

 1

Using Memory to Transform Search on the Planning Graph

Terry Zimmerman zim@asu.edu
Subbarao Kambhampati rao@asu.edu
DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING
ARIZONA STATE UNIVERSITY, TEMPE AZ 85287-5406

Abstract
 The Graphplan algorithm for generating optimal make-span plans containing parallel sets of actions re-
mains one of the most effective ways to generate such plans. However, despite enhancements on a range
of fronts, the approach is currently dominated in terms of speed, by state space planners that employ dis-
tance-based heuristics to quickly generate serial plans. We report on a strategy that employs available
memory to construct a search trace, which is used to transform the depth-first, IDA* nature of Graph-
plan’s search into an iterative state space view. We present a family of methods, each of which exploits a
variant of the search trace to learn from different aspects of Graphplan’s iterative search episodes in order
to expedite search in subsequent episodes. The EGBG planners successfully avoid much of Graphplan’s
redundant search effort, while the PEGG planners trade off this aspect in favor of a much higher degree of
freedom than Graphplan in traversing the space of ‘states’ generated during regression search on the plan-
ning graph. We demonstrate that distance-based heuristics can be adapted to informed traversal of the
search trace and develop an augmentation of these heuristics targeted specifically at planning graph
search. Guided by such a heuristic, the step-optimal version of PEGG clearly dominates even a highly
enhanced version of Graphplan. By adopting beam search on the search trace we then show that virtually
optimal parallel plans can be generated at speeds quite competitive with a state-of-the-art heuristic state
space planner.

1 Introduction

When Graphplan was introduced in 1995 (Blum & Furst, 1995) it became one of the fastest pro-
grams for solving the benchmark planning problems of that time and, by most accounts, constituted a
radically different approach to automated planning. Despite the recent dominance of heuristic state-
search planners over Graphplan-style planners, the Graphplan approach is still one of the most effec-
tive ways to generate the so-called “optimal parallel plans”. State-space planners are drowned by the
exponential branching factors of the search space of parallel plans (the exponential branching is a
result of the fact that the planner needs to consider each subset of non-interfering actions). Over the
8 years since its introduction, the Graphplan system has been enhanced on numerous fronts, ranging
from planning graph construction efficiencies that reduce both its size and build time by one or more
orders of magnitude, to search speedup techniques such as variable and value ordering, dependency-
directed backtracking, and explanation based learning. In spite of these advances, Graphplan has
ceded the lead in planning speed to a variety of heuristic-guided planners (Bonet and Geffner, 1999,
Nguyen and Kambhampati, 2000, Gerevini and Serina, 2002). Notably, several of these exploit the
planning graph for powerful state-space heuristics, while eschewing search on the graph itself.
Nonetheless, the Graphplan approach remains perhaps the fastest in parallel planning mainly because
of the way it combines an iterative deepening A* (“IDA*”, Korf, 1985) search style with a highly
efficient CSP-based incremental generation of applicable action subsets.

We investigate here an family of approaches that retain attractive features of Graphplan’s IDA*
search, such as rapid generation of parallel action steps and the ability to find step optimal plans,

 2

X Y

Search
Trace

Exploiting Graphplan
Symmetry & Redundancy

PEGG

multi-
PEGG

me-EGBG

EGBG

Using search trace\ planning graph
duo for multi-criteria opt.

so-PEGG

Trading off step-optimality for
speedup in all episodes

Leveraging CSP & memory efficiency

Exploiting the
 state space view

while surmounting some of its major
drawbacks, such as redundant search
effort and the need to exhaustively
search a k-length planning graph be-
fore proceeding to the k+1 length
graph. The methodology remains
rooted in iterative search on the plan-
ning graph but greatly expedites this
search by employing available memory
to build and maintain a concise search
trace. Depending on the particular ap-
proach used, the search trace can allow
the planner employing it to 1) success-
fully avoid much of the redundant
search effort, 2) learn from its iterative
search experience so as to improve its
heuristics and the constraints embodied
in the planning graph, and 3) realize a
much higher degree of freedom than
Graphplan, in traversing the space of
‘states’ generated during the regression
search process. We will show that the
third advantage is particularly key to
search trace effectiveness, as it allows the
planner to focus its attention on the most promising areas of the search space.

The issue of how much memory is the ‘right’ amount to use to boost an algorithm’s performance
cuts across a range of computational approaches from search, to the paging process in operating sys-
tems and Internet browsing, to database processing operations. In our investigation of the search
trace approach to expediting search on the planning graph, we explored several variations that dif-
fered markedly in terms of memory demands. We describe four of these approaches in this paper.
Figure 1 depicts the pedigree of this family of search trace-based planners, as well as the primary
impetus leading to the evolution of each system from its predecessor. The figure also suggests the
relative degree to which each planner steps away from the original IDA* search process underlying
Graphplan. The two tracks correspond to the two genres of search trace we worked with;

• left track: The EGBG planners employ a more comprehensive (and memory intensive) trace fo-
cused on minimizing redundant search effort.

• right track: The PEGG planners use a more skeletal trace, incurring more of Graphplan’s re-
dundant search effort in exchange for reduced memory demands and increased ability to exploit
the state space view of the search space.

 The EGBG planner (Zimmerman and Kambhampati, 1999) adopts a memory intensive structure for
the search trace as it seeks primarily to minimize redundant consistency-checking across Graphplan’s

Figure 1. Applying available memory to step away from
the Graphplan search process; a family of search trace-
based planners

 3

search iterations. This is shown to be effective in a range of smaller problems but memory con-
straints impede its ability to scale up. Noting that Graphplan’s search process can be viewed as a
specialized form of CSP search (Kambhampati, 2000), we secondly explore some middle ground in
terms of memory usage by augmenting the underlying planner with a variety of methods known to be
effective as speedup techniques for CSP problems. Our primary interest in these techniques, how-
ever, is the impact on memory reduction, and we describe how they accomplish this above and be-
yond any search speedup benefit they afford (implemented as the me-EGBG system).

The attention to memory efficiency markedly improves the speed and capabilities of the planner,
but still leaves us with a variety of problems that lie beyond the planner’s reach due to memory con-
straints. This motivates a shift to a greatly pared down search trace that forfeits minimization of re-
dundant search in exchange for a much smaller memory footprint and an enhanced view of the search
space as a set of states that can be visited in a more informed order. The strategy not only reduces
memory overhead, but also greatly reduces the computational time spent building and revising the
search trace over consecutive episodes. This third approach we describe and implement in a planner
called so-PEGG (‘step-optimal PEGG’, Zimmerman and Kambhampati, 2003). Beyond its greatly
reduced memory demands, so-PEGG is distinguished from the EGBG track planners in its ability to
overlay a ‘secondary heuristic’ on top of Graphplan’s (implicit) admissible IDA* heuristic, thereby
allowing it to visit the search space encapsulated in the search trace in a more intelligent order. We
examine the adaptation of the ‘distance-based’ heuristics that power some of the current generation
of state-space planners (Bonet and Geffner, 1999, Nguyen and Kambhampati, 2000, Hoffman, 2001)
to the task of traversing the search trace and then examine their shortcomings in this regard. This
leads us to develop a specialized measure of the potential for a state in the trace to seed new search
branches beyond those that were generated (and failed) in previous search episodes. We demonstrate
how this metric, which we term ‘flux’, significantly improves the effectiveness of a distance-based
heuristic in identifying the most promising states to visit in the search trace.

With this capability, the PEGG-track planner achieves an important degree of independence from
Graphplan’s strict depth-first search process, and exploits it to outperform even a highly enhanced
version of Graphplan by up to two orders of magnitude in terms of speed. It does so while still main-
taining the guarantee that the returned solution will be a step-optimal plan.

The last avenue to expediting planning graph search with a search trace that we explore is to adopt
a beam search approach in visiting the state space implicit in the PEGG-style trace. Here we employ
the distance-based heuristics extracted from the planning graph itself, not only to direct the order in
which search trace states are visited, but also to prune and restrict that space to only the heuristically
best set of states, according to a user-specified metric. The flux metric is shown to be effective not
only in augmenting the state-ordering secondary heuristic, but as a filter for setting a threshold below
which a search trace state can be skipped over even though it might appear promising based on the
distance-based heuristic. The implemented system (PEGG, Zimmerman and Kambhampati, 2003),
realizes a two-fold benefit over our previous approaches employing a search trace; 1) further reduc-
tion in search trace memory demands 2) effective release from Graphplan’s exhaustive search of the
planning graph in all search episodes. Our experimental results indicate PEGG exhibits speedups
ranging to more than 300x over the enhanced version of Graphplan and is quite competitive with a
state-of-the-art state space planner using similar heuristics. In adopting beam search, PEGG neces-

 4

sarily sacrifices the guarantee of step-optimality. Nonetheless, our empirical results indicate that the
secondary heuristics are quite effective in ensuring that the quality of returned plans, in terms of
make-span, is virtually at the optimal.

