a state based planning the order of plan generation should be the
sane with the order of plan execution, while in a plan based planning
and execution order may be different.

-- in plan based planning it
You only need to know what

is not necessary to (conpletely) specify a state.
precondi tions nust hold true for each action.

-- in a plan based planning you are not limted of thinking in terms of
transitions fromone state to another (in contrast with plan execution which
naturally shows the control flow fromone state to another).

-- NB: search in the space of plans performed by adding steps only "at the
begi nning or at the end" degenerates in a trivial state based planning

I1) Correct plans

Necessary Truth:

Assuming that a predicate P nust hold true before an action S can
be executed, what are the constrains the plan has to satisfy so that Pis true?

Condi ti ons

1. the step performed just before S adds P (makes it true)
R

2. somewhere along the prev steps, an action adds P AND

no latter step (a step between the "adding" step and S) deletes P

DEFI NI TI ON

A plan is said to be correct if all preconditions are satisfied (necessa
rily

correct according to necessary truth criterion).

I11) Plans with partially instantiated actions

action: puton (A B, O

semantic: take A fromB and put it on C

status: fully specified

pl an: puton (A, B, C -> puton (B, D, E)

semantic: take A fromB and put it on C THEN
take B fromD and put it on E

status: fully specified

BUT

action: puton (A B, ?X)

semantic: take A fromB and put SOVEWHERE (at this tinme)

status: partially instantiated

plan: puton (A, B, ?X) -> puton (B, D, ?Y)

semanti c: somewher e THEN

sonmewher e

take A fromB and put it
take B fromD and put it
status: partially instantiated plan

Why generating partially instantiated plans?

1. delay conm t nent
2. solving subgoals will not
of the subgoal s

i npose overconstrains for the rest

Classical Planning: A compilation of Semniar Notes (Compiled by Subbarao Kambhampati)

Page

Listing for Subbarao Kambhampa Thu Sep 23 15:05:33 1993 7

Recei ved: from thanes. eas. asu. edu (enws294) by seine. eas. asu.edu (4.1/SM-4.1)

When commit? id AA29011; Sun, 7 Feb 93 16:23:35 MST

Message-1d: <9302072323. AA29011@ei ne. eas. asu. edu>
1. When forced (unification) From pashupat @ei ne. eas. asu. edu (Anand Pashupat hy)
2. At plan execution Date: Sun, 7 Feb 1993 16:19:10 -0700

X-Mailer: Mail User’s Shell (7.2.4 2/2/92)
To: plan-cl ass@ari kal pi k

1'V) Necessary Truth in partially instantiated plans Subj ect: Notes for the Feb 4 class
A condition Cis necessary true before an action S NOTES FOR THE FEB 4 CLASS
If AND ONLY I F
1. exist S preceding S such that S has an effect E AND Witten By :: ANAND PASHUPATHY
E~C (~ stands for unifies)
AND The basic topics of discussion are :
2. for every S" which comes between S and S, if Ein Delete (S")
E!~C (!~ stands for does not unifies) 1. Confusion between |inear and non-linear planners
2. Truth Criterion revisited
V) The pl anni ng process 3. Waldinger’s planner revisited
4. How to do planning ?
++ Partially ordered / Partially instantiated (POPl) plans 5. How does Establishnent and decl obbering work?

ldea: Try to keep the plan steps as unordered as possible.
-- a partially ordered plan corresponds to at |east one total
ordered plan

++ Restricted formof Truth Criterion for POPl plans

A predicate Cwill be necessary true for step Sif

1. exist S such that S <S AND
exist E effect of § AND
AND
2. for all S" such that S <S' < S AND

for all Din delete (S') D!~ C
NB: 1. and 2. are sufficient but correct plans nay be rejected by the
above conditions.
++ General formof Truth Criterion for POPl plans

A predicate Cwll be necessary true for step Sif
1. Sane as above

AND
2. for all S" such that S <S' <S AND
for all Din delete (S")
if D~ Cthen

exi st Sw such that S" < Sw< S A
ND

exist Ein effect (Sw
AND

E~C

From pashupat @ei ne. eas. asu. edu Sun Feb 7 16:25:12 1993
Ret ur n- Pat h: <pashupat @ei ne. eas. asu. edu>
Recei ved: from sei ne. eas. asu. edu (enws293. EAS. ASU. EDU) by pari kal pi k. eas. asu. edu
(4.1/SM -4.1)
id AA29352; Sun, 7 Feb 93 16:25:12 MST

Classical Planning: A compilation of Semniar Notes (Compiled by Subbarao Kambhampati)

Listing for Subbarao Kambhampa

Page

Thu Sep 23 15:05:33 1993

8

1. Confusion between |inear and non-linear planners.

STRIPS was seen to be a planner, which worked well for the general class
of problens that could be easily serialized. This gave rise to the definition
of *STRIP-|ike* planners being called *linear planners*. NOAH was a step forward
fromSTRIPS, in the sense that, it did not consider total ordering of plans
but partial ordering of plans and hence *NOAH |ike* planners were classified
as *non-linear planners*. To make matters worse, we have planners |ike
Wal di nger’s planner, which is a non-linear planner in the sense that it solves
problens |ike the register-swappi ng problenms, which are inherently non-
serializable and it is a linear planner in the sense that it is a totally-
ordered planner. We can surmize fromthis that, calling planners serializable
or non-serializable is not correct and we should stick to definitions |ike
Partially Ordered Partially Instantiated planners or sonething nore confusing
than that!

To nake matters better,
types:

- Those which do search in the space of plans or states.
- Those which follow the linearity assunption.
- Those which have a total-ordering restriction.

we can classify planners to be one of the follow ng

TWEAK is a *partial ordering partial instantiating* planner, which does search
in the space of POPl plans. Waldinger’s planner can be classified as a planner
whi ch uses total ordering and still does not conformto the linearity criterion.
There is an evolution of the planners, starting from STRIPS. STRI PS can sol ve

a certain set of problenms, TWEAK inproves on it and sol ves those probl ens that
STRI PS cannot solve, in a nore el egant way (Partial Odering) and finally we
have NOAH, which does all that TWEAK does and al so does *task reduction*.

2. Truth Criterion Revisited.

A proposition *p* is true before an action *s* in a non-linear plan if

- ESTABLI SHMENT : There exists an action *t* which necessarily precedes
s and provi des an effect *n* which necessarily unifies with p.

- DECLOBBERI NG : For every action *c* such that ¢ can possibly cone
between t and s and can possibly delete p, there exists another action *w
called the white knight which necessarily cones after ¢ and before s and
provi des an effect *e* which necessarily unifies with p whenever *d* unifies
with p. Here d is the delete literal of p.

If one knows the truth criterion, which provides the weakest proposition
step s to be true, we can invert the truth criterion and generate plans.
we nust evaluate the truth value for each such proposition.
we nean the necessary and sufficient condition.
of non-linear planners, but they

p at
To generate plans,
When we say weakest condition,
Search strategies are an inportant segnent
open a conpletely different can of worms. One of the nost inportant things to
remenber about the non-linear planners is that, there will ALWAYS exist a
solution in the search space, which will be optimal. The search space consists
of the children generation function and the start node. Any adm ssible

search strategy should work fine.

Classical Planning: A compilation of Semniar Notes (Compiled by Subbarao Kambhampati)

Listing for Subbarao Kambhampa

Page

Thu Sep 23 15:05:33 1993 9

3. Waldinger’s planner revisited

One of the inportant question that cones to mind about Wl dinger’s planner
is that, does it reorder the sub-goals? No, it does not and this is one of the
major plus point init’'s favor. Such planners are conplete w thout having to
do backtracki ng. Generically speaking, one can say that, planners that work
in a space of plans, will not backtrack.

In such a scenario, there exists two states, the initial state and
the goal state. The initial state has a set of preconditions and the goal

state has a set of goal literals. Wien WAl dinger’s planner picks up any goal
literal, irrespective of what it is, it will never go back and work on it.

But this gives rise to a very interesting question. Wile one of the goal
literal is being worked on, what if the preconditions of the other goal literal

is destroyed. This will never be the case, because of the following ::

*WALDI NCER' S PLANNER W LL ALWAYS FIND A PLACE, TO PUT AN ACTI ON W THOUT

VI OLATI NG ANY OF THE PROTECTI ON | NTERVAL CRI TERI ON*. The inportant point to be
noted is that the establishers may change, but the thing to be established will
al ways remain the sane.

4. How to do pl anni ng?
Pl anni ng can be done very easily using the follow ng algorithm
Start

P <---- Null Plan
put P in the open |ist

LOOP
1. Pick a plan P from OPEN.
2. If the plan is inconsistent, go back to LOOP. (efficiency hack)

3. pick a randomcondition *c* at step *t* which
I's not necessarily true by MIC (Mbdal Truth Criterion).

4. |If you cannot pick such a condition, term nate and return P.

5. Consider all possible refinments of P which will have ¢
necessarily true

add themall to the search queue (OPEN)
go back to LOOP

We can pick up any one condition because the order in which we | ook at the goals
is not inportant. If we look at all the conditions, then we will give rise to
redundancy. As already stated, the planner will generate an optimal plan.
Irrespective of what condition we pick, we will always get the optimal plan,
tine may be a consideration, as sone plans nay finish faster than the others. W
can generate a plans by taking different conditions. Redundancy can be good or
can hurt too.

Classical Planning: A compilation of Semniar Notes (Compiled by Subbarao Kambhampati)

Listing for Subbarao Kambhampa

Page

Thu Sep 23 15:05:33 1993 10

5. How does Establishnment and decl obbering work?

Let us consider the follow ng exanple.

(Note : Please refer to the exanple given in the notes. | wll

exanpl e and may not be able to draw the figure.)

just explain the

S. W can
as nothing is

As is visible fromthe figure, that we need P(x, y) to be true at
easily see fromthe figure that it need not necessarily be true,
defined a priori. W have two options of making P(x, y) true.

One of the options that we have is to make S give P(x,
u codesignates to x and v codesignated to vy.

y) such that,

The other optionis to get S’
al so gives P(x, y). Now the question is,
different options at hand to work with

(which is another action schema), which
where to put S’ ? We have two

W need to worry about ESTABLI SHMVENT. There are three ways of acconplishing it.

Separation :: One of the options here is of *separation*. In this case, we
must make sure that the P(a, b) at Sc does not codesignate with the P(x, y)
(That is a <> x and b<>y).

S such that whatever

Sc after it tries

on S.

Pronotion :: The other
to do, does not

option is to put
affect the goal literal

White Knight The last option is of the white knight. The white kni ght works

in two ways. One of the specific ways of using the white knight is the principle
of *demption*. In such a case, we nust put Sc before S such that, what cones
imedi ately before Sis only S and nobody el se. The nore general case of

white kni ght woul d be when irrespective of where Sc cones, there will definitely
be a white knight after that Sc and before that Sto try and nullify the effect
of the Sc. The white knight could be applied in two ways. Firstly, it could

be obtained fromthe existing plan OR could be obtained externally as a new
action. Let this be S+ with a action of +P(w, q). S+ should be added such that

Sc < S+ < S.

Further nore, we nust add enough codesignators such that this holds true. In
this case, we woul d have a = x and y =b=>w=xand q =y.

An intersting thing to note here is that, we already know that our plan

is represented as P = <T, O Pi> Wen we are trying to make ESTABLI SHVENTS or
are trying to DECLOBBER, we are nmmking changes to this three tuple, in the form
of new orderings, new actions or new bi ndi ngs.

Departnent of Conputer Science and Engg
Artificial Intelligence Lab
Arizona State University,
Tenpe, AZ 85287-5406

Anand Pashupat hy
602/ 965- 2735 (0)
602/ 921-3633 (r)
pashupat @ei ne. eas. asu. edu

Primtive :

Not so Primtive :

From suresh@nws318. eas. asu. edu Thu Feb 11 10:59:06 1993

Ret urn- Pat h: <suresh@nws318. eas. asu. edu>

Recei ved: from enws318. eas. asu. edu by parikal pi k. eas. asu. edu (4.1/SM-4.1)
id AA02592; Thu, 11 Feb 93 10:59:06 MsST

Received: by enws318. eas. asu. edu (4.1/SM-4.1)

id AA02193; Thu, 11 Feb 93 10:51:18 MST
Dat e: Thu 11 Feb 93 10'51:18 NST
From suresh@nws318. eas. asu. edu (Kat ukam Suresh)
Message-1d: <9302111751. AA02193@nws318. eas. asu. edu>
To: plan-cl ass@ari kal pi k

NOTES FOR FEB 9 CLASS
Prepared by: Suresh Katukam

The points discussed in this class are :

1. TWEAK MIC (Mbdal Truth Criterion)
Wiy is it pol ynom al ?

Wien is it pol ynom al ?
What is it really conputing?
What is nodal duality?
2. MIC. Is the full MIC including Wite Knight really needed for Plannin
g?
3. Is POPI (Partially Ordered Partially Instantiated) plan really bett
er?

TVEAK has a inconplete (i. a partially specified) plan while working
whi ch may sol ve the given problem Th| s inconplete plan may coul d be conpl et ed
:dn many ways | eading to conplete plans dependi ng upon the constraints bei ng adde
toit.
lve
the given problem

Planning is conpleted if all all conpletions of of the inconplete plan so

Adding a constraint (renenber that TWEAK is a constrint-posting planner
to

a inconplete plan can often rule out all the conpletions (no plan exists i

f

of constraints is inconsistent and

At this point, it has to backtrack

proceeded further). In other words, the set
no longer it defines a valid inconplete plan.

but the nunber of conpletions of a inconplete plan is exponential in size, so co
nputi ng
whet her sonething (the added constraint) is possible is possible or necessary

by
searching conpletions is exponential in tine.

TWEAK uses a plonomi al-time al gorithmthat conputes possible and necessary prope

rties

of an inconplet plan. Checking truth of a given plan is polynomal in time in th
e

nunber of steps of that plan. Wiile generating a plan, inorder to check the corr
ect ness

of the plan we check consistency in terns of ordering and binding constraints.

Noti ons of consistency :
- in terms of ordering constraints
- in terms of binding constraints

Classical Planning: A compilation of Semniar Notes (Compiled by Subbarao Kambhampati)

Listing for Subbarao Kambhampa

Page

Thu Sep 23 15:05:33 1993 11

e.g. ordering inconsistency : A->B->C->A(initial A).
(A->Binplies B should conme after A). In the above exanple, there is
i nconsi stency in ordering b’ cos A cannot be followed by C

e.g. Binding inconsistency : X!=Y, Y=2 Z=X
(!'=indicates non codesignation, ’= indicates codesignation)

Checki ng consi stency of ordering and binding is polynomal in time. Conputing th
e

transitive closure of a graph with n nodes takes Q(n"3) of time. (n*"3 = n*n*n)
Checki ng inconsistency of bindings is nothing but checking transitive closure of
codesi gnati oan bi ndi ngs and non codesi gnation bindi ngs which is al so pol ynom al
intime. It is polynom al because the variables in binding can take infinite val
ues

though they can take only finite val ues.

Checking CSP (constraint satisfaction problem) i.e. binding values to variable

s

is NP hard.

Bi ndi ng constraints are : Codesignation constraints (say C, where Cis a 2 tuple
of the form<x , y> where x codesignates with y)

Non Codesi gnati on constraints (say NC, and simlar to
above C but x non codesignates with y)

I nconsi stency exists in Binding constraints if a tuple fromfromCis in NC. Che
cki ng

this inconsistency takes pol ynom al
ove)

that variables can take infinite val ues.

time. Underlying assunption is (nmentioned ab

Say variabl es cannot take infinite val ues,
eg. x={A, B}, y={A, &, z={ ...(sonme values)}
and constraints are x!=B y!=C z=x, z!=y

Then Transitive Cosure of C(Co designation constraints set)
and TC(NC) = { <x B> <y C, <z y>}

is TC(C = <z x>

Since it is not infinite domains, x = A and y = A ==> inconsistency in the const
raints.

But in case of infinite domains for x, y, z, it is not inconsistent.

In finite domains, non codesi gnati on ==> codesi gnati ons of variabl es.

TWEAK Truth Criterion is polynom al because it assunes the domains for variables
are infinite. Infact, TWEAK Truth Criterion doesn't make sense for finite donmain
S.

So Truth Criterion may fail bacause checking CSP assunes infinite domains for al
|

vari abl es.
This gives us two different truths:

(i) Conditional Truth
(ii) Absolute Truth

Condi tional Truth: MIC assunmes while working on problemthat previous node of cu
rrent

node will be executed w thout any problenms and provides the effects required for
current

node.

€.g. *p P
ti --> s -->tg

p (Here, tg (goal node) requires 'p’ and s provides

o
where as s requires 'q).

In this case, by looking at tg and s, it is correct according to MIC, though it

is

correct locally not globally.

Absol ute Truth: Checking global truth i.e. checking MIC at every step of plan gi
ves

rise to correct plans. It is also called Projected Truth because it is projected
over

a step (previous).

Absolute Truth for aboce planis : [1((q, s) & (p, tg))
(Note : [] means necessarily, & means conjunction)
[1CP&Q) =[IP&[]Q o
where P and Q are propositions

No. of maxi mum preconditions for a plan are = n * e, where n is no.
pl an
and e i s maxi mum no.

ion.

of steps of

of precondions (it is finite foe any given plan). for act

Al'l preconditions nust
all preconditions should be true.

be true inorder plan to be correct. i.e.
Checking this will take Q(n).

conj unction of

TWEAK uses Conditional truth Criterion in generating a plan.

Say Pis a partially order partailly instantiated plan :
gs)

Then Pc bel ongs to conpl etions(P)

< T,0B>(B for Bindin

if the follwing ocnditions hold:

1) Pc has sane actions of P
2) The ordering in Pc is a tatal ordering which is consistent with O of P.
3) The variables in Pc are all bound to constants such that these variabl e bindi
ngs

are consisitent with B of P.
Thus, there could be n! for a POPl plan of n tasks. It could be nore than n! if
vari abl es bindings are nore than one way.

Checking a plan whether it is possibly true by MIC (conditional truth) is also
pol ynom al .
The MIC for possible case is:

A proposition p is possibly true in a situation s
iff two conditions hold: there is a situation t equal or possibly previous to s
in which p is possibly asserted; and for every step C necessarily before s and e
very
proposition g necessarily codesignates with p which C denies, there is a step W
possi bly between C and s which asserts r, a proposition such that r and p codesi
gnat e
whenver p and g codesignate.

But ()(P&Q !'= ()P & ()Q So checking possiblity of a plan is exponenti al .

[Note : () means possibly. It is equivalent to dianond synbol which is used in c

Classical Planning: A compilation of Semniar Notes (Compiled by Subbarao Kambhampati)

Page

Listing for Subbarao Kambhampa Thu Sep 23 15:05:33 1993 12

| ass)
- Thus, the reason for doing POP is for efficiency in planning, and
In other terms, making sure a plan is possibly true is checking all possible not for finding the | east constrained plan.
plans. Picking correct one is exponential in tine.
- Each PO plan corresponds to many (exponential anount) of TO plans.
[Note : Checking variables with finite domains and checking conditional affect
for tasks is NP hard.] -- Size of search space for TO plans > search space for PO plans

-- Per node cost of TO plans and PO plans are both pol ynoni al
(A(n) for TO and (n4) for PO).

- Keep in mind that size of search space for TO plans being greater
than size of search space for PO plans is valid only when the
PO pl ans correspond to a disjoint set of TO plans. This is not

From el der @nuxhb. eas. asu. edu Fri Feb 12 16:13: 08 1993 necessarily true if they are not disjoint.

Ret ur n- Pat h: <el der @nuxhb. eas. asu. edu>

Recei ved: from enuxhb. eas. asu. edu by pari kal pi k. eas. asu. edu (4.1/SM-4.1) - It is possible for TWEAK to generate plans whi ch have overl appi ng
id AA03671; Fri, 12 Feb 93 16:13: 08 MST | i nearizations.

Recei ved: by enuxhb. eas. asu. edu i d AA18326

(5.65c/1DA-1. 4.4 for plan-class@arikal pi k. eas. asu. edu); Fri, 12 Feb 1993 17:0 - TWEAK s search is not systematic, i.e., it may |ook at the sane node

1:34 -0700 nore than once.

Message-1d: <199302130001. AA18326@nuxhb. eas. asu. edu>

From el der @nuxhb. eas. asu. edu (G eg El der) - TWEAK is not guaranteed to have a search space that is smaller than

Date: Fri, 12 Feb 1993 17:01:33 PST a TOP. Thus, there is no guarantee that it is nore efficient.

X-Mailer: Mail User’s Shell (7.2.1 12/20/90)

To: plan-class@ari kal pi k. eas. asu. edu 2. SNP

Subj ect: Notes for 11 Feb 93
- MAlister’s SNP does not have conplete Mddal Truth Criterion

Notes for the 11 Feb 93 Al Pl anning Sem nar (no white knight).
Witten by Geg Elder - Goals which are not supported by a causal link are "open".
General Topics of Discussion: - Causal links act a type of protection. |f a causal |ink exists,
then SNP knows that the node has been examined and it will not
1. Recap of Conditional Mdal Truth and Mbdal Truth look at it again (systematic). SNP will not find the sanme
2. Efficiency of Partial Odering Planning (POP) vs exact PO plan nore than once.
Total Ordering Planning (TOP)
3. Systemmtic Nonlinear Planning (SNP) - Constraints are added when dealing with threats to ensure nodes
remain valid (causal link valid).

1. Difference between Conditional Mdal Truth (CMI) and Mdal Truth (M)
- SNP uses "truthness" that is sufficient but not necessary. (Don’t need
- Both may be necessary and possible, i.e., one can speak of necessary Truth Criterion that is necessary and conplete for searching POPs.)
CMI, necessary M, possible CMI, and possible M.

- CM requires the follow ng: +u, -p +p, q
(1) Establishnent T N I B > W | -----mm-ma-
(2) Decl obbering/non-del etion e |
| (u) |
- Ml requires the above two conditions plus a third | \%
(3) Every step which preceeds the step for which you are trying to | ti] | tg |
"make true" nust be executable. o a---oo e
| p. q, r
2. Efficiency of POP vs TOP | -p, v +p, +r
I ____________ N
- TOP conmits too fast to an ordering/binding B 72 S| W | o--ieeeiiie
- POP puts off ordering/binding until forced to do so. Thus, it wll (v)
reduce backtracking and be nore efficient in terns of planning
(not plan execution). For the above plan, TWEAK would say that it is good. SNP, on the

Classical Planning: A compilation of Semniar Notes (Compiled by Subbarao Kambhampati)

Listing for Subbarao Kambhampa

Thu Sep 23 15:05:33 1993

Page
13

ot her hand, would not say it
causal

is a good plan because it would see
I'i nks which are threatened.

SNP woul d be correct for the plans ti ->S1 ->W -> S2 -> W ->tg

and Ti ->S2 ->W ->8S1 ->W ->tg
Greg Elder el der @nuxhb. eas. asu. edu
Departnent of Conputer Science or el der @ei ne. eas. asu. edu

Arizona State University

From gary@nws320. eas. asu. edu Wed Feb 17 15:41:03 1993

Ret ur n- Pat h: <gary@nws320. eas. asu. edu>

Recei ved: from enws320. eas. asu. edu by pari kal pi k. eas. asu. edu (4.1/SM-4.1)
id AA0O7351; Wed, 17 Feb 93 15:41: 03 MST

Recei ved: by enws320. eas. asu.edu (4.1/SM-4.1)
id AA02365; Wed, 17 Feb 93 15:29:35 MST

Date: Wed, 17 Feb 93 15:29:35 MST

From gary@nws320. eas. asu. edu (Kevin Gary)

Message-1d: <9302172229. AA02365@nws320. eas. asu. edu>

To: plan-class@ari kal pi k. eas. asu. edu

Pl anni ng notes for Tuesday 2/16
by Kevin Gary

Agenda:
1> Systematicity - What does it
2> Way is SNLP systenatic?
3> What is the relationship between UA and SNLP?
4> Does systematicity give us anything?
5> Wl d' s paper

mean?

Revi ew of partially-order planning (POP) versus totally-ordered planning (TOP)

- Fromlast class, we determined that the only justification for |ooking
at POP is to gain efficiency in plan generation. However, there may be
other justifications as to why we would want to | ook at POP. These
justifications are notivated fromthe perspective of "reasoning about
pl ans", and include:

- plan reuse -> A PO pl an corresponds to a set of TO plans, one TO plan
for each conpletion of the PO plan. Hence a PO plan requires
| ess storage (say in a plan library), and is also nore easily
nodi fied due to a | esser nunber of constraints than a TO plan.

- inconpleteness -> |t may be the case that the agent executing the plan
nust handl e surprise (unexpected) events. The planner nay be nade
to handl e these situations through "projection", where the planner
simul ates future uncertain events in order to reason about what may
or may not be true in the future (necessary and possible truth in
a projection). A POP handles these situations
better since it has nore flexibility through its | esser constraints.

- distributed planning -> POP allows for nore open choices in deciding

ot her

whi ch agents in a nmulti-agent
It is also easier to nmerge the resulting plans on the subprobl ens
into a single unified plan.

peri pheral issues/questions

- justified plans - A plan where no constraints may be renpved without

| osi ng correctness.

exanpl e: +C +a +b
| S| ==>] S1]| ==>] 82| ===>] Sg| (h)
(c)

- Here Sl clearly plays no role in the correctness

of the plan, and may be renpved.
However, the followi ng problemis nore difficult
exanpl e: +C +a +C
| S | ==>] S1| ==>| 82| ===>| Sg| (c)
(c) (a)

Here, every step, in itself is doing sonething useful. However, it is
still possible to renmove a _group_ of steps and still keep the plan
correct. In particular, S1 and S2 can be rembved and Si can give c to

Sg. Verifying that this plan is not mninal

is obviously nore conpl ex

than in the previous case.

The idea is that
can prune it and still

I n general determining a set of constraints to renove

froma plan is a conplex (NP-hard) problem Heuristic "hacks" such
as using a cost (g) function based on the nunber of steps in the
plan can ensure that shorter plans are considered before |onger

ones.

| ooping in satisfying goals - "looping on the goal stack"
G
w
GN W G appears on the stack nultiple tines.
p2 It I's possible for the sane subgoals to
pl appear on the stack nultiple tines. This
pl ~ p2 may lead to infinite |ooping.
G
- STRIPS can be nade to find these situations. However, it is not

easy to find these situations in POP and still maintain
soundness and conpl eteness. This problemis related to plan
m ni m zation (open problen).

if we know that a plan is non-nmninmal, then we
retain conpleteness. This ability is

environnent work on what subprobl ens.

Classical Planning: A compilation of Semniar Notes (Compiled by Subbarao Kambhampati)

Listing for Subbarao Kambhampa

Thu Sep 23 15:05:33 1993

particularly useful
However, the general

when we are doing depth-first search variants.
plan minimality problemis NP-hard [Fink & Yang]

SNLP and UA

- UA clains that the search space it explores would never be |arger than

TO and in fact you expect

it to be much smaller since each PO plan

in UA's search space corresponds to a disjoint set of TO plans.

systematicity and search

1> None of the plans you | ook at in PO space have the same |inearizations
2> Search never visits the same node twi ce.

<1> is a redundancy criterion; even if you consider each plan in PO
space only once (as in <2>), you may still consider PO plans that share
linearizations (overlapping sets of corrresponding TO plans). This
criterion requires that the PO plans you | ook at correspond to

di sjoint sets (form ng an equival ence class) of TO pl ans.

<2> is systematicity. It says we won't | ook at the same node in the
(PO search space nore than once, but it doesn’'t say anything about

the redundancy criterion in <1>.

UA doesn’t guarantee systematicity, which neans it can be possible to
do an infinite amount of search in its finite space. UA does guarantee
that the plans in its PO space satisfy <1>.

To get systematicity, a bookeeping nmeasure of some sort
check to see that you haven’'t considered the same node before. Using

a closed list is inpractical since you can’'t control the size of the
closed list through the search strategy - in the worst case you woul d
have to store every node in the space. The second problemhere is that
checking for a duplicate plan is i1tself an NP-hard problemfor PO pl ans
(checki ng isonorphismof two transitive closure graphs).

isrequired to

If you could incorporate a closed list efficiently, then UA could obtain
<1> and <2> and clearly be superior to SNLP.

SNLP guarantees systematicity through its causal |ink representation and
al gorithm c approach (as opposed to using a closed list). See the proof

of systematicity in MAllester’s paper.

Pl anning in UA

interaction -

UA also tries to satisfy open preconditions.

If one step has an effect that is needed (is a precondition)

of another step, then those two steps are said to _interact_.

- This is the notion of interaction that UA uses. It is a
Lifschitz conpleteness criteria - still guarantees conpl et eness
even though it may be nore restricted than needed

exanpl e: +q +p
| S1 | ==========> | S2 | ===\ ------
———————————— \ p
\ ++g (a) | ===>| I
Ve / | r
====> | S§3 | ===========/ = ------

For

- Here, S3 interacts with S2, so UA wouldn’t say this is conplete,
al t hough TWEAK's MIC woul d say its correct.

UA' s search i s unanbi guous, since any precondition in UA is assuned to
be necessarily true or fal se when considered.

UA guarantees there are no overlapping linearizations in TO space.

The representation in UA only allows sonething to be deleted if it is
in the precondition list (no |oss of generality.

UA | ooks at putting a step with +P before -P at the same tinme as |ooking
at putting -P before +P, in order to ensure it won’t return to the

choi ce again (even though the former option won't give a correct plan).
next class:
- Can SNLP still come to different PO plans that share |inearizations?

- Find an exanpl e using the UA search strategy where you come to the
same plan nore than once.

So UA adds a constraint on all steps that interact
Fromrao Fri Feb 19 11:35:15 1993
urn-Path: <rao>

Ret

Recei ved: by pari kal pi k. eas. asu. edu (4.1/SM-4.1)

id AA08364; Fri, 19 Feb 93 11:35:15 MST

Date: Fri, 19 Feb 93 11:35:15 MST

From rao (Subbarao Kanmbhanpati)

Message- |1 d: <9302191835. AA08364@ar i kal pi k. eas. asu. edu>
To: plan-class

Subj ect: new papers added

Repl y- To: rao@suvax. asu. edu

The foll owi ng papers have been added to the readings file in library

(the one in ailab was m ssing--
Pl ease add themto the file,

ext
1.
2.

3.

You shoul d read these three,
Rao

From i hri g@nws318. eas. asu. edu Fri

Ret

Recei ved:

so the papers are kept on the shelf.
and | eave the file on the shelf to the
ent possible).

