

- Work for many search spaces
- Flexible work with most domain features
- Overall compliment other scalability techniques
- Effective!!

ARIZONA STATE

Topics

- Classical Planning } Rao
- Cost Based Planning
- Partial Satisfaction Planning
- Resources (Continuous Quantities)]
- Temporal Planning
- Non-Deterministic/Probabilistic Planning

Dan

Rao

Hybrid Models

June 7th, 2006

4

Dan

Identify Goal Propositions

 $RP(s_1, G) = 8$

Support Goal Propositions

June 7th, 2006

Individually

Adjusting for Negative Interactions

- Until now we assume actions only positively interact, but they often conflict
- Mutexes help us capture some negative interactions
 - Types
 - Actions: Interference/Competing Needs
 - Propositions: Inconsistent Support
 - Binary are the most common and practical
 - |A| + 2|P|-ary will allow us to solve the planning problem with a backtrack-free GraphPlan search
 - An action layer may have |A| actions and 2|P| noops
 - Serial Planning Graph assumes all non-noop actions are mutex

ARIZONA STATE

Adjusting the Relaxed Plans

- Start with RP heuristic and adjust it to take subgoal interactions into account
 - Negative interactions in terms of "degree of interaction"
 - Positive interactions in terms of co-achievement links
 - Ignore negative interactions when accounting for positive interactions (and vice versa)

PROBLEM	Level	Sum	AdjSum2M	
Gripper-25	-	69/0.98	67/1.57	
Gripper-30	-	81/1.63	77/2.83	
Tower-7	127/1.28	127/0.95	127/1.37	
Tower-9	511/47.91	511/16.04	511/48.45	
8-Puzzle1	31/6.25	39/0.35	31/0.69	
8-Puzzle2	30/0.74	34/0.47	30/0.74	
Mystery-6	-	-	16/62.5	
Mistery-9	8/0.53	8/0.66	8/0.49	
Mprime-3	4/1.87	4/1.88	4/1.67	
Mprime-4	8/1.83	8/2.34	10/1.49	
Aips-grid1	14/1.07	14/1.12	14/0.88	
Aips-grid2	-	-	34/95.98	

 $HAdjSum2M(S) = length(RelaxedPlan(S)) + max p,q \in S \delta(p,q)$ Where $\delta(p,q) = lev(\{p,q\}) - max\{lev(p), lev(q)\} / *Degree of -ve Interaction */$

ICAPS'06 Tutorial T6

[AAAI 2000]

ARIZONA STATE

RePOP's Performance

- RePOP implemented on top of UCPOP
 - Dramatically better than any other partial order planner before it
 - Competitive with Graphplan and AltAlt
 - VHPOP carried the torch at ICP 2002

Problem	UCPOP	RePOP	Graphplan	AltAlt
Gripper-8	-	1.01	66.82	.43
Gripper-10	-	2.72	47min	1.15
Gripper-20	-	81.86	-	15.42
Rocket-a	-	8.36	75.12	1.02
Rocket-b	-	8.17	77.48	1.29
Logistics-a	-	3.16	306.12	1.59
Logistics-b	-	2.31	262.64	1.18
Logistics-c	-	22.54	-	4.52
Logistics-d	-	91.53	-	20.62
Bw-large-a	45.78	(5.23) -	14.67	4.12
Bw-large-b	-	(18.86) -	122.56	14.14
Bw-large-c	-	(137.84) -	-	116.34

Written in Lisp, runs on Linux, 500MHz, 250MB

You see, pop, it *is* possible to Re-use all the old POP work!

ARIZONA STATE

Terminating Cost Propagation

- Stop when:
 - goals are reached (no-lookahead)
 - costs stop changing (∞ -lookahead)
 - k levels after goals are reached (k-lookahead)

- Improve planning with non-uniform cost actions
- Are cheap to compute (constant overhead)

- Persistent preconditions of A are put in Π
- Delayed effects of A are put in Q.

- --Advance the clock (by executing the earliest event in Qs
- --Apply one of the applicable actions to S

Arizona State University

Temporal Planning

ARIZONA STATE

Temporal Planning Conclusion

- Levels become Time Points
- Makespan and plan length/cost are different objectives
- Set-Level heuristic measures makespan
- Relaxed Plans measure makespan and plan cost

June 7th, 2006

88

ARIZONA STATE

Conditional Planning

- Actions have Observations
- Observations branch the plan because:
 - Plan Cost is reduced by performing less "just in case" actions – each branch performs relevant actions
 - Sometimes actions conflict and observing determines which to execute (e.g., medical treatments)
- We are ignoring negative interactions
 - We are only forced to use observations to remove negative interactions
 - Ignore the observations and use the conformant relaxed plan
 - Suitable because the aggregate search effort over all plan branches is related to the conformant relaxed plan cost

ARIZONA STATE

Direct Probability Propagation

- Alternative to label propagation, we can propagate numeric probabilities
 - Problem: Numeric Propagation tends to assume only independence or positive interaction between actions and propositions.
 - With probability, we can vastly under-estimate the probability of reaching propositions
 - Solution: Propagate Correlation measures pair-wise independence/pos interaction/neg interaction
 - Can be seen as a continuous mutex

Figure 3: Run times (s), Plan lengths, and Expanded Nodes vs. probability threshold for slippery gripper

ARIZONA STATE

Phased Relaxation

The relaxed plan can be adjusted to take into account constraints that were originally ignored

Adjusting for Mutexes:

Adjust the make-span estimate of the relaxed plan by marking actions that are mutex (and thus cannot be executed concurrently

Adjusting for Resource Interactions:

Estimate the number of additional resource-producing actions needed to make-up for any resource short-fall in the relaxed plan

$$\boldsymbol{C} = \boldsymbol{C} + \boldsymbol{\Sigma}_{\mathrm{R}} \left[(Con(R) - (Init(R) + Pro(R))) / \boldsymbol{\Delta}_{\mathrm{R}} \right] * \mathrm{C}(\mathrm{A}_{\mathrm{R}})$$

110

June 7th, 2006

ARIZONA STATE UNIVERSITY

Prottle Results

problem	horizon	ε	time1	time2	cost1	cost2	states1	states2
AI	100	0.3	-	103	-	0.344	-	346,100
AI	120	0.6	-	404	-	0.222	-	1,319,229
MS	15	0.0	-	272	-	0.027	-	496,096
MS	15	0.1	-	171	-	0.114	-	309,826
MS	15	0.2	2,431	21	0.119	0.278	13,627,753	6,759
MS	15	0.3	367	235	0.278	0.278	1,950,134	434,772
MZ	10	0.0	195	10	0.178	0.178	1,374,541	13,037
MZ	10	0.1	185	2	0.193	0.178	1,246,159	2,419
MZ	10	0.2	64	1	0.197	0.193	436,876	669
MZ	10	0.3	62	2	0.202	0.193	414,414	1,812
TP	20	0.0	442	< 1	0.798	0.798	3,565,698	3,676
TP	20	0.1	456	< 1	0.798	0.798	3,628,300	2,055
TP	20	0.2	465	< 1	0.798	0.798	3,672,348	2,068
TP	20	0.3	464	< 1	1.000	0.798	3,626,404	1,256

June 7th, 2006

ICAPS'06 Tutorial T6

115

ARIZONA STATE UNIVERSITY

PSP w/ Resources

- Utility and Cost based on the values of resources
- Challenges:
 - Need to propagate cost for resource intervals
 - Need to support resource goals at different levels

June ${}^{1}_{7}$ th, ${}^{2}_{2006}$ ICAPS'06 Tutorial T6