The last planner in the PEGG track of Figure 1, multi-PEGG, is included for completeness but is
not reported on in this paper. Multi-PEGG (Zimmerman and Kambhampati, 2002), exploits the
unique advantage of the combined planning graph and search trace structures to address multiple plan
quality criteria.

The fact that these systems successfully employ a search trace at all is noteworthy. In general, the
tactic of adopting a search trace for algorithms that explicitly generate node-states during iterative
search episodes, has been found to be infeasible due to memory demands that are exponential in the
depth of the solution. In Sections 2 and 3 we describe how tight integration of the search trace with
the planning graph, permits the EGBG and PEGG planners to largely circumvent this issue. The
planning graph embodies a great deal of information that defines and constrains the search space
traversed by Graphplan-style search, and the approaches we investigate here heavily exploit this
structure to minimize the additional information needed for an effective search trace. The planning
graph structure itself can be costly to construct, in terms of both memory and time; there are well-
known problems and even domains that are problematic for planners that employ it. (Post-Graphplan
planners that employ the planning graph for some purpose include STAN (Long and Fox, 1999),
Blackbox (Kautz and Selman, 1999), IPP (Koehler, et. al., 1997), AltAlt (Nguyen and Kambhampati,
2000), LPG (Gerevini and Serina, 2002). The planning systems described here share that memory
overhead of course, but interestingly, we have found that search trace memory demands associated
with the PEGG class of planners have not significantly limited the range of problems they can solve.

An interesting upshot of employing available memory to build and maintain a search trace is that it
allows us to adopt a state space view of what is, essentially, Graphplan’s CSP-oriented search space.
During each iteration, Graphplan uses a depth-first strategy to build a consistent set of actions (val-
ues) satisfying a set of subgoals (variables) at each level of the planning graph. The proposition set
that is sub-goaled on at each level in the regression search process essentially constitutes an incom-
plete ‘state’. However, existing planners that conduct search directly on the planning graph largely
ignore such states, save for the rudimentary learning of invalid states in the form of ‘no-goods’. The
search trace enables PEGG, in particular, to adopt a global view of the regression search state-space
generated in episode n, and to select particular regions of that state-space in episode n+1 for early
expansion. Having chosen a heuristically desirable state, PEGG is then able to continue its expan-
sion iteratively in Graphplan’s CSP-style, depth-first fashion in search of a parallel, step-optimal
plan. The first step can exploit powerful ‘distance-based’ heuristics (that have been key to the suc-
cess of the fastest serial state-space planners), as a secondary heuristic in Graphplan’s search, while
the second step employs a variety of CSP speed-up techniques to shortcut the search below a selected
state. In the process PEGG is also able to learn in an entirely unique fashion from its iterative search
experience, both augmenting the mutex constraints in the planning graph and improving the heuristic
evaluation functions used to select states for expansion.

We will show that employing available memory to construct and maintain a concise search trace,
affords planning graph-based planners several unique capabilities. The sound and complete so-

 5

PEGG planner often returns optimal plans with parallel actions one or more orders of magnitude
faster than even a highly enhanced version of Graphplan. The PEGG planner trades off the optimal-
ity guarantee (and indeed, completeness, since it employs beam search) so as to boost its perform-
ance above a state-of-the-art heuristic forward state space planner. In this mode, PEGG generally
dominates on planning problems in both serial and parallel domains, in terms of speed and still man-
ages to return the step optimal plan in the great majority of cases.

We organize the paper as follows: Section 2 provides a brief overview of the planning graph and
Graphplan’s search process. The discussion of both its CSP nature and the manner in which the
process can be viewed as IDA* search, motivates the potential for employing available memory to
accelerate solution extraction. Section 3 addresses the two primary challenges in attempting to build
and use a search trace to advantage with Graphplan: 1) How can this be done within reasonable
memory constraints given Graphplan’s CSP-style search on the planning graph? and, 2) Once the
trace is available, how can it most effectively be used? This section describes EGBG (Zimmerman
and Kambhampati, 1999), the first system to use such a search trace to guide Graphplan’s search and
outlines the limitations of that method. Section 4 concerns our investigations into a variety of mem-
ory reduction techniques and reports the impact of a combination of six of them on the performance
of EGBG. The evolutions that led to the PEGG planners are discussed in Section 5 and the perform-
ance of so-PEGG and PEGG (using beam search) are compared to an enhanced version of Graphplan,
EGBG, and a state-of-the-art, heuristic serial state-space planner. Section 6 contains a discussion of
our findings and compares this work to related research. Section 8 gives our conclusions.

2 Background and Motivation:
Planning graphs and the nature of direct graph search

In this section, we outline the Graphplan algorithm and discuss characteristics suggesting that judi-
cious use of additional memory might greatly improve its performance. We touch on three related
views of Graphplan’s search; 1) as a form of CSP, 2) as IDA* search and, 3) a state space aspect.

2.1 Construction and search on a planning graph

The Graphplan algorithm (Blum & Furst, 1997) consists of two interleaved phases – a forward
phase, where a data structure called ``planning graph'' is incrementally extended, and a backward
phase where the planning graph is searched to extract a valid plan. The planning graph consists of
two alternating structures, called proposition lists and action lists (see Figure 2). We start with the
initial state as the zeroth level proposition list. Given a k-level planning graph, the extension of the
graph structure to level k+1 involves introducing all actions whose preconditions are present in the
kth level proposition list. In addition to the actions given in the domain model, we consider a set of
dummy ``persist'' actions, one for each condition in the kth level proposition list. A ``persist-C'' action
has C as its precondition and C as its effect. Once the actions are introduced, the proposition list at
level k+1 is constructed as just the union of the effects of all the introduced actions. The planning
graph maintains the dependency links between the actions at level k+1 and their preconditions in
level k proposition list and their effects in level k+1 proposition list.

 6

The planning graph construction also involves computation and propagation of binary "mutex''
constraints. The propagation starts at level 1 by labeling as mutex, all pairs of actions that are stati-
cally interfering with each other (i.e., their preconditions and effects are logically inconsistent).
Mutexes are then propagated from this level forward using two simple propagation rules. In Figure 1,
the curved lines with x-marks denote the mutex relations: two propositions at level k are marked
mutex if all actions at level k that support one proposition are mutex with all actions that support the
second proposition. Two actions at level k+1 are mutex if they are statically interfering (“static
mutex”) or if one of the propositions/preconditions supporting the first action is mutually exclusive
with one of the propositions supporting the second action (termed “dynamic mutex” since this con-
straint may relax at a higher planning graph level). The propositions themselves can also be either
static mutex (they are the negation of each other) or dynamic mutex (all actions establishing one
proposition are mutex with all actions establishing the other).

The search phase on a k-level planning graph involves checking to see if there is a sub-graph of the
planning graph that corresponds to a valid solution to the problem. Figure 3 depicts Graphplan
search in a manner similar to the CSP variable-value assignment process. Beginning with the propo-
sitions corresponding to goals at level k, we select an action from the level k action list that supports
it, such that no two actions selected for supporting two different goals are mutually exclusive (if they
are, we backtrack and try to change the selection of actions). This is essentially a CSP problem

Domain
Actions

 aa11 W ~H
Y

 aa22 X
J Z

 aa33 Y ~J
H Z

 aa44 Z
~H

 aa55 H J
 Y

 nnoopp X
 X
 .
 .
 nnoopp Z

H

a1

a4

a5

Z

J

H

Y

Proposition
Level 2

Actions
Level 2

nop

J

nop

nop

nop

nop

W

~H

nop

Z

~J

a3

X

a2

The Planning Graph

W

Actions
Level 1

Proposition
Level 1

Y

~H

nop

nop

nop

W

Y

~H

Initial
State

a5

a1

a4

 Figure 2. Portion of a planning graph for an example domain
 Action descriptions: [preconditions] action# [effects]

 7

where the goal propositions at a given
level are the variables and the actions that
establish a proposition are the values.
Once all goals for a level are supported, we
recursively call the same search process on
the k-1 level planning graph, with the pre-
conditions of the actions selected at level k
as the goals for the k-1 level search. The
search succeeds when we reach level 0
(corresponding to the initial state). This
process can be viewed as a system for
solving “Dynamic CSPs” (DCSP) (Kamb-
hampati 2000, Hoffman, 2001,), wherein
the standard CSP formulism is augmented
with the concept of variables that do not
appear (a.k.a. get activated) until other
variables are assigned.