ADL action representation | anguage

Pl anning with actions with conditional
ordering planning

effects (pednault)--total

Nonl i near planning with ADL operators

foll owed by UCPOP paper in that order.

Feb 19 17:57:39 1993

<i hri g@nws318. eas. asu. edu>

from enws318. eas. asu. edu by pari kal pi k. eas. asu. edu (4.1/SM-4.1)
id AA0B692; Fri, 19 Feb 93 17:57:39 MST

ur n- Pat h:

Received: by enws318. eas. asu. edu (4.1/SM-4.1)

id AA04139; Fri, 19 Feb 93 17:49:41 MsT

Date: Fri, 19 Feb 93 17:49:41 MST
From ihrig@nws318. eas. asu. edu (Laurie lhrig)
Message- |1 d: <9302200049. AA04139@nws318. eas. asu. edu>
To: plan-cl ass@ari kal pi k. eas. asu. edu
Feb 18, 1993 Notes by Laurie H lhrig

Classical Planning: A compilation of Semniar Notes (Compiled by Subbarao Kambhampati)

Page

Listing for Subbarao Kambhampa Thu Sep 23 15:05:33 1993 15
Agenda: is an old idea. They provide a record of which establisher
1. Can we show that UA has redundancy? establ i shes which precondition. Everything done after respects
2. Comments re SNLP the previous protection intervals. The search space is pruned on
3. Barrett and Weld on which planner is better that basis. It nay be that the solution node is one step away,
but since you always respect establishnment, the branch fails.
Definition of Redundancy: Same plan in tw different paths in search space. This could be problematic. SNLP, by bookkeeping, avoids
Definition of Equal Pl ans: redundancy, but at the expense of committnment, this time a different
1. Plans have sane steps. type of committment--an arbitrary step is assigned to be the
2. Plans have sane causal |inks. contributor.
3. Plan has sane safety conditions (how threat resolved)
Exanpl e:
exanpl e: Suppose we have a goal: on(A B)
on(B, O
S1 S2 S3 handenpty
put on(A, B) ----> puton(A O S---> put on(A, B) and initial situation: on(A Table)
etc.
S2 sS4’ S5’
put on(A, B) > puton(A O > put on(A, B) and suppose that handenpty is picked as the first goal to solve

and the start step is picked as the establisher of handenpty.
These two plans are equal since there is a one to one mapping of

steps (although step names don’t match) Initially there is a node on the open |ist:
Suresh has discovered that the search tree of UA has the property ti ----> tg
that if you look at a single level, every node on that level wll
have the same nunmber of steps. This is because UA never does There are two steps in this initial plan.
sinpl e establishnment (using step already in plan). Also, threats
are resolved right away. This neans that if there is redundancy The children of this node are:
in the search space, then the redundant plans nust be at sone level i.
1. ti ----- > tg with ti the establisher of handenpty.
Exanpl e: This plan has two steps.
S > S2 2. tio----- > stack(x,y) ---->tg wth stack(x,y) the establisher of
(P) (Q handenpty. This plan has three steps
Suppose that another step S3 is added to above plan: 3. ti ----- > putdown(x) ---->tg wth putdowmn(x) the establisher of
handenpty. This plan has three steps.
-P +Q
S3 At this point we have no idea what eventually will be the
establisher of handenpty. It is a high frequency condition (Mst
UA will order steps as either S3 --->S1--->82 steps have it as an effect). Commtting early to an establisher
or S1 --->S3--->32 wi Il not nean that you no | onger have conpl eteness, but it nmay nean
that you waste tine. If you allow retraction of the choice of
SNLP, on the other hand, does not resolve the threat right away. contributor then you nay have redundancy.
The claimby Mnton that SNLP plans in a space of unanbi guous
(every precondition is either necessarily true or necessarily Conmittment 1 will never be valid, but other choices may be
false) plans is not true. Wien a causal link is added, threats premature as well. Abstraction would allow you to know that
that result are not resolved imediately. It is possible to handenpty should be worked on last. W can add abstraction to
fold threat resolution into causal |ink establishment, so that a planner to increase efficiency.
whenever a causal link is added, all threats with respect to
that causal link are resolved. Gopi's exanpl e of redundancy in UA
Systematicity nmeans that no two conplete nonlinear plans with operators: goal :
different paths to the root node will be equal. See Harvey,
G nsberg, and Smith "Deferring Conflict Resolution Retains Ol +g1, +x] gl, 92, 93

Systematicity" for a proof that SNLP is systematic.

)) (x,01) @[+g92, -91]
Redundancy in the search space nmeans that previous work may
be repeated. W can avoid this by using a closed list, but it 3[+g3, +g1]
is hard to determ ne equality of nodes (plans).

Causal links involves the concept of a protection interval which <g1, g2, g3>

Classical Planning: A compilation of Semniar Notes (Compiled by Subbarao Kambhampati)

Listing for Subbarao Kambhampa

Thu Sep 23 15:05:33 1993

Page
16

/ \
gl by OL gl by @8
\
oL 3
| |
g2 by @ g2 by @
/ \
oL 2 @ o1 B X2 X8
I |
g3 by @3 x by OL
|
/ |
0 @2 &8 0 @2 &8
Lauri e adds anot her exanple:
operators: goal :
OL[+g91, +g3] g1, 92, g3
2 +g1, +92]
<gl, 92, ¢g3>
/ \
gl by O1 gl by @
/ \
o1 (07
| |
g2 by g3 by O1
|
o1 oL
< > < >
(07 @
I'n SNLP whi ch keeps track of causal links these plans are not

equi val ent .

Ef ficiency is not guaranteed by a snall search space size. For
exanpl e, overconm ttnment mght increase inefficiency despite a
smal | search space.

Why does SNLP care about a positive threat?
see paper by Harvey et al.

If you are interested in elimnating redundancy you have to decide

who is the establisher of a precondition and stick to it.
In other words, search is in the space of equival ence cl asses
defined on the space of totally ordered plans. Every totally

ordered plan should correspond to only one partially ordered plan.

You should be able to conpute the partially ordered plan fromthe
totally ordered plan, that is, given a totally ordered, get a
partially ordered, and only one such plan.

Exanpl e:
G ven a plan

+P +Q

Sl aeeeoe- > S2

What is the partially ordered plan that defines the equival ence cl ass

for this totally ordered plan.

We nmust get the steps, the causal |inks and the safety

constraints.

P=<5S5¢C V>

1. The steps are the same as in the totally ordered plan.

2. Causal links:

Q
eg. S2 ---->S3 S1 ----- >S3
The nunber of causal links is equal to the nunber of preconditions.
3. Safety conditions: W have to consider all threats as defined

by SNLP and then the way each is resolved is clarified by |ooking at
Sl s athreat to S2 --> S3.
putting S1 after S3,
in the plan. Note:

the plan. eg.

The uni que | ast step that gives a
condition is the establisher
P

If it was resolved by

then this is not consistent with the order
you nust al so consider positive threats.

O herwi se the same partially ordered plan corresponds to nore than
one totally ordered plan.

Practical way of |ooking at the efficiency of Partial Ordering vs
Total Ordering Planners:

Bottomline is: Even if guaranteed that search space is smaller,
not guaranteed that in average case the planner will do better.
I ncreased redundancy in search space doesn't n
of efficiency eg Macroperators increase redundancy but inprove

performance for the average case,

Barrett and Wel d (see readings) do enpirical
this is to start with a hypotheses eg. you could have the hypothesis
that every domain with the stack action causes total ordering
pl anners to be nore efficient than partial
It is hard to find a |arge scale donain in which one can easily

test a hypothesis.

Barrett and Weld | ook at

Theref ore we nust

1. independent subgoal s
2. serializable subgoal s

3. nonserial

If serializability was independent
you woul dn’t expect partial
is not the case. Barret

to be serializable.

i zabl e subgoal s

ord

ecessarily mean a | oss

al t hough not for the worst case.

studi es.

ering planners.

l ook at artificial domains.

relative efficiency of planners for

of pl anni ng nmet hodol ogy then
ordering planners to be better.
and Wel d change the notion of what it means

But this

Sone donmins are serializable only for
partial ordering planners.

STRIPS had serial zabl e subgoals if it could work on goals in order

Wi t hout undoi ng previ
concat enati ng them
by interleaving them

ous goal s.

STRIPS nerges plans for goals by

Partial ordering plans nerge plans for goals
There are nore donains in the world where
interleaving will work than donai ns where concatenating will work.

The way to do

Classical Planning: A compilation of Semniar Notes (Compiled by Subbarao Kambhampati)

Page

Listing for Subbarao Kambhampa Thu Sep 23 15:05:33 1993 17

Therefore, there are nore donmins that are serializable for
partial ordering planners. 2. If you proved that such a pruning technique will not be conplete
for SNLP then
If there are n goals, then there are n! orders of these goals.

If one order is serializable then the problemis serializable. 2.1. What possible change to SNLP will meke the technique

If .999 of these orders are serializable then the problemis conpl et e?

trivially serializable. |f .001 of these orders are

serializable, then the problemis |aboriously serializable. . Can you think of some other restrictive pruning criterion
Some donmins are trivially serializable for SNLP but V\hl ch will keep conpl et eness?

| aboriously serializable for other planners (Waldinger’s).
Barrett and Wel d conpare

TOPI (like STRIPS) As always, | know the answer to part of the puzzler, but am hoping
TOCL (Iike Waldinger’s) that you will cone up with answers/ideas also for the parts that |
POCL (like SNLP) don’ t know

by generating problems randomy and checki ng how each planner does.

This is a practical way of |ooking at the efficiency of partial

ordering vs total ordering planners. Goup thinking is fine... No grading... Just a puzzler, in the cartalk
style ;-) Answers requested by Tuesday’'s cl ass.

Fromrao Mon Feb 22 16:39:33 1993

Fromrao Sun Feb 21 19:41:59 1993 Ret urn- Path: <rao>
Ret ur n- Pat h: <rao> Recei ved: by parikal pi k. eas. asu. edu (4.1/SM-4.1)
Recei ved: by parikal pi k. eas. asu. edu (4.1/SM-4.1) id AA01183; Mon, 22 Feb 93 16:39: 33 MST
id AA11565; Sun, 21 Feb 93 19:41:59 MST Date: Mon, 22 Feb 93 16:39:33 MST
Date: Sun, 21 Feb 93 19:41:59 MST From rao (Subbarao Kanmbhanpati)
From rao (Subbarao Kanbhanpati) Message- 1 d: <9302222339. AA01183@ar i kal pi k. eas. asu. edu>
Message-1d: <9302220241. AA11565@ar i kal pi k. eas. asu. edu> To: plan-cl ass
To: plan-class Cc: rao
Subj ect: a new puzzler... Subject: clarifications re the puzzler
Repl y-To: rao@suvax. asu. edu Repl y- To: rao@suvax. asu. edu
Buoyed by the success of the UA counter exanple puzzler, | decided to
throw another one (which is part easy, and part open) 1. Wien | say "prune a non-minimal plan fromthe search space", what |
mean is that whenever | pick a plan fromopen list for expansion,
Coupl e of classes back (the one in which Kevin took notes), we I will check if its is non-mininmal, and if it is, will not expand it.
di scussed the notion of mnimal or justified plans and their relation (this is equivalent to assuming that this node has no children).

to | ooping control.
2. If you happen to conmeup with a counter exanple which shows that

In particular, | suggested that if a certain (partial) plan is known this heuristic will be inconplete for SNLP, then check to see if
to be non-mnimal (in that a subset of the actions in that plan will that exanple will also show i nconpl eteness in UA

be able to achieve all the goals achieved by the original

(partial)plan), then we can prune it during search, and thereby Rao

inprove efficiency.
From i hri g@nws318. eas. asu. edu Mon Feb 22 15:45:22 1993

Consi der SNLP and this pruning strategy. Forget about the cost of Status: RO
checking justifiedness (as | said, perfect justification, or X-VMv5-Data: ([nil nil nil nil nil nil nil nil nil]
recogni zing _every_ non-nm ni mal plan as a non-mnimal plan, is [nil nil nil nil nil nil nil nil nil nil nil nil "AFrom™" nil nil nil])
NP-hard. However, we can use sone greedy algorithms that are sound in Ret urn- Pat h: <i hri g@nws318. eas. asu. edu>
that if they say that a plan is non-minimal, it is guaranteed to be, Recei ved: from enws318. eas. asu. edu by pari kal pi k. eas. asu. edu (4.1/SM-4.1)
but are inconplete in that sone plans endorsed as m ni mal pl ans by id AA01107; Mon, 22 Feb 93 15:45:21 MST
this procedure may in fact be non-mnimal). Recei ved: from enws322. eas. asu. edu by enws318. eas. asu. edu (4.1/SM-4.1)
id AA07133; Mon, 22 Feb 93 15:37:18 MST
Your task is to tell ne Message- |1 d: <9302222237. AA07133@nws318. eas. asu. edu>
From ihrig@nws318. eas. asu. edu (Laurie lhrig)

1. Is such pruning strategy is a conplete or admissible heuristic for To: rao@nws318. eas. asu. edu

SNLP in that if SNLP can find a plan for a problemwithout it, it Date: Mon, 22 Feb 93 15:37:18 MST

will still find a plan for that problemw th the heuristic. (Either

prove that it is conplete, or give a counter exanple showing it is Puzzl er Answer Laurie H lhrig

not conplete.)
If a certain (partial) plan is known

Classical Planning: A compilation of Semniar Notes (Compiled by Subbarao Kambhampati)

Listing for Subbarao Kambhampa

Thu Sep 23 15:05:33 1993

Page
18

to be non-minimal (in that a subset of the actions in that plan will

be able to achieve all the goals achieved by the original

(partial)plan), then we can prune it during search, and thereby

i mprove efficiency.

Consi der SNLP and this pruning strategy. Forget about the cost
checking justifiedness (as | said, perfect justification, or

of

recogni zi ng _every_ non-m ni mal

plan as a non-minimal plan, is

NP- hard. However,

we can use sone greedy algorithnms that are sound in

that if they say that

a plan is non-mnimal,

it

is guaranteed to be,

but are inconplete in that some plans endorsed as mnimal plan
this procedure may in fact be non-mnimal).

Your task is to tell ne

1. Is such pruning strategy is a conplete or adm ssible heuris

s by

tic for

SNLP in that if SNLP can find a plan for a problemw thout it, it
will still find a plan for that problemwith the heuristic. (Either
prove that it is conplete, or give a counter exanple showing it is
not conplete.)
Count er exanpl e:
operators: Ol [+g1]
g3 @ [+gl, +g2, -g3
gl @B [-g1, +g3]
initial state: g3
goal : <gl, g2, g3> plan. @2 --> X3 --> O
<g1, 92, 93>
/ \
gl by OL gl by &2
/ \
/ \
e e
| |
g2 by @2 g2 by @2
| |
| |
o1 - -
< >
@
| |
| |
prune OL |
| |
| |
- 2- |
| |

g3 by @ g3 by @
| |
| |
(e (e
< > < >
(o] [e¢]
fail fail

(no way of resolving threats)

2. If you proved that such a pruning technique will not be conplete

for SNLP then

2.1. What possible change to SNLP will meke the technique
conpl ete? addi ng white knight capability

Laurie

Fromrao Tue Feb 23 19:13:56 1993
Ret urn- Path: <rao>
Recei ved: by pari kal pi k. eas. asu. edu (4.1/SM-4.1)
id AA02305; Tue, 23 Feb 93 19:13:56 MST
Date: Tue, 23 Feb 93 19:13:56 MST
From rao (Subbarao Kanmbhanpati)
Message- 1 d: <9302240213. AA02305@ar i kal pi k. eas. asu. edu>
To: plan-cl ass
Subj ect: Next class
Repl y- To: rao@suvax. asu. edu

Next class, we will discuss UCPOP which allows extending the |anguage

to have actions with conditional effects. The m nimal reading
requi rermts are UCPOP, and any one of the Pednault’s papers.

Rao

From AZEDC@\CVAX. | NRE. ASU. EDU Thu Feb 25 00:15:30 1993
Ret urn- Pat h: <AZEDC@ACVAX. | NRE. ASU. EDU>

Recei ved: from ACVAX. | NRE. ASU. EDU ([129.219.10.1]) by parikal pi k. eas. asu. edu (4.

1/ SM - 4. 1)
i d AA03093; Thu, 25 Feb 93 00:15:30 MST

Recei ved: from ACVAX. | NRE. ASU. EDU by ACVAX. | NRE. ASU. EDU (PMDF #2382)
<01GVAABHWPSI 009UTC@A\CVAX. | NRE. ASU. EDU>; Thu, 25 Feb 1993 00:07: 30 MST

Date: 25 Feb 1993 00:07:30 -0700 (MST)

From AZEDC@\CVAX. | NRE. ASU. EDU

Subj ect: cl ass notes

To: pl an-cl ass@nws228. eas. asu. edu

Message- | d: <01GV4ABHMZFQOO9UTC@ACVAX. | NRE. ASU. EDU>
X-Vms- To: | N% pl an- cl ass@nws228. eas. asu. edu”

M ne-Version: 1.0

Cont ent - Type: TEXT/ PLAI' N, CHARSET=US- ASCI |

Cont ent - Transfer-Encoding: 7BI T

Notes for the class of feb 23
by Eric Cohen

Agenda: puzzl er
Vel d et al

Classical Planning: A compilation of Semniar Notes (Compiled by Subbarao Kambhampati)

Listing for Subbarao Kambhampa

Thu Sep 23 15:05:33 1993

Page
19

1. Puzzler discussion

W discussed a few classes back the notion of mininality of plans and sone
mechani sm for avoiding |oops. Gven a plan P=<S,Q Pi>, if a subplan of this
plan can solve the problem for instance by renmoving a step si fromsS, then
P is non-mnimal.

+he +hf
sl s2 (goal state)
(hf) (he) (hf)

In the exanpl e above, it is obviously non-sense to keep adding steps sl and
s2.

Note that in our fornulation of planning,
specifically prevents this from happening,
admi ssi bl e strategy such as BFS or A* is used.

there is nothing that
unl ess for instance an

The idea of this puzzler is to cone up with sone nechanism that would
detect this problem and in such cases prune the search tree so that non-
mnimal plans not be explored, thereby increasing efficiency. Here, to
prune nmeans we will renove the node fromthe "open list", and therefore it
wi |l never be considered for expansion again.

The question is, is such a pruning strategy conplete or admissible for
pl anners such as SNLP ? By conplete it is neant that if the planner can
find a plan for that problemw thout this pruning, it will also be able to
find it.

In this discussion, we are not concerned about the conputational effort
required to verify the minimality (or justifiedness) of the plan.

The answer to this problem requires a discussion on what is nmeant by
mnimality. Using the exanple above, if there is no other goal than hf,
then obviously the plan is non-optinal; on the other hand, if there are
other goals, there may be other refinements which wll make this plan
optimal with respect to its goals (so it is not mnimal in the "total"
sense, even though it was so in the "local" sense). To illustrate, consider
the exanpl e:

(on A B)
Suppose we pick goal he first. There are three possible plans giving he:

I -> nothing -> G
I -> putdown (x) -> G
I -> stack (x,y) -> G <- According to our definition,

this is not the mnimal plan (it has 3 rather

than 2 steps).

However, |ooking at the global plan below, we notice that this does not
nean the plan cannot be refined further:

I -> pickup (A) -> stack (A B) -> G

Al 'so notice that there are no other mininal plans that satisfy both goal
preconditions; therefore, if we had pruned this node, by renoving it from
the search space there is |oss of conpleteness.

To illustrate how SNLP will solve this problem

I -> G (he) (on A B)

SNLP wi Il choose either goal precondition; there are two possible causal
l'i nks:

+on(A B) +he

S->G and I ->G

| -> stack(A B) -> G

here, since stack(A B)

represents a positive threat to goal precondition he, SNLP wll
try to put it either before or after the causal link; since this
is not possible, the branch will be abandoned.

But, without positive threats, we will have on this branch:
- he
I -> pickup(A) -> stack(A B) -> G

SNLP wi Il try to protect the causal link I->G; it does not allow change of
contributors in the same branch, which nmeans that if we prune other
branches that don't look so promsing, a branch which would contain a
correct plan may not be visited.

Anot her question was whether other planners (such as UA) woul d suffer from
the sane loss of conpleteness. Such planners allow for contributors to be
shifted in the same branch, and as a result non-systematic planners such as
UA don't |ose conpl eteness when pruning is used.

The next question is whether SNLP can be changed, and if so how, in order
to naintain conpl eteness using this pruning technique.

Goi ng back to Tweak, we renenber that the White Knight criteria allowed for
conditions which had been clobbered to be reasserted. Thus, to obtain
conpl eteness, we need to introduce the WK criteria; however, if WK criteria
is used, it will have to be used across the board, and not only during the
pruning part. Nevertheless, when we went from Tweak to SNLP, one of the
fundanental differences between them was that SNLP did not have WK, so we
woul d be changi ng the "essence" of the planner.

Now suppose we have some sort of minimality (or justifiedness) criteria,
which Is sound, in the sense that if it decides that the plan is non-
mnimal, it is guaranteed to be so; when it says that a plan is mniml, it
may be the case that it is not so. Checking for this necessary condition is
pol ynom al ; efficiency may be reduced when the criteria decides incorrectly

Classical Planning: A compilation of Semniar Notes (Compiled by Subbarao Kambhampati)

Listing for Subbarao Kambhampa

Thu Sep 23 15:05:33 1993

Page
20

that the plan was optimal. Perfect justification is NP-hard.

The next question is, is there a planner that is conplete using the pruning
strategy ?
a mni mal

Ve notice that, if a problem has a solution, then it also has

solution (say, the mninmum nunber of steps).

W need to prove that there exists a sequence of refinenments (bindings,
steps and orderings), going froman initial to a goal state. The proof is
by induction (proof not shown).

Thus, it is perfectly possible that we will work on the sane goal nore than
once, which could be ok as in the follow ng exanple:

I -> pickup(A) -> stack(A B) -> G
(he)

But here, in a Tweak fashion, we will have to decl obber:

A B on(A B)

pi ckup(A) -> stack(A, B)

since stack(A B) deletes hf, we’ll have to add a step that
decl obbers it.

In STRIPS, it was possible to check minimality by verifying whether a given
condition occurs nore than once; in that case, there is a |oop. However,
the anal ogy to POPI plans doesn’t carry:

+he
I -> pickup(A) -> stack(A B) -> G
(he)
The next topic was the discussion on whether there exists some other

restrictive
Coher ence",
Intelligence

pruning criterion that will keep conpl eteness: paper "Tenporal
from Drummond, Curry - 1989 [1JCAI/ 1989 Conput ati onal

This paper discusses pruning criteria for POPI plans.
show that there is no | oss of conpleteness.

The proof needs to

G ven a partial order plan [not containing the initial step], at a certain
point in time some conditions are supported and others aren’t.

We take all the outstanding goals, and the unsatisfied preconditions of the
existing steps (called Bulk Preconditions). To illustrate, consider the 3
bl ocks worl d probl em

Ow>

(on(A, B)) (on(B,QC))

Suppose we work on on(B,C) first: stack(B, O

bul k precondi tions:

(out standi ng goal) on(A B) (*)

(preconditions of stack) cl ear (B) (*)
clear(C)
handenpty

However, two of the bul k preconditions are inconsistent (*) and the branch
is therefore pruned. This can be checked by a statenent such as

for all x,y, on(x,y) => not (clear(y))

(of course, a statenment like that 1s not used by the planner because we
want to avoid ram fication; it is only used to check inconsistency, which
tells us whether we should prune or not)

Di scussion of the conpl eteness

Using SNLP, the plan stack(A, B)
consistent) is not conplete.

-> stack(B, C (which is tenporally

For Tweak where we don’t
I'l'lustration:

backtrack the goal orders, it is not conplete.

Tweak works on unsatisfied conditions, so it picks on(B,C).

bulk stack(B,C), clear(B), clear(Q

However, on(A,B) nowis no longer true, so it needs to put on(A B) back.
Since on(A B) and clear(B) are tenporally inconsistent, the branch will be
pruned, and since there is no other node in the queue giving the solution,
we | ost conpl et eness.

As in Waldinger's planner, Tweak would have to do a step addition of
stack(A, B) to maintain conpleteness.

Probl ens with the tenporal coherence:
it increases redundancy nuch nore than it reduces (prunes)
branches
with a conplete Tweak, the tine inprovenent is not significant;
gains in the pruning are offset by the time to set up the
strategy

the conditions in exactly the reverse order of the sub-goals (execution

An inportant point to nmake is that we are still forcing the planner to | ook
at
is tied up to planning order).

2. Weld et al paper

Al planners can be thought of doing sone sort of nerging of sub-plans:
STRI PS concat enates (adds) sub-pl ans
POPI interl eave sub-pl ans

G ven sub-goals Gl = plan (P11 P12 P13) and & = plan (P21 P22 P32),

sub-goals are serializable if there exists a Pli and P2j such that the
conbined nethod P1 -> P2 or P2 -> P1 is a correct plan

Classical Planning: A compilation of Semniar Notes (Compiled by Subbarao Kambhampati)

Listing for Subbarao Kambhampa

Page

Thu Sep 23 15:05:33 1993

21

Concatenation is a special case of interleaving:
a -
/ \
\ /
c-d

in STRIPS, we have a-b-c-d or c-d-a-b, and in POPI we have a-c-b-d, a-b-c-
d, c-d-a-b,

Degrees of serializability

The efficiency of a planner
serializability:

independent > trivially s.

is closely related to the degree of

> | aboriously s. > non-serializable

Veld et al. use artificial domains such as D S2:

To make G true, we need to nake Ali -> A2i (setup, then

nake condition true)

To make GIG&2, All -> Al2 -> A21 -> A22

STRIPS will solve the latter as All -> A21 -> Al2 -> A22, which is not a
correct plan.

So, this domain is serializable for TOCL/POCL (it is respectively

| aboriously and trivially serializable).

The domain is non-serializable for TOPI.

From gopi @nuxha. eas. asu. edu Mn Mar 1 15:50:22 1993

Ret ur n- Pat h: <gopi @nuxha. eas. asu. edu>

Recei ved: from enuxha. eas. asu. edu by pari kal pi k. eas. asu. edu (4.1/SM-4.1)

id AA0O7853; Mon, 1 Mar 93 15:50: 22 MST

Recei ved: by enuxha. eas. asu.edu id AA21317
(5.65c/1DA-1.4.4 for plan-class@arikal pi k. eas. asu. edu) ;

149 -0700

From Bul usu Gopi Kumar <gopi @nuxha. eas. asu. edu>

Message- | d: <199303012247. AA21317@nuxha. eas. asu. edu>

Subj ect: Notes for the Feb 25 class (fwd)

To: plan-cl ass@ari kal pi k. eas. asu. edu

Mon, 1 Mar 1993 15: 47

Date: Mon, 1 Mar 93 15:47:46 MST
X-Mailer: ELM [version 2.3 PL11]
Thur sday, 25 Feb 1993

AGENDA

Condi tional Effects

UCPCP

ADL

Condi tional Effects

The traditional
addi ti onal

STRIPS representation can be extended by adding the follow ng
features

* Di sjunctive preconditions

of the form: (pl V 02)

* Universal quantification

of the form: For all X P3(X)

* Conditional effects

of the form: if (pl(x)) then p2(y)

O these, the sinplest extension is conditional effects.
An exanpl e

oper at or puton (Xx,VY, z)

Preconditions : clear(x), clear(z)

Add : on (x,

if (iSb|Z)OCk (y)) then clear(y)
if (~isblock(z)) ~clear(z)
~on (Xx,)

The above exanpl e shows how a bl ocks worl d operator which can handl e
bot h bl ocks and table can be defined using conditional effects.

How to extend an existing planner to handl e conditional effects ?

A nornmal existing planner can be easily extended to handle conditional effects

in the operators.

Handl ing conditional effects in STRI PS

Condi tional effects can be easily handled in STRIPS. This is because the state
before a step is conpletely defined in a total order planner. This neans that
STRIPS has to neke sure in addition to the preconditions of the step, all the
condi tions necessary for the required conditional effect to be given by the
step are also nmade true before the step. This inplies that a STRIPS styl ed

pl anner has to add in addition to the preconditions, the conditions associated
with the desired effect, on the goal stack.

Handl i ng conditional effects in a Partial O-der Planner

Handl ing conditional effects in a partial order planner |ike TWEAK is nore

conplicated. The basic difference in handling operators having conditional
effects is in the conputation of MIC. The cost of checking for necessary
truth of a goal or precondition in the absence of conditional effects is
polynomial. Wth conditional effects, this cost becomes exponenti al .
Intuitively, to check necessary truth all possible conpletions of the plan
have to be checked when operators have conditional effects, the cost of
which is exponential ! (This was discussed in detail in a previous

cl ass on TWEAK)

In short conditional effects result in the cost of checking for MIC
increase to exponential from polynonial. The question that arises is,
is it worth considering conditional effects at all, if even the basic
step of the TWEAK pl anni ng process takes exponential tinme. (The
overal | planning takes exponential time in any case)

Classical Planning: A compilation of Semniar Notes (Compiled by Subbarao Kambhampati)

Listing for Subbarao Kambhampa

Thu Sep 23 15:05:33 1993

Page
22

Overal |l conplexity of the planning process with conditional effects

A single operator with conditional effects can always be broken down
into an exponential nunber of sinpler operators w thout conditional
effects. Thus given a planning domain, the nunber of operators when
conditional effects are allowed will be |ess than the nunber of
operators when the conditional effects are not allowed! This inplies
that the branching factor in the search space decreases when
conditional effects are allowed. As already discussed this will

offset to a very large extent any increase in the per step conplexity.
To summarize, conditional effects shift conplexity from branching
factor to per step conplexity. Further, planning is undecidable with
or without conditional effects. Al these facts inply that making
operators nore expressive and powerful will not in anyway increase the
overal | conplexity of the planning process.

Does TWEAK use conditional effects

Quite interestingly, TWEAK uses conditional effects that arise due to
partial binding. In this context, it should be noted that there are
two ways in which the process of checking for a correct plan can
become NP-Hard :

1) If the variables have finite domain
2) Odering is not total order, if then type of condition
effects all oned

What needs to be done to SNLP to handl e conditional effects

Consi der the follow ng partial plan

if Qthen P
if T then R
LTI + o - - - +
1		
S		S
Fommmo- + dommmae +
(SP1, SP2) (P)

If Cthen ~P

[SR +

| 11]

| s |

| |

Fomemea- +

If SNLP selects S1 to contribute Pto S, in addition to adding a |ink
fromSl to S, all preconditions of S1 (SP1, SP2) are added as open
conditions. In addition since a conditional effect (P) is being used a
subgoal (Q to provide that effect should be added. In addition any
step which is a potential threat (S11) should be dealt with in the

fol |l owi ng ways

* Pronote (Make S11 cone after S)

* Denpte (Make S1 cone after S11E)
* Confront, which can be done by
** Separation

** Make sure ~C is necessarily true before S11

Fromrao Thu Mar 4 12:09:36 1993
Ret urn- Path: <rao>
Recei ved: by pari kal pi k. eas. asu. edu (4.1/SM-4.1)
id AA10745; Thu, 4 Mar 93 12:09: 36 MST
Date: Thu, 4 Mar 93 12:09:36 MST
From rao (Subbarao Kanmbhanpati)
Message- |1 d: <9303041909. AA10745@ar i kal pi k. eas. asu. edu>
To: plan-class
Subj ect: Dynami c Logi cs--sone notes
Repl y- To: rao@suvax. asu. edu

Fol ks- -

In the last class, | discussed Dynanm c Logic as a possible vehicle
for nodeling plans and planning. Here are sone notes on Dynamic | ogic,
that you might find useful.

[Mar 4, 1993]

Extendi ng STRIPS action representation: Dynanic Logic.

Readi ng: Rosenchein’s paper in Readings in Planning Book
Al'so, Henry Kautz's MS. thesis

Dynanmic logic is a variant of nodal |ogic which has been used to

provi de semantics to prograns. Here the idea is to talk not only about
the truth of propositions like p, but also truth of propositions
after execution of certain program expressions.

For exanple if h is a program expression (say, an action, a
conditional, an iterated action etc), and p is a propositional
formula, then the following are all dynamc logic Wfs:

p [true if pis true in current world]
[hlp [intuitively, true if pis true in every world resulting from
execution of h in the current world. corresponds to nectruth

<h>p [intuitively true if pis truein _some_ world resulting from
execution of h fromthe current world. corresponds to posstruth]

Program expressions are built fromsinple actions and their conpositions.

Sinple actions are nodeled in terms of dynamic |ogic axions such as (where

ais an action and q and r are arbitrary propositional |ogic formulas)
q = [a]r
which reads, if qis true in the current world then r will be true in

every world resulting fromthe execution of h in the current world
and

Classical Planning: A compilation of Semniar Notes (Compiled by Subbarao Kambhampati)

Listing for Subbarao Kambhampa

Thu Sep 23 15:05:33 1993

Page
23

q => <a>r

(which means that if g is true in the current world then r will be true
in some world resulting fromthe execution of a in the current world)

**|t is inportant to note that g and r in the above fornul ae can be
arbitrary propositional formulae, including those that involve
di sjunction:

eg: [P&Q =>[a] [RVW (where Vis disjunction and & i s conjunction
operator respectively]

Apart from nmodeling sinple actions, dynamic logics allow a rich |anguage
for conposing the actions into prograns. The program constructs allowed in
dynam c logic are identity actions (~) which maps the current world to the
same world, sinple actions, sequencing of actions (al;a2), disjunction or
union of actions (al V a2), iteratio actions (eg h*, where h is executed
sonme arbitrary nunber of tines) and conditionals |ike p?. The construct p?
maps the current world to itself if the propositional fornmula pis true in
the current world. If not, it maps the current world to an enpty set (i.e
the plan diverges). (See Rosenchein’s paper in Readings in Planning).

The semantics for dynamic |ogics are provided through Kripke structures or
possible worlds (which are originally invented for nodal |ogics).

In particular, program expressions |ike h, which can be seen as conposite

actions in planning terms are interpreted as mappings fromworlds (states) to se

ts
of worlds (states).

Note that this is a marked departure from STRIPS where we have the
semantics of an action defined in ternms of Syntactic nodifications to
states.

Thi nki ng of actions as mappings fromstates to states allows us to nodel
not only sinple STRIPS type actions, but also nore conplex actions such
as conditional actions (where mappi ng depends upon certains things being
true or false in the given state), iterated actions and non-determnistic
actions.

In dynamic logic formulation, a STRIPS pl anni ng probl em can be stated
as:

G ven E which is a specification of the fornulae in the dynamc |ogic,
and a goal forumula G a solution to the dynam c |ogic progranm ng
problemis a program expression e such that:

1. e halts when executed fromthe current world
2. [e]Gis true

Note that halting or termination is separated from goal establishnent.
A program that does not halt (ie., it naps current state to

an enpty set, in the kripke semantics), I1s called a divergent program
Ifle satisfies both 1 and 2 then it is called a totally correct

sol uti on.

First order dynam c |ogic can be defined on top of FOPC the sane way
propositional dynamc logic is defined on top of propositional |ogic

>From t he di scussion above, it should be clear that inference in dynamc
logic is strict superset of inference in the correspondi ng non-dynam c
logic. In particular, in Propositional dynamic logic, not only do we ask
queries of type is p true? but also queries of type is <h>p true? is [h]p
true?

Inference in propositional dynam c |ogic can be shown to be

Expti me- Conpl ete [MAllester], while inference in propositional logic is
NP-hard. In the case of first-order dynamc logics, inference is

sem -decidable (just as it is in the case of first order logic).

A nore relevant question is how costly is it to reason about the effects
of actions in dynamic logic. W will see that the notion of regression of
a forrmula over an action plays an inportant part in reasoning about the
effects of actions. Sinply put, regression of a fornula phi over an
action a

(typically witten as a (phi))

is just the weakest conditions that need to be true before the
execution of a such that phi will be true after the execution of a.

thus a (phi) <=> [a]phi

Turns out that conputing regression of formulas over actions
axiomatized in dynamic logic, is NP-conplete in the case of
propositional dynamc logic, and it is only partially decidable in the
case of first order dynamic logic. Part of the reason for this is that
these | anguages all ow disjunctive effects for actions.

i.e, we can wite formulas such as [h](pl V p2) in PDL. One of the
ways Pednault’s ADL avoids this conplexity is to insist that there be
no disjunctive effects (this is one of the things Pednault nmeans by
saying "actions nust be conpletely specified'. Note that ADL does
allowinitial state to be inconpletely specified). This allows ADL to
ensure that regression can be conputed in polynomal time for all the
actions.

Al t hough, one coul d have used the sanme restriction for dynamc |ogics
too, in practice, people feel that Dynamic logic is sone what
awkwar d/ unnatural as a basis for plan generation. This is the reason
why ADL, which sticks to STRIPS representation, is preferred nore.

Rao
[Mar 4, 1993]

Fromrao Thu Mar 4 12:11:20 1993
Ret urn- Path: <rao>
Recei ved: by pari kal pi k. eas. asu. edu (4.1/SM-4.1)
id AA10752; Thu, 4 Mar 93 12:11:20 MST
Date: Thu, 4 Mar 93 12:11:20 MST
From rao (Subbarao Kanmbhanpati)
Message- 1 d: <9303041911. AA10752@ar i kal pi k. eas. asu. edu>
To: plan-class
Subj ect: mni-puzzler: Convert briefcase problemto STRIPS representation
Repl y- To: rao@suvax. asu. edu

As | suggested in last class, | would like y'all to try and convert
bri ef case problem | n Pednault’'s ClJ paper to pure strips
representation (i.e., without any conditional or quantified effects).

One of you can then explain the solution in the class.

Classical Planning: A compilation of Semniar Notes (Compiled by Subbarao Kambhampati)

Listing for Subbarao Kambhampa

Thu Sep 23 15:05:33 1993

Page
24

Rao
[Mar 4, 1993]

From annar edd@nuxha. eas. asu. edu Thu Mar 4 15:24:45 1993

Ret ur n- Pat h: <annar edd@nuxha. eas. asu. edu>

Recei ved: from enuxha. eas. asu. edu by parikal pi k. eas. asu. edu (4.1/SM-4.1)
id AA11033; Thu, 4 Mar 93 15:24:45 MST

Recei ved: by enuxha. eas. asu. edu i d AA10156

(5.65c/ 1 DA-1. 4.4 for plan-class@arikal pi k. eas. asu. edu); Thu, 4 Mar 1993 15: 24

:57 -0700

Date: Thu, 4 Mar 1993 15:24:57 -0700

From "Francis V. Annareddy" <annaredd@nuxha. eas. asu. edu>
Message- | d: <199303042224. AA10156@nuxha. eas. asu. edu>

To: plan-class@ari kal pi k. eas. asu. edu

Notes for the March 2nd cl ass:
Agenda:

Syntactic change to STRIPS al gorithmto add conditional effects.
Contents:

1.0 Conditional effects revisited
1.1 For establishnent
1.2 C obbering
Pednaul t’ s approach
Cl assical Planners vs. Reactive Planners
Mot i vation for ADL
4.1 Dynamic Logic
Syntax of ADL
How do we give semantics to this representation?

Condi tional effects revisited:

PP og pob
» o oo ooo

For establishnent:

If a then P
| SL| ---cmimiee e > | S2|
(P)
If Qthen ~P
| S3|
FIG 1.
P
In FIG1, Sl ---->S2 is the causal link. If this causal link has to

materialize, the condition (a,Sl) is to be added over and above the
preconditions of S1. If S1 does not have any other preconditions then a
Is the only precondition.

1.2 C obbering:

For the precondition Pto S2 in FIG 1, threats are not only those
which definitely delete P but those which conditionally delete P. An
exanpl e of the conditional effect "If Qthen ~P":

Q: If ablock is free
P : Don't put B on the block

So, the conditional effect is "If a block is free, put B on the bl ock".
Four ways of preventing clobbering are:

(a) promotion: In FIG 1, S3 could be placed after S2.
(b) Denmption: In FIG 1, S3 could be placed before SI1.
and

(c) confrontation: In FIG 1, ~Q could be made true.
(d) Separation:

In FIG 2, so as to nake sure that ~P(X Y) does not clobber P(A B), i.e.,
we have to see to it that ((X ~= A V (Y ~= B)).

Separation woul d invol ve putting additional constraints in the Pi

part of the plan <T,Q Pi>.

Not e: Lifschitz in his paper "On the Semantics of STRIPS' tal ks about the
subpart of situational calculus that is dealt with in STRIPS - readings for

next cl ass.
~L
2.0 Pednaul t’s approach:

Pednault tried to | ook at conditional effects with respect to
a representation as far from STRIPS and as close to Situational Calculus

as possible and still be able to avoid the franme, qualification etc. problens
Wit hout using default reasoning. He was thus trying to set up an upper limt
on the expressiveness of representation by taking it as close to situational
cal cul us as possible. Though researchers at the tinme had difficulty finding

useful ness of his work, his work was actually intended for a broader class

of problens than planners |ike TWEAK were. Wth the arrival of UCPOP, his work

recei ved recognition.
A coupl e of questions that Pednault tried to address were:

(a) I's STRIPS representation the nminiml one that short circuits the Frame

problemor is there a representation that subsumes the STRIPS representation

and still able to short-circuit the Frane problen?
(b) What problems of planning can classical planning solve?

If we knew then we could wite a planner for that subclass of problens.

3.0 dassical Planners vs. Reactive Planners:

At around ' 87 when Pednault conpleted his work, there was a realization
that even for sinplistic action representations, |ike TWEAK (which is anpng the

lower rung of useful Classical Planners), planning is undecidable. This
frustration caused researchers to nove towards Reactive Planning from
Cl assi cal Pl anni ng.

I'n Reactive Planning execution of the plan is interwoven with the

bui | ding of the plan. Cassical Planning was a good choice when planning tine

of the plan was separated fromits execution time. If these two tines are

related, then within the time that the planner has, it comes up with a plan

that is nore oriented towards the goals by nmaking quick decisions to avoid
the wong paths rather than just picking a random plan and going with it.

Classical Planning: A compilation of Semniar Notes (Compiled by Subbarao Kambhampati)

Listing for Subbarao Kambhampa

Thu Sep 23 15:05:33 1993

Page
25

AL
4.0 Motivation for ADL:

ADL integrates the semantics and the expressive power of situation
calculus with the notational and conputational
ADL picks the best parts of STRIPS and situational cal culus and avoids the
difficulties encountered with each of themindividually. It does this by
choosing a mddle ground between them One of the ideas behind going to
STRIPS fromsituational calculus is to go fromintentionally represented
states to extensionally represented states.

Situational cal culus way of saying how an action changes a state is

hol ds(qg, R(a,s)) - here this says g will be true in R(a,s). You also have to
say what is not changed - frame problem

In STRIPS, a: S-->S - D+ Ajust changes a state. STRIPS
extensionally represents states. It syntactically nodifies a state to go to
anot her state. So, you cannot have actions having conditional effects because
you do not eXp|ICIt|y know what is true after an action.

If we talk of actions as not causing a change of one state into
anot her but fromone state to a set of states (S --> {S}), then this allows
us to handle actions with conditional effects, iterations, nondeterninistic
actions etc. For exanple, S --> {S1, S2} i.e. S causes Sl or S2, thus allow ng
actions with nondetermnistic effects. This small syntactic change to STRIPS,
inmproves greatly the kind of problens STRIPS coul d handl e.

Here, an anal ogy coul d be drawn wi th progranmm ng | anguages where
prograns in them when executed, will take you into a state where sonething is
true. In STRIPS, |oops and nondeterministic actions are not allowed. So as to
all ow these in progranm ng | anguages, people used dynamc logic, a variant of
Modal |ogic, wherein you can tal k about the correctness of prograns and
wherein actions are thought of as a mapping froma state to a set of states.

L
4.1 Dynami c Logic:

For a certain world W in FOPC, Q? is an allowed question for
a well formed formula Q In dynamic |ogic, questions |ike <h>Q@? and [h]Q? are
al so allowed where h is an arbitrary function. [h]Q? inplies "Is Qtrue in
every world after executing h?'. For this, we should al so make sure that
things like a register taking a very high value would not take place if the
execution of h makes use of such a register.

In <h>Q if you allow h to be

(i) a - program statenent
(i1) @ - conditional action
(iir) (al v a2) - disjunction

V) "a to the power of n” - execute a n tines.
b.: If (ii) and (1ii) are allowed then IF.. THEN. . ELSE statenents coul d be
itten - (@@ al vV ~@Q a2).

If his allowed to assune all these possibilities,

th nost statenments of programm ng | anguages.

But the other question is "How costly is it to check <h>Q or [h]Q .

To check @ (Is a well forned fornmula true?) itself the conplexity is
NP- Hard. The conplexity of the above true is Exp-tine-conplexity. Wen
actually building a plan, you may have to check <h>Q? many tinmes which
woul d nmeke the probl em even harder.

N.
wr

then we can cone up
W

Al'l the logics we tal ked about can be related as bel ow

Propositional Logic ---> First Oder---> Situation cal culus

Predi cate Cal cul us

benefits of the STRIPS | anguage.

<__

Proposi tional First Order Mdal
Mbdal 1 ogic Logi ¢
| |
| |
\% \%
Pr oposi ti onal First Order

Dynani ¢ Logic Dynani ¢ Logic

A predicate in Situation Cal cul us cones about by adding and
argument to a corresponding predicate in FOPC - so, you obviously
cannot have Situation propositional |ogic.

AL
5.0 Syntax of ADL:

ADL tries to keep away from STRIPS representation and tries to
stay close to the dynamic |ogic way of representation. ADL schenmas resenbl e
STRI PS operators augnented with conditional add and delete lists, allow ng
the description of context dependent effects.

Bri ef case novi ng Probl em
Pl ease refer to the problemitself on page 357 of Pednault’s paper
n "Synthesizing plans that contain actions with context-dependent effects".
Using ADL syntax, four actions suffice to define and solve the

probl em
(a) Putin(X) - put Xin the briefcase,
(b) Takeout(X) - renpve X fromthe briefcase,
(c) MoveB(l) - Mve B to the location I.

Also, In(X) inplies a state in which Xis in the briefcase and
At (X, Y) inplies Xis at location Y.
Putin(X) :

Add: In(X) if (there exists) | [At(X 1) & At(B,I)]
Takeout (X) :

Del : In(X).
MoveB(1) :

Add: At(B,1); (for all)X (In(X) --> At(X1))

Delete: (for all)mAt(B, m) (m~= 1|

(for all)Z (At(Z, m & In(Z)) (m~=1)

bserve that here we have the niceness of the STRIPS representation -
add and delete lists and we al so have universality which allows for nore
expressive representation that STRIPS.

6.0 How do we give semantics to this representation?

The semantics of this ADL representation is got by relating it to
situation cal culus. Every problemin ADL can be witten as a problemin
situation cal culus and so by knowi ng the semantics of situation cal cul us,
we can know the senantics of ADL.

For the conversion of a problemfromADL to situation cal cul us,
pl ease refer to page 358 of Pednault’s paper on "Synthesizing plans that
contain actions with context-dependent effects”.

Classical Planning: A compilation of Semniar Notes (Compiled by Subbarao Kambhampati)

Listing for Subbarao Kambhampa

Page
Thu Sep 23 15:05:33 1993 26

Si tuational Cal cul us

| |
ADL | expressivity
\Y

Fromrao Thu Mar 4 19:30:18 1993
Ret urn- Pat h: <rao>
Recei ved: by parikal pi k. eas. asu. edu (4.1/SM-4.1)
id AA11203; Thu, 4 Mar 93 19:30: 18 MST
Date: Thu, 4 Mar 93 19:30:18 MST
From rao (Subbarao Kanbhanpati)
Message-1d: <9303050230. AA11203@par i kal pi k. eas. asu. edu>
To: plan-class
Subj ect: a *way* of witing briefcase problemin strips
Repl y-To: rao@suvax. asu. edu

Here is one way of witing Briefcase problemin strips rep.

. Are there any problens that could be solved by the previous
representation that couldn’t be solved by this rep?

gn. Am| right in saying that the above(x,y) predicate couldn't be
handl ed in STRIPS? Or can you think of a way of representing it?

gn. | said that things which would be synergistic effects for strips
can be dealt with in ADL as ordinary effects because of ADL's ability
to use conditional effects. Is this also true for effects of

simul taneous effects (ie. things of the type, lifted(table) is true in
a state s if and only if lifting-fromright(table) and
lifting-fromleft(table) are both true at the same tine.

From ihrig@nws318. eas. asu. edu (Laurie |hrig)
To: rao@nws318. eas. asu. edu
Date: Thu, 4 Mar 93 15:42:35 MST

Briefcase Problemin Strips:

M sinple solution is to del ete the location of obj ects when
they are in the briefcase. This neans that the initial situation
woul d be

(at b hone) (at d hone) (|n p)

;note that (at p hone) is not there
;since pis in the briefcase

operator nov-b
parameters ?m ?|
precondi tions

(at b ?m
add (at b ?I)
del (at b ?m

operator put-in

paranmeters (?x ?l)
precondi tions
(at ?2x ?I)
(at b ?l)
add (in b)
del (at ?x ?I1) ;note that put-in deletes at
operator take-out
paranmeters (?x ?l)
precondi tions

(at b ?I)
(in x)
add (at x ?I)
del (in x) ;note that take-out adds at

Coal: (at b office) (in d) (at p hone)
note that this is the equival ent goal

Final Plan :

(take-out p hone)

(put-in d home)

(rmove-b hone office)

Lauri e.
Fromrao Thu Mar 4 19:54:13 1993
Return-Pat h: <rao>
Recei ved: by pari kal pi k. eas. asu. edu (4.1/SM-4.1)
id AA11212; Thu, 4 Mar 93 19:54:13 MST

Date: Thu, 4 Mar 93 19:54:13 MST
From rao (Subbarao Kambhanpati)
Message- | d: <9303050254. AA11212@ar i kal pi k. eas. asu. edu>
To: plan-class
Subj ect: Regression for non-determnistic actions (response to Gopi’'s qn)
Repl y- To: rao@suvax. asu. edu

note: non-deterninistic actions are actions with disjunctive effects.
The idea is that any real action will wind up conmitting to one or the
other disjunct of its disjunctive effect in a given real execution.

Copi asked whether regression is defined for actions with
non-deternministic effects. Pednault’s ClJ paper (pp. 366, first col.
end) discusses this. The general idea is that when we have actions
with non-determnistic effects, we can no | onger define regression as
necessary and sufficient conditions -- in particular, as Gopi was
probably driving at, there is no sense in talking about the necessary
and sufficient conditions when you don’t know which disjunct of a
disjunctive effect is going to be true.

In particular, consider an action a which has a disjunctive effect
p V g, no preconditions and no other effects.

Now, what are the weakest preconditions that need to be true before a
so we know for sure that p will be true afterwards?

Vel |, sonetines, just a sinple execution of a will give p (i.e
non-determnistically select p of p V q and neke that true). So, in
those cases, weakest conditions is "True".

But, some tinmes the action's execution may non-determnistically
commit to q out of p Vg, and in those cases, the only way to ahve p

Classical Planning: A compilation of Semniar Notes (Compiled by Subbarao Kambhampati)

Listing for Subbarao Kambhampa

Thu Sep 23 15:05:33 1993

Page
27

true after ais to have p to be true before a.

So, weakest conditions are "sonetinmes p, and sonetinmes True".
Since we don’'t know a will give p and when it will give g, we can't
wite the quoted expression above as a |ogical formila.

In otherwords, there is no way we can express necessary as well as
sufficient conditions.

Now, consider defining p as the regression of p over a. This seens
reasonable in that irrespective of what a winds up doing, if pis true
before a then p will be true after a. Mreover, this is the only

guar anteed statenment we can make as to what needs to be true before a
to guarantee truth of p after a.

So, this is the only reasonable way to define regression for
non-determnistic actions. In otherwords, what we are doing is to
define regression as weakest *sufficient* conditions rather than
necessary and sufficient conditions.

Now, when you have regressi on defined as weakest sufficient
conditions, then the nice distribution properties that we discussed in
the class no | onger hold

In particular, as discussed above a-(p) = p and a-(q) = q

so what is a-(p Vq)?
if we wite it as a-(p) Va-(q) then we will get it as pVgqg--i.e.,
p v g needs to be true before a for p v q to be true after.

However, this is clearly not the weakest sufficient conditions for
ensuring p V q after a. In fact, a will always give p v q so really,
weakest sufficient conds of p V q over a is True, which is different
fromp V q

in other word a-(pVg) != a-(p) V a-(q)

This is what throws a spanner into the works, and makes regression
much costlier (we can no |onger say that regression of a conplex
formula can be witten in linear tine as regression of the atonic
formulas :-()

Rao

ps: thanks to Gopi for asking this gn. in the class

From i hri g@nws318. eas. asu. edu Fri Mar 5 11:21:16 1993
Status: RO
X-VMv5-Data: ([nil nil nil nil nil nil nil nil nil]
[nil nil nil nil nil nil nil nil nil nil nil nil "AFrom" nil
Ret ur n- Pat h: <i hri g@nws318. eas. asu. edu>

Recei ved: from enws318. eas. asu. edu by pari kal pi k. eas. asu. edu (4.1/SM-4.1)

id AA11601; Fri, 5 Mar 93 11:21:15 MST
Recei ved: by enws318. eas. asu. edu (4.1/SM-4.1)

id AA01216; Fri, 5 Mar 93 11:19:01 MST
Message- Id <9303051819. AA01216@nws318. eas. asu. edu>
From i hri g@nws318. eas. asu. edu (Laurie |hrig)
To: rao@nws318. eas. asu. edu
Date: Fri, 5 Mar 93 11:19:01 MST

Answer to questions March 5, 1993 Laurie H lhrig
1. M answer to the briefcase question requires some
preprocessing on the part of the user. For exanple, if
the goal of at(d, office) is required, one nust consider
this goal to be a disjunction:

at(d,office) V (in(d) ~ at(b, office)).

This can be handled in STRIPS with nmy briefcase domain,
providing that the two goals can be attenpted in succession.
If this is possible then all potential goals in the briefcase
donmin that are sol vable by UCPOP are al so sol vabl e by STRIPS.

2. ABOVE in the blocks’ world is simlar to AT in the
briefcase domain in that it can be treated as
a disjunction:

the goal of above(a,b) can be represented as
on(a,b) V (on(a, ?x)”on(?x,b)) V (on(a, ?x)”on(?x,?y)”on(?y,b) etc.

with the nunber of disjuncts equal to the total nunber of bl ocks
m nus one.

3. Sinultaneous effects can be handl ed in STRIPS by representing
each action by a pair of operators, one that starts the action
and has an effect that indicates that the action is in progress,
and another that ends the action. In the case of the lifting exanple,
there is one ending action whose precondition is that
both lifting-right and lifting-left are in progress. The operators
are:
operator LIFT-RI GHT

precondi tions on(tabl e, floor)

add lifting-right(table)
operator LIFT-LEFT

preconditions on(table,floor)

add lifting-left(table)

operator END-LIFT

preconditions 1ifting-right(table)
lifting-left(table)
add lifted(table)
del on(tabl e, floor)
GOAL : lifted(table)
FINAL PLAN: lift-right
lift-left
end-1ift
Laurie.

Fromrao Thu Mar 4 19:30:36 1993
Status: RO
X-VMv5-Data: ([nil nil nil nil nil nil nil nil nil]

[nil nil nil nil nil nil nil nil nil nil nil nil "AFrom™" nil nil

Ret ur n- Pat h: <rao>
Recei ved: by pari kal pi k. eas. asu. edu (4.1/SM-4.1)
id AA11203; Thu, 4 Mar 93 19:30:18 MST
Message- | d: <9303050230. AA11203@ar i kal pi k. eas. asu. edu>

nil])

Classical Planning: A compilation of Semniar Notes (Compiled by Subbarao Kambhampati)

Listing for Subbarao Kambhampa

Thu Sep 23 15:05:33 1993

Repl y- To: rao@suvax. asu. edu

From rao (Subbarao Kanbhanpati)

To: plan-class

Subj ect: a *way* of witing briefcase problemin strips
Date: Thu, 4 Mar 93 19:30:18 MST

Here is one way of witing Briefcase problemin strips rep.

. Are there any problens that could be solved by the previous
representation that couldn’t be solved by this rep?

gn. Am| right in saying that the above(x,y) predicate couldn't be
handl ed in STRIPS? O can you think of a way of representing it?

gn. | said that things which would be synergistic effects for strips
can be dealt with in ADL as ordinary effects because of ADL's ability
to use conditional effects. Is this also true for effects of

simul taneous effects (ie. things of the type, lifted(table) is true in
a state s if and only if lifting-fromright(table) and
lifting-fromleft(table) are both true at the sanme tine.

From ihrig@nws318. eas. asu. edu (Laurie |hrig)
To: rao@nws318. eas. asu. edu
Date: Thu, 4 Mar 93 15:42:35 MST

Bri efcase Problemin Strips:

My sinple solution is to delete the |ocation of objects when
they are in the briefcase. This neans that the initial situation
woul d be

(at b honme) (at d hone) (in p)

;note that (at p home) is not there
;since pis in the briefcase

operator nov-b
paranmeters ?m ?|
precondi ti ons

(at b ?m
add (at b ?l)
del (at b ?m

operator put-in

paranmeters (?x ?l)
precondi ti ons
(at ?2x ?I)

(at b ?l)
add (in b)
del (at ?x ?I) ;note that put-in deletes at

operat or take-out
paraneters (?x ?l)
precondi tions

(at b ?l)
(in x)
add (at x ?I)
del (in x) ;note that take-out adds at

Coal: (at b office) (in d) (at p home)
:note that this is the equival ent goal

Final Plan :
(take-out p hone)
(put-in d hone)
(nmove-b hone office)
Lauri e.

From @M USC. EDU: AGACT@ASUACVAX. BI TNET Tue Mar 9 15:25:25 1993

Ret ur n- Pat h: <@/M USC. EDU: AGACT@\SUACVAX. Bl TNET>

Recei ved: from VM USC. EDU by pari kal pi k. eas. asu. edu (4.1/SM-4.1)

id AA15585; Tue, 9 Mar 93 15:25:25 MST

Message- |1 d: <9303092225. AA15585@ar i kal pi k. eas. asu. edu>

Recei ved: from ASUACVAX. BI TNET by VM USC. EDU (| BM VM SMIP V2R2)
with BSMIP id 2583; Tue, 09 Mar 93 14:00: 16 PST

Dat e: Tue, 9 Mar 93 14:59 MST

From <AGACTYASUACVAX. BI TNET@/M USC. EDU>

Subject: Notes for Mar. 4

To: pl an-cl ass@nws228. eas. asu. edu

X-Original-To: plan-class@nws228. eas. asu. edu, AGACT

Notes for the Class of Planning Semi nar on Mar. 4, 1993
Witten by Wan- Chu Tsai

Agenda:
1. More formal issues of ADL representation
2. ADL and Total Ordering Planner
* Regression
* Causation and Preservation
* Regression Assertionability
3. ADL and Partial Ordering Planner
* Avoiding nultiple sets of secondary precondition
* Dealing with secondary precondition in a lazy fashion

Last class we see there is a uni-directional mapping fromADL to Situation

Cal culus, this class we will start with situation calculus to see the
notivation of using its subset, ADL.

Ref erence Paper by Pednaul t:

ADL : Exploring the Mddle Gound Between STRIPS and the Situation Cal cul us

(P.S. For all axiomschenes, please refer to Pednault’s paper)
1. Two types of axions (axiomschenes) that need to be witten down:

(1) State-change axiom (Ref: section 2, 2nd paragraph of Pednault’s
paper)
(2) Frame axiom (Ref: section 2, 3rd paragraph)

2. ADL is a subset of schenes that can be derived fromthese two axi om
schenes:

(1) ADL requires that there be a separate axiomfor each predicate.
(relation and function)
This is the syntactic restriction.

The state-change axiomfor a relation is shown in the 5th paragraph,

section 2.

The first axiomis called ADD clause, it represents all the conditions

under which action Awll add R

The second is called DELETE clause, it represents all the conditions

Classical Planning: A compilation of Semniar Notes (Compiled by Subbarao Kambhampati)

Listing for Subbarao Kambhampa

Thu Sep 23 15:05:33 1993

Page
29

under which action Awll delete R

If we take any ADL axiomand wite it in situation calculus, it wll
I ook |ike one of these two clauses.

ADL al | ows updates, values of functions can be changed. There is
al so state-change axi omfor function, shown in the 7th paragraph,
section 2.

We are interested in under what conditions the function will have
value y. At any given tinme, function has uni que val ue.

(2) The only effects of an action are those nentioned in the axi om
3. Questions :

(1) What can't ADL do?
* Disjunctive effects are not allowed, i.e. actions with
nondeterm ni stic or inconplete specification can not be handl ed.
* ADL does not allow existential quantification, but it allows
uni versal quantification.

The relation between ADL and situation calculus is anal ogous to that
bet ween PROLOG and first order |ogic.

ADL can do nore efficient inference.