During the interleaved planning graph
extension and search phases, the graph
may be extended to a stasis condition after
which there will be no changes in actions,
propositions, or mutex conditions. A suf-
ficient condition defining this state is a
level where no new actions are introduced
and no existing propositions have a newly
relaxed dynamic mutex. We call this
‘level-off’ and will refer to all planning
graph levels at or above level-off as ‘static
levels’. It is important to note that al-
though the graph need not be further extended, finding a solution may require continuing for many
more episodes the process of adding a new static level and conducting regression search on the prob-
lem goals.

Like many fielded CSP solvers, Graphplan's search process benefits from an elemental form of no-
good learning. When a set of (sub)goals for a level k is determined to be unsolvable, they are memo-
ized at that level in a hash table. Correspondingly, when the backward search process later enters
level k with a set of subgoals, they are first checked against the hash table to see if they have already
been proved unsolvable. The legend in Figure 3 explains the figure icons that depict the different
conditions that can result in backtracking, static mutex actions, dynamic mutex actions, and no-good
states that have been memoized.

In the next subsection, we discuss Graphplan’s search process from a higher-level perspective that
abstracts away its CSP nature. Before doing so, we note that like other types of CSP-based algo-
rithms, Graphplan consumes most of its computational effort on a given problem in checking

(future) Level k + 1

nop

a4

W
a2

X

nop nop a1

a5
a5

Level k -2

nop

J
nop

nop

nop a5 nop a5

a5

nop a4

Initial State

a3
a3

a1

Y

X

Level k

Level k -1

Z

W

GOALS: W X Y Z

nop

Z

a2

nop

nop a2

a4

‘Nogood’

Level k -3

SS1

SS2 SS3

SS4

Y

Z

Y
a3

a3

Domain operators: a1, a2, a3, a4, a5, “persists” operator shown as “nop”

W

action is “static mutex” with a previously assigned action

action is “dynamic mutex” with a previously assigned action

Transfer of successful search to lower level

SS :Search Segment

a1 Transfer of search fails due to ‘nogood’

nop

nop

 Goal W with action a3 assigned

S

D NG

X

Y

nop

J J H H

S

D

NG

D

D D

NG

a4
S

D D D

S S

Y

S

a3 nop

X

S
D

a2
E

S

Figure 3. CSP-style trace of backward search at level k
of a (vertically oriented) planning graph

 8

constraints. An instrumented version of the
planner reveals that typically, 60 - 90% of
the cpu run-time is spent in creating and
checking action and proposition mutexes -
both during planning graph construction and
the search process. (Mutex relations incor-
porated in the planning graph are the pri-
mary ‘constraints’ in the CSP view of
Graphplan, Kambhampati, 2000) As such,
this is an obvious starting point when seek-
ing efficiency improvements for this plan-
ner.

2.2 Graphplan cast as state space
 search

If we adopt a higher level, more abstract
view of Graphplan’s search process it can
be viewed as backward-directed state space
from the problem goals to the initial state.
The ‘states’ that are generated and expanded
in this case are the subgoals that result when
the CSP process for a given set of subgoals
finds a consistent set of actions satisfying
the subgoals at that planning graph level.
From this perspective, the “node-generator
function” is effectively Graphplan’s CSP-
style goal assignment routine that seeks a
non-mutex set of actions for a given set of
subgoals within a given planning graph
level. This view of Graphplan’s search is
illustrated in Figure 4, where the top graph
casts the CSP-style search trace of Figure 3
as a high-level state-space search trace. The
terms in each box depict the set of (positive)
subgoals that result from the action assign-
ment process for the goals in the higher-
level state to which the box is linked. For
simplicity, the ‘no-good’ states of Figure 3
are not shown in this state-space trace.

Once we recognize the state-space aspect
of Graphplan’s search, its connection to
IDA* search becomes more apparent. First

Proposition Lev-
 6 7 8 1 2

E
Y
K

E
F
J
G

E
Y
R

.

.

.

.

.

.

.

Goal
W
X
Y
Z

E
F
J
K

.

.

.

.

.

X
H
Y
J

W
X
J

A
C
E
F
K

Init
State

E
F
R

.

.

.

.

.

.

.

.

.

.

W
T
X

W
T
S

X
E
H
Y

D
T
Q

.

.

 1 2 6 7 Proposition Levels

Goal
W
X
Y
Z

X
H
Y
J

W
X
J

X
E
H
Y

a5

 a1, a4

a3 a4

A
C
E
F
K

Init
State

Action assignments to
satisfy goals WXYZ at
level 7

 1 2 3 Proposition Levels 7 8 9

A
C
E
F
K

Init
State

E
F
G

E
F
K
Q

E
F
K
R X

E
H
Y

W
T
X

D
T
Q

W
T
S

W
X
J

X
Y
Q

Goa
l
W
X
Y
Z

X
H
Y
J

.

.

.
E
Y
R

.

.

.

.

.
.
.
.

.

.

.
.
.

.

.
.
.
.

E
F
R

.

.

.

.

.

E
Y
K

.

.

E
F
J
G

E
F
J
K

.

.

.

.

.

.

.

.

Figure 4. Graphplan’s regression search space:
 3 consecutive episodes

 9

noted and briefly discussed in (Bonet and Geffner, 1999), we highlight and expand upon this rela-
tionship here. The connection is based on recognizing three correspondences between the algo-
rithms:

1. Graphplan’s episodic search process in which all nodes generated in the previous episode are re-
generated in the new episode (possibly along with some new nodes), corresponds to IDA*’s it-
erative search. Here the Graphplan nodes are the ‘states’ (sets of subgoals) that result when its
regression search on a given plan graph level succeeds. From this perspective the “node-
generator function” is effectively Graphplan’s CSP-style goal assignment routine that seeks a
non-mutex set of actions for a given set of propositions within a given planning graph level.

2. If we adopt the state space view of Graphplan’s search (Figure 4), we find that within a search
episode/ iteration, the algorithm conducts its search in the depth-first fashion of IDA*. This en-
sures that the space requirements are linear in the depth of a solution node.

3. The upper bound that is ‘iteratively deepened’ ala IDA* is the heuristic f-value for node-states;

f = g + h where h :the distance in terms of associated planning graph levels between the state gener-
ated in Graphplan’s regression search and the initial state1

g :the cost of reaching the node-state from the goal state in terms of number of CSP
epochs (i.e. the difference between the number of the highest planning graph
level and the state’s level).

For our purposes, perhaps the most important observation is that the implicit f-value bound for a
given iteration is just the length of the planning graph associated with that iteration. That is, for any
node-state, its associated planning graph level determines both the distance to the initial state (h) and
the cost to reach it from the goal state (g), and the total must always equal the length of the plan
graph. This heuristic is clearly admissible; there can be no shorter distance to the goal because
Graphplan exhaustively searches all shorter length planning graphs in (any) previous iterations. It is
this heuristic, implicit in the Graphplan algorithm, that guarantees a step-optimal solution is returned.
Note that from this perspective all nodes visited in a given Graphplan search iteration implicitly have
the same f-value: g + h = length of planning graph. We will consider implications of this property
when we address informed traversal of Graphplan’s search space in Section 5.

 The primary shortcoming of a standard IDA* approach to search is the fact that it regenerates so
many of the same nodes in each of its iterations. It has long been recognized that IDA*’s difficulties
in some problem spaces can be traced to using too little memory (Russell, 1992, Sen and Bagchi,
1989). The only information carried over from one iteration to the next is the upper bound on the f-
value. Graphplan partially addresses this shortcoming with its memo caches that store “no-goods” -
states found to be inconsistent in successive episodes. However, the IDA* nature of its search can
make it an inefficient planner for problems in which the goal propositions appear non-mutex in the
planning graph many levels before a valid plan can actually be extracted.