(2) Do we need to wite frame axion? No.
Because we have witten down what changes will happen when applying
action, by state-change axions, the frame axionms are in fact witten
implicitly.
Two frame axiomns:
If Ris true before action A, then after action A, Ris still true.
If Ris false before action A then after action A, R renmins fal se.
Frane axionms for relation and function are shown in the 9th and 10th
paragraphs of section 2, respectively.
ADL is nore restricted than situation calculus in syntactics.
Not writing frame axi ons explicitly can avoid doing default reasoning.

(3) Although ADL can’'t have disjunctive effects, disjunctive preconditions
are al |l owed.

avb->c isequivalent toa->candb ->c
Proof : avb->c

= ~(avbh) ve

= (~a”™ ~b) vec

= (~avec) ™ (~bvec)

=> (a->c) " (b->c¢)

* Important: If we have axionms with disjunctive conditions, we can
separate it as above only when we don’t have disjunctive states.

There is no restrictions on initial and goal states, because one of
the disjunctive conditions is true, the whole disjunction is true.

UCPOP, unlike ADL, does not allow disjunctive preconditions and goal s.

4. If there is no restriction on initial state or goal, can we have action
with disjunctive effects? No. Because there is a difference between
reasoning in the action and checking the initial and goal states.

ADL uses regression to reason about the effects of action.
For exanpl e,
al -> a2 -> a3 -> a4
Question: Is p true after a4?
Let ai~1 be the regression operator of action ai.

Let P = al~1(a2~1(a3~1(a4~1(p))))
Gven | be the initial state,
The above question is equi valent to "whether true or not | | = P?"

* Regression will be sinple without disjunctive effects, which is
polynom al in ADL.

* Two steps:
(1) Conpute regression P
(2) Conpute | |= P

** The notion of regression is together with the conplexity of truth
criteria.
If there is disjunctive effects, P is undecidable.

** The conplexity al so depends on the conpl eteness of the initial
state.

* Why not doing theorem proving in ADL?

(1) It is not the frame problemthat causes the switch from situation
cal culus representation to STRIPS. It is because resolution
theorem proving is notoriously hard to control.

(2) The syntactics of STRIPS is easy for direct search using proper
heuri stics.

Exanple in ADL: Please refer to section 3 for the exanple of put(b, I).
* Di scussi on:

on(C, B) " above(A, B) (*1) is equivalent to on(C, B) " on(A O (*2)

This equival ence is not a sinple exanple for STRIPS. W don’t know

that (*2) can be got by solving (*1) before we solving this problem

For STRIPS to solve this problem we need two axi ons:

(1) Forall x,y on(x, y) -> above(x, y)

(2) Forall x,y,z on(x, y) " above(y, z) -> above(x, z)

Thus, STRIPS cannot represent the exanple of put(b, 1).

** \When one action makes on(C, B) true, while the other action makes
on(A, C) true, it is the conbination of two actions that nakes
above(A, B) true. ADL will explicitly represent this condition.

** ADL allows nore problems to be solved, because it is nore
restricted.

Conput e ADD and DELETE cl auses:

(1) To conpute the ADD cl ause, look at the add list of the action. The
exanple is shown in the 5th page of Pednault’s paper, right bel ow
Tabl e 2.

* In the formula, the existential quantification is needed because b
and | are paraneters and nust be treated as constants.

(2) To conpute the DELETE cl ause, |l ook at the delete list of the action.
The exanpl e can be found right bel ow the ADD cl ause nentioned above.

Conput e regression:
G ven action a, condition p,

* What is the condition that nust be true so that when action a is done,
p wll be true?
(1) a adds p.
(2) pis true before executing a, and a does not delete it.

Classical Planning: A compilation of Semniar Notes (Compiled by Subbarao Kambhampati)

Listing for Subbarao Kambhampa

Thu Sep 23 15:05:33 1993

Page
30

The bottom of the 2nd colum on the 6th page of Pednault’s paper shows an
exanpl e of conputing put (A B)~1[above(A, D)].

* There are some equations that can be applied to all atom c subformul as
of a formula, shown in the mddle of the 2nd colum on the 6th page of
Pednaul t' s paper.

Regression represents global properties. Using these properties, we
only have to conpute regression for every action once. This is the
uni que for ADL. And the reason is because of the |lack of disjunctive
effects.

Fromrao Wd Mar 10 09:45:25 1993
Ret ur n- Pat h: <rao>
Recei ved: by pari kal pi k. eas. asu. edu (4.1/SM-4.1)
id AA15895; Wed, 10 Mar 93 09: 45: 25 MST
Date: Wed, 10 Mar 93 09:45:25 MST
Message- 1 d: <9303101645. AA15895@ar i kal pi k. eas. asu. edu>
From rao (Subbarao Kanbhanpati)
Sender: rao
To: plan-class
Subj ect: puzzler 3

Consi der the ART-MD-RD and ART-1D- RD dommins described in my "Uility
of Systematicity" paper.

Weld et al (TR) show that ART-MD and ART-1D are trivially serializable
for SNLP (POCL).

I would like you to attenpt to prove that ART-MD-RD (or ART-1d-RD) is
| aboriously seriablizable for POCL while it is trivially serializable
for MP, MP-1 and UA (see ny systematicity paper for the description of
MP and MP-1)

Rao
[Mar 10, 1993]

Fromrao Wed Mar 10 17:47:54 1993

Ret ur n- Pat h: <rao>

Recei ved: by parikal pi k. eas. asu. edu (4.1/SM-4.1)
id AA16279; Wed, 10 Mar 93 17:47:54 MST

Date: Wed, 10 Mar 93 17:47:54 MST

From rao (Subbarao Kanbhanpati)

Message-1d: <9303110047. AA16279@ar i kal pi k. eas. asu. edu>

To: plan-class

Cc: rao

Subj ect: M dsenester survey

Repl y- To: rao@suvax. asu. edu

The following is a survey on the way planning semnar is going. |
woul d i ke responses fromall of you who are attending the neetings
(whet her or not you are registered for the course).

You may want to save the nmail to a file, edit it with your responses,
print the file (using |zpr or some such) and leave it In nmy mailbox in
the dept (this will ensure anonynmity to a very reasonable extent).

I woul d appreciate textual rather than binary (yes/no)

answer s/ feedback. | would like to get these forms by Friday.

| made the questions acting as my own devil's advocate, but may still

have m ssed some useful questions.

related to any of the questions,
cheers

Rao
[Mar 10, 1993]

pl ease feel

If you have comments that are not

free to add.

Classical Planning: A compilation of Semniar Notes (Compiled by Subbarao Kambhampati)

Listing for Subbarao Kambhampa

Thu Sep 23 15:05:33 1993

Page
31

Feedback for CS 591 Pl anning Methods in Al sem nar
You do not have to wite your name.

O 1. Do you like/hate/don't-care the way the sem nar is being
conduct ed?

2. Do you think the the sem nar
interactive?

is sufficiently/insufficiently

1 3. Is the style of seminar conducive to fostering your thinking? O
is it done in away to _intimdate_ your thinking/creativity? O is
it just one long boring |ecture?

O 4. Does the style of
instructor is trying to

"aski ng questions" make you feel as if the
"show of f" rather than make you think?

O 5. Do you notice any "favoritisn bias"
bei ng displayed by the instructor?

O 6. Do you feel that the discussion in the class becones too

esoteric,

with the readi ngs? (renenber your answer is
nk that the class demands you to read TOO MANY
le fromeach, instead of reading a few papers

anonynous) Do you thi
papers and get a lit
t hor oughl y?

O 7. Do you keep up
i
t

On 8. Don't you think it
time (nore or less)?

is just great that the class always ends on

O 9. How unconfortable are you with the format of the course, which
is open ended, and perpetually touching the state of the art? Wuld
you have been happier with stuff that is nore established and
traditional ?

From el der @nuxhb. eas. asu. edu Thu Mar 11 14:54:41 1993
Ret ur n- Pat h: <el der @nuxhb. eas. asu. edu>
Recei ved:
id AA17802; Thu, 11 Mar 93 14:54:41 MST
Recei ved: by enuxhb. eas. asu. edu i d AA07122
(5.65c/ I DA-1.4.4 for plan-class@arikal pi k. eas. asu. edu) ;
6:51 -0700
Date: Thu, 11 Mar 1993 14:46:51 -0700
From G eg El der <el der @nuxhb. eas. asu. edu>
Message- | d: <199303112146. AA0O7122@nuxhb. eas. asu. edu>
To: plan-class@ari kal pi k. eas. asu. edu

Thu,

Notes for the 9 March Pl anning Seni nar

Not e Taker: Greg Elder

11 mar

towards certain students/viewpoints

and too stuck in wierd details that you can’t see as being useful ?

from enuxhb. eas. asu. edu by pari kal pi k. eas. asu. edu (4.1/SM-4.1)

1993 14: 4

Actions as state changes:

a.

Actions cause a change to the world; i.e., a transition between

states

An action can therefore be represented as a set of tuples <s, t>,
where s is the current state and t is the next state. An action
is executeable at state s if and only if there is a state t for
which <s, t> is a set of state transitions for that action.

Regr essi on

a.

Regression operators are used to reason about plans. Using
regression operators, one can deternmine if a desired condition wl
be true after executing a sequence of actions.

A regression operator a-1 for action a is a function napping
formulas to fornulas with the property that for each fornmula rho
and every pair of states <s, t> which are elenents of a, if a-1(rho)
istrueins, thenrhois trueint.

G ven a plan,
correct.

regression can be used to deternmine if the planis

Progression used to project effects of actions into the future;
al l ows you to conclude precondition of next action

A special case of the regression operator is called the Tidy
regression operator. Not only should orginal regression definition
be satisfied but the reverse as well--necessary and sufficient

condi tions.

If s|]=a 1(rh0)thent | = rho

If t |=rho then s |= a-1(rho)

If actions don’t have non-determnistic effects,
Tidy regression operators.

then you can use

If you have necessary and sufficient regression operators, and
regression formulas are satisfied for a plan, then the plan is
correct under all conditions.

Use regression not just for checking correctness of a plan, but to
generate other plans. Use regression as a basis for doing planning.

Causal ity Theorem

a.

b.

Condition rho is true at a point p during execution if and only if
one of the follow ng holds:

(1) An action a is executed prior to point
true and rho renains true until at

p such that a makes rho
| east point p.

(2) Rho is true in the initial state and renains true until at |east
poi nt p.
Sigma(rho a) is a causation precondition.

Pi(rho a) is known as a preservation precondition

Classical Planning: A compilation of Semniar Notes (Compiled by Subbarao Kambhampati)

Listing for Subbarao Kambhampa

Thu Sep 23 15:05:33 1993

Page
32

c. Causation and preservation preconditions can be defined in terns of
regressi on operators.

d. Causality Theorem can be expressed using causation and preservation
precondi tions.

A condition rho will be true at point p during the execution of a plan
if and only if one of the follow ng holds:

(1) An action a is executed prior to point p such that
(a) Sigma(rho a) is true imediately before executing a.

(b) Pi(rho a) is true imediately before the execution of
each action b between a and point p.

(2) Rho is true inthe initial state and Pi(rho a) is true
imedi ately before every action a priot to p.

From gary@nws320. eas. asu. edu Thu Mar 11 20:02:51 1993

Ret ur n- Pat h: <gary@nws320. eas. asu. edu>

Recei ved: from enws320. eas. asu. edu by parikal pi k. eas. asu. edu (4.1/SM-4.1)
id AA18261; Thu, 11 Mar 93 20: 02: 51 MST

Recei ved: by enws320. eas. asu.edu (4.1/SM-4.1)
id AA01005; Thu, 11 Mar 93 19:56:55 MST

Date: Thu, 11 Mar 93 19:56:55 MST

From gary@nws320. eas. asu. edu (Kevin Gary)

Message-1d: <9303120256. AA01005@nws320. eas. asu. edu>

To: plan-class@ari kal pi k. eas. asu. edu

Pl anni ng Cl ass Notes for Wednesday March 10

by Kevin Gary

Doi ng Pl anning Using Causal ity Theorens

- Going beyond STRIPS:
1> Conpl ex goals - including quantifiers, disjunction, and negation
2> Actions with Context-dependent effects

- generalize plan refinement to nonlinear planning

Theoretical Basis for Linear Planning

Causal ity Theorem (from Pednault - see class 3/9)
- gives sufficiency conditions

Di agram Nondeterministic Planning Obtained fromthe Causality Theorem

(exists)new a a<p
/ \

/

/ \ /
or and ----
I\ / \

a achi eves phi

/ \ / \
and (exists) old a (forall)b, a < b < p, b preserves phi
[\

/ \---
/
/
phi is true in the initial state

(forall)b < p, b preserves phi

How does a Pl anner assert that an action achi eves/preserves a desired goal ?
- The action nmust be executed in the appropriate context.
- The _context_ can be defined by secondary preconditions that are

introduced as additional preconditions to the actions in order for it
to produce the desired effects.

2 types of secondary preconditions: (note: @used for "phi")
a
\ = _Causation_ precondition for action a to achieve @
I
@
----- a
| = _Preservation_ precondition to preserve @
[
@
fromclass on 3/9 we | ooked at conputing these as follows:
- a
\ = alpha(a, R | | = (not)delta(a, R)
I [
R

- These are relational (atomc) formul ae
- We have no way of dealing with non-atom c formul ae now.

- W have seen causation and preservati on preconditions before:

Causat i on:
Preservati on:

codesi gnation constraints
non- codesi gnation constraints

- Looking at TWEAK with ADL's gl asses, these constraints are considered

separate fromtreating themas subgoals like we’d normally do with
sigma and pi above.

Theoretical Basis for Secondary Preconditions:

@is provably true after executing al,...,an if and only if:

1> @is provably true initially and | | is provably true just prior
|

to executing each action ak for 1<= k <= n.

Classical Planning: A compilation of Semniar Notes (Compiled by Subbarao Kambhampati)

Listing for Subbarao Kambhampa

Page
Thu Sep 23 15:05:33 1993 33

Repl y- To: rao@suvax. asu. edu

ak
2> For sone k, \ is provably true just prior to executing action ak,
l__ Pl ease remenber that we will not be nmeeting in the week after spring
————— ai break. The next regular class neeting will be 30th March. At that
and | | is provably true just prior to executing each action tine, we will be looking at H erarchical Planning (Readings: Tate's

| @ ai for k <i <=n.

So now the new diagramis:

Nonlin, Sacerdoti’s Noah, WIlkin's SIPE in Readings in planning).

We will make up for the one last class in April.

Rao
(exists)new a a<p
// \\ // ps: Please remenber to turn in the survey forns today.
or and ---- a achieves sigma(a, phi)
/I \ / \ Fromihri g@nws318. eas. asu. edu Fri Mar 12 14:44:30 1993
/ \ / \ Status: RO
and (exists) old a (forall)b, a < b < p, achieve pi(b, phi) X-VMv5-Data: ([nil nil nil nil nil nil nil nil nil]
I\ [nil nil nil nil nil nil nil "Laurie lhrig" "ihrig@nws318. eas. asu. edu "
/ \--- (forall)b < p, achieve pi(b, phi) nil nil nil "AFrom" nil nil nil])
/ Ret urn-Pat h: <i hri g@nws318. eas. asu. edu>

/
phi is true in the initial state

- We then went through Pednault’s exanples (Pednault, 88)

Recei ved: from enws318. eas. asu. edu by pari kal pi k. eas. asu. edu (4.1/SM-4.1)
id AA00531; Fri, 12 Mar 93 14:44:30 MST

Recei ved: by enws318. eas. asu.edu (4.1/SM-4.1)
id AA05987; Fri, 12 Mar 93 14:42:07 MST

Message- 1 d: <9303122142. AA05987@nws318. eas. asu. edu>

From ihrig@nws318. eas. asu. edu (Laurie lhrig)

- The Briefcase Problem (p. 364) assumes conjunctive, unquantified To: rao@nws318. eas. asu. edu
(atomic) formulae. One path through the nondeterninistic space is Date: Fri, 12 Mar 93 14:42:07 MST

shown. Sigma and Pi are defined as follows:

Rao
a e a This is ny second try at a counterexanple to Dsep space <= SNLP--for
\ = al pha(a, R || = (not) delta(a, R) your eyes only until | can check it out nore thoroughly. Lauri e.
I__ [
R() R() OPERATORS:
_a e a nove(?X, ?Y)
\ = delta(a, R || = (not) alpha(a, R precond at dudl ey(?X)
I __ | add at dudl ey(?Y)
(not) R() (not) R() del at dudl ey(?X)
untie-nell (?L)
- The Bonb in the Toilet Problem (p. 3) has an initial inconplete precond at dudl ey(?L)
state - don’t know if package A or B really has the bomb. So, tied-nell (?L)
I n(bomb, A) v In(bonb, B) is true in the initial state, but we add unti ed- nel |
can’t conclude which of {In(bonmb, A), In(bonmb, B)} is in the del tied-nell(?L)
"actual" initial state. Sigma and Pi are defined in terms of
regression operators -1 GOAL:
a at dudl ey(track) and untied-nell

Fromrao Fri Mar 12 14:52:33 1993
Ret ur n- Pat h: <rao>
Recei ved: by pari kal pi k. eas. asu. edu (4.1/SM-4.1)
id AA00610; Fri, 12 Mar 93 14:52:33 MST
Date: Fri, 12 Mar 93 14:52:33 MST
From rao (Subbarao Kanbhanpati)
Message- | d: <9303122152. AAO0610@ar i kal pi k. eas. asu. edu>
To: plan-class
Subj ect: classes reninder

I NI TI AL SI TUATI ON:

at dudl ey(track)
tied-nell (track)

one path of SNLP derivation would be:

Classical Planning: A compilation

of Semniar Notes (Compiled by Subbarao Kambhampati)

Page
Listing for Subbarao Kambhampa Thu Sep 23 15:05:33 1993 34

at dudl ey(track)

| | 0----nmove(X3,Y3)------- move(X2, Y2)------- nmove(X1,yl)----untie-nell----- G
\%
0------- G not pruned by Dsep
etc
Fromrao Fri Mar 19 13:31:49 1993
0------- untie-nel I (L1)--------- G Ret urn-Path: <rao>
Recei ved: by pari kal pi k. eas. asu. edu (4.1/SM-4.1)
L1=track id AA09988; Fri, 19 Mar 93 13:31:49 MST
Date: Fri, 19 Mar 93 13 31:49 MST
From rao (Subbarao Kambhanpati)
Message- |1 d: <9303192031. AA09988@ar i kal pi k. eas. asu. edu>
To: plan-class
Subj ect: A puzzler problem|[forwarded nessage from Ji m Hendl er]
Repl y- To: rao@suvax. asu. edu
From gi nsberg@cS. St anford. EDU Fri Mar 19 13:29:54 1993
Date: Fri, 19 Mar 93 10:29:38 PST
at dudl ey(track) From Matthew L. G nsberg <gi nsber g@s. St anf or d. EDU>
Message- | d: <9303191829. AA15462@ . St anf or d. EDU>
| | To: dam@i .mt.edu, hendl er@s. und. edu, nc@S. St anford. EDY,
| at dudl ey(L1) | ncder nott - drew@s. yal e. edu, m nton@s. und. edu, nau@s. und. edu,
\% princi pi a@s. und. edu, wilkins@i.sri.com
| | Subj ect: odd little planning problem
\Y Cc: gi nsberg@cs. St anf ord. EDU
Status: RO
0------ move(X1, Y1)------- untie-nell (L1)------- G
Yi=L1 Li=track The situation is the blocks world, but there’s an extra rule -- you can’
X1/ =Y1 t
build a 4-block tower. So an extra precondition to nove(x,y) is that
L1/ =track from separation either y is on the table or y is on a block that is on the table.
i nconsi stent constraints pruned by SNLP The initial situation is:
not pruned by Dsep
c
a b d
The goal is to get a on b and b on c.
at dudl ey(X1) Any comment s?
| | Mat t
\Y
0---nmove(X2, Y2)-------- move(X1, Y1)------ untie-nell (L1)------- G
Y2=X1 Y1i=L1 Li=track a--a--- End of forwarded nmessage -------
X2/ =Y2 X1/ =Y1
not pruned by Dsep Fromrao Sat Mar 20 18:08:12 1993

Ret urn- Path: <rao>
Recei ved: by pari kal pi k. eas. asu. edu (4.1/SM-4.1)
id AA11183; Sat, 20 Mar 93 18:08:12 MST

Classical Planning: A compilation of Semniar Notes (Compiled by Subbarao Kambhampati)

Listing for Subbarao Kambhampa

Page

Thu Sep 23 15:05:33 1993 35

Date: Sat, 20 Mar 93 18:08:12 MST

From rao (Subbarao Kanbhanpati)

Message- | d: <9303210108. AA11183@ar i kal pi k. eas. asu. edu>

To: suresh@nws318, gopi @nws318, ihrig@nws318, dchen@nws228, cohen@nws318
Cc: plan-class

Subj ect: a small conbinatorics (enunearation) problem

Repl y-To: rao@suvax. asu. edu

Here is a sinple conbinatorics problemfor which | need an answer by
Monday .

Suppose you have mdistinct action (al a2... am

and you want to find out how many action sequences of |engh |ess than
or equal to n are there

Clearly the answer is mtn . This is in some sense an upper bound on
the size of the search space of a total ordering planner.

The question now is how many DI STINCT (ie. non equivalent) partial
orderings of size less than or equal to mcan we make? W w |
consider two partial orderings to be equivalent if the set of their
topol ogi cal sorts are identical (in otherwords, they have same
transitive closure).

It is clearly greater than n'n since every distinct operator sequence
is also a distinct partial order. But there are many nore

(e.g al//a2 (al-a3)//a4 etc (where // is to be read as paralle to).
The question is EXACTLY how nany nore?

Any help will be hightly appreciated... | still don’t know the answer

Rao
[Mar 20, 1993]

ps: | believe it may be related to (but slightly different from the
fol |l owi ng problem

How many directed acyclic graphs with distinct transitive closures
can be drawn on n vertices?

Rao
[Mar 20, 1993]

From gopi @nuxha. eas. asu. edu Thu Apr 1 16:37:36 1993

Ret ur n- Pat h: <gopi @nuxha. eas. asu. edu>

Recei ved: from enuxha. eas. asu. edu by pari kal pi k. eas. asu. edu (4.1/SM-4.1)
id AA23391; Thu, 1 Apr 93 16:37:36 MST

Recei ved: by enuxha. eas. asu. edu id AA02956

(5.65c/1DA-1. 4.4 for plan-class@arikal pi k. eas. asu. edu); Thu, 1 Apr 1993 16: 33

147 -0700

From Bul usu Gopi Kumar <gopi @nuxha. eas. asu. edu>
Message- | d: <199304012333. AA02956@nuxha. eas. asu. edu>
Subj ect: C ass notes of March 30 1993

To: plan-cl ass@ari kal pi k. eas. asu. edu

Date: Thu, 1 Apr 93 16:33:43 MST

X-Mailer: ELM[version 2.3 PL11]

Al Pl anni ng
3-30-93

* Foundations for Automatic Planning :
beyond - Synposi um Summary

Cl assi cal approach and

* Systematicity
* HTN (H erarchical Task Network) planning

The current state of the art in classical planning is represented by
ADL. Infact work is in progress by Dan Weld, et al, on an enhanced
version of UCPOP named ZENO

ZENO

ZENO al | ows

* Goal s quantified over tine
* Metric constraints

An exanple of a netric constraint would be
ex : FOR ALL t Quantity of gas in plane at tine t >= 15 gall ons

This is a constraint, which is continuous in nature, which neans that
the check needs to be done at an infinite points. But, if the Quantity
of gas changes in a particular fashion, say, linear then it is
sufficient to check just at the end points of the function.

I'n general constraints are used by the planner to check for

consi stency. Existing planners check for binding/ordering constraints.
Simlarly metric constraints have to be checked for consistency. The
problemis that it is not even possible to check for arbitrary nmetric
constraints. However if the constraints are linear, it becones a

I'i near progranm ng problem

A linear programming problemis in the form

maxi m ze : alxl + a2x2 + a3x3 + .. anxn
given

clixl + clnxn >= 0

c21x1 + c2nxn >= 0

Classical Planning: A compilation of Semniar Notes (Compiled by Subbarao Kambhampati)

Listing for Subbarao Kambhampa

Thu Sep 23 15:05:33 1993

Page
36

In planning, it is just sufficient to find if the constraints are
consistent. This is a smaller problemthan the full LP problem

Whi ch nmeans that the pol ytope described by the constraints is not
null. This can be checked by the first phase of the famus SI MPLEX
al gorithm

Metric constraints can be used to describe ordering constraints, hence

these can be checked in the sanme way. ZENO al |l ows for such linear constraints.

Practical planning

A few questions arise in the case of practical planning

* What is the state of practical planning ?
* How to avoid classical planning assunptions ?

STRIPS - Blocks Wrld fanaticism

Wy is it that nost of the researchers are focusing on the STRIPS
styl ed operators in the Blocks world domain ? Is it because it is the
nmost difficult domain ? Is it because other problenms are hard to

sol ve??

SNLP Takes the role of STRIPS

Most of the work done in the past involved STRIPS (including
criticism. The focus has now shifted to SNLP ! Are the reasons
simlar to the above ? I's that a healthy sign ??

Questions

What Should be a real planner ?

"Real Planner" is sonething for which

* Some body is willing to pay (and buy)
* There is a neat GU
* 90% work is done in domain nodeling

Wil e being an inportant aspect of a planner, nost of the planners do
not take into account the user in their design, and hence are witten
for an efficient inplenentation and not in a way that will allow user
to understand the planning process and/or selective participation by
the user in the planning process.

Problens with this definition

* Why can’t | use Mac Project ? (look at 2nd point in defn)

- Only one person clainmed to have sold his planner ! But the planner
was used for research purposes by the custoner !!

- Domain nodeling involves a lot of work by the programer. In
general this may be inportant in the practical view, but nmay not
provide right directions for research

Definition 2

A planner should be able to work in a real domain and support real
engi neering to acquire domai n know edge. A real donmin is defined as a
domai n whi ch includes the follow ng :

Events

Resour ces

Duration and Deadl i nes

M ssing information
Uncertain effects

Conti nuous change

Cont ext dependent effects
Execution and repl anni ng

* Ok ok ok % Ok

Process pl anni ng

An exanpl e of this would be process planning. In general process

pl anni ng invol ves generation of an efficient plan, consisting of a
sequence of mechanical operations (drilling, mlling, boring, filing
etc) to make a part, whose description is given. It is a problemwhich
exists and could benefit fromautomation. It is in sone ways easier
than bl ocks world and in other ways difficult.

Easi er because, there are not too many interactions between the
various operations. In general they can be performed in any order.

Difficult because, often locally efficient methods (drilling instead
of honing) may result in inefficient plans ! Honing 2 holes may cost
less than drilling one and honing the other, the later may involve

change of the tool used. (Changing tools, changing the orientation of
the part etc are nore costly than which operation is actually done).
In general to produce an efficient plan, the planner needs to know the
fol owi ng

* Geonetry
* Mechani cal operators
* Anpunt of force to apply,etc

Al this needs to be used at the sane tine and thus will increase the
conpl exity of the problem and hence the planner.

Real Engi neering

This deals with the problem of acquiring domai n know edge. Donai n
know edge should be acquired in a way which is sinple to the user.

One way of acquiring such know edge may be through HTN. Domai n experts

Classical Planning: A compilation of Semniar Notes (Compiled by Subbarao Kambhampati)

Listing for Subbarao Kambhampa

Thu Sep 23 15:05:33 1993

Page
37

typically organize their know edge in a hierarchical manner. Therefore
it is easy for themto provide information in the same way rather than
in the formof say STRIPS styled operators.

Concl usion on "what is a real planner"

The first definition seems to be an advice to the practisioner and the
second definition seens to be an advice to the researcher.

TASK REDUCTI ON | S HERE TO STAY

Rat her than thinking about planning as working on a goal, using an
operator to achieve it, working then on the preconditions of the
operator (sub goals), Hi erarchical Task Network planners | ook at the
goal, look at what are the tasks (abstract) which achi eve the goal,
and then work on these tasks, till there are no abstract tasks left
(when all the tasks left are primtive actions).

NOAH was the first planner to use this technique. NOAH differed from
the earlier STRIPS in the foll owi ng ways

* 1t was a partial ordering planner
* t H

|
It used task reduction

An exanple for a HTN operator could be

Task : Make-Hole-By-Drilling

SubTask : Position-Hole

SubTask : Rough-Drill

SubTask : Finish-Drill

This is how humans think ! "Reduction Based View of Plans" and nany of
the planners work this way ! However there is no formalisation of HIN!
The question is - Wiy not ? Is it because it is just an efficiency
hack ?

The fact remmins that, even if it is an efficiency hack, it is too
inportant a detail to ignore

Agai nst this backdrop, two alternatives exist for an SNLP |ike pl anner

* Take the know edge in the formof HIN s and then split it intoits
internal form! In the process ofcourse the planner will |ose all
the inportant control information present in the HTN

* Take information in the formof STRIPS styled operators (not a good
mar ket i ng i dea)

However the right solution is to understand and formalise task
reduction. |f information provided by the user can be coded into
search control rules, then HTN s can be ignored. Howeer HTN s provide
nore information than search control rules. They have the internediate
structure of know edge. It is extrenely difficult even for a human to
acquire this know edge ! In particular, this know edge can’t be

provi ded by current |earning techniques. It then seens |ogical to get
this information fromthe user --> "Task reduction is here to stay"

gopi

From AZEDC@ACVAX. | NRE. ASU. EDU Sun Apr 4 19:15:05 1993

Ret ur n- Pat h: <AZEDC@ACVAX. | NRE. ASU. EDU>

Recei ved: from ACVAX. | NRE. ASU. EDU by pari kal pi k. eas. asu. edu (4.1/SM-4.1)

id AA27044; Sun, 4 Apr 93 19:15:05 MST

Recei ved: from ACVAX. | NRE. ASU. EDU by ACVAX. | NRE. ASU. EDU (PMDF #2382) id
<01GWVHCDQRNKOO1ABB@N\CVAX. | NRE. ASU. EDU>; Sun, 4 Apr 1993 19:12:19 MST

Date: 04 Apr 1993 19:12:18 -0700 (MST)

From AZEDC@ACVAX. | NRE. ASU. EDU

Subj ect: Pl anning class notes, Apr 1

To: pl an-cl ass@nws228. eas. asu. edu

Message- | d: <01GWHCDRLAQO01ABB@ACVAX. | NRE. ASU. EDU>

X-Vms- To: | N% pl an- cl ass@nws228. eas. asu. edu”

M ne-Version: 1.0

Cont ent - Type: TEXT/ PLAI' N, CHARSET=US- ASCI |

Cont ent - Transfer-Encoding: 7BI T

Notes for April 1, 1993 (by Eric)
Agenda: . synt ax of hierarchical task networks (a little bit

semanti cs)
di fferences between HTN and precondition abstraction

Precondi ti on abstraction
. I ntroduced in ABSTRI PS

of

The idea is that we work on the higher-order preconditions and then nove

on to the |l ower |evel ones

Precondition abstraction eventually evolved into Al pine (by Knoblock).
We could think of investigating the performance conparison between

pl anners wi thout abstraction, with abstraction given by the user,
with abstraction given by the system

Precondi ti on abstraction vs. HIN
. Pl anning at various |evels of space abstracti ons (ABSTRIPS)

pl actions of pi+l are in the same terns as in

: pi but description of the world in pi+1

p2 I's nore detailed

p3

Pl anni ng at successive | evels of plan abstractions (Sl PE, NONLI N, NOAH)
pl actions of pi+l are refinenents of actions of pi

: but the representation of the world is in the same

p2 terns at all levels

p3

Hi erarchi cal task networks

and

HTN was introduced in NOAH, which went a different way from ABSTRI PS
(incidentally, NOAH introduced two new concepts, the HIN and the partial

ordering planning).

Classical Planning: A compilation of Semniar Notes (Compiled by Subbarao Kambhampati)

Page

Listing for Subbarao Kambhampa Thu Sep 23 15:05:33 1993 38
In HIN, we have low level operators and express themas task reduction . constraints on the solution plans are iteratively refined
schenas. . each solution plan (or set of) at each iteration is used as a ’'skeleton
Exanpl e: plan’ to guide the next iteration
task: to travel fromx toy (a. k.a. achieve tasks, . there is no objective hierarchy independent of the problem Herarchy is
non-primtive tasks) a point of view => hierarchical planning is an heuristic-based reasoning
schema: travel by train ai med at redum ng the average conputing time. One person’s detail is
stepO0: buy insurance anot her person’s inportance
stepl: book train ticket . hi erarchi cal planning hopefully avoids propagating m stakes; recovering
step2: go to station from m stakes not detected earlier is often very costly
step3: get in train (a. k. a. do tasks, primtive
t asks) Sonme pl anners make sure any effect prom sed by a task is actually given:
+p
The higher level task is deconposed into the |ower |evel ones: : sgl taska :
travel (LEVEL 0) .- (p) It may be the case that when sgl is deconposed,
: taskb : the effect p is not given by any of the
-- primtive
insure book station get in tasks; in this case we nay add an extra

prim'tive tasks which provides it
Note that tasks may be strictly or partially ordered wth respect to each

other; for instance, it may be the case in the exanpl e above that step 0 can HTN does not increase expressiveness; all effects of the top level actions
be done in parallel with steps 1 and 2, step 1 nust be before 2, 2 and 0 are present in the low |l evel actions. For exanple,
before 3 and so on. Notice that this is inportant ordering information t o- do: roundtrip(x,y) In planners like NONLIN, the infornation
travel (LEVEL 1) of
: stepl: travel (x,y) roundtrip is not "greater" than the "sunt
------------------ of the
book station ;oget in step2: travel (y, x) information of the parts
————————————————— : It could be the case, however, that this
insure informati on were greater than the sum In
this case, we are departing fromthe idea
Interactions between tasks are not always trivial. For exanple, at level 0 we t hat HTN is only providing control
m ght not be aware of any interactions between a step "buy paper" which information, because nowit is also giving
occurs in parallel with all others, but perhaps at the level 1 we mght be i ncreased expressiveness
able to do so.
Comment s
Pl anni ng consists of picking a task and reducing it to nore prinmtive, . Each action is of the form "achieve (atom"
executable tasks. W start from the dumy tasks (null plan) and a "to- . Each action is either primtive or deconposable
achi eve-al |l -goal s" non-prinmitive task. W consider planning done when all the
tasks are primtive and the plan satisfies the preconditions of the tasks. A primtive action is directly executable by an existing program whose
preconditions are satisfied.
Notice that it is inmaterial whether a given task is to be considered A deconposable action is a too-high-level goal or sonme precondition not
primtive or non-primtive. This is a relative notion, and what is primtive achi eved yet.

for one agent may be non-primtive for another one.))
Each operator nmaps a deconposable action into a non-linear plan of nore

Notice also that we are throwi ng away the notion of executability. Tasks may detail ed actions

or not be executable. . Each action is described by delete and add lists, by the operator that
generated it

Finally, it is inmportant to notice that we still want to use all the theories

we have seen so far, e.g. making sure dependencies anpng steps are taken care In addition, the effects of the parent actions are transferred to the |ast

of , avoiding ordering steps when that is not really necessary, and so on. action of the generated subpl an

Wth the hierarchical structure, we are hoping to take care of the nost . The goal achieved by an action is considered as its principal effect

i mportant interactions beforehand, |leaving the "details" for later. The Iless (element of the add list). The principal effect inherited froma parent

inportant interactions will be taken care of if and when they appear. action is also a principal effect of the nore detailed action

The inportant interactions are provided by the wuser. W could think of the When a subplan sp is generated by an operator, the principal effects of each

pl anner optimzing/ verifying the interactions provided by the user as well action in sp, except the last one, are considered the preconditions of the

(sort of like "reverse engineering" the interaction information given by the final action

user)

Exanpl e:
Noti on of hierarchical reasoning

Classical Planning: A compilation of Semniar Notes (Compiled by Subbarao Kambhampati)

Page

Listing for Subbarao Kambhampa Thu Sep 23 15:05:33 1993 39
+q - criticize the new plan to elimnate bad interactions anpng actions

;I'Z) ;I'x) LEVEL 0 and take advantage of good interactions (*)

r p

(the hierarchy of plans is often called a procedural net)
, (*)

........ When the planner deconposes the high
| evel tasks, the htn is considered a This is one of the things that was "lost" after NOAH. After NOAH planners

........ a "good" hierarchy if it doesn't didn't use this notion of critics

...... TX LEVEL 1 just accept what the user specified.

........ In other words, it wll point out The planners we have seen so far are "nyopic", in the sense that they wll
that there is a possibility that often try to find a plan when there isn’t one. For exanple, in the plan bel ow
condition p is not necessarily true it’s no use putting tasks Ti and Tj ad infinitum because there is no task
at step Tx. that will nake such plan correct, so mght as well quit and give up.

-p It is common however to find htn's
Ty .. do not do that (they just t ake +hf +he, +hf
what ever was specified by the user). initial Ti Tj
(he) (hf)
Macr o- operators
Macro-operators are "black boxes", which are introduced when there are Sone planners used in industry incorporate domain specific know edge critic;
efficiency/ performance issues. For exanple, in STRIPS, the order in which for instance, say if a battery is low, it’s no use doing sone task, we may
sub-goals are tackled is very inportant; for that, we may incorporate that use that information and prune that plan (that is, renmove it fromthe |ist of
knowl edge into a new macro-operator. Thus, we'd like to renenber that pl ans bei ng considered for expansion).
know edge, and REUSE it any tine we are faced with a conjunctive goal, as is
shown in the exanpl e bel ow NOAH put too nuch confidence on the critics, so nuch so that it never used
searching. However, Sacerdoti’s threats included the pronotion but forgot
on(a, b)?on(b,c) use operator opl(a,b,c) bel ow about the denmption. Today, researchers agree that we should use searching, to

formally define the planning process
operator opl(x,y,z
step-a: stack(y,z
step-b: stack(x,y

———

Fromrao Fri Apr 9 13:34:32 1993
Return-Pat h: <rao>
Recei ved: by pari kal pi k. eas. asu. edu (4.1/SM-4.1)
As the donain becones nore "organi zed" and we inprove the planning id AA03859; Fri, 9 Apr 93 13:34:32 MST
techni ques, efficiency and reuse becones less inportant. For instance, when Date: Fri, 9 Apr 93 13:34:32 MST
we go fromTO to PO goal ordering is not really inportant, therefore there From rao (Subbarao Kanbhanpati)
is less notivation for nmacrops. Perhaps there wll be new reasons for Message-ld: <9304092034. AA03859@ar i kal pi k. eas. asu. edu>
remenbering things, but goal ordering is no |onger one of these reasons. To: plan-class
Subject: filter conditions and | oss of conpleteness
Notice that macrops increase the branching factor and the nenory Reply-To: rao@suvax. asu. edu
requi rements, so we don't really want to introduce macrops unless there is a
good reason for doing it. Yesterday | was trying to give you an exanple of how filter conditions
may | ead to i nconpl eteness and was unable to do so.
Macrops vs htn
Using the analogy of Dr Rao, Macrops are like conpiled progranms which are Turns out that the right way to construct such an exanple is to think
reused (like subroutines) by other progranms. The notivation for HINs is in ternms of an operator being prematurely rejected, there by |eading
different; htns are nmore like the way us humans tend to see things. W to loss of conpleteness..
deconpose tasks into smaller ones, and that provides us with a smaller set of
primtive tasks which may or nay not be ordered with respect to each other, TO see this consider a sonewhat fanciful exanple where you have two
however, there are much fewer conbinations of different orders to be goals:
considered (which is referred to as better control infornation).
Al so, conponents are visible in htn, whereas they are not visible in nacrops. Gl: have-an-airport
@: go-to-sfo
Basi ¢ al gorithm
Suppose, in this case there is no airport in the initial state, and
Create the first-level plan with the goal to be achieved you decided to work first on G and then on Gl.

Wiile a non-prinmitive plan has not been generated, do: Suppose further that there is an operator that takes you to SFO which
has as a filter condition "there be an airport"
- generate a new level of plan by deconposing the deconposable
actions and |leaving the primtive actions iIntact So, at this point, since airport isn't present in the init state, you

Classical Planning: A compilation of Semniar Notes (Compiled by Subbarao Kambhampati)

Listing for Subbarao Kambhampa

Thu Sep 23 15:05:33 1993

Page
40

reject this operator.

However, since SNLP doesn't work this goal ever again, that nmeans that
this operator will never be seen again...

Now, we you go on to work on GL which will in fact introduce an
airport, and by that time unfortunately, you already |ost the operator
of using this airport to go to SFO

This probl em woul dn’t have been there in STRIPS which will work on
bot h goal orderings.

This problemalso will not be there in TWEAK and UA etc., which can
work on a goal nore than once, as necessary.

Rao

From wt sai @nws320. eas. asu.edu Fri Apr 9 17:49:10 1993
Ret urn- Pat h: <wt sai @nws320. eas. asu. edu>

Recei ved: from enws320. eas. asu. edu by parikal pi k. eas. asu. edu (4.1/SM-4.1)

id AA03942; Fri, 9 Apr 93 17:49:10 MST
Recei ved: by enws320. eas. asu.edu (4.1/SM-4.1)

id AA13775; Fri, 9 Apr 93 17:42:29 MST
Date: Fri, 9 Apr 93 17:42:29 MST
From w sai @nws320. eas. asu. edu (Wan C. Tsai)
Message- | d: <9304100042. AA13775@nws320. eas. asu. edu>
To: plan-class@nws228

Notes for the Cass of Planning Semi nar on Apr. 6, 1993
Witten by Wan- Chu Tsai

Agenda

HTN Pl anni ng

* The unresol vabl e conflict problem

* The filter conditions (operator afflication problem
2. Precondition Abstraction

Next class read ABSTRIPS

Fommm e +
|
+--me- +
-> | sa&a | -
B —— + \
! _ .\
\ I
\ E +
-> | S& | -
R +
! |
OP1 R e T + |
Fommmmaaa >| E + | |
| ->|AH| | |
| R AN |
-+-< >--> Al13 |--+- |
/| Fommm + Fommm + |
/A -> Al2 |- |\ |

Let

I EEREE + [\ |
/ e + \ |
\ |
/ / |
\ R R + / |
\ Ho-mm - + L + | / |
EEEE A21|--->| A22 | --t----- - oP2 |
R T T +o < +

B e +

SGL i s deconposed by applying OP1
S& is deconposed by applying OP2

Probl ems with HTN:

2.
3.

Ve

Control information required is not totally doam n independent.
Sonmetimes it is hard to decide to which abstract |evel the
deconposi tion process shoul d stop.

HTN is too flexible that something that is guaranteed in SNLP no
| onger is guarantee, [such as the use of primtives?]

assune here that HTN only requires control information that is

domai n i ndependent, and this information can be given by operator
description.

d <--
Qe <-- {d}
Repeat

(0)
(1)

(2)

(3)

(4)

(5)

(6)

2. Basic algorithmfor HTN

nitial state

G (Gl, @, &) : Goal state

(There are two types of tasks : goal task and action task.)

Initial Task Net [Achieve(Goal)]

If Que enpty, fail.

Pick a task net d from Qe
/* A choice point here, can backtrack if necessary. */

If every task in dis prinitive or phantonization, and
d is consistent (by MIC)
Then exit with success, return d.

Pick t ind, s.t. t is non-primtive.
/* A cut, no backtrack allowed here. */
(Precondition abstract can be used here, if have it.)

Let M be the set of methods which can achieve t.
Pick min M
/* Anot her choice point. */

Reduce t with mto R(t,m.
(i.e. extend to |ower |evel.)

Merge (d - t) with R(t,m), i.e. d = Merge((d-t),R(t,m).

When doi ng nerge, accessor and contributor need to be taken care of.
m can partially support this job because it provides ordering
information. But, sonething nust be aware of:

Classical Planning: A compilation of Semniar Notes (Compiled by Subbarao Kambhampati)

Page

Listing for Subbarao Kambhampa Thu Sep 23 15:05:33 1993 41
(a) It is possible that the effect given by a parent node (high |level) A problemhere: t"' deletes el, this is not described in higher |evel.
i's not given by any single node of its child nodes (low |evel).
For exanpl e, neither the operator 'Travel from Pheonix to L. A’ This al gorithm separates children generation from MIC checki ng.
nor the operator ’'Travel fromL.A to Pheonix’ can give the effect
"Round trip fromPheonix to L.A’. But the parent of these two The output of the critics : Cdp(d') --> dl1', d2’
operators can give it. a1’ : t" < t1
(b) It is also possible that nore than one child nodes give the effect. d2’ : t2 < t"
Need to choose which one to be the contributor. So, to deal with interaction:
NONLI N t akes very syntactic approach to solve these probl ens: Let set <-- {d}
let the first action be the accessor, and the final action be the For each cnt in CRITICS (This could be quite conplicated, depending
contributor. upon the types of critics.)
If there is no unique first action or final action, then add a dummy For each Tset in d
action. The causal link of reducing t will become the follow ng: Rermove Tset from set
Add C(Tset) into set
p wi Il be reduced to p
<tl --->t> > <tl ---> theg> (8) Que <-- Que + set
e will be reduced to e
<t --->12> > <tfinal --->t2> /* End of Repeat */
tbeg and tfinal are dummy actions. * Critics are not restricted in HIN
(7) CRITICIZE/ deal with interaction. * To inprove the efficiency of critics, we need to change the critics.
There may be sonme effects in lower level that are not nentioned in
hi gher level. The interaction caused by these effects needs to be * SNLP never nerge actions to nake optinmal plan.
handl ed careful ly.
For exanpl e, 3. In SNLP, if we want to nake sonething true, we can use exist action to do so.

In HTN, for exanple,
Let d be the follow ng:

-+
+el : | B G: dear(B)
+----+ +----+ +-+
e L] ---e>] 2| | A
+----+ B
| (e1) . .
| n We want to have a plan that do nothing, so we need sonething like SNLP's
| +e | sinpl e establishment.
| +-- -+
+> 0t |---+ Phantomi zation : a task that is not executable, i.e. a task that has al ready
+---+ been achi eved.
el
The causal link : <tl ---->12> A[C] : nmake C true by phantomization, this is a choice point.
Let d° = Merge((d-t), R(t,m) be the followi ng: 4. Conpari son:
+el * NONLIN does not keep full search path, it does backtrack by undoi ng.
+---+ +-- -+ SNLP keeps conpl ete search path.
I B A I > t2 |
+o---+ +----+ * NONLIN does not have systematicity.
| (el) W thin the same branch, using phantom zation nmay work on the sane goal
| n tw ce.
| | SNLP concentrates on systematicity.
| L +--- -+
|+t]-->] t"] * HTN works on fragnent of plan, if sonething goes wong, instead of giving
|| +----+ +o- -t up the whole plan, it nakes sone change to solve the problem
+- > A
| -el | * Critics can be retractive critics.
| oo
+-> 0t [----4 * In refinenment planning, planner never does retraction, the only thing
e + to be done is backtrack.

Transformational planning allows retraction.

Classical Planning: A compilation of Semniar Notes (Compiled by Subbarao Kambhampati)

Listing for Subbarao Kambhampa

Page

Thu Sep 23 15:05:33 1993 42

If full retraction is allowed, then no backtrack is required.

* NONLIN is transformational planning, but nost tinme it does addition.
It adds backtrack to NOAH, but it tries to avoid backtrack.

From gopi @nuxha. eas. asu. edu Mon Mar 15 17:36:52 1993
RO

St at us:
X-VMv5-Data: ([nil nil nil nil nil nil nil nil nil]
[nil nil nil nil nil nil nil "Bulusu Gopi Kumar" "gopi @nuxha. eas. asu. ed
u" nil nil nil "AFrom" nil nil nil])
Ret ur n- Pat h: <gopi @nuxha. eas. asu. edu>

Recei ved: from enuxha. eas. asu. edu by pari kal pi k. eas. asu. edu (4.1/SM-4.1)
id AA03771; Mon, 15 Mar 93 17:36:51 MST
Recei ved: by enuxha. eas. asu. edu id AA05059

(5.65c/1DA-1.4.4 for rao@arikal pi k. eas. asu. edu); Mn, 15 Mar 1993 17:36:52 -0
700
Message- 1 d: <199303160036. AAO5059@nuxha. eas. asu. edu>
X-Mailer: ELM[version 2.3 PL11]

From Bul usu Gopi Kumar <gopi @nuxha. eas. asu. edu>
To: rao@ari kal pi k. eas. asu. edu
Subj ect: Distribution properties . (fwd)
Date: Mon, 15 Mar 93 17:36:50 MST

Forwar ded nessage:

> From gopi Thu Mar 11 16:21:28 1993

Date: Thu, 11 Mar 1993 16:21:25 -0700

From Bul usu Gopi Kumar <gopi >

Message-1d: <199303112321. AA19057@nuxha. eas. asu. edu>
To: rao@ari kal pi k. eas. asu. edu

Subj ect: Distribution properties .

Cc: gopi @nuxha. eas. asu. edu

This is regarding the distribution properties that regression
operator has when there are no disjunctive effects ...

| feel that presence of disjunctive effects should not affect
the distributive properties really with a small nodification
to the idea of distributive property

op (aVb) =op(a Vop (b)

Here in sone sense a and b are the dinensions of the state
and the operator can be conputed for each di nmension separately
and or’ed to get the |hs

If redefine the dinensions to include (on an operator basis)

all the disjunctive effects the operator can have then we

can say that

op (a Vb) =disjunction of op on values in all dinensions
which affect a V B

We can further define a V B to be one of the dinensions

VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVYV

then op (AV B) =op (A Vop (B) Vop(AVB)
This is new this is for only the dinension
defn of dinension AVB

each of these can be preconputed for all operators !
Thus all the original properties hold
The only difference is that the cost of finding all dinmensions

affected by (A V B) would have been linear o(n) in the nunber of atomc
formulae in the original case, and would be o(n * k * m) now where k
i's the maxi mum nunber of effects an operator can have and mis the

maxi mum nunber of dijuncts in any effect which is still Iinear

I's there sonething wong with the above argunent ?

(it seens to be intuitively true)

with regards

gopi

VVVVVVVVVVVVVVVVVVVYV

From gopi @nuxha. eas. asu. edu Mon Mar 22 18:59:09 1993
Ret ur n- Pat h: <gopi @nuxha. eas. asu. edu>
Recei ved: from enuxha. eas. asu. edu by pari kal pi k. eas. asu. edu (4.1/SM-4.1)
id AA12316; Mon, 22 Mar 93 18:59: 08 MST
Recei ved: by enuxha. eas. asu. edu id AA10291
(5.65c/I1DA-1. 4.4 for rao@ari kal pi k. EAS. ASU. EDU); Mon,

22 Mar 1993 18:59:37 -0

700

Message- | d: <199303230159. AA10291@nuxha. eas. asu. edu>
X-Mailer: ELM [version 2.3 PL11]

Status: RO

From Bulusu Gopi Kumar <gopi @nuxha. eas. asu. edu>
To: rao@nuxha. eas. asu. edu (Subbarao Kanmbhanpati)

Subj ect: NONLIN, use-only-for-query
Date: Mon, 22 Mar 93 18:59:35 MST
| feel that use-only-for-query conditions should be in such

a way that they do not affect the effects of an operator.

In operators.lisp (on ?x ?Z) is taken as an use-only-for-query

condi tion, which seens to be wong since, when this binding is
changed | ater on, anyone taking (clear ?z) (for sone instance
of z) will no longer get that effect, and | don’t think NONLIN

takes care of that.

Wth regards

gopi
Fromrao Thu Apr 1 19:06:01 1993
Status: RO
X-VMv5-Data: ([nil nil nil t nil nil nil t nil]
["1789" "Thu" "1" "April" "93" "19:06:00" "MST" "Subbarao Kambhanpati" "
rao " nil "54" "HIN class insights" "AFrom" nil nil "4"])

Return-Pat h: <rao>
Recei ved: by parikal pi k. eas. asu. edu (4.1/SM-4.1)
id AA23430; Thu, 1 Apr 93 19:06: 00 MST
Message- |1 d: <9304020206. AA23430@ar i kal pi k. eas. asu. edu>
Repl y- To: rao@suvax. asu. edu

Classical Planning: A compilation of Semniar Notes (Compiled by Subbarao Kambhampati)

Listing for Subbarao Kambhampa

Page
Thu Sep 23 15:05:33 1993 43

From rao (Subbarao Kanbhanpati)
To: rao

Subj ect: HTN cl ass insights

Date: Thu, 1 Apr 93 19:06:00 MST

Peopl e don’t consider starting with |arger piece of know edge to be
a cheating...

1. Critics being lost in the shuffle.
Noah wanted to planning with big pieces, and thus cane up with
the idea of HTN planning, and partial order planning.

NOAH had a bunch of critics-- none of themwere sound and
conpl ete

In the process of nmaking del eted precondition interactions
systematic, nonlin threw out all the other critics.

Tweak threw out HTN and plan fragnent stuff, and fornalized
partial ordering planning with operators

SNLP formalized search

But, all of planning is still very nyopic. W do need sone
macro-critics

2. For noah, partial ordering was a real necessity
He wanted to make | arge plans by starting with
Large pl anning fragnents.

Once you start with large plan fragments, partial order planning
is almobst inevitable.

3. Reuse: Wiy macro task reduction schemata don’t make sense?

4. subroutine anal ogy-- the |ower |evel subroutines DO change the
hi gher | evel gloabl variables sonetines.... although that is not
consi dered a good progranm ng practice.

5. conparison iwh Macrops: Macrops have input and output--but no
hi erarchi cal structure.

By the time youconme to HTN pl anni ng, nmacrops becoming |ess useful
[Point this out in |earning paper]

6. Put this stuff in learning paper-- in a way, partial ordering
pl anning provides a nore useful substrate for doing |earning, since
you want to put plan fragnents together.

7. Put Mnton's comments about how it is difficult to use nore difficult
pl anning strategies vis a vis planning

8. Philosophize in the end... the things that Knoblock can automate
are exactly the things that aren’t useful for partial order
pl anni ng

Fromrao Tue Apr 6 19:06:13 1993

Status: RO
X-VMv5-Data: ([nil nil nil t nil nil nil nil nil]

["1896" "Tue" "6" "April" "93" "19:06:12" "MST" "Subbarao Kambhanpati"
rao " nil "58" "htn planning ideas" ""From" nil nil "4"])

Ret urn- Path: <rao>
Recei ved: by pari kal pi k. eas. asu. edu (4.1/SM-4.1)
id AA29885; Tue, 6 Apr 93 19:06:12 MST
Message- 1 d: <9304070206. AA29885@ar i kal pi k. eas. asu. edu>
Repl y- To: rao@suvax. asu. edu
From rao (Subbarao Kanbhanpati)
To: rao
Cc: rao
Subj ect: htn planning ideas
Date: Tue, 6 Apr 93 19:06:12 MST

1. NONLIN not only allows contributor change for phantomtasks [in
that it uses causal links nerely as a guidance], it also allows
actual dephantomi zation, which is akin to saying that | am undoi ng
ny nethod choice. This is retraction!!

Once you allow retraction, you mght as well also all ow dependency
directed backtracking-- this is what | was asking Gopi to do.

In the literature, people always tal ked about refinement planners
and transformational planners. Tranformational planners don’t do
backtracki ng-- they do retraction. Refinenment planners don’t do
retraction.

Nonlin doesn't-- it uses refinenent to add, and allows a bit of
retraction through dephantomi zation.

DDB- -does it or does it not actually allow retraction?

2. The differing ideas in terms of how nuch you belive in your
original choice.

SNLP whi ch does search at a |l ower |evel and doesn’t quite believe
is best off doign systematic search.

Wil e NONLIN and HTN pl anni ng which believes that the plan
fragnments are largely interaction free and planning is |argely easy
to do, is better off doing dependency directed backtracking.

In this sense, doing retraction and tal ki ng about systematicity
seens quite stupid

3. Criticismcan be done all at one time, or as and when you feel. As
long as the final check is that the plan is correct, you can avoid
criticising in the beginning

4. Critiques can be retractional: You can think of dealing with
del eted precondition interaction by renoving plan fragnments, adding
whi t e- kni ghts or backtracking (each of which Is progressively nore
systematic in sonme sense)

5. mergi ng techniques

Classical Planning: A compilation of Semniar Notes (Compiled by Subbarao Kambhampati)

Listing for Subbarao Kambhampa

Thu Sep 23 15:05:33 1993

Page
44

6. backtracking on tasks..

7. The algorithm- why should it be that clean to begin with? Is it
just to satisfy our quest for theoretical beauty?

Send mai|l to Drew McDernott

Rao
[Apr 6, 1993]

From i hri g@nws318. eas. asu. edu Wed Apr 14 15:38:02 1993
Ret urn-Pat h: <i hri g@nws318. eas. asu. edu>
Recei ved: from enws318. eas. asu. edu by pari kal pi k. eas. asu. edu (4.1/SM-4.1)
id AA08500; Wed, 14 Apr 93 15:38:02 MST
Recei ved: from enws322. eas. asu. edu by enws318. eas. asu. edu (4.1/SM-4.1)
id AA03485; Wed, 14 Apr 93 15:34:56 MST
Date: Wed, 14 Apr 93 15:34:56 MST
From ihrig@nws318. eas. asu. edu (Laurie |hrig)
Message-1d: <9304142234. AA03485@nws318. eas. asu. edu>
To: plan-class@ari kal pi k. eas. asu. edu
Class notes April 8, 1993
Agenda:
filter conditions
unresol vabl e conflicts

by Laurie H lhrig

The argunment has been put forth that planning research has formalized
only one aspect of planning (MIC), but practical planners provide
nore than this.

Practical planners nust nodul arize planni ng know edge,
information.

provi de control

Trend is toward user friendly:
NOAH had SOUP code, no well established syntax.
repl aced by user-provided tenplates.

This was thrown out and

Exanpl e of a task-reduction schena:

Al d ear ?X]

reduces to

Al O ear ?Y]\
puton(?Y, ?2)
Al C ear ?Z]
expansi on:
1. goal (dear ?Y)
2. goal (Cear ?2)

3. action (puton ?Y, ?2)

condi tions:
:use-when (on ?Y ?X) at 3

:precond (Cear ?Y) at 3
:precond (O ear ?Z) at 3
effects:

;assert (Clear ?X) at 3
:delete (Clear ?Z) at 3

Use-when is a filter condition,

For exanpl e, having an airport

pl anner won't try to achieve it.

in your honme town mnight

be one precondition of flying, but it is nonachievable since there is

no way to build an airport if one does not exist.

on(?Y, ?X) is achievable. It is just not advisable to do so.

On the other hand,

The problemwith filter conditions such as on(?Y,?X) is that by the

tine you cone to work on a schenma, Y is no longer on X

This is the

problemwi th using filter conditions in PO planning. It is not a
probl em for state-based planners since once you add an action in order

to make a goal true,
and the filter condition that
will always hold at that point

pl anni ng, actions may be added anywhere in the plan.

where it is needed.

may delete the filter condition.

the plan is extended fromthere in one direction only,
is needed at that point in the plan
I'n pl an-based

These actions

Filter conditions aren’t really necessary if you are using a best-
first search, since establishing a condition by using an operator
woul d cause the plan to be ranked as worse that a plan that takes

the condition fromthe initial

If you don't use filter conditions, you m ght have a goal

Exanpl e:

state.

Havi ng an open door is a filter condition for getting

into the roomthat has the keys.
considered to be a filter condition,
enter (room), open(door), get(keys),

enter(room, open(door),

| oop.

If having an open door is not
then you might get a | oop such as:

get (keys) etc.

SNLP woul d have nore of a problemthan other PO planners in using

filter conditions,

since it is harder in SNLP to prune paths

wi t hout sacrificing conpleteness.

Exanpl e:

Suppose you have two operators,
clear ?X) and another to PUTDOM a bl ock on the table (adding
clear ?X). It seens reasonable that you should not attenpt to

(Laurie’'s)

make a block X clear by first picking it up and then putting
it on the table since performng the pick up action requires the

bl ock to be clear in the first

place. In other words,

is afilter condition for achieving clear(?X) by using the

PUTDOWN action (just as open(door)

into the roomthat holds the keys).

condi tion has block A on top of another block, and

However, suppose we define a probl em where
the initial
the goal is (clear(A) and on(A table)).

failing to find a solution.

result in SNLP

establishing clear (A) by a link fromthe initial

start step (since Ais clear in the initial
be threatened by the Pl CKUP

but this link will

state)

action that is added later in achieving the second goal .

This problempertains to SNLP only since it
SNLP attains systematicity by commtting to causal

i nks.

W I kins provides a contorted expl anation of the probl em of

using filter conditions in PO planning.