1 Bonet and Geffner define the Graphplan h-value somewhat differently; they define hG as the first level at which
the goals of a state appear non-mutex and have not been memoized. The definition given here (which is not
necessarily the first level at which the Sm goals appear non-mutex) produces the most informed admissible es-
timate in all cases. This guarantees that all states generated by Graphplan have an f-value equal to the planning
graph length, which is the property we of primary interest to us.

 10

 A second shortcoming of the IDA* nature of Graphplan’s search arises from the observation made
above regarding the f-value for the node-states it generates; all node-states generated in a given
Graphplan episode have the same f-value (i.e. the length of the graph). As such, within an iteration
(search episode) there is no discernible preference for visiting one state over another.

We next discuss the use of available memory to target these shortcomings of Graphplan’s search.

3 Efficient use of a search trace to guide search on a planning graph

The search space Graphplan explores is defined and constrained by three factors: the problem
goals, the plan graph associated with the episode, and the cache of memoized no-good states created
in all previous search episodes. As would be expected for IDA* search there is considerable similar-
ity (i.e. redundancy) in the search space for successive search episodes as the plan graph is extended.
In fact, as discussed below, the backward search conducted at any level k+1 of the graph is essen-
tially a “replay” of the search conducted at the previous level k with certain well-defined extensions.
More specifically, essentially every set of subgoals reached in the backward search of episode n,
starting at level k, will be generated again by Graphplan during episode n+1 starting at level k+1.2

Returning to Figure 4 in its entirety, note that it depicts the state space tree structure corresponding
to Graphplan’s search over three consecutive iterations. The top graph, as discussed above, repre-
sents the subgoal ‘states’ generated in the course of Graphplan’s first attempt to satisfy the WXYZ
goal of our running problem example. This implies that the W, X, Y, Z propositions are present in
the planning graph at level 7 and that this is the first level at which no pair of these propositions is
mutex. Note that in the middle Figure 4 graph depicting the next backward search episode, the same
states are generated again, but each at one level higher. In addition, these states are expanded to gen-
erate a number of children (marked with a darker shade). Finally, in the third episode Graphplan re-
generates the states from the previous two episodes in attempting to satisfy WXYZ at level 9, and
ultimately finds a solution (the assigned actions associated with the figure’s double outlined subgoal
sets) after generating the states shown with darkest shading in the bottom graph of Figure 4.

Noting the extent to which consecutive iterations of Graphplan’s search overlap, we investigated
the application of additional memory to store a trace of the explored search tree. The first imple-
mented approach, EGBG (described in the following subsection), sought to leverage an appropriately
designed search trace to avoid as much of the inter-episode redundant search effort as possible
(Zimmerman and Kambhampati, 1999). This search trace exploits the following features of the
planning graph and Graphplan’s search process:

� The set of actions that can establish a given proposition at level k+1 is always a superset of
those establishing the proposition at level k.

� The “constraints” (mutexes) that are active at level k, monotonically decrease with increasing
planning graph levels. That is, a mutex that is active at level k may or may not continue to be

2 Strictly speaking, this is not always the case due to the impact of Graphplan’s memorizing process. For some problems a
particular branch of the search tree generated in search episode n and rooted at planning graph level k may not be revisited in
episode n+1 at level k+1 due to a ‘no-good’ proposition set memoized at level k+1. However, the memo merely acts to
avoid some redundant search and it simplifies visualization of the symmetry across Graphplan’s search episodes to neglect
these relatively rare exceptions to the above characterization of the search process.

 11

active at level k+1, but once it becomes inactive at a level it never gets re-activated at future
levels. For example, when a new action a1 is introduced at level k it’s mutex status with every
other action (in pair-wise fashion) at that level is determined. If it is mutex with a4 the pair
may eventually become non-mutex at a future level, but thereafter they will remain non-mutex.
If a1 is initially non-mutex with a3 at level k it will never become mutex at higher levels.

� Two actions in a level that are “statically” mutex (i.e. their effects or preconditions conflict
with each other) will be mutex at all succeeding levels.

• The problem goal set that is to be satisfied at a level k is the same set that will be searched on
at level k+1 when the planning graph is extended. That is, once a subgoal set is present at level
k with no two propositions being mutex, it will remain so for all future levels.

3.1 Aggressive use of memory in tracing search: the EGBG planner

The characteristics listed above suggest an approach for expediting search in episode n+1 given that
we have an appropriate trace of the search conducted in episode n (which failed to find a solution).
We would like to ignore those aspects of the episode n search that are provably unchanged in episode
n+1, and focus search effort on only features that may have evolved. To this end, we offer two ob-
servations:

Observation 3.1) The intra-level CSP-style search process conducted by Graphplan on a set of propo-
sitions, Sn , at planning graph level k+1 in episode n+1 is identical to the search process on Sn at level
k in episode n as long as the following two conditions hold:

1. Any mutexes between pairs of actions that are establishers of propositions of Sn at level k are
still mutex for level k+1. (this concerns dynamic mutexes; static mutexes persist by definition)

2. There are no new actions establishing a proposition of Sn at level k+1 that were not also present
at level k.

Observation 3.2) The trace of Graphplan’s search episode n+1, initiated on a set of propositions S,
at planning graph level k+1, is identical to its episode n search on S at level k as long as the following
two conditions hold:

1. The two conditions of observation 3.1 hold for every subgoal set (state) generated by Graph-
plan in the episode n regression search on S at level k.

2. For every subgoal set Sn at level j in search episode n for which there was a matching level j
memo at the time it was generated, there exists an equivalent memo at level j+1 at the time Sn is
generated in episode n+1. Conversely, for every subgoal set Sn at level j in search episode n for
which no matching level j memo existed at the time it was generated, there is also no matching
memo at level j+1 at the time Sn is generated in episode n+1.

Now, suppose we have a search trace of all states (including no-good states) generated by Graph-
plan’s regression search on the problem goals from planning graph level k in episode n. If that
search failed to extract a solution from the k-length planning graph (i.e. reach the initial state), then if
it is possible to extract a solution from the k+1 length graph it must be true that one or more of the
conditions of observations 3.1 or 3.2 fails to hold for the episode n search trace. Based on this, our
most aggressive approach to search tracing (implemented in the EGBG planner), uses its search trace
from episode n to direct search in a sound and complete manner during episode n+1 by:

 12

1. Ensuring that the relevant mutexes (i.e. the dynamic mutexes) and actions of observation 3.1
get checked for each subgoal set of observation 3.2.

2. Ensuring that the states that matched a cached memo in episode n are checked against the
memo cache at the next higher level in episode n+1.

For each condition that does not hold the backward search must be resumed under the search pa-
rameters corresponding to the backtrack point in the previous episode, n. Such resumed partial
search episodes will either find a solution or generate additional trace subgoal sets to augment the
parent trace. This specialized search trace can be used to direct all future backward search episodes
for this problem, and can be viewed as an explanation for the failure of the search process in each
episode. We hereafter use the terms pilot explanation (PE) and search trace interchangeably. The
following definitions will simplify a more detailed description of conducting search using the PE:

Search segment: A state, in particular a set of planning graph level-specific subgoals generated in
regression search from the goal state (which is itself the first search segment). Each search segment
Sn , generated a planning graph level k contains:
� A subgoal set of propositions to be satisfied
� A pointer to the parent search segment (Sp), that is, the state at level k+1 that gave rise to Sn
� A list of the actions that were assigned in Sp which resulted in the subgoals of Sn
� A pointer to the PE level (as defined below) associated with the Sn
� A trace of action consistency checking results during the attempt to satisfy the subgoals in the

previous search episode
Thus, a search segment represents a state plus some path information, but we may use the terms in-
terchangeably. All the proposition lists appearing in boxes in Figure 4 are search segments. The
procedure used by EGBG to build and use these search segments is outlined in the sidebar below and
the pseudo code will be discussed in the next subsection.

Pilot explanation (PE): The search trace, consisting of the entire linked set of search segments rep-
resenting the search space visited in a Graphplan backward search episode. It is convenient to visu-
alize it as in Figure 4: a tiered structure with separate caches for segments associated with search on
plan graph level k, k+1, k+2, etc. We also adopt the convention of numbering the PE levels in the
reverse order of the plan graph; the top PE level is 0 (it contains a single search segment whose
goals are the problem goals) and the level number is incremented as we move towards the initial
state. When a solution is found the PE will necessarily extend from the highest plan graph level to
the initial state, as shown in the third graph of Figure 4.