He views it as a

Pruning the path that
attains clear (A) by the PUTDOM action will
The only path left comits to

one to PICKUP a bl ock (deleting

hol di ng (?X)

is afilter condition for getting

is related to the way

Classical Planning: A compilation of Semniar Notes (Compiled by Subbarao Kambhampati)

Page

Listing for Subbarao Kambham pa Thu Sep 23 15:05:33 1993 45
probl em of heirarchical planning, and calls the problem Subj ect: Readi ngs- -

heirarchical prom scuity. It occurs at a certain point in the Repl y- To: rao@suvax. asu. edu

pl anni ng process, where for exanple, we have a

plan S1---S2, and expand S2 assuming that a filter condition Wien you read FORBIN, do also read the chapter on planning in

Is true, then later expand S1 to include a step that deletes this Charni ak and McDernott’s text book (chapter 9). It will explain the
condition. W can solve this problemby nmaking sure that Sl is FORBI N pl anni ng phi |l osophy better

expanded before S2, but then we are doing STRIPS planning in

the guise of SIPE. This is not really a problemfor rao

heirarchical planning only. It is dubious to use filter

conditions in any planner that is searching in the space of

pl ans. From suresh@nws318. eas. asu. edu Sun Apr 18 14:17:34 1993

Ret urn- Pat h: <suresh@nws318. eas. asu. edu>
Recei ved: from enws318. eas. asu. edu by pari kal pi k. eas. asu. edu (4.1/SM-4.1)

HTN planning is not well understood. HIN s are very flexible: id AA11578; Sun, 18 Apr 93 14:17:34 MST
there is very little pruning. W would like to prune plans Recei ved: from enws322. eas. asu. edu by enws318. eas. asu. edu (4.1/SM-4.1)
that have unresol vable conflicts, for exanple: id AA05677; Sun, 18 Apr 93 14:14:22 MST
Date: Sun, 18 Apr 93 14:14:22 MST
-Q From suresh@nws318. eas. asu. edu (Kat ukam Sur esh)
tl Message- |1 d: <9304182114. AA05677@nws318. eas. asu. edu>
(P) To: plan-cl ass@ari kal pi k
< >
-P
t2 Class Notes for 15th April
(Q
but in HTN planning this conflict could be resolved at a PRECONDI TI ON ABSTRACTI ON :
| ower level, for the plan may be expanded to:
Appr oaches : 1) ABSTRI PS
-Q 2) ALPINE
t1 --- t1" 3) PABLO
(P) 4) DI STRI BUTI ON
< >
-P What is an abstraction?
t2 t2"
(Q Di viding the problemspace into different |evels where
important goals are solved at higher level and |less inportant goals
The interaction can now be resolved by inposing an ordering are solved at |lower levels. There should be a downward refinenent
such as t1' t2' t1" t2". which will lead to final plan w thout undoing the steps that have been
done at higher level. i.e. when working on one |evel to achieve all
You therefore could not prune this path w thout | osing the goals of that level, it shouldn’t undo any of the goals acheived
conpl eteness. (You can always set up the domain so that this at its higher level.

is the only correct path).
The inportance of a goal can be

Q ang Yang tried to come up with sufficient and necessary 1) The critcality value given by the user.

condi tions for pruning paths in HTN planning. One condition 2) The interactions that the goal is involved wth.
he proposed is that when a step is expanded to several steps, 3) length of the plan to acheive it.

there is one of these steps that is considered to be the nain 4) no. of ways of achieving a goal.

action, and this step holds all preconditions and effects. This
is, however, very restrictive.
1) The criticality value is given by the user. These criticality
The End val ues depends upon the user intution. (CGenerally the difficulty in
achieving a goal is taken into consideration.) This approach is
used in ABSTRI PS.
Fromrao Thu Apr 15 11:29:13 1993

Ret ur n- Pat h: <rao> 2) Coals are given equal or higher inportance to the preconditions of
Recei ved: by parikal pi k. eas. asu. edu (4.1/SM-4.1) the operator used to achieve it. If the goals are strongly

id AA09553; Thu, 15 Apr 93 11:29:13 MST connected in the graph (explained below) then all those goals are
Date: Thu, 15 Apr 93 11:29:13 MST given equal inportance. This approach is used in ALPINE. It divides
From rao (Subbarao Kanbhanpati) the given problem space into different levels in which the
Message- | d: <9304151829. AA09553@ar i kal pi k. eas. asu. edu> MONOTONI CI TY property is applicable. According to this, it
To: plan-class seperates out those features (goals) of the problemthat can be

Classical Planning: A compilation of Semniar Notes (Compiled by Subbarao Kambhampati)

Page

Listing for Subbarao Kambham pa Thu Sep 23 15:05:33 1993 46
sol ved and held invariant while remaining parts of the problens are add : (clear vy)
sol ved. del e : (armenpty) (clear x)

3) The length of plan to achieve it can be directly taken as its The nunbers given above the precondtions literals are the
inportance level. But if there are many ways of acheiving a goal critical values of the precondition. i.e. critical value of
with different plan I engths, then naxi num plan | ength should be (on xvy) is 2.

(may be) taken as its inportance |level. This approach is used in
PABLO. Wi le solving the problem the goals with higher critical
val ues are solved first before |ower level critical value goals are

4) The nunber of ways of achieving a goal is taken as the inportance sol ved.
of that goal. |If there are many of ways of acheiving a goal, then
it is less inportant. In other words, the nunber of binding e.g : Consider the same goals as above : (ON A B) (ONB Q)
conflicts can be taken into consideration. e.g : | ved These two goals are given sanme critical values. these goals are so

ve

Consi der the goals are (OBJECT X) and (STEEL X) first before solving other the preconditions of goals.
Say there are 100 obj ects and one steel object. Then there are 100
ways of acheiveing (OBJECT X) and only one way of acheiving (STEEL X). R +
So (STEEL X) should be given higher inmportance (i.e solved first) tha Pl anning : | (ONAB) (ONBCQ |

n B +
(OBJECT X) / \

This approach is known as distribution. Level 2: (STACK A B) (STACK B ©)
These two
interefere with each other, these will be ordered. (OR
STRIPS : In STRIPS, steps are added only at the end of the existing you can say that, it works on (ONB C) first, then (ON A
plan. By doing this, the step which is added may undo the goal that B) by taking different goal order.
is already achieved. That is, it may not be possible to add a
step w thout undoing the previ ously acheived goal. OR the R +
goal which has been del eted has to be achi eved again. | (STACK B Q) (STACK A B) |
B LT R +
To avoid this, ABSTRI PS seperates the goals into different
I evel s where the inportant goals are achieved first. At every level, all interactions are taken care of by
working on different goal orders till all interactions
e.g. Consider the goals : (ONAB), (ONB Q are renoved.
Say, (ON A B) is achieved first. Wile working on (ON B O), Now, preconditions of (STACK B C) , (STACK A B) are
it has to undo (ON A B) in order to achieve (CLEAR B) for (ON wor ked out And the steps which are used to achieve the
BC. or it will backtrack and select different goal order preconditions of (STACK B C) are inserted before (STACK
(i.e. (ONBC, (ONAB)) B C. And the steps which are user to achieve the
preconditions of (STACK A B) are inserted before (STACK
In STRIPS, the planning order is strongly related to A B) after (STACK B Q).
execution order. i.e goal order affects the performance of
the planner. If wong goal order is chosen, palnner has to | MPORTANT : This kind of planning is done in partial ordering
backtrack to select the correct goal order ORit has to pl anni ng where
reachi eve the previously undone goal . steps can be inserted any where in the plan.
If all goals are independent of each other, then goal order But in above planning, plan to achl ve preconditions of
doesn’t matter while planning. Since, nost of the goals (STACK B C) is STRIPS pl anni ng. .e steps are are added
interfere with other goals, the order directly affects the only at the end of the plan untlII (STACK B C). Then
performance of the planner. the plan to achieve (STACK A B) is inserted after the
plan to achieve (STACK A B).

ABSTRI PS :

Therefore, above kind of abstraction is just a heuristic
In ABSTRIPS, the operator preconditions are given criticality values. in parti al order planning. This heuristic helps in
e.g. pi cking up goals fromthe open list to be worked on.

i.e. higher criticality value goals are worked out first
before lower criticality value goals are worked out.
(UNSTACK X Y)
2 2
precond : (armenpty)(clear x)(on x y)

Classical Planning: A compilation of Semniar Notes (Compiled by Subbarao Kambhampati)

Listing for Subbarao Kambhampa

Thu Sep 23 15:05:33 1993

Page
47

TWEAK : In this, steps can be inserted any where in the planning. So
above kind of abstraction is not a abstraction here. It is just
heuristic. But TWEAK may have to backtrack when a protection
is violated. i.e. a step may cone in between two steps and
it may undo the effect of previous step. There are no
protection intervals are maintained.

ABTWEAK : In this, protection intervals are maintained. i.e. no step
can be inserted between two other steps if it deletes the
effect of the previous step. It divides the probelminto
different |leves where the lower |level steps do not interfere
(undo the effect of higher level steps)) wth higher |evel
st eps.

| MPORTANT : But in SNLP, protection intervals are
mai ntained. So this kind of abstraction is also of no use.

In SNLP, Goals should be divided into different |evels based
on their inportance but not on the interactions of the
goals. e.g. hand enpty can be achieved in many ways. so this
shoul d be solved at the end. Abstraction based on the |length
of the plan to achieve may be a good abstraction in SNLP.
Probably, Abstraction based on the distribution may al so be
a good abstraction.

To be di sscussed : PABLO and DI STI BUTI ON.

Fromrao Mn Apr 19 11:45:51 1993

Ret ur n- Pat h: <rao>

Recei ved: by pari kal pi k. eas. asu. edu (4.1/SM-4.1)
id AA13188; Mon, 19 Apr 93 11:45:51 MST

Date: Mon, 19 Apr 93 11:45:51 MST

From rao (Subbarao Kanbhanpati)

Message- | d: <9304191845. AA13188@ar i kal pi k. eas. asu. edu>

To: plan-class

Subj ect: missing notes

Repl y- To: rao@suvax. asu. edu

As of now, the notes for the following two classes are not yet sent to
pl an-cl ass:

13th April (last Tuesday): Discussion of HIN planning, Critics, Forbin,
real tine planning etc.

Last class before spring break: Wap up of ADL, discussion of ADL and
partial order planning, Zeno

Whoever is in charge of these notes, please let me know as to their status

Rao

From suresh@nws318. eas. asu. edu Mn Apr 19 12:27:31 1993
Ret urn- Pat h: <suresh@nws318. eas. asu. edu>

Recei ved: from enws318. eas. asu. edu by parikal pi k. eas. asu. edu (4.1/SM-4.1)

id AA13231; Mon, 19 Apr 93 12:27:31 MsST

Recei ved: from enws322. eas. asu. edu by enws318. eas. asu. edu (4.1/SM-4.1)
id AA05794; Mon, 19 Apr 93 12:24:19 MST

Date: Mon, 19 Apr 93 12:24:19 MST

From suresh@nws318. eas. asu. edu (Kat ukam Sur esh)

Message- 1 d: <9304191924. AA05794@nws318. eas. asu. edu>

a

To: pl an-cl ass@ari kal pi k
Class Notes for 13th April

Two ways of pruning search space we have di scussed so far:

1. O der consistency Conpl exity is Q(n*3)

2. Safety (Resolving threats) This is a Constraint Satisfaction Problem

and is solved in exponential tine
There is also a third way

3. Wndow Check (in the case of tinme dependent problens)
which is a polynomi al process

used by FORBIN to strengthen consistency check

(We can see NOAH ->FORBIN as a scal e of increasing strength of
consi stency checking and decreasi ng dependence on search. NOAH
didn't have search (in the sense of backtracking on abstraction
but needed it). W should |ook at FORBIN with as nuch

care as SNLP. It is a nore practical planner, allow ng deadlines,

resources. |t also provides a different treatment of continuously changing

quantities and all ows deduction of conditions separate from action
effects. TWEAK also did the latter for STRIPS action representati on by
addi ng axionms that are separate fromactions. In FORBIN clear(x)

is 'clipped by on(y,x). ZENO also deals with full tenporal info).

Answering question on tine dependent planning, Rao expl ains:
total time =planning tine + execution tine

Dean uses deliberation scheduling to determne how long to plan.
In this case we have

total tine = scheduling tine + planning tine + execution tine.

The basic assunption of Dean's anytinme algorithmis that the utility
if the solution found i nproves nonotonically with time. |If this

can be approxi mated by a piecewi se linear function, then it is

pol ynom al process to schedul e--but we nmust be able to calculate
the utility of a conputation.

Exanpl e:

Suppose you have two conmputations Al phal and DeltalJ. Al phal
results in three solutions Al phal, Al pha2, Alpha3. Then the
utility of doing Alphal is the maxi mumof the utility of the 3, ie.

U([Al phad]) =max(U(Al phal), U(AI pha2), U(Al pha3))
but how in the beginning do you know the utility of Al phal-- this
is a problem

From AZEDC@A\CVAX. | NRE. ASU. EDU Wed Apr 21 00:13:50 1993
Ret urn- Pat h: <AZEDC@ACVAX. | NRE. ASU. EDU>

Recei ved: from ACVAX. | NRE. ASU. EDU by pari kal pi k. eas. asu. edu (4.1/SM-4.1)

id AA15506; Wed, 21 Apr 93 00: 13: 50 MST
Recei ved: from ACVAX. | NRE. ASU. EDU by ACVAX. | NRE. ASU. EDU (PMDF #2382) id
<01GX94G2AG34005A4A@\CVAX. | NRE. ASU. EDU>; Wed, 21 Apr 1993 00:10: 33 MST

Classical Planning: A compilation of Semniar Notes (Compiled by Subbarao Kambhampati)

Page

Listing for Subbarao Kambham pa Thu Sep 23 15:05:33 1993 48
Date: 21 Apr 1993 00:10: 32 -0700 (MsT) We renenber that a few classes ago it was pointed out that hierarchies
From AZEDC@\CVAX. | NRE. ASU. EDU whi ch have downward refinement property are desirable.
Subj ect: class notes, April 20 Does ordered nonotonicity guarantee downward refinement property (very
To: plan-cl ass@nws228. eas. asu. edu few hierarchies have that!) ? NO
Message-1d: <01GX94G2AG36005A4A@ACVAX. | NRE. ASU. EDU> Since the downward refinenent property is a hard problem we don’t
X-Vis-To: | N% pl an- cl ass@nws228. eas. asu. edu” expect to find many of those.
M ne-Version: 1.0 To illustrate, consider the exanple: at a higher level we have O1L Q2 O3
Cont ent - Type: TEXT/ PLAI N, CHARSET=US- ASCI | When we refine, we find out that Ol interacts with O3, so we cannot
Cont ent - Transf er - Encodi ng: 7BI T achieve either of them without rembving one, and thus we need to
backtrack and consider other alternatives.
Class notes of April 20, by Eric If we had the guarantee that there is no need to undo things, we would
have to worry too nmuch about backtracking (ordered nonotonicity reduces
Agenda: 1) precondi tion abstraction nethods: the conplexity). Nevertheless, this only nakes sense for STRIPS.
ABSTRI PS, ALPI NE, PABLO An additional conplication is introduced in STRIPS: when there is
2) HTN pl anni ng conti nued inconsistency, STRIPS cannot tell if the problemwas due to a wong

high level abstraction that was given or whether it was the refinenent
that introduced the problem By that tine it is too late already (we

ABSTRI PS already commtted to bindings, orderings, etc.), and the only thing

The idea is to put different preconditions at different abstraction STRIPS can do is backtrack. Renmenber that STRIPS had to pick one

| evel s. particular goal order (which in this case turned out to be wong), so
now anot her order needs to be attenpted. O course, undoing everything

ABSTRIPS is not concerned with the "length" of the plan; there are no is a very costly operation.

critics that tell the planner to renove plans fromconsideration

(ABSTRIPS did nention the idea of plan length, but the ideais not If we had the guarantee of ordered nonotonicity, we wouldn't have to

expl ai ned neither has been inpl enented). undo the refinenent of the operator.

ABSTRIPS is not concerned wth abstraction hierarchy generation; it In STRIPS, steps are ordered with respect to each other; SNLP postpones

presupposes soneone w ||l provide the abstraction for us. the ordering, that is, steps are kept unordered as nuch as possible.
Because of that, there may be one such ordering that, if we were using

Since STRIPS can only concatenate (that is, it cannot interleave) SNLP, woul d nake the inconsistency go away; for that reason, SNLP woul d

steps, the idea of abstraction at each | evel nmakes a |ot of difference be better than STRIPS.

for STRIPS, but would not be so interesting with SNLP.
State based planners with protection violations (like |NTERPLAN) can

(level x) oL state2 @ state3 (0¢] The pre- detect violations; note that they change drastically the nature of the
condi tions planner. In any event, all this kind of planner can do is backtrack. It
of step @ are seens that SNLP would do better than these planners, because as we have
true in state2 just noted, refinenent is better than backtracking.

(level x-1) Ola Olb

The goal order problemthat existed in STRIPS now becones the sub-goal

At level x-1 we find a plan that will nake OL true; at the |owest |evel order problemin ABSTRIPS. Dependency directed backtracking can be

of abstraction, all the preconditions will be visible; at a level i, introduced at the expense of increased planner conplexity.

the pre-conditions i, i+1, ... nwll be visible.

Al level x we know that precondition x is true, but at level x-1 we I dea: put preconditions that interact with each other at the same |evel

don't really know whether precondition x-1is true. So, we need to (i.e. clusters)

check agai n.

Wien the precondition is indeed true, we obtain a new state, resulting exanple: Cl1 wll undo C2, C1', C2

fromthe step at the level x, plus the steps that have been derived C2 wll undo C1, C1’, C2’

fromthe abstraction. Cl’ will undo C2’

C2' will undo CI’

If the state at level x-1 subsunes the state at |evel x, we can proceed the clusters are (Cl1 and C2) and (Cl' and C2')

because we are not undoing things that were done at the previous

| evel s; otherw se, we need to backtrack. We can build a graph with operators affecting one another, and draw a

strongly connected graph (a set of vertices connected through arcs);

ALPI NE (Knobl ock) this graph detects potential interactions. The algorithmconputes this

In this planner, when working on level x-1 we never undo things that in polynomal tine.

were done at the previous |evels.

This property is called ORDERED MONOTONI CI TY, and is a property of the Exanpl e (preconds) operator effects

abstraction hierarchy. Since the operators in the lower |levels do not Ccr o1 C1, 2, ~C2

undo things, we don't have to worry about backtracking (it cones free). nil o’ cr, ~C2’

nil @’ cz', ~Ccr

Classical Planning: A compilation of Semniar Notes (Compiled by Subbarao Kambhampati)

Page

Listing for Subbarao Kambhampa Thu Sep 23 15:05:33 1993 49
c2’ (07} c2, ~C1, ~C1l’ n n-1 n-1
P =P OR [for all i REGRESSION (P , 0) 1]
The graph is: --> rel rel rel i
' §/ i/ i/ In other words, if sone predicate is true, either is was already true,
2 -> c2 <- c1r’ or it beconmes so after regression. The idea is to this process for all
: -> n predicates; if a predicate becones true, say, on the 2nd |evel and on

O : the 10th level, this gives an indication that the shortest plan wll
nmeke it true on 2nd |evel.

The strongly connected graphs are: Cl->Q
<- This idea is closer to what ABSTRIPS had intended. Also note that we
may associate a distribution, that is, we may say that 90% of the tines
and ' -> Ccr the predicate is true on the 2nd level, and 10%of the tines it is true
<- on the 10th level, in which case we may or nmay not decide that 90%is
good enough and thus we accept that probability and use it for the
The next step is to separate in clusters Cl shortest plan.
VVVYV There is a problemwi th that approach when a tautology is achieved.
Ccr c This will be discussed next class.
Now we can do a topological sort of the figure above, which gives a
linear ordering; the top of the resulting list gets a high level of Fromrao Thu Apr 22 09:59:12 1993
criticality, the end gets a low | evel. Ret urn- Pat h: <rao>
Recei ved: by pari kal pi k. eas. asu. edu (4.1/SM-4.1)
Any abstraction that wuses this has the ordered nonotonicity property id AA16501; Thu, 22 Apr 93 09:59:12 MST
(this is a sufficient but not necessary condition). There are |less Date: Thu, 22 Apr 93 09:59:12 MST
constrained conditions; if we put too many links, the abstraction From rao (Subbarao Kanmbhanpati)
hi erarchy collapses and we only get one strongly connected graph. To Message- |1 d: <9304221659. AA16501@ar i kal pi k. eas. asu. edu>
avoi d that we introduce rel axations: To: plan-class
Subj ect: forwarded nmessage from Drew McDer nott
use problemspecific instead of domain specific relaxations; for Repl y- To: rao@suvax. asu. edu
exanpl e, for a given domain we have the graph
Cl <- C3 The followi ng nessage contains sone thoughts on HTN planning vis a vis
: n SNLP type planning, and comrents on it by Drew McDernott and Austin Tate.
v :
[R Start of forwarded nmessage -------
From ntdernott-drewdsS. YALE. EDU (Drew McDernott)
if we are only interested in Cl and C2 and need not consider C3, To: rao@suvax. asu. edu
this cycle does not collapse (it would otherwise), and now it Cc: ntdernott @S. YALE. EDU
satisfies the ordered nonotonicity property FOR THAT PROBLEM Subj ect: thoughts on hierachical planning, critics, transformational planning et
c.
avoid putting links to a delete |ist Date: Thu, 22 Apr 1993 12:43:13 -0400
filters/ primary effects (avoid picking operators for the wong
reasons)
if a conditionis not true, it cannot be nmde true anyway, so Date: Fri, 16 Apr 93 01:01:17 MST
don’t pick it From rao@ari kal pi k. eas. asu. edu (Subbarao Kanbhanpati)

Repl y- To: rao@suvax. asu. edu
Abstractions |like the above nay not capture what is inportant or not

(like in the exanpl e of handenpty and handful; the OM builds the graph Dr ew:
and there may not be a relation between the graph and the inportance we
know exi sts for he and hf) Recently, while "teaching" HTN planning in ny planning semnar, | had
an opportunity to think nore about the discussions on the inportance
PABLO of hieararchical planning, critics etc at the symposium The
Rat her than thinking about these links, we are interested in the length follow ng are sone thoughts on the HTN planning vs. SNLP type
of the plan pl anni ng which | am sending you in hopes of eliciting comments from
you. Most of these don’'t worry so nuch about the utility of using task
Predi cate rel axation reduction schemas, but rather concentrate on the type of search
0 phi l osophi es | ooked at in HTN type planning vs. SNLP type planning (I
P=P think that as far as task-reduction schemas is concerned, the
rel expl anation that they are part of the problem specification, is good

enough) . [**shoul d al so tal k about inproved goal |anguage]

Classical Planning: A compilation of Semniar Notes (Compiled by Subbarao Kambhampati)

Listing for Subbarao Kambhampa

Thu Sep 23 15:05:33 1993

Page
50

It seens to ne that there are differing nmeta-assunptions behind

hi erarchi cal planning and SNLP/tweak type planning that are not
general |y acknow edged, which in turn seemto lead to

m sunder st andi ngs regarding the utility of various features. A |lot of
the confusions can be traced back to the shift from STRIPS to NOAH
whi ch can be interpreted in two different ways.

The current SNLP/ TWEAK vi ew of the shift from STRIPS to NOAH has been
that NOAH wanted to avoid over-commitnent to ordering decisions of
STRIPS, and search in the space of plans, and specifically in the
space of equival ence cl asses of ground operator sequences. There is
however another conpelling interpretation of that shift that seens
little acknow edged-- NOAH wanted to splice together large, relatively
stabl e plan fragments, and once you decide to use stored plans and
splice them you may as well have the flexibility of interleaving
them rather than just concatenating them (we have a paper this tine
in AAAl on the utility of PO planning in reuse, which denonstrates
this enpirically).

| believe that this second explanation of the shift from NOAH, if
taken seriously, will explain the differences between the view of
pl anni ng taken by the great hierarchical planners, and the view of
pl anni ng sponsored by SNLP/ TWEAK f or nal i zati ons.

In particular, | think nbst of the great hierarchical planners
(starting with Noah and ending in FORBIN) have made an assunption that
the plan library contains plan fragnents that are relatively stable
and can be put together with relatively little worry about
interactions. Apart fromproviding a rationale for partial order
planning in ternms of ease of splicing, this neta-assunption al so

expl ains why they al nbst always went for a deliberative depthfirst
search reginme -- attenpting to avoid search as much as possible by
spending nore and nore time on critiquing plans in a variety of ways,
i ncl udi ng | ook-ahead and projection.

Here's a passage fromthe Conclusions of ny "Regression Planning"
paper that expresses the same point (substitute "HTN' for "nonlinear"
and "SNLP" for "linear"):

"There is not much interest in linear planners these days, but it is
hard to tell fromthe published literature why this should be the
case. A glance at the research in planning will show that nmuch of it
is still concerned with worlds as sinple as the blocks world, but that
nonlinear planning is the usual paradigm It is widely believed that
the reason for this focus is that nonlinear planning provides a way to
cut down on the search that linear planners do. 1In a sense, that iIs
true, but the blocks world is a terrible domain to denonstrate it.

The truth is that |linear and nonlinear planners are not conpeting.
The spaces searched by nonlinear planners are quite different from
those searched by linear ones. A nonlinear planner pastes together
bi g canned pl ans, postponing decisions about how those plans wll
interact. That approach nmakes no sense unl ess each of the plans is
witten in a robust way that will allowit to succeed when ot her
things are happening. That gives the planner the freedomto ignore
nost interactions. In other words, the planner is not avoiding
interactions by nmeans other than search; instead, it is presupposing
that plans have been witten so that fatal interactions are
improbable. This presupposition is false in the blocks world, where
all the difficulties are due to intricate conbinatorics in stringing

together tiny pieces of plan."

This was witten pre-SNLP, when | thought of nonlinear systens as
bei ng NOAH or SIPE-1ike, hence ny term nol ogy.

The funny part seens to be the way this particular neta-assunption
behi nd NOAH Nonlin type hierarchical planning has been sidetracked
fromthe beginning. By the tine of TWEAK, the only thing one renenbers
about NOAH is that it didn't do search, and that Nonlin added search
to NOAH. The idea that NOAH was attenpting to do deliberative DFS,
and that Nonlin had trouble exactly those times when it had to
backtrack, is largely forgotten.

In fact the devel opnent of great hierarchical planners is very much at
odds with the SNLP/ TWEAK expl anation of PO planning. For exanple, one
of the points that is often made is that STRIPS confounded pl anni ng
and execution order, and NOAH set it right by taking the search to

pl an space. I-Iomever, by the time of FORBIN and SIPE, the

consi derations of integrating planning and execution got us back to
being interested in deliberately doing planning in an order closer to
execution order! Simlarly, NOAH is criticized for not doing search,
and yet by the time of FORBIN, search is deliberately _avoided_.

These two different ways of rationalizing the shift to PO planning, in
nmy opinion, also explain why when | ooking at NONLI N SI PE/ FORBI N
through SNLP/ TWEAK gl asses, one has troubl e appreciating many of the
features of HTN planning. Consider for exanple, the work on typed
preconditions and in particul ar what have been called filter

condi tions/reduction assunptions. Collins & Pryor [aaai-92] argue, and
rightly so, that a best-first search with a reasonable heuristic can
get the sanme functionality as filter conditions eventually. O course!
In fact, | will go one step further and say that any sort of

del i berati ve pruning strategy -- be it filter conditions, |oop-pruning
or critics or projection, will be hard to justify when we expect to do
a best-first search anyway. Afterall, the erroneous branches will die
out eventually, or becone bad enough that the heuristic will

bl ack-1ist them There isn't that nuch currency in renoving the
unprom si ng branch right away.

Looki ng at the sane situation fromthe H erarchical planning point of
view, which nakes the meta-assunption of stability and expects to be
able to get by with deliberative depth-first search, pruning
strategies and critics are extrenely inportant. You are NOT
interested in nmaintaining a full search tree, and do a best-first
anyway. So, you might as well spend as nuch tinme as possible
critiquing the current plan and the pending choices before refining it
further. Fromthis, point of view, filter conditions/reduction
assunptions do provide val uabl e gui dance.

To be fair, the conpeting rationales for PO planning seemto have
confused HTN planning just as nuch as they are confusing SNLP
planners. In particular, it seens that the idea of doing chronol ogical
backtracking in Nonlin or other HTN planners is kind of msdirected.
If you are naking the assunption that plan fragnents can be put

toget her reasonably easily, and are thus doing deliberative
depth-first search, then doing undirected chronol ogi cal backtracking
at the first sign of trouble is unjustifiable. It I's nore reasonabl e
to repair the failing plan to avoid deadend, and proceed fromthere.

What is really required, it seens to ne, is a sophisticated repl anning
strategy, which will allow the planner to retract the "wong

Classical Planning: A compilation of Semniar Notes (Compiled by Subbarao Kambhampati)

Listing for Subbarao Kambhampa

Thu Sep 23 15:05:33 1993

Page
51

deci sions" and continue, when it gets into a deadend. Conbined with a

good del i berative depth first exploration of the search tree, this
strategy makes nuch nore sense than chronol ogical (or even dependency
directed) backtracking. (I think PRI AR reuse framework can be used for
this purpose -- to do intra-plan reuse, as it were; and we are
checking the effectiveness of this currently).

Now this sort of retraction is not exactly a conplete taboo for HIN
pl anners; Nonlin's dephantom zation decision is really a retraction
(in contrast SNLP will put sinple establishment in one branch and
establ i shement through step addition in another branch). The problem
of course, is that Nonlin stops at dephantom zati on, and del egates
other types of retraction to (chronol ogical) backtracking. The
strategy proposed above essentially makes a clean break with
refinenent planning.

What about O Plan-2? Does it backtrack at all, or just keep renoving
"flaws"?

Comrent s?

agree with you conpletely!

Well, | guess | wouldn't be an academic if | agreed with anyone

conpl etely.
direction fromyour observation.

Note that nmy quote above is ained in a slightly different
It seens to ne that hierarchical

pl ans ought to be witten in such a way that even with no further
planning at all they can be conjoined with other plans (although the

result may be suboptimal).
the resulting inefficiencies.

The purpose of planning is then to renove
Not surprisingly, that's how ny current

syst em wor ks.

————— End of forwarded nessage -------

----Forwarded nessage from Austin Tate:

>From Austin Tate <bat @i ai . edi nburgh. ac. uk>
To: rao@suvax. asu. edu
Subj ect: Re: comments requested: hierachical planning, critics,

transfornational planning etc.

Date: Mon, 19 Apr 93 12:44:18 BST

am just back from holiday Rao and am having a quick | ook at your nessage.

Imeditately, as you nite, | can say though that | always viewed
Nonlin (and NOAH) as wanting to splice together well worked out plan

fragnents as you note.
el ectricity turbine overhaul project planning domain.

The drive for the design of Nonlin was a |arge
Here there were

plan frangenments in the formof PERT plans already in exsistence. In
sone cases there were alnost no additional "goals" or conditions,

t hough some optional tasks coul d be included.