Hereafter we refer to a PE search segment that is visited in the solution episode and extended via
backward search to find a valid plan as a seed segment. In addition, all segments that are part of the
plan extracted from the PE we call plan segments.

Given these definitions, we note that the PE, after a search episode n on plan graph level k is a
loose lower bound 3 on the set of states that will be visited when backward search is conducted in

3 It is possible for Graphplan’s memorizing process to preclude some states from being regenerated in a subsequent episode.
See footnote 1 for an brief explanation of conditions under which this may occur.

 13

episode n+1 at level k+1. (This bound can be visualized by sliding the fixed tree of search segments
in the first graph of Figure 4 up one level.)

3.2 Tracing the intra-segment CSP search

 As noted elsewhere, the process Graphplan uses to assign a consistent set of actions to a subgoal
set is essentially CSP search. Observation 3.1 describes the minimum aspects of the search that must
be recorded during search on a search segment Sn (subgoal set) at planning graph level k in episode
n, in order to avoid provably redundant effort in the subsequent episode at level k+1. We would like
to conduct search only under variables with newly extended value ranges (i.e. search segment propo-
sitions that have at least one new establishing action at level k+1) and at points in the level k search
that backtracked due to attempts to assign values that violate a ‘dynamic’ constraint (i.e. two actions
that are dynamic mutex at level k). All other assignment and mutex checking operations involved in
satisfying the goals of Sn are static across search episodes.

 We experimented with several search trace designs for capturing key decision points. The design
adopted for EGBG employs a sequence of bit vectors representing assignment results at each test for
action set consistency during the k-level subgoal search. The trace uses two bits to represent four
decisions/conditions that permit efficient action assignment replay: dynamic mutex, static mutex, no
conflict, and a complete, consistent set of assignments that is rejected at the next level due to a
memoized no-good. As long as the order of actions appearing under the “establishers” list for a
proposition remain constant, the bit vectors can be used to replay the search in the next episode on
the next higher planning graph level.

 The two key conditions described in observation 3.1 are tested as follows: 1) The vectors dictate
mutex status checking on only action assignments that previously backtracked due to dynamic
mutexes 2) New establishing actions for a subgoal are tried after all other establishers are replayed.
All other mutex checking associated with search on the search segment’s subgoals in previous epi-
sodes is avoided; static mutex action assignments and the consistent (non-mutex) assignments are
replayed without rechecking action mutex status. When a dynamic mutex no longer holds or a new
establishing action comes up for assignment, the bit vector is modified accordingly and EGBG re-
sumes Graphplan’s CSP-style search, adding assignment vectors to the search segment in the process.

3.3 Conducting search with the EGBG search trace

The high level approach adopted by EGBG in building the initial pilot explanation during the first
regression search episode and then using it in subsequent search, is presented in Figure 5 in pseudo
code form. In the first episode of regression search on the planning graph an augmented version of
Graphplan’s ‘assign-goals’ routine is used to build the search trace (PE) as it attempts to reach the
initial state. This routine traces its search progress as described in the previous subsection and as
outlined in the ASSIGN-GOALS pseudo code of Figure 6.

If no solution is possible on the k-length planning graph, the graph is extended and EGBG then
uses its ASSIGN-SEG-GOALS routine to replay key features of its previous search as captured in the
PE, for all subsequent search episodes. In the process, the PE is augmented according to the search

 14

EGBG-PLAN (problem)

 Build planning graph PG until first level, k, for which prob-
lem goals, g, are non-mutex

 ..conduct Graphplan-style search on g & build initial PE -
 Create new search segment SS holding goals g
 If ASSIGN-GOALS (SS, g, nil, k) returns a search segment,
SS0 --SUCCESS;

 Extract solution from linked PE search segments, beginning
with SS0 at level 0. -- DONE.

 Else no k-length solution possible;
� L1: Extend planning graph: k<-k+1
� -Use PE to direct subsequent search-

 For p = number of deepest level of PE to top level (0)
 n = planning graph level associated with PE level p
 = k - p
 L2: Select an unvisited search segment, SS in level p
 Let SSgoals = subgoals of SS
 SSresults all ordered, goal-by-goal result vec-

tors from SS (action assigns for SS
 subgoals from previous episode)
 Clear the assignment vectors from SS
 If SSgoals does not match a memo cached at
 level n of PG, then:

 If ASSIGN-SEG-GOALS (SS, nil, SSgoals,
 SSresults, n) returns a search segment, SS0
 --SUCCESS; Extract solution from the

 linked PE search segments, beginning with
 SS0 at level 0.
 DONE

 Else Return to L2
� When all search segments in all PE levels visited:

 Done with PE processing on k-level planning graph
 Go to L1

Figure 5. EGBG pseudo code for top level search
space visited. The pseudo code outlining
this routine appears on the right side of
Figure 6. Figures 5 and 6 depict two proc-
esses, key to employing the search trace,
that merit further discussion;

PE transposition: In the ‘for’ loop of
EGBG-PLAN (Figure 5) a particular plan-
ning graph level, n, is associated with each
PE level in each search episode. This cor-
responds to transposing up one planning
graph level, the pilot explanation of search
segments (states) generated/updated in the
previous episode. That is, for each search
segment in the PE associated with a plan-
ning graph level j after search episode n,
associate it with level j+1 for episode n+1:
1))1,1(),(:)(),(++ →∈∀ jnSjnSnPEjnS i

assoc
ii

Visiting a search segment: This is imple-
mented by the ASSIGN-SEG-GOALS rou-
tine of Figure 6. For segment Si at plan
graph level j+1, visitation is a 4–step proc-
ess:

1. Perform a memo check to ensure the
subgoals of Si are valid (not a no-
good) at level j+1

2. ‘Replay’ the previous episode’s action assignment sequence for all subgoals in Si, using the
segment’s ordered assignment vectors. Conduct mutex checking on only those pairs of actions
that were dynamic mutex at level j. For actions that are no longer dynamic mutex, add the can-
didate action to Si’s list of consistent assignments and resume Graphplan-style search on the
remaining goals. Si ,is augmented and the PE extended in the process. (A child search segment
is created, linked to Si , and added to the PE whenever Si’s goals are successfully assigned, en-
tailing a new set of subgoals to be satisfied at level j.)

3. For each Si subgoal in the replay sequence, check also for new actions appearing at level j+1
that establish the subgoal. New actions that are inconsistent with a previously assigned action
are logged as such in Si’s assignments. For new actions that do not conflict with those previ-
ously assigned, assign them and resume Graphplan-style search from that point as for step 2.

4. Memoize Si’s goals at level j+1 if no solution is extracted via the assignment/search process of
steps 2 and 3.

As long as all the segments in the PE are visited in this manner, the planner is guaranteed to find
an optimal plan in the same search episode as Graphplan.

 15

Figure 6. Pseudo code for EGBG’s regression search routines
 Left -new search on the planning graph Right -search replay using the search trace

Replaying regression search captured in search trace (PE)

ASSIGN-SEG-GOALS (SS (search segment), A (actions
 already assigned), SSgoals (goals left to assign), SSresults
 (remaining assign results), k (PG level))
 If SSgoals is empty, A is a consistent set of actions satisfying
 the goals of SS: Return.
 If SSgoals is not empty then:

 Pop front goal, g, from SSgoals
 Pop front assign result vector, gresults, from SSresults

 Let Ag = the set of actions from level k of PG that support g
 -replay assignments for g from previous episode-
 L1: For each assign result, ares, in gresults vector

• Pop action act from Ag
• If ares indicates no conflict with act, then

• Add act to A (assigned acts)
 - move down to next goal-

• Call ASSIGN-SEG-GOALS (SS,A ,SSgoals,
 SSresults, k)

 else if ares indicates act was static mutex;
 no need to retest, loop to L1
 else if ares indicates act was dynamic mutex
 with an act in A, check current mutex status:

 If act is still mutex, loop to L1
 else it’s no longer mutex with any action in A:

• Change ares to ‘no conflict’ in gresults
• Add act to A (assigned acts)

 - resume backward search and extend PE-
• Call ASSIGN-GOALS (SS, SSgoals, A, k)

 else if ares designates a no-good from previous
 episode then memo-check regressed subgoals
 for A at level k-1:
 If subgoals for A are also no-good at level k-1,
 loop to L1
 else regressed subgoals are no longer no-good;

• Change ares to ‘no conflict’ in gresults
• Create new search segment SS1 with goals

based on regressed goals of A’s assigned
actions

 - resume backward search at level k-1, extend PE-
• Call ASSIGN-GOALS (SS, SS1goals, nil,

 k-1)
 When all assignments in gresults have been replayed;

 augment vector with results of any new establishers for
 subgoal g that first appeared at level k:

 L2: If Ag is empty, Return from ASSIGN-SEG-GOALS
 else attempt to assign new action

• Pop action act from Ag
• If act is mutex with an action in A then;

o Append assign result (stat or dyn mutex) to
gresults

o Return to L2.
 else assign action & resume backward search

o Add act to A (assigned acts)
o Call ASSIGN-GOALS (SS, SSgoals, A , k)
o Return to L2.