We were working on this

and the Interplan (linear planner for nmy thesis work on interacting
goals and "ticklist" critics on goal structure of a plan) when Earl
Sacerdoti spent sonme time with us at Edinburgh after his ABSTRI PS
wor k.

consi der the NOAH Nonlin type of planner uses "action expansion" as

the main basis of its work only doing "goal achievement” as one of its

tactics to satisfy unsatisfied conditions.

hence ny concentration on

"typed" conditions to try to get domain know edge to AVAO D this very

expensive tactic wherever posible!

Nonlin (and NOAH) work by action deconposition to |ower |evels
primarily.
| arge sub-plan already well ordered in advance and well tailored to
the environnent using trigger condition checks to select the right
sub- pl an.

O Plan even renpvesd the idea of "goals" as nodes in the plan, just
treating themas another type of condition on the ACTIONS or tine
points in a plan. Block stacking is hardly the type of domain these
systems are designed for, though they can cope on those too for smal
probl ens. They cone into their own for |arger wel constarined

know edge rich domains (such as those first started to be |ooke at in

DEVI SER) .

| also agree that Nonlin/O Plan is about AVA DI NG search by building up

constraints and doing forward projections, etc.
Typed conditions are inportant to et a domain witer provide the
know edge he has of the donain.
to avoid search that is known by the donain witer to be pointless.
| agree that dependency directed plan repair is the only sensible

strategy for the Nonlin/O Plan type of planner.

this went nuch further than the other sinple non-nonotonic types of

reversal of decision which the 1975/6 Nonline (as published in 1977 in
We have al so experinented with decision graph based

1 JCAI) could do.
dependency directed search in OPlanl. |Its just a question of the
maturity of the inplementation there, not phil osophy.

Hope these notes help in your thinkling Rao. | attach here a paper
amwiting about condition types for the DARPA planning initiative
work we are doing. | quickly took out our |ocal DARPA paper style

information, so it may not go through latex w thout editing out sone
of the local specials. Austin

%*

% * Paper on Condition Types in O Plan2

%r*

\docunentstyle [11pt,]{article}

\ proj ectdocunent {1} { The Use of Condition Types in O Pl an2}
{Techni cal Report}{TR/ 7}

\created{Austin Tate}{Septenber 12, 1992}

\lastaltered{Austin Tate}{March 23, 1993}{11: 36}

\ par ski p=6pt

\ vfuzz=30pt

\ hf uzz=30pt

\ begi n{ docunent }

\'section*{Austin Tate -- The Use of Condition Types in O Pl an2}

\section*{Abstract}

The aimof this docunment is to give a description of the use

The top level "task" even in Nonlin/OPlan can bring in a

They can then be used by the planner

Nonlin had a decision
graph in its 1977 version which allowed this (see daniels, 1982 in an
article in a book called Al: Tools, Techniques ansd Applications). So

Classical Planning: A compilation of Semniar Notes (Compiled by Subbarao Kambhampati)

Listing for Subbarao Kambhampa

Page

Thu Sep 23 15:05:33 1993

52

of condition type information to restrict search in O Plan2.
This information is provided via the donmin description |anguage
Task Formalism ({\sc tf}) to OPlan2. A definition of each
condition type used in OPlan2 is given in domain witer termns.
The way in which each condition type is handl ed by the pl anner
is docunent ed.

\'section{lntroduction to Condition Typing}

One powerful means of restricting search in a planner is to recognise explicit
precondition types, as introduced into Nonlin \cite{tate77}

and subsequently used in other systens \cite{vere8l, sipe88}.

One main formof search reduction in O-Plan is through the use of such

condi tion typing.

This technique all ows donmain know edge to be used to prune the search. It is
fed into the systemvia the Task Formalism ({\sc tf}) domain description

| anguage. The domain witer takes the responsibility for a deliberate pruning
of the space. This caused us to

adopt the term {\em know edge based pl anni ng} to describe our work.

A nore general approach, not using such domain know edge, is manifest in the
{\'sc tweak} type fornmal approach (\cite{tweak}) which necessarily includes no
search control issues. Chapman’s work therefore provides a description of the
search space, but not a specification of howto control or prune search in
that space.

Condi tion typing can be very successful but there is work to be done on how
far this technique can be developed. It is often difficult for a domain
witer to choose the correct type for a condition to nost effectively restrict
the search space while not over-indul ging and throw ng away plans which shoul d
be considered valid in the domain. |In practice, condition typing is essential
on realistic problens in order to reduce search spaces to a manageabl e |evel,
and this can be done effectively by a domain witer providing instructions to
the system about how to satisfy and maintain conditions required in the plan.

\'section{Condition Types in O Pl an}

Conditions play a greater role in OPlan than in previous systens since there
is no {\emspecial} notion of {\emgoal}. Nonlin style goals becone sinply
{\tt achieve} conditions in OPlan. Conditions are one of the nost el aborate
of all {\sc tf} statenments due to the variety of condition types identified as
bei ng necessary in O-Plan. The nain condition types are:

\ begi n{item ze}

\item {\bf only\ _use_if}
This is a filter or applicability check on the use of the schenma.

\item {\bf only_use_for_query}

conditions are used to nmake queries at a point in the plan (to instantiate or
restrict a variable in a schema). For instance to find out which block is on
top of another as in the case \{on ?x blockl\} = true. The answers returned
are context dependent and have to be treated as re-establishable at sone |later
point during planning if they become no | onger appropriate. Due to this
re-establishment property, it is inportant to wite schenmas including {\bf

onl y\ _use\ _for_query} so that they do not depend only on the initial

bi ndi ngs.

\item {\ bf supervised}
A condition is satisfied directly within the schema containing it by the

introduction of a suitable effect (or alternative effects) at an earlier point
or by the direct inclusion of an action known to achieve the necessary effect
(at sone level in the schema’s deconposition).

\item {\ bf unsupervi sed}

This describes a condition which nmust be satisfied at the required point, but
it is assumed that, in circunmstances in which the schema introducing such a
condition is used, that the condition will have been satisfied el sewhere.

\item {\ bf achieve}
A condition which can be satisfied by any neans available to the
pl anner (including the addition of new actions).

\item {\bf compute}

conditions provide the {\em O Plan2 External System Interface}. They
are not conditions satisfiable directly fromeffects within a plan. A {\bf
conput e} condition describes a requirenment which can be satisfied using
informati on froman external system (or database or user).

\end{item ze}

O her condition types can be identified but the ones above have been found to
be useful ways to extract know edge froma domain witer in a formthat can be
used to restrict search in an Al planner. The control of planner search via
condi tion types is worthy of a serious study in its own right, and could form
an ideal Ph. topic.

Condition typing allows information to be kept about when, how and why a
condition present in the plan has been satisfied and the way it is to be
treated if the condition cannot be naintained. However, use of this
information itself will alnpbst certainly commit the planner to prune sone of
the potential search space thereby |osing conpleteness of search if the {\sc
tf} witer uses an inappropriate condition type. Unfortunately this puts a
burden on the domain witer and can make domain witing a difficult job.

Condi tion typing helps direct the planning process, but it also requires the
domain {\sc tf} witer to structure the hierarchy of the tasks or actions nore
clearly. It forces checks to be nade on processes or actions which shoul d
communi cate with others ensuring they actually do advertise their results

t hrough a common vocabul ary.

\'section{Condition Types for the TF Witer}

This section presents an attenpt to give definitions of condition types in
terms of what information a domain witer providing a library of action or
pl an conponents can state, w thout know edge of how the Al planner would go
about using this in detai i

\'subsecti on*{Definitions}

\ begi n{descri ption}

\iten{the environnent]
a plan within which a schema containing the given condition may be used.

\itenfcondition satisfaction]
ensuring a condition is satisfied.

\iten{condition achi evenent]
the special case of satisfying a condition by adding new actions or expandi ng
a schema.

Classical Planning: A compilation of Semniar Notes (Compiled by Subbarao Kambhampati)

Listing for Subbarao Kambhampa

Page

Thu Sep 23 15:05:34 1993 53

\ end{descri ption}

\ subsecti on*{Condi ti on Types}

\ begi n{descri ption}

\itenfonly\ _use\ _if]

A filter on the relevance of the schema based on a statenent
in the environment which it is not anticipated will be altered
during the required range.

Al ternative wording: a necessary condition on the applicability of the schema
and one anticipated as not being refuted over the required range.

Normal Iy used to filter out non-applicable schenas.

\itenfonly_use_for_query]
A condition anticipated as being satisfied in the environnent.

Normal |y used to bind variables appearing in the condition.

\'i ten{ super vi sed]

A condition established by (one or nore alternative nom nated)
substep(s) of the schem’s deconposition.

Normal |y used to protect conditions across tinme intervals wthin
a schema.

\'i t enf unsupervi sed]

A condition which is anticipated as being established el sewhere in

the environnent in which this schema is used.

Normal Iy used to order steps in a plan to neet sequencing requirenents.
\itenfachieve]

A condition which may be satisfied by any nmeans available to

the planner (including adding new plan structure).

\itenfachi eve after $<$tine point $>$]

As {\bf achieve} but subject to tenporal restriction if new plan structure
i s added.

\ end{descri ption}

\section{Triggers on when to attenpt to satisfy a condition}

To be added in a later revision of this technical report.

\'section{Planner tactics to satisfy, maintain and re-satisfy conditions}
\subsection{O Pl an2 Condition Satisfaction and Re-satisfaction Tactics}
The Question Answerer ({\sc qa}) procedure is used in O Plan2 to establish
whet her conditions are satisfied at a point in the plan or to propose plan
state changes that may allow the condition to be satisfied at that point.
The interface to {\sc ga} is to ask:

\ begi n{verbatin}
<pattern spec.> = <val ue spec.> at <node end> using <tactics>

or (P=V at N using Tactics) for short
\'end{verbatin}

G ven a particular condition type the {\sc ga} can use any of the pernitted
tactics available to satisfy it and (where pernitted) to re-satisfy it should
it be broken by the addition of a new effect.

The following table represents the tactics to be used by {\sc qa}

ininitially satisfying a particular condition type. Deeper’’ |ever tactics
typically have greater inpact on the plan -- nmaking nore changes to

it. OPlan2 currently assunmes it is best to make no changes, then

better to only cause bindings of plan state variables, then next best to nmake
tenporal orderings or links, and then it assunes it is worst to satisfy a
condi ti on by expansion -- thus introducing new plan actions, etc. |n actual
fact, this is a sinplification. A nore conprehensive analysis of which option
is best against a plan utility measure is really required I n due course.

\ begi n{verbatin}

Tactics Avail able Condi ti on Types

|
------------------- | Only-use-i f Achi eve
Al ways | Super vi sed

|
| Onl y-use-for-query
|
Al ready- Sati sfied | ?
|
|
2

Unsuper vi sed

................... |
Al ways-w t h- bi ndi ng |
By- bi ndi ng *
Li nk- no- bi ndi ng

Li nk-w t h- bi ndi ng

) ———— e e e

r— Yy ————— ———

Expand
\'end{verbati n}
\ begi n{descri ption}

\itenf*] at the end of a band neans that the tactics above it in the band
cannot be repeated (the condition once satisfied nust be maintained).

\itenf?] in a band nmeans the tactic can be repeated to re-satisfy

a condition. |If the {\bf ?} appears only at the end of a band, this nmeans that
all tactics are used together to get all the alternatives at once, and if
mul tiple answers are possible these are noted at that tine. |If the {\bf ?}
appears in the mddle of a band (possibly at several different points), this
neans that the ‘‘deeper’’ tactics are only used if the earlier ones were
attenpted and did not produce any result. This allows, for exanple, an

achi eve condition to be noted as already satisfied at first (w t hout
generating {\emany} of the other possibilities which may be valid using the
ot her deeper tactics which can come into play later if necessary if the
conditi)on range is violated and cannot be re-satisfied with the sane
tactic).

\iten{ Expand] note that the Expand tactic is not part of the {\sc ga} systemin
OPlan2 - it is sanctioned by the {\sc ks_achi eve} know edge source if
required (due to failure of the other available tactics).

\ end{descri ption}

‘Deeper’’ level tactics within the allowed band can be used if the earlier
tactics prove unsuccessful at satisfying a condition. These can also be used
to re-satisfy a condition previously satisfied by a sinpler tactic but which
are subsequently violated (where the condition type permits this). The tactic

Classical Planning: A compilation of Semniar Notes (Compiled by Subbarao Kambhampati)

Listing for Subbarao Kambhampa

Page

Thu Sep 23 15:05:34 1993

‘‘none’’ is used to indicate that no tactic has yet been applied (and thus the
condition is not yet satisfied), and is useful for condition naintenance
wi thin the planner.

\ subsection*{O Pl an2 Current Tactics}

At present, the tactics used for condition satisfaction in OPlan2 version 1.2
differ fromthe intended tactics shown in the table above.

\ begi n{item ze}

\Vitem {\bf only_use_if} and {\bf only_use_for_query} condition types
use deeper level tactics than in the table above -- allowing linking as well.
This is due to potential linmtations of the triggering of the tine at which
condition satisfaction is attenpted in the current rel ease.

\item {\ bf unsupervised} does not repeat its tactic as allowed for above --
therefore not allowing it to be violated and re-satisfied (as the tactics
avail abl e to satisfy unsupervised conditions is used late in planning in

O Pl an2 using the default agenda priority function).

\item {\bf supervised} condition ranges are protected as stated in the schena
whi ch introduced them but O Plan2 does not at present ensure that the actual

contributor is identified and tied into the protected range. This can lead to
‘“holes’” in the Goal Structure if the TF donain witer does not

ensure the correct behaviour.

\item {\bf only_use_for_query} tries all its tactics at the same tine,
it does not try to find satisfying contributors which do not require
bindings first (as the table above allows).

\end{item ze}
\ subsecti on{ Mai nt enance Requirenments for Conditions}

The condition type gives the planner an indication of how inportant the
protected range for that condition is, i.e., how nmuch comm tnent the planner
has to preserve it. It also indicates the tactics to be adopted

if the satisfied condition protected range is violated.

\ begi n{descri ption}

\itenfonly\ _use_if] nust be maintained (it is expected to be invariant
over the required range). The schema’s inclusion would not have been
sanctioned by the filter had the condition not been satisfied when chosen.

\itenfonly\ _use_for_query] can be undone and re-satisfied at any tine.

\iten{supervised] nust be maintained (for a mninmum of one contributor)

over the required range. The schema specifically included sub-activities to
ensure the satisfaction of the condition, if these internal intentions are
broken, the schema shoul d be considered inappropriate (unless re-sanctioned in
the changed environnent).

\'itenf unsupervi sed] nust be satisfied by the end of planning. It
may be undone and re-satisfied if required.

\itenfachieve] can be satisfied by any neans available to the planner.

It can be undone in all cases except where new actions were included to
satisfy the condition by expansion. |In this case, if the condition is undone,
the initial use of the expansion nust be considered in-appropriate (unless

re-sanctioned in the changed environnent).

\itenfconmpute] ‘‘condition’’ namintenance requirenents (if any)
will be stated in the {\sc tf} {\tt conpute_conditions} statenent.

\ end{descri ption}

In all cases where a condition type which {\emcannot} be undone is violated
after it is initially satisfied, the current plan state shoul d be poi soned.

\'section{Condition Type Correspondence to Nonlin, \Sipe and ACT}

Nonlin was the first Edinburgh planner to use the Task Formalism ({\sc tf})
| anguage.

The {\sc sri} \Sipe planner also includes support for a nunber of condition

types. A devel opnent of the \Sipe donmin description | anguage to link to work

on the {\sc sri} {\sc prs} Procedural Reasoning System reactive execution

{stjpport }syst emis now underway to create a shared domain description | anguage
sc act}.

This section shows the correspondence between Nonlin, \Sipe and {\sc act}
condition types and those used in O Plan2 {\sc tf}.

\ begi n{ descri ption}

\itenfonly_use\ _if]
This Is the same as Nonlin’s {\bf usewhen} (originally called {\bf holds}).
It is also the sane as a {\bf precondition} in either \Sipe or {\sc act}

\itenfonly\ _use\ _for_query]
I'n Nonlin and \Si pe, such conditions were part of the {\bf usewhen} or {\bf
precondi tion} respectively and not treated separately.

The re-establishment of the condition if it could not be maintained with the
original contributor(s) was not possible in Nonlin or \Sipe. That is, they

treated a query condition in the sane way as an {\bf only\ _use_if}, except

that it was assuned that variables woul d be bound by satisfying it.

As in OPlan2, in {\sc act} {\sc sri} have chosen to separate these for
clarity -- it is called the {\bf setting} in {\sc act}.

\'i t en{ super vi sed]
The same as a {\bf protect-until} in \Sipe and {\bf require-until} in {\sc
act}.

\'i t enf unsuper vi sed]
\'Si pe introduced an {\bf external} condition to give this capability.
In {\sc act}, this is called {\bf wait-until}.

\itenfachieve at
There is no equivalent in Nonlin, \Sipe or {\sc act}.

\itenfachieve at N after $<$tine poi nt $>$]

The same as a {\bf goal} in the expansi on/deconposition part

of a schema in Nonlin and \Sipe. In {\sc act} it is called {\bf achieve}.
\ end{descri ption}

\'section{Condition Types -- KRSL Consi derati ons}

Classical Planning: A compilation of Semniar Notes (Compiled by Subbarao Kambhampati)

Listing for Subbarao Kambhampa

Thu Sep 23 15:05:34 1993

Page
55

The foll owing notes were prepared in discussions between Nancy Lehrer (ISX),
Drew McDernott (Yale University) and Austin Tate at the San Antoni o workshop
of the DARPA-Rone Laboratory Planning Initiative in February 1993. They show
how condition types can be characterised with respect to KRSL.

\ begi n{item ze}

itemFilters:

egi n{item ze}

item Applicability information.
item Mist be satisfied before this point in the plan.
i tem Cannot cause reordering |inks.

item Cannot cause plan expansion.

i tem Cannot be undone at point where satisfied.
sual ly cannot be altered at all -- invariant).
item {\bf only_use_if} in O Plan2.

item Appears in high |level KRSL:plan definition.
nd{item ze}

\itemPreferred (‘“Filters’’) Conditions:

\ begi n{item ze}

\item Preferred applicability information -- condition/utility pair.

\item Sane as filters but conditions only "preferred" to be true.

\item Used for finer-grained sub-plan applicability.

\itemno direct analogue in O Plan2 (except via {\bf prefer_schemas} {\sc tf}
statenment and ordering of schemas in TF)\footnote{O Plan2 {\sc tf} has
preference informati on appear in separate TF forns, not
conditions.}.

\item Appears in high Ievel
\end{item ze}

mxed up with filter

KRSL: pl an definition.

\item Paraneter Binding Constraints:

\ begi n{item ze}

\'item Par anet er binding constraints.

\item Cannot cause reordering |inks.

\item Cannot cause pl an expansion (new goals posted).
\item {\bf only_use_for_query} in O Plan2.

\item Appears in high | evel KRSL:plan definition.
\end{item ze}

\'i tem Supervi sed Conditions:
\ begi n{item ze}

\item Must be achieved as an effect of this sub-plan or its | ower
| evel deconpositions.

\i tem Cannot cause new tenporal reorderings.

\item May be achi eved by plan expansion wi thin the sub-plan.
\item Appears as a deconposition node of a KRSL:plan definition.
\item Tenporal ordering is triggered by including the node in the
tenporal graph.

\end{item ze}

\'i tem Unsupervi sed Conditions:

\ begi n{item ze}

\item Must be satisfied by an effect of a different sub-plan.
\item Can cause tenporal reorderings.

\item Cannot cause plan expansion (i.e., cannot post a goal).
\item Tenporal ordering is triggered by including the node in the

tenporal graph.
\item Appears in deconposition graph of KRSL:plan definition.
\end{item ze}

\'item Achi eve:

\ begi n{item ze}

\item Can be achi eved by any neans:

\ begi n{i teni ze}

\itemeffect of this sub-plan or any other sub-plan.
\itemordering link within this sub-plan or between sub-plans.
\item posted as new goal .

\end{item ze}

\'item Appear as deconposition node in a KRSL: plan definition.
\item Tenporal ordering is triggered by including the node in the
tenporal graph.

\end{item ze}

\end{item ze}
Suggest ed usage in KRSL:plan (provided by Nancy Lehrer 20-Mar-93):
\ begi n{verbatin

(ks: define (plan <plan-nane>)

cfilter <condition>
cpreferred-filters ((<condition> <utility>)*)
: par anet er - bi ndi ng <condi ti on>

décon"posi tion
(:nodes ((:1abel <node |abel >

{:supervised | :unsupervised | :achieve} <condition>
oY)

L)
:graph (:and
<t enpor al
))

\'end{verbatin}

rel ati on>*

Exanpl e (provided by Nancy Lehrer 20-Mar-93): a plan to put two specified

bl ocks on any red block. ‘‘AT Notes'' below show cases where the usage does
not correspond to the framework for condition types and their intended
definition as established in this paper.

\ begi n{ver bati n}
(ks: define (plan red-three-bl ock-tower)
cparaneters ((x :type—restriction bl ock :properties (:input))
(y :type-restriction block :properties (:input))
(z :type-restriction block)
:filter (:and (clear ?x) (clear ?y))
75y (clear ??) cannot be a filter - AT Note
: par anet er - bi ndi ngs (color ?z 'red)
: deconposi tion

(:nodes ((:1abel clear-z
rachi eve (clear ?z))
(:1abel nove-x

superw sed (rmove ?x ?z))
;55 action name cannot be supervised condition - AT Note
;5. must be a world statenent.
(:1abel nove-
:supervised (nove ?y ?Xx)))
;;; action nane cannot be supervised condition - AT Note
:graph (:and

Classical Planning: A compilation of Semniar Notes (Compiled by Subbarao Kambhampati)

Listing for Subbarao Kambhampa

Thu Sep 23 15:05:34 1993

Page
56

(interval -before (tinme-of clear-z) (tinme-of nove-x))
(interval -before (tinme-of nove-x) (tinme-of nove-y)))))

\'end{verbatin}
\ begi n{t hebi bl i ogr aphy} {99}

\ bi bi ten{tweak} Chapman, D. Planning for conjunctive goals.
{\emArtificial Intelligence Vol. 32, pp. 333-377, 1987}.

\bibiten{tate77} Tate, A. GCenerating project networks. {\emIn procs. {\sc
ijcai-77}, 1977}.

\bi bi ten{vere81} Vere, S. Planning in tinme: w ndows and durations for
activities and goals. {\em{\sc ieee} Transactions on Pattern Analysis and
Machine Intelligence Vol. 5, 1981}.

\ bi biten{si pe88} WIlkins, D. Practical Planning. {\em Mrgan Kaufnan, 1988}.

\ end{ t hebi bl i ogr aphy}

\ end{ docunent }

>From i hri g@nws318. eas. asu. edu Wed Apr 28 15:15:17 1993
Ret urn-Pat h: <i hri g@nws318. eas. asu. edu>
Recei ved: from enws318. eas. asu. edu by parikal pi k. eas. asu. edu (4.1/SM-4.1)
id AA26597; Wed, 28 Apr 93 15:15:17 MST
Recei ved: from enws323. eas. asu. edu by enws318. eas. asu. edu (4.1/SM-4.1)
id AA05329; Wed, 28 Apr 93 15:11:45 MST
Date: Wed, 28 Apr 93 15:11:44 MST
From ihrig@nws318. eas. asu. edu (Laurie |hrig)
Message- | d: <9304282211. AA05329@nws318. eas. asu. edu>
To: plan-class@ari kal pi k
Notes for April 22 Laurie H 1lhrig
Two Types of Learning:
Anal yti cal Learning (Speedup Learning)
-l earned know edge is in deductive closure of what is already known
-associated with an inprovenent in performance eg. plan reuse

I nductive Learning
-l earned know edge is not in the deductive closure of what is known
-very hard in general

Abstraction: Methods of Automatically Constructing Predicate Heirarchies
l.a Predicate Relaxation
-successive regressions of predicate over all actions in domain
-purpose is to assign an inportance to a predicate
-determnes the length of the plan to attain a condition
ieif nth level of relaxation is a tautol ogy
then the length of the planis n

0

P =P

rel

1

P =PV Reg (P , 0)

for all operators O i

n n-1 n-1
P = P \Y Reg(P , 0)
rel rel for all operators O rel i
i

-the nunber of disjuncts grows with the |evel
-if you have ADL operators you have tidy regression operators since
Reg (PVQ = Reg(P) V Reg(Q
1.b An exanple of Predicate Rel axation
0

he = he
rel
1
he = he V Reg (he, putdown) V Reg (he, stack)

(the regression of he over pickup is F, therefore ignore it
-al so ignore unstack)

Since the precondition of putdown(x) is holding(x), and the precondition
of stack(x,y) is holding(x) "~ clear (y), the above sinplifies to:

There exist x,y such that

1
he | = he V holding(x) V (holding(x) * clear(y))
re

Since he V holding(x) is a tautology, the length of a plan for he
is 1.

On the other hand, on(P,Q never becomes a tautol ogy-this neans there
are infinitely long plans for on(P, Q.

1.c Thoughts on Predicate Rel axation

Hard to achieve predicates (ones with |longer plans) are considered nore
important (and should be worked on first).

The nethod above gives the |ongest plan that will be needed to achieve a
condition. However, this analysis does not take into account the
interacti on between subgoals. This neans that the actual plan may take
longer. It also reflects only the length of the search space, not

the breadth.

I't might be argued that the length of the plan is not what abstraction
shoul d be about. For exanple, it could be the interaction between
subgoal s shoul d be taken into account.

2.a Exanple from machi ne-shop donai n:

Oper at or Shape(x)

Precondi tions bj ect (x), not Fastened(x)

Effects Shaped(x), not Drilled(x), not Painted(x)
Qper at or Drill(x)

Classical Planning: A compilation of Semniar Notes (Compiled by Subbarao Kambhampati)

Listing for Subbarao Kambhampa

Thu Sep 23 15:05:34 1993

Page
57

Precondi tions bj ect (x), not Fastened(x)
Effects Drilled(x), not Painted(x)
Oper at or Fast en(x)
Precondi tions oj ect(x), Drilled(x)
Effects Fast ened(x)
Oper at or Pai nt (x)
Precondi ti ons Obj ect (x), Steel (x)
Effects Pai nt ed(x)

Shapi ng renpves paint or drilled holes and requires that the object be
unfastened. Drilling also renpves paint and al so requires unfastened.

Fastening requires drilled. Painting is possible only for steel objects.

2.b Knobl ock’ s Mechani smfor Predicate C assification

According to Knobl ock’s technique, we construct a graph where nodes are
clauses (conditions) and the edges are added as foll ows:

Take the goal of the planning problem Suppose that a goal clause

mat ches the effect el of the operator O Then add a directed arc from
el to each of the other effects of the action and to each of its
preconditions. Repeat for each goal and each precondition.

The strongly connected conponents of the graph (SCCs) define groups
of clauses that are assigned the same level in the heirarchy.

Suppose the operators are as above, and the goal is:
Shaped(x), Fastened(x), Painted(x).
The resulting graph is:

————————— Shaped(x)—————————
/ \
V -> V
/ Drilled(x) <- Fast ened(x) \
| \ /
\ \Y \ / /
> Painted(x) | | /
I\ \Y \ /
V. > bject(x) <

St eel (x)
According to Knobl ock, the heirarchy is:

Shaped(x)
Drilled(x) Fastened(x)
Pai nt ed(x)

and Shaped shoul d be worked on first and Painted |ast.

Thoughts on Knobl ock’s Met hod:

In the situation where only one of nany objects is steel,

Pai nted(x) is the nost difficult goal to satisfy, and to be efficient
the planner should work on it first. Oherwise x will be bound
prematurely to objects which are not steel resulting in needless
backt r acki ng.

Knobl ock’ s heirarchy is really only good for Iinear planning,
since it lessens the amount of backtracki ng caused by subgoal
interaction, but is probably useless for PO planning.

In general, we should work on goals that result in |ower branching
factor first, since this nmeans | ess backtracking.

Al so, we should work first on

goals for which there is only a small nunber of ways to achieve
them (eg. only a few objects are steel and can be painted). this
results in early pruning of paths.

It becones obvious fromthe above anal ysis that the generation of
a precondition abstraction is particular to the domain and woul d
have to be prespecified or |earned for each donmain.

From gopi @nws318. eas. asu. edu Thu Apr 29 16:47:35 1993
Ret ur n- Pat h: <gopi @nws318. eas. asu. edu>

Recei ved: from enws318. eas. asu. edu by pari kal p| k. eas.asu.edu (4.1/SM-4.1)

id AA27829; Thu, 29 Apr 93 16:47:35
Recei ved: by enws318. eas. asu. edu (4.1/SM - 4. 1)

id AA06249; Thu, 29 Apr 93 16:44:03 MST
Dat e: Thu 29 Apr 93 16 44: 03 NST
From gopi @nws318. eas. asu. edu (Bul usu Gopi Kumar)
Message- 1 d: <9304292344. AA06249@nws318. eas. asu. edu>
To: plan-cl ass@ari kal pi k

UNCHARTED TERRI TORY

1) TASKS
2) TIME MAPS
3) PROJECTI ON PROBLEM

Classical View O Planning

Classical view of planning is very limted ! A nore general planning
probl em shoul d be | ooked at. G ve a nodel of planning :

-> Can you pose a given problemto your planner ?
EPI STEMOLOGI CAL ADEQUACY
-> Can you solve this problemefficiently ?
HEURI STI C ADEQUACY
Task based nodel of planning, to a certain extent, satisfies the first

of these questlons It also to a certain extent, covers the kinds of
pl ans cl assical planners can represent and sol ve.

Classical Planning: A compilation of Semniar Notes (Compiled by Subbarao Kambhampati)

Listing for Subbarao Kambhampa

Thu Sep 23 15:05:34 1993

Page
58

The GOAL LANGUACE of a pl anner deci des the epistenol ogi cal adequacy of
the planner. W will now see the goal |anguage of classical planning :
GOALS : Assertions on state descriptions
ACTIONS : State changers
The framework of classical planning views planning as described above.
Pl anni ng problemis thought of as being going frominitial state to
the goal state. Various classical planners differ in HO Wthey
organi ze the search to solve the problemand N O T in the way they
|l ook at the problem O R in what kind of problems it can solve. Based
on these we have classical planners, which are organized as :
-> STATE BASED PLANNERS (STRI PS)
-> PLAN BASED PLANNERS (Refine a plan till it is correct)

The plan based pl anners thenselves are further classified as

-> TOTAL ORDERI NG PLANNERS
-> PARTI AL ORDERI NG PLANNERS
and
-> PARTI ALLY | NSTANTI ATED PLANNERS
-> TOTALLY | NSTANTI ATED PLANNERS

Havi ng tal ked about goal |anguage of classical planners, and as to why
all kinds of classical planners have the sane goal |anguage, a few
goals (IN ENGLI SH) can be considered, and we can see whet her these
can be represented in the goal |anguage of classical planners.