Regression search on a new subgoal set while build-
ing the search trace (PE)

ASSIGN-GOALS (SS (search segment) SSgoals
 (subgoals left to assign), A (actions already assigned),
 k (PG level))
 If SSgoals is empty or k is 0 (the initial state) then:

 SUCCESS: Return SS to EGBG-PLAN.
 else there are goals left to satisfy:

 Pop front goal, g, from SSgoals
 Append empty assignment results vector,

 gresults to SS vectors list
 Let Ag = the set of actions from level k of PG

that support g
 L1: For each action act from Ag
 If act is dynamic mutex with an act in A:
 Append ‘dyn mutex’ to gresults vector
 else if act is static mutex with an act in A:
 Append ‘stat mutex’ to gresults vector
 else act has no conflict with actions in A:
 Add act to A (assigned acts)
 If g is the last goal for SS, then:

 -prepare for search at lower level on
 SS1goals, the subgoals of SS regressed
 over A’s assigned actions -

 If SS1goals matches a memo at PG level
 k-1 then: (we backtrack on nogood..)
 Append ‘no-good’ tag to gresults
 else (move down to next PG level)

• Create child search segment SS1
linked to parent SS, holding sub-
goals SS1goals, and A (assigned ac-
tions)

• Append ‘no-conflict’ to gresults
• Add SS1 to PE level associated with

PG level k-1
• Call ASSIGN-GOALS (SS1,

SS1goals, nil, k-1)
• Memoize SS1goals at PG level k-1

 else g is not the last subgoal for SS:
• Append ‘no-conflict’ to gresults
 - move down to assign next subgoal -
• Call ASSIGN-GOALS (SS, SSgoals,

 A, k-1)
 Loop to L1.

 Return from ASSIGN-GOALS

 16

The search algorithm for EGBG essentially alternates the selection and visitation of a promising
state from the search trace of its previous experience, with a focused CSP-type search on the state’s
subgoals. The latter process seeks to focus on only those aspects of the previous search that could
possibly have changed and areas of the search space not previously explored. The former process
suggests that since the PE can be viewed as encapsulating a search space of states we may no longer
be restricted to the (non-informed) depth-first nature of Graphplan’s search process and have the
freedom to traverse the states in any preferred order. We might, for example, exploit any of the vari-
ety of state-space heuristics that have revolutionized state space planners in recent years (Bonet and
Geffner, 1999, Nguyen and Kambhampati, 2000, Gerevini and Serina, 2002). Intelligent traversal of
the state-space view of Graphplan’s search space is taken up in Section 5, where we argue that this is,
perhaps, the key advantage afforded by such the search trace. The desire to exploit this freedom
more fully helps motivate the move to PEGG’s more sparse style of search trace from the detailed
trace used by EGBG.

As it turns out, when the search segments in the PE are visited in any fashion other than either top-
down or bottom-up order (in terms of PE levels), the extensive intra-segment tracing conducted by
EGBG greatly complicates the bookkeeping and can incur significant memory management over-
head. Top-down visitation of the segments in the PE levels is the degenerate mode. This search
process will essentially mimic Graphplan’s since each episode begins with search on the problem
goal set, and (with the exception of the replay of the top-level search segment’s assignments), regen-
erates all the states generated in the previous episode -plus possibly some new states- during its re-
gression search. The search trace provides no significant advantage under a top-down visitation pol-
icy.

The bottom-up policy, on the other hand, has intuitive appeal since the lowest levels of the PE cor-
respond to portions of the search space that lie closest to the initial state (in terms of plan steps). If a
state in one of the lower levels can in fact be extended to a solution, the planner will avoid all the
search effort the Graphplan search process would expend in reaching state from the top-level prob-
lem goals. Adopting a bottom-up visitation policy amounts to layering a secondary heuristic on the
primary IDA* heuristic, which is the planning graph length that is iteratively deepened. Recalling
from Section 2.2 that all states in the PE have the same f-value in terms of the primary heuristic, we
are essentially biasing here in favor of states with low h-values. Support for such a policy comes
from work on heuristic guided state-space planning (Bonet and Geffner, 1999, Nguyen and Kamb-
hampati, 2000) in which better performance was generally observed when h was weighted by a factor
of 5 relative to the g component of the heuristic f-value. However, unlike these state-space planning
systems, which adopt this as their primary heuristic, the guarantee of plan optimality for EGBG does
not depend on the admissibility of this secondary heuristic. We have found bottom-up visitation to
be the most efficient mode for EGBG and it is the default order for all EGBG results reported in this
study.

The next section reports the performance of a version of EGBG that implements the approach de-
scribed above, with little attention to the issue of memory management. The memory efficiency as-
pect of using a search trace is addressed in section 4.

 17

3.4 EGBG experimental results

Table 1 shows some of the performance results reported for the first version of EGBG (Zimmer-
man and Kambhampati, 1999). Amongst the search trace designs we tried, this version is the most
memory intensive and records the greatest extent of the search experience. Runtime, the number of
search backtracks, and the number of search mutex checks performed is compared to the Lisp imple-
mentation of the original Graphplan algorithm. EGBG exhibits a clear advantage over Graphplan for
this small set of problems;

• Total problem runtime: 2.7 - 24.5x improvement
• Number of backtracks during search: 3.2 - 33x improvement
• Number of mutex checking operations during search: 5.5 - 42x improvement

Since total time is, of course, highly dependent on both the machine as well as the coding language4
(EGBG performance is particularly sensitive to available memory), the backtrack and mutex check-
ing metrics provide a better comparative measure of search efficiency. For Graphplan, mutex check-
ing is by far the biggest consumer of computation time and, as such, the latter metric is perhaps the
most complete indicator of search process improvements. Some of the problem-to-problem variation
in EGBG’s effectiveness can be attributed to the static/dynamic mutex ratio characterizing Graph-
plan’s action assignment routine. The more action assignments rejected due to pair-wise statically
mutex actions, the greater the advantage enjoyed by a system that doesn’t need to retest them. The
Tower-of-Hanoi problems fall into this classification.

As noted in the original study (Zimmerman and Kambhampati, 1999) the range of problems that
can be handled by this implementation is significantly restricted by the amount of memory available
to the program at runtime. For example, with a PE consisting of almost 8,000 search segments, the
very modest sized BW-Large-B problem challenges the available memory limit on our test machine.
We consider next an approach (‘me-EGBG’ in Figure 1) that occupies a middle ground in terms of
memory demands amongst the search trace approaches we have investigated.

4 Engineering to reduce EGBG memory requirements: the me-EGBG planner

The memory demands associated with Graphplan’s search process itself are not a significant con-
cern, since it conducts depth-first search with search space requirements linear in the depth of a solu-
tion node. Since we seek to avoid the redundancy inherent in the IDA* episodes of Graphplan’s
search by using a search trace, we must deal with a much different memory-demand profile. The
search trace design employed by EGBG has memory requirements that are exponential in the depth
of the solution. However, the search trace grows in direct proportion to the search space actually vis-
ited, so that techniques which prune search also act to greatly reduce memory demands for systems
such as EGBG.

We considered a variety of methods with respect to this issue, and discuss here a suite of seven that
together have proven instrumental in helping EGBG (and later, PEGG) overcome memory-bound

4 The values have been updated to reflect performance on the same machine used for other experiments in this study and re-
flect some changes in the tracking of statistics. All table results in this study are for code compiled in Allegro Lisp version
6.0 for MS Windows, on a 900 Mhz laptop with 384 MB RAM memory.

 18

limitations. Six of these are known techniques from the planning and CSP fields; variable ordering,
value ordering, explanation based learning (EBL), dependency directed backtracking (DDB), domain
preprocessing and invariant analysis, and transition to a bi-partite planning graph. Four of the six
most effective methods are speedup techniques from the CSP field, however our interest lies primar-
ily in their impact on search trace memory demands. The seventh method is a novel variant of vari-
able ordering, which we call ‘EBL-based reordering’, that takes advantage of the fact that we are us-
ing EBL and have a search trace available. While this method is readily implemented in PEGG, the
strict ordering of the assignment vectors employed by the EGBG search trace make it costly to im-
plement for that planner. As such, ‘memory-efficient EGBG’ (me-EGBG) does not use EBL-based
reordering and we defer further discussion until PEGG is introduced in Section 5.

The manner in which the first six techniques are employed in the context of me-EGBG (and PEGG)
is outlined below. There are two major modes in which they can impact memory demand; 1) Reduc-
tion in the size of the pilot explanation (search trace), either in the number of search segments
(states), or the average trace content within the segments, and 2) Reduction in the requirements of
structures that compete with the pilot explanation for available memory (i.e. the planning graph and
the memo caches). We will compare the impact of the six methods along these dimensions, after
summarizing the application of each method to building and searching on a planning graph using the
search trace.

Domain preprocessing and invariant analysis:

 The speedups attainable through preprocessing of domain and problem specifications are well
documented (Fox and Long, 1998a, Gerevini and Schubert, 1996). Static analysis prior to the plan-
ning process can be used to infer certain invariant conditions implicit in the domain theory and/or
problem specification. We have focused the domain preprocessor for me-EGBG /PEGG on identifica-
tion and extraction of invariants in action descriptions, including typing, and subsequent rewrite of
the domain in a form that is efficiently handled by the planning graph build routines. We also dis-
criminate between static (or permanent) mutex relations and dynamic mutex relations (in which a
mutex condition may eventually relax) between actions and proposition pairs and use this informa-
tion to both expedite graph construction and during the ‘replay’ of action assignments when a search
segment is visited.

As we will show, domain preprocessing can significantly reduce memory requirements to the ex-
tent that it identifies propositions that do not need to be explicitly represented in each level of the
graph. (Examples of terms that can be extracted from action preconditions -and hence do not get ex-
plicitly represented in planning graph levels- include the (SMALLER ?X ?Y) term in the MOVE action
of a benchmark ‘towers of Hanoi’ domain and typing terms such as (AUTO ?X) and (PLACE ?Y) in
logistics domains.) This benefit is further compounded in EGBG and PEGG since propositions that
can be removed from action preconditions directly reduce the size of the subgoal sets generated dur-
ing the regression search episodes, and hence the size of the search trace.

Bi-partite planning graph:

The original Graphplan maintains the level-by-level action, proposition, and mutex information in
distinct structures for each level, thereby duplicating -often many times over- the information con-

 19

tained in previous levels. It has been known for some time that this multi-level planning graph could
be efficiently represented as an indexed two-part structure (Fox and Long 1998, Smith and Weld,
1998). Finite differencing techniques can then be used to address only those aspects of the graph
structure that can possibly change as it is incrementally extended, leading to more rapid construction
of a more concise planning graph.

For me-EGBG and PEGG, the bi-partite graph offers a benefit beyond the reduced memory de-
mands and faster graph construction time; the PE transposition process described in section 3.1 is
reduced to simply incrementing each search segment’s graph level index. This is not straightforward
with the multi-level graph built by Graphplan since each proposition (and action) referenced in the
search segments is a unique data structure in itself. In order to access the related proposition at the
next higher graph level in a subsequent search episode, a search for the term in the proposition level
must be conducted. Of course, the planning graph could be modified by adding pointers connecting
related propositions/actions at added memory cost, but this makes more awkward the kind of rapid
access of the constraint profile for these structures that we will ultimately find useful in versions of
the PEGG planner.

Explanation Based Learning and Dependency Directed Backtracking:

The application of explanation based learning (EBL) and dependency directed backtracking (DDB)
were investigated in a preliminary way in Zimmerman and Kambhampati, 1999, where the primary
interest was in their speedup benefits. Although the techniques were shown to result in modest
speedups on several small problems, the complexity of integrating them with the maintenance of the
PE replay vectors limited the size of problem that could be handled. We have since succeeded in im-
plementing a more robust version of these methods, and results reported here will reflect that.

Both EBL and DDB are based on explaining failures at the leaf-nodes of a search tree, and propa-
gating those explanations upwards through the search tree (Kambhampati, 1998). DDB involves us-
ing the propagation of failure explanations to support intelligent backtracking, while EBL involves
storing interior-node failure explanations, for pruning future search nodes. An approach that imple-
ments these complimentary techniques for Graphplan is reported in Kambhampati, 2000 where
speedups ranged from ~2x for ‘blocksworld’ problems to ~100x for ‘ferry’ domain problems. We
defer to that study for a full description of EBL/DDB in a Graphplan context, but note here some as-
pects that are particularly relevant for me-EGBG and PEGG.

In the manner of the conflict directed back-jumping algorithm (Prosser, 1993), the failure explana-
tions are compactly represented in terms of “conflict sets” that identify the specific action and goal
assignments that have resulted in backtracking. This frees the search from chronological backtrack-
ing, allowing search to jump back to the most recent variable taking part in the conflict set. The con-
flict set that is eventually regressed back to the first goal after completing all attempts to satisfy a
subgoal set also represents a valuable ‘minimal’ no-good for memoization. This memo is usually
shorter and hence more general than the one generated and stored by standard Graphplan. In addi-
tion, an EBL-augmented Graphplan generally has smaller memo caches in terms of memory.

Both EGBG and PEGG have been outfitted EBL/DDB for all non-PE directed Graphplan-style
search. EGBG however, does not use EBL/DDB in the ‘replay’ of the action assignment results for a

 20

PE search segment due to the complexity of having to retract assignment vectors (and parts of vec-
tors) whenever the conflict set for a new episode dictates a replay order that differs from the previous
episode.

 Less obvious than their speedup benefit perhaps, is the role EBL and DDB can play in dramati-
cally reducing the memory footprint of the pilot explanation. Together EBL and DDB shortcut the
search process by steering it away from areas of the search space that are provably devoid of solu-
tions. Since a search trace grows in direct proportion to the search space actually visited, such tech-
niques that prune search can greatly reduce memory demands for systems such as EGBG or PEGG.

Value and Variable Ordering:

Value and variable ordering are also well known speedup methods for CSP solvers. In the context
of Graphplan’s regression search on a given planning graph level k, the variables are the regressed
subgoals and the values are the possible actions that can give these propositions at level k of the
graph. In their original paper, Blum and Furst (1997) argue that variable and value ordering heuris-
tics are not particularly useful in improving Graphplan, mainly because exhaustive search is required
in the levels before the solution bearing level anyway. Nonetheless, the impact of dynamic variable
ordering (DVO) on Graphplan performance was examined in Kambhampati, 2000, and modest
speedups were achieved using the standard CSP technique of selecting for assignment the subgoal
(‘variable’) that has the least number of remaining establishers (‘values’). More impressive results
are reported in a later study (Nguyen, Kambhampati, 2000) where distance-based heuristics rooted in
the planning graph were exploited to order both subgoals and goal establishers. In this configuration,
Graphplan exhibits speedups ranging from 1.3 to over 100x, depending on the particular heuristic and
problem.

For this study we fix variable ordering according to the ‘adjusted sum’ heuristic and value ordering
according the ‘set level’ heuristic, as we found the combination to be reasonably robust across the
range of our test bed problems.5 Both of these are described in Section 5 where the heuristics used to
direct the traversal of the PE states is discussed. As discussed below, we have found the benefits of
distance-based variable and value ordering for our search trace-based planners to be highly problem-
dependent, both in terms of memory reduction and speedup (in some cases they can even slow solu-
tion search). Their effectiveness also varies considerably with the particular ordering heuristic used
on a problem.

The use of memory by EGBG/PEGG to build and maintain the planning graph and search trace
structures provides added benefits in reducing the cost of variable and value ordering. The default
order in which Graphplan considers establishers (values) for satisfying a proposition (variable) at a
given level is set by the order in which they appear in the planning graph structure. During graph
construction in me-EGBG and PEGG we can set this order to correspond to the desired value ordering

5 Briefly, the set level for an action, proposition or proposition set is the first level in which it appears in the planning graph.
The adjusted-sum heuristic for a set of propositions adds to set level the difference in levels between the first planning graph
level at which the set are all present and the level at which they become pair-wise non-mutex.