-> Put a red block on top of a green bl ock.
--> ON (X, Y) ~ GREEN (Y) ~ RED (X)
-> Put Aon B, renove A fromB, then put A on C

--> NO we cannot represent this in the goal |anguage
of classical planners !

The reason why we coul d not express the second goal in goal |anguage
of classical planners is because, the above goal in sone sense talks
about the behaviour of a plan, rather than asserting sonething about
sone state.

HTN PLANNI NG

[Refer to Chapter 9 of Charniak & Mc Dernott]

HTN pl anning takes a different view of planning, here planning is not
achieving a state, which satisfies certain assertions, but it is
reducing a task into sub tasks till the plan consists of only
primtive tasks.

THE HTN PLANNI NG ALGORI THM

* Pick a task, if it is primtive do nothing
* Pick a method fromthe library

* Apply it, (Reduce)

* Project the effects of the new tasks

* Consider task interactions

* Repeat fromstep 1

I'n the above procedure there is no direct truth criteria to judge the
correctness of the plan ! But tasks do have effects, but these are
used to check interactions. There are various kinds of interactions
whi ch can be sumarized as follows :

1) Reduction Assunptions

Wien a task is reduced, there nay be certain assunptions nade, when
these are violated by the reduction of sone other task, we have
interactions which have to be dealt with !

exanple : gl Bonb airport
g2 Get out by plane

One effect of achieving gl is Delete Airport
AND one Reduction Assunption for g2 is "Airport present”

Now there is an interaction between gl and g2, and this has
to be resol ved

2) Protection Violations

If on (A, B) is achived by a task, and sone other task renpves this
effect, we see an interaction. There is no difference between 1 & 2
fromthe view point of a planner |ike TWEAK. In HTN pl anning MIC can
be used to validate only part of the plan, overall correctness is
dependent on the task reduction (Wich cannot be checked by the

pl anner)

3) Projection Violations

I'n HTN pl anners, what assertions are present over which tine is stored
by a tinme map nmanager. These then can be found by using the tine
manager. Wen a task is projected a few assunptions can be nade, if
later these assunptions are violated, the task should be reprojected !

Finally, to the extent the methods are correct, the plan is correct if
all the above interactions are taken care.

Further references : Mc Dernott : Planning & Acting

Classical Planning: A compilation of Semniar Notes (Compiled by Subbarao Kambhampati)

Listing for Subbarao Kambhampa

Page

Thu Sep 23 15:05:34 1993 59

- Causal theory
Exanpl e:
If holds(tl, t2, p) and occurs(t3, t4, e) and subsunm([t1,t2],[t3,t4])
Then clip(p’, t4+d)

This means after t4+d, p’

is no longer to be true.

To infer about time, we need to deal with the relation between given tine
From wt sai @nws320. eas. asu. edu Tue May 4 16:35:34 1993 intervals. There are 13 relations defined by Allen’s interval |ogic.
Ret urn- Pat h: <wt sai @nws320. eas. asu. edu>
Recei ved: from enws320. eas. asu. edu by pari kal pi k. eas. asu. edu (4.1/SM-4.1) - Time map managenent (TMV)
id AA03184; Tue, 4 May 93 16:35:34 MST
Recei ved: by enws320. eas. asu.edu (4.1/SM-4.1) Atinme map is a permanent database of state and event tokens. Tine map
id AA25614; Tue, 4 May 93 16:28: 06 MST manager manages the database and answer queries. |t only considers
Dat e: Tue 4 May 93 16: 28: 06 MST discrete time point or interval.
From wtsai @nws320. eas. asu. edu (Wan C. Tsai)
Message- | d: <9305042328. AA25614@nws320. eas. asu. edu> To answer the query, either TWMfinds the effect in the database, or it
To: plan-class@nws228 perforns projection.
Notes for the O ass of Planning Semi nar on Apr. 29, 1993 Foo--- - +
Witten by Wan- Chu Tsai | Golas |
T T LR T T + Fomman +
| L | N
* Time dependent pl anni ng | | Tenpor al Dat abase |\ | |
| A +e-- - + | ?2(p, t1, t2) H+--------- +
A realistic planner has to deal wth tenporal information which interact | >| TMM | | <----mmmemeaa - | Planner |
with external world. The followi ng exanple is a reasonabl e planning, but [+ [- + | e +
can not be solved (or cannot be solved w thout using specially [Causal Theory |/ | |
domai n- dependent know edge) by a STRIPS or other planners we have tal ked [e + | \%
about so far. For e + e +
| Li brary |
Initial state : Blocks A, B, C are on the table. | Task Reduction Fornul as |
Goal state : Pick block A put on block B, and then put on block C R
The tenporal constraint is the difficult part to be nodelled. O her TMM checks to see if the query is true. Wen doing projection, it keeps

nodel | ing | anguage that is suitable for representing this kind of
tenporal information is needed.

- Projection (Definition from MDernott & Charni ak)
is true at another.

(1) The inference fromwhat is true at one tinme to what

checking and takes care of the projection violation problem
TD i s projected.

Li brary contains information of task reduction as well
shoul d be put together.

The interval can be constrainted so that parallelismcan be done.

as how subt asks

(2) The nmintenance of and retrieval froma databese of such inference. - Algorithm
Projection is not used to nake sure the plan is correct. It is only used to (1) Select a task.
make sure sonme effect is true within some interval.
(2) Using the query, todo(what, when, how), try to find sone nethod ' how

- Tenporal database

A predicate cal cul us database whose el enents are of the formf(tl, t2, p). (3)

Thus, holds(tl, t2, p) means p is true fromtime tl to time t2,
occurs(t3, t4, e) nmeans e occurs during time t3 and tinme t4.
p and e could be actions or events.
(4)
The difference between action and event is that action is initiated by the
planner, i.e. it is intentional, while event could be accidental.
Tenporal database does not distinguish action fromevent. It only provides
the answer to a query : whether or not some particular predicate p is true
at sonme particular point.

(5)

for carrying out the task found in step 1.

If the query specified in step 2 fails, try adding constraints to
restrict the ordering of the existing tasks. This may trigger rules
pernmitting the 'todo query to succeed on the next attenpt.

If the query specified in step 2 fails even after trying various

addi tional constraints, try renmoving one or nore of the existing tasks
along with all associated protections and other constraints.

Be careful to reinstate the original supertask.

(Dependency has to be taken care of.)

If step 2 through step 4 fail to produce an applicable nmethod, return to

Classical Planning: A compilation of Semniar Notes (Compiled by Subbarao Kambhampati)

Listing for Subbarao Kambhampa

Page

Thu Sep 23 15:05:34 1993 60

step 1 and try another task.
(May require heuristics.)

(6) If the query succeed, mark the original task as reduced and add the new
"how task or plan to the database, along with any specified constraints
and protections.

(7) Upon effecting the reduction, TEMPLOG wi || have updated the datebase
using the projection and persistence clipping algorithm and the
projection rules that describe the effects of selected actions. Check
to see if any protections are violated by the addition of the new tasks.
(NP-hard problem the heart of TMV)

(8) If any protections are violated, resolve the violation by either
reordering or renmoving one or nore of the existing tasks.

(9) Go to step 1.
Not es :
- This algorithmallows renpving anything.

- In the real
reversabl e,

world, planner is likely to choose the nethod that is
rather than optimal.

- Assertion (By TWMto TD)

reduction assunption(...)
holds(...)

occurs(...)
protection(...)
begin(...) <= end(...)
reduce(t1,
projection assunption(...)

- Assertion includes future assertion
- dip is procedual

If holds(tl, p) and clips(p, t2)
Then del ete holds(t1, p) and
add holds([t1,t2], p)
- Consistency checking is hard in tenporal database.
- Tenporal planning can deal with real-world problem such as the exanple
given in the beginning.
- In real-world, planning and executing are usually in parallel.
How can the planner do such that the execution can start as early as
possi bl e?
Al'so, the order of execution needs to be considered to inprove
per f or mance.

- Recursive task is allowed.
Exanpl e :
t odo(Achi eve(enpty Truck))

pl an((unl oad-iten(Truck), Achi eve(enpty Truck)
[end(1) <= begin(2)])) <-

hol ds(end(k), ~enpt y(Truck))
* Persistence
then this will be

- Assune persistence is a rule, if nothing el se happens,

true. But how | ong?
- In real world, persistence can not be guaranteed.
Exanpl e : Yal e shooting problem
Gun | oaded
10 ----mmmeeia e >
@Qun pointed at Fred
tLl mome >
Gun is fired
£2 co - >
[T >
Query : |Is Fred dead at t3?
In closed world, the answer is yes, but in real world, the answer is
unknown. There could be nmany situations happening so that Fred is not
dead. But by default, he is dead.

Pl anni ng usual |y assunes cl osed world environnent.

- To apply default reasoning,
causal theory : If

add one nore predicate 'nothing_is_abnormal’ to

and nothing is abnornmal Then ...

Usi ng default reasoning can solve the real world problem

- In STRIPS, if pis trueinthe initial state, then it cannot be false,
because the initial state is fixed. Here, pis true is based on the current
know edge of the planner, if the know edge supports p, then p is believed to
be true.

- Projection assunption
Wien to commit? Should it nly answer the query based on current
or should it make assunption to conmit, and conplete the projection,
later on, may undo the committnent?

know edge
whil e

From gopi @nws318. eas. asu. edu

Ret ur n- Pat h: <gopi @nws318. eas. asu. edu>

Recei ved: from enws318. eas. asu. edu by pari kal pi k. eas. asu. edu (4.1/SM-4.1)
id AA20147; Mon, 17 May 93 18:29:44 MST

Recei ved: by enws318. eas. asu. edu (4.1/SM-4.1)

Mon May 17 18:29:44 1993

id AA00569; Mon, 17 May 93 18:25:52 MST
Date: Mon, 17 May 93 18:25:52 MST
From gopi @nws318. eas. asu. edu (Bul usu Gopi Kumar)

Message- |1 d: <9305180125. AAD0569@nws318. eas. asu. edu>
To: plan-class@ari kal pi k

Subj ect: Execution nobnitoring ...,
Cc: gopi @nws318. eas. asu. edu

cl ass notes

Al PLANNI NG 5-4-93

Classical Planning: A compilation of Semniar Notes (Compiled by Subbarao Kambhampati)

Listing for Subbarao Kambhampa

Thu Sep 23 15:05:34 1993

Page
61

AGENDA
| NTEGRATI NG PLANNI NG AND EXECUTI ON

| NTRODUCTI ON

Even though plans are planned yo be executed, it may not always be
true, for eexanple a plan may be made to just check the feasibility of
a solution. In short planning and executi on need not necessarily be
integtrated.

Ram fications of integrating planning and execution

1 EXECUTI ON MONI TORI NG

If there is a plan of action, even before reaching goals state, an
assessnment can be made as to the progress of the plan, by |ooking at
current state of the world anc conparing it with soeminternediate
state in the plan.

2 REPLANNI NG

To the extent the plans nodel of world does not conpletely reflect the
real world, it is possible that a plan mat not be actually executable,
and in fact may fail. Cearly, the probability of plan failure depends
on the correctness of the plans nodel of the world. A few reasons for

such a failure may be

* A precondition which was not nodel ed
* A conditional effect not nodel ed
* Presence of, extraneous unnpdel ed events in the world
In any case the failure can be dealt with in tw ways
* Taking the new situation as a new pl anni ng probl em
* Modifying the current plan, this is termed as REPLANNI NG

Infact the second way will be the only choice left if there are other
agents, and (1) the agent with the failed plan has commtted certain
things to the other agents based on his current plan, or (2) if these
ot her agents have made their own plans based on the current agents
plan! Therefore replanning will be the only way to achieve inter agent
efficiency. (Choice one may achieve intra agent efficiency, in the
second)

3 TI ME DEPENDENT PLANNI NG

If the world changes so fast that it just does not nake sense to plan
off-line (because by the time the plan is nade the world changes !),
then planning is to be done on-line, and is terned as reactive
planning. Often the next action should be taken in a constant bounded
time. Thus a question arises as to how nuch tine the planner should
spend before giving a plan, if it thinks too nuch, the deadline nay
pass and the planner may not be deliver any useful plan, if it makes a
decision too fast, there is a chance it did not make the best possible

solution in the available time. An interesting nodel of a reactive
pl anner whi ch avoids this problemof neta-reasoning is as follows :

GOALS
|

eme e e e eeeeeeeaaaaaa B - +
| | |
| +----- + +o-- - - V----- +
[P | S-to----- ENVI RONVENT
|] L N | REACTOR | |
| | AE[------- >|
| | NR] | [---4-----> ACTION
| +----- + Fommemmanaas + |
e oo +

The reactor decides the next step based on sone strategy and is

i ndependent|ly conpetent, in the sense it makes progress left to
itself. The planners responsibility is to inprove overall chances of
success over a longer time. Thus the problem of neta reasoning is

sol ved. The reactor always takes some decision in tinme, however if the
pl anner conmes up with a better solution, the reactor may consider it.

HI STORY

STRIPS had a data structure called TRIANGLE table. After the plan is
made, if the initial state Ip of the plan is not the sane as the real
initial state Ir, then STRIPS could look, if Ir corresponds to sone
intermedi ate state of the original plan li. If this is true, then the
rest of the plan starting at that state is executed. TRIANGLE tables
provi ded an easy way of checking if Ir matches with sone Ii.

(Basically Ii of a step, would be the e-conditions(step) + p-conditions(step))

SUBSUMPTI ON' ARCHI TECTURE

This is simlar to the concept of an individually conpetent reactor. Having a
goal basically constrains the choice available to an agent. An agent is built
with mnimal conpetence at the base, over which nore and nore conplicated
layers are built. Thus even if a higher |layer does not know how to tackle a

situation, catastrophes are avoi ded because the base |ayer is still an
i ndependent |y conpetent reactor.

REACTI VE PLANNI NG ARCHI TECTURE

Classical Planning: A compilation of Semniar Notes (Compiled by Subbarao Kambhampati)

Listing for Subbarao Kambhampa

Page

Thu Sep 23 15:05:34 1993

62

|<---] SCR's |<------
| Executor | --------- | Proj ector |
_____ PEREE S
SENSOR | |
--------- e

SCR == SI TUATI ON CONTROL RULES

The projector proects an actions, sees if sone catastrophic failure occurs then
prowdes a rule to the reactor in the form"In this situation don't do this
action". Reactor does default actuons, but if a SCRis present, it will avoid
cat astrophes.

Imagi ne three slots 1 2 3 and probl em of placing blocks a,b,c in these slots,
the goal is to place a, b, c in slots 1, 2, 3 respectively, operators are

pl ace an extreme block (1,3) place and place and sweep interior blocks from
left "lIplace", fromright "rplace"

Av - Avail able
Av(a) ™ av(b) ”~ free(l) ™ free(2) ===> {~ place(A 1)}

Because, if a is placed, there is no way b can be placed in slot 2
If conplexity of conputation is of not prine inportance a network of

actions and the preconditions can be constructed --> PLAN NET.

If a plan net is executed in all possible ways a finite state graph
results. The edges that |lead to non goal nodes, w thout outgoing
edges are to be avoided. |If there is a failure path and atleast one
success path, it is a critical choice point hence rules have to added
to avoid the failure paths. However it may not be possible to conpute
the projection of a plan net. Therefore the SCR s have to be |earnt
incremental ly from experience.

From AZEDC@ACVAX. | NRE. ASU. EDU Sun May 16 23:12:41 1993

Ret ur n- Pat h: <AZEDC@\CVAX. | NRE. ASU. EDU>

Recei ved: from ACVAX. | NRE. ASU. EDU by pari kal pi k. eas. asu. edu (4.1/SM-4.1)

id AA18891; Sun, 16 May 93 23:12:41 MST

Recei ved: from ACVAX. | NRE. ASU. EDU by ACVAX. | NRE. ASU. EDU (PMDF #2382) id
<01GY9DVCCHVK0027XF@\CVAX. | NRE. ASU. EDU>; Sun, 16 May 1993 23:09: 24 MST

Date: 16 May 1993 23:09:24 -0700 (MST)

From AZEDC@ACVAX. | NRE. ASU. EDU

Subj ect: Cass notes May 6

To: plan-class@nws228. eas. asu. ed

Message- | d: <01GY9DVOC?—|VM)027XF@\CVAX I NRE. ASU. EDU>

X-Vns-To: | N% pl an- cl ass@nws228. eas. asu. edu”

M ne-Version: 1.0

Cont ent - Type: TEXT/ PLAI N, CHARSET=US- ASCI |

Cont ent - Transf er-Encodi ng: 7BI T

Notes for the class of May 6, 1993 by Eric

(no specific agenda)

Poi nt #1: Gopi’'s question concerning the goal the order in

which we attenpt to address the goals):

ordering (i.e

Does it make sense to keep disjunctions of refinements together (in other

words, to allow disjunctions to sit in the nodes of the search space) ?
Exanpl e:
+c
sl -> s2
-C
s3
Here, say in SNLP, we would have either s3 < sl or s2 < sl (in other
words, we resolve that anbiguity on the spot). CGopi's idea is to have
(s3<s1) #OR#(s2<s1).

Turns out this is not a good idea. If we allowthat, we are throwi ng the
conplexity into the search space; the cost per node increases. Al ow ng
disjuncts is like allowing a set of orderings, and in that case the cost

(for instance, of checking nodal truth criteria) increases).

Another point is that if we are looking for a solution rather than the
optimal solution, this is probably not a good idea.

We thought of PO planning for efficiency reasons and search space
consi derations. These notivations still hold here; it may be the case

though that for some domains we nmmy enpirically prove that there are

efficiency inprovenents by all ow ng disjuncts.

Poi nt #2: 1n behavior planning, MIC cannot be checked. Hi story checki ng may
be interesting for Decision Theoretical planning, where we check for a

level of satisfaction of goals rather than a predicate that can only be
true or false; for exanple, we could pick some goal which nmaxinzes a given
utility.

For that, we need sonething simlar to MIC, but in this case we talk of

plan history instead of truth criterion.

Things in the area of planning that have not been discussed in this
sem nar:
Pl an | earning, EBL, reuse, derivational anal ogy
Reactive planning, tinme dependent planning
Schedul i ng
Applied problens: nmotion planning, assenbly plan, process plan (all
useful in robotics)
Areas of interest in notion planning:
. nobi | e robots
find path, manipulation
Poi nt #3: nobile robots that navigate in uncharted territory; confidence

increases as the distance to the goal decreases.

Sensor information is critical, and dealing wth uncertainty is very

Classical Planning: A compilation of Semniar Notes (Compiled by Subbarao Kambhampati)

Page

Listing for Subbarao Kambham pa Thu Sep 23 15:05:34 1993 63
inportant. Also critical are notions such as tine to act versus time to Recei ved: by pari kal pi k. eas. asu. edu (4.1/SM-4.1)
plan, etc. id AA25865; Wed, 28 Apr 93 01:53:22 MST
Message- 1 d: <9304280853. AA25865@ar i kal pi k. eas. asu. edu>
The idea is to gather as nuch information about the world while planning as Repl y- To: rao@suvax. asu. edu
possi ble, and then allocate time for information gathering and planning in From rao (Subbarao Kanbhanpati)
a way in which the utility is maximzed. To: rao
Subj ect: HTN Planning Il-- Plans as behaviors...
Point #4: find path, manipul ation Date: Wed, 28 Apr 93 01:53:22 MST
Here we have full information about the world (no uncertainty), but we need
to do a lot nore nanipul ation.
An exanple is the piano nover problem where the piano can be rotated and 0. Get Aon B
will only be noved into a roomif rotated in a certain manner. |f rotation 1. Get some block on top of another block
were not allowed, there would be plan to nove it into the room 2. Gt Aon B, and then Get A off B and put A on B
There is the notion of degrees of freedom which is equivalent to the O these, the third cannot be expressed in STRIPS goal |anguage.
nunber of rotations. The search space increases according to degrees of
freedom that is, if d.f.=2, the search space doubles, and so on. Pl anning problemis a really a constraint on the behaviors (or state

sequences) rather than just the goal state.
If a robot has a certain geonetry (that 1is, it is not a point size), a

technique called configuration space approach is used. This technique is The usual goal -state problemare a _special _ class of planning
used for arbitrary shapes. Objects are "anplified" to the anpunt the object probl ems where the constraint on the behavior is expressed soleley in
to be noved is larger than the point. termof the final state of the behavior. |In general, however, we

could make arbitrary
Point #5: for all these problens, if there are enough people interested in
this class of problenms, then we can forget about worrying about wusing a
general theory, and instead we deal with them separately. This is typically The idea that Nonlin does not actually utilize the behavior based
what happens with factory planning, where we have a finite and linted pl anni ng framewor k
nunber of entities to be worked with.
The idea that _some_ of the behavioral specifications can be expressed

Assenbly planning is another exanple, where we are dealing with tasks to be in terns of ordinary goals, when we allow tine argurment (zeno). E. g.,

perforned. It is typically given an order of things that need to be done; the goal 2 above coul d have been easily represented as

we search in the space of assenbly plans, where we are |ooking for plans

that don't interact (i.e. don't collide) with each other. Rol e of Projection: In real HIN planning supporting goal - based
planning, the role of projection is to guide planning decisions. The

Conpliant notion: we change the situation so that interactions are renoved; correctness of plan itself transcends the truth criterion. On the

an exanple is a screw hole where we are uncertain about how the hole is otherhand, in the case of TWEAK type planning, there is no difference

made and we are not really sure how to place the screwin the hole. To bet ween projection and correctness checking-- or at any rate,

solve this problem we change the shape of the hole so that thereis a correctness checking can be done in terns of projection (Qn. Can we

bi gger area where the environnment will guide the screw tal k about the stuff of Christer etc. in terns of this disc? Can we
say that projection cannot be gotten around in behavior based

Scheduling is informally defined as arranging tasks that have previously pl annni gn since we don;t ahve a way of checking plan correcntess?)

been defined. The problem is to arrange the tasks according to sone
constraint, say the time to start, priority, etc. There are hard

constraints (exanples just given) and soft constraints (e.g. best possible Qut st andi ng questi ons:

ordering). After scheduling is done, the tasks are then assigned to the

resources. 1. How much of behavi or based planning can be done by just giving a
partial plan to SNLP? [pt: snlp only works on preconditions.

Scheduling is one conplexity |evel below planning (which is undecidable). doesn’t do reduction of tasks]

Point #6: interaction wth humans is an area with its own open problens. 2. How much of behavi or based planning can be provided

Here we would for exanple allow the user to pick some refinement for a plan truth-critierion based semantics? How about sone sort of

bei ng expanded. There are connections between human interaction and archtectural + base |evel semantics?

| ear ni ng.

3. How much of behavi or based pl anning can be captured in terms of

——————————— END---------------uoo-m--o--------Fromrao Wed Apr 28 01:53:23 1993 4. Gven that no one really seens to use "goals" as state
Status: RO speci fciations, how nuch of a "big deal" is behavior based
X-VMv5-Data: ([nil nil nil t nil nil nil nil nil] pl anni ng?
[nil nil nil nil nil nil nil nil nil nil nil nil "A"From" nil nil nil])
Ret ur n- Pat h: <rao> 5. How does the referential opacity ideas of MDernott’'s code tree

Classical Planning: A compilation of Semniar Notes (Compiled by Subbarao Kambhampati)

Listing for Subbarao Kambhampa

Thu Sep 23 15:05:34 1993

Page
64

etc. relate?

6. How do we make sense of Forbin in terms of behavior-based planning?

7. Does the reconstruction of HTN planning internms of efficiency have
any neani ng?

tell kutluhan that tasknets are no magic. The point he is neking is
a "used-to-be-well-known" one--- that planning is really about

behvi ors (which are sequences of states), rather than about state
changes (which is just a pair of states).

I ndeed, certain types of

The tricky probl em about Tasknetwork planning is one of "correctness
check"-- it is not easy to reason about a plan and say "yes, this
pl an does do what | want it to do".

What happened traditionally is that the so-called HTN pl anners
essentially stuck to the notion of state-change. The tasks are

conpl etely characterized by their effects -- in particular, int eh
case of NONLIN, every task-reduction schema’'s todo is represented as
an effect of at |east one of the subtasks of the schema. TH s neans
that we can actually use TWEAK truth crterion to check the correctness
of the resulting plans. Contrast the nore general idea of HIN planning
as a support for behavi or based planning-- eg. the round trip plan.
Here there is no way of |ooking at the plan and proving correcntenss
of the plan sinply using MIC

As McDernott nmentions in the Formal Reasoni gn about commobnsense paper,
nost interesting tasks really cannot be split into sinpler tasks (e.g.
the eggs stuff). One kind that can be are conposite tasks that sinply
correspond to conjunctive goal s.

By the way, | was surpised to see that your bibliography doesn’t
cite _any_ of the papers of McDernott. He has witten extensively
on the semantics of tasknetwork planning -- of particular interest are

his two papers in readings in planning, and another paper in the book
"Formal reasoning about common sense".

Fromrao Tue Jul 27 16:30:54 1993

Ret ur n- Pat h: <rao>

Recei ved: by pari kal pi k. eas. asu. edu (4.1/SM-4.1)
id AA12299; Tue, 27 Jul 93 16:30:54 MST

Date: Tue, 27 Jul 93 16:30:54 MST

From rao (Subbarao Kanbhanpati)

Message- | d: <9307272330. AA12299@ar i kal pi k. eas. asu. edu>

To: ai @s, suresh@nws318, gopi @nws318, ihrig@nws318, dchen@nws228,
cohen@nws318, pl an-cl ass

Subj ect: AIPS-94 (Planning systens conference-- Early Announcenent)

Repl y-To: rao@suvax. asu. edu

kkkkkkkkkkkk* CALL FOR PAPERS **** %% x %% %%
SECOND | NTERNATI ONAL CONFERENCE

ON
Al PLANNI NG SYSTEMS

The University of Chicago
Chicago, Illinois
June 15th -17th, 1994

khkk k%

CONFERENCE CHAI R
Austin Tate - University of Edinburgh

PROGRAM CHAI R
Kristian Hammond - University of Chicago

We are pleased to invite contributions for the Second |International
Conference on Al Planning Systems, to be held at The University of
Chi cago, June 15th - 17th, 1994.

This conference will be ained at bringing together researchers
attacking different aspects of the planning problemand rel ated
issues. In addition to Al researchers, others working on

pl anning-rel ated i ssues are al so encouraged to contribute and attend.
O special interest are papers discussing the integration of differing
approaches to planning or the integration of planning and other Al
technol ogi es.

Topi cs of Interest Include:

APPLI CATI ONS -Enpirical studies of existing planning systens;
domai n-speci fic techniques; heuristic techniques; scheduling systens.

ARCHI TECTURES - Real -time support for planning and control;
m xed-initiative planning and user interfaces.

ENVI RONMVENTAL AND TASK MODELS - Anal yses of the dynam cs of
environnments, tasks, and domains with regard to different nodels of
pl anni ng and executi on.

FORMAL MODELS - Reasoni ng about know edge, action, and time; search
met hods and anal ysis of algorithms; formal characterization of
exi sting pl anners.

I NTELLI GENT AGENCY - Resour ce-bound reasoni ng; distributed problem
solving; integrating reaction and deliberation.

LEARNI NG - Learning in the context of planning and execution; |earning
new pl ans and operators.

MEMORY- BASED APPROACHES - Case-based pl anni ng; plan and operator
| earning and reuse; increnental planning.

PLANNI NG AND PERCEPTI ON - Integration of planning and perceptual
syst ens.

PSYCHOLOG CAL AND BI OLOG CAL | SSUES - Anal yses of goal -directed
behavi or; neurophysi ol ogi cal studies concerning planning;
connectioni st planni ng systens.

REACTI VE SYSTEMS - Environnental |y driven devices/behaviors; reactive
control; behaviors in the context of mnimal representations.

Classical Planning: A compilation of Semniar Notes (Compiled by Subbarao Kambhampati)

Listing for Subbarao Kambhampa

Thu Sep 23 15:05:34 1993

Page
65

ROBOTI CS - Mtion and path planning; planning and control; planning
and perception.

REQUI REMENTS FOR SUBM SSI ON

TI METABLE - The conference will take place June 15th - 17th, 1994, at
the University of Chicago, Chicago, Illinois. Authors must submt 5
copi es of their papers (no electronic or Fax transm ssions) by Tuesday
Decenber 14th, 1993. Notification of receipt will be sent to the
first (or designated) author soon thereafter. Notification of
acceptance or rejection will be mailed by February 18, 1994. Authors
will need to provide canera ready copy by March 8, 1994.

APPEARANCE - Papers shoul d be printed on 8.5" x 11" (or, if necessary,
A4) sized paper, with 12 point type. Letter quality print is required.
(Normally, dot-matrix printout wll be unacceptable unless truly of
letter quality. Exceptions will be nmade for subm ssions from
countries where high quality printers are not widely available.) LaTeX
12pt article style will be acceptable.

TI TLE PACGE - Each copy of the paper nust include a title page,
separate fromthe body of the paper. This should contain (i) Title,
(i1) Names, addresses, phone nunbers and email addresses of all
authors, and (iii) An abstract of 100-200 words.

LENGTH - Papers shoul d be subnmitted in 12 point text filling roughly
5.5" x 7.5" per page (LaTeX article style with 12 point text is
acceptable). Papers should be no nore than 12 pages includi ng
figures, tables, diagrans, and references. Short papers (5 pages or
|l ess) may be subnmitted for review as posters. Al papers will be
included in the conference proceedings.

DEMONSTRATI ONS - Participants wanting to give conputer and/or video
taped denonstrations should send a two page abstract describing their
contribution to the same address by February 22, 1994. These
abstracts should include a separate title page with a (i) Program nane
and (ii) Names, addresses, phone nunbers and ermai| addresses of all
authors. Denonstrations will be held in concert with the conference's
poster session.

PANELS - Researchers interested in organizing panels should get hold
of the program chair as soon as possible.

Al'l submi ssions should be sent to:

Al PS- 94

c/o Kristian Hammond
Departnent of Conputer Science
Uni versity of Chicago

1100 East 58th Street

Chi cago, |L 60637

For nore information, emil to:
hammond@s. uchi cago. edu

Classical Planning: A compilation of Semniar Notes (Compiled by Subbarao Kambhampati)