 21

heuristic, so that the ordering only has to be computed once.6 For its part, the PE that is constructed
during search can record the heuristically best ordering of each regression state’s goals, so that this
variable ordering is also done only once for the given state. This stands in contrast to versions of
Graphplan that have been outfitted with variable and value ordering (Kambhampati, 2000) where the
ordering is reassessed each time a state is regenerated in successive search episodes.

All of the techniques listed above can be (and have been) used to improve Graphplan’s perform-
ance also, in terms of speed. In order to focus on the impact of planning with the search trace, we
use a version of Graphplan that has been enhanced by these six methods for all comparisons to me-
EGBG and PEGG in this study (We hereafter refer to this enhanced version of Graphplan as GP-e).

4.1 Impact of enhancements on EGBG memory demands

In general, the impact of each these enhancements on the search process depends significantly, not
only on the particular problem, but also on the presence (or absence) of any of the other methods.
There is no single configuration of techniques that proves to be optimal across a wide range of prob-
lems. Since there is a computational overhead associated with these methods, it is generally possible
to find a class of problems for which performance degrades due to the presence of the method when
compared to a planner configuration that doesn’t use the technique. We have settled on this set of
techniques based on their joint impact on the me-EGBG / PEGG memory footprint over an extensive
variety of problems.

Before reporting the runtime impact of the techniques on EGBG, we characterize them according to
the two memory impact modes mentioned at the beginning of this section, 1) reduction in PE size and
2) reduction in space required for planning graph or memo caches. Admittedly, these two dimen-
sions are not independent, since the number of memos (though not the size) is linear in the number of
search segments. We have nonetheless chosen to partition along these lines to facilitate a clear com-
parison of each technique’s impact on the search trace that distinguishes our planning approach. The
Figure 7 plot illustrates for each method, the relative degree of memory reduction impact relative to
these two facets, when the method operates in isolation of the others. (We defer discussion of the
EBL/ Reorder method to Section 5.) As we’ve noted previously, the actual impact on both memory
and speed of these techniques is highly dependent on both the problem and which of the other meth-
ods are active.

 The plot reflects results based on twelve problems in three domains (logistics, blocksworld, and
tower-of-hanoi), chosen to include a mix of problems entailing large planning graphs, problems re-
quiring extensive search, and problems requiring both. The horizontal axis plots percent reduction
in the end-of-run memory footprint of the combined memo caches and the planning graph. The ratios
along this ordinate are assessed based on runs with Graphplan (no search trace employed) where the
memo cache and planning graph are the only globally defined structures of significant size that

6 Although neither the original Graphplan nor the ordering augmented version in Kambhampati, 2000 actually orders their ac-
tions during graph construction, in principle, this could be done for any planner that builds a planning graph. However, it is
actually made more difficult when a bi-partite graph is used, since the action ordering under a given proposition will be used
across all levels of the planning graph. For action assignment efficiency reasons, it is preferable to have these actions or-
dered according to level in which they first appear. This is essentially the ‘set level’ ordering, and it is by far the lowest cost
action ordering heuristic for a system using a bi-partite planning graph

 22

remain in the Lisp interpreted
environment at run comple-
tion.7 Similarly, the vertical
axis plots percent reduction in
the space required for the PE
at the end of EGBG runs with
and without each method acti-
vated, and with the planning
graph and memo cache struc-
tures purged from working
memory.

The plot crossbars for each
method depict the spread of
reduction values seen across
the twelve problems along
both dimensions, with the
intersection being the average.
The bi-partite planning graph,
not surprisingly, impacts only
the graph aspect, but five of
the six methods are seen to
have an impact on both search
trace size and graph/memo
cache size. Of these, DDB
has the greatest influence on PE size but little impact on the graph or memo cache size, while EBL
has a more modest influence on the former and a larger impact on the latter (due both to the smaller
memos that it creates and the production of more ‘general’ memos, which engender more back-
tracks). Domain preprocessing/ invariant analysis can have a major impact on both the graph size
and the PE size due to processes such as the extraction of invariants from operator preconditions,. It
is highly domain dependent, having little effect in the case of blocksworld problems, but can have
great consequence in tower-of-hanoi and some logistics problems.

Evidence that the six methods outlined in the previous section, combined, can compliment each
other is provided by the crossbars plotting space reduction when all six are employed at once. Over
the twelve problems average reduction in PE size approaches 90% and average reduction in the plan-
ning graph/memo cache category exceeds 80%. No single method averages more than a 55% reduc-
tion along these dimensions in isolation.

The next section compares the performance of EGBG and EGBG augmented with the above en-
hancements to a similarly augmented version of Graphplan.

7 The Allegro Common Lisp ‘global scavenging’ function was used to purge all but the target global data structures from the
workspace.

Bi-partite graph

%
 re

du
ct

io
n

in
 P

E
(s

ea
rc

h
tra

ce
) m

em
or

y
re

qu
ire

m
en

t

% reduction in planning graph, memo cache memory requirements

Figure 7: Memory demand impact along two dimensions for six mem-
ory reduction/speedup techniques when applied independently and as a
suite (within EGBG).

 10 20 30 40 50 60 70 80 90 100

 10

20

30

40

50

60

70

80

 9

0

 1
00

DDB

 EBL

Domain preprocess/
Invariant Analysis

Variable Ordering

Value Ordering

All six in combination
(in me-EGBG)

 23

 4.2 Experimental results with me-EGBG

Table 2 illustrates the impact of the six augmentations discussed in the previous section on
EGBG’s (and Graphplan’s) performance, in terms of both space and runtime. Standard Graphplan,
GP-e (Graphplan enhanced with the techniques of the previous section), and the two versions of
EGBG are compared across 36 benchmark problems in a wide range of domains, including problems
from all three AIPS planning competitions held to date. Not surprisingly, the memory efficient
EGBG clearly outperforms the early version on all problems attempted. More importantly, me-EGBG
is able to solve a variety of problems beyond the reach of both standard Graphplan and the first ver-
sion. Of the 36 problems, standard Graphplan solves 11, the original EGBG solves 12, GP-e solves
28, and EGBG with these augmentations solves 27. Where me-EGBG and GP-e solve the same prob-
lem, me-EGBG is faster by up to a factor of 62x, and averages >5x speedup. Relative to standard
Graphplan, on the eleven problems it can solve, me-EGBG exhibits speedups from 3x to over 1000x.

The striking improvement of the memory efficient version of EGBG over the first version is not
simply due to the speedup associated with the five techniques discussed in the previous section, but
is directly tied to their impact on search trace memory requirements. Table 2 indicates one of three
reasons for each instance where a problem is not solved by a planner: 1) s: planner is still in search
after 30 cpu minutes, 2) pg: memory is exhausted or exceeded 30 minutes during the planning graph
building phase, 3) pe: memory is exhausted during search due to pilot explanation extension.

As indicated by the columns reporting the size of the PE (in terms of search segments at the time
the problem is solved), the me-EGBG generates and retains in its trace up to 100x fewer states than
the first version. This translates into a much broader reach for me-EGBG; it exhausts memory on only
4 problems compared to 19 for the first version of EGBG. Nonetheless, GP-e solves three problems
on which me-EGBG fails in 30 minutes due to search trace memory demands (For two problems, GP-e
fails to find a solution where the latter succeeds in the allotted time runtime window). The table also
illustrates the dramatic impact of the speedup techniques on Graphplan itself. The enhanced version,
GP-e, is well over 10x faster than the original version on problems they can both solve in 30 minutes,
and it can solve many problems entirely beyond standard Graphplan’s reach. Nonetheless, me-EGBG
modestly outperforms GP-e on the majority of problems that they both can solve. Since its strength
lies in using the PE to shortcut Graphplan’s episodic search process, its efficiency advantage appears
only for problems with multiple search episodes and a high fraction of runtime devoted to search.
Thus, no speedup (or a small slowdown) relative to GP-e is seen for grid-y-1 and all problems in the
‘mystery’, ‘movie’, and ‘mprime’ domains where a solution can be extracted as soon as the planning
graph reaches a level where the problem goals are present and non-mutex.

The bottom-up order in which EGBG visits PE search segments turns out to be surprisingly effec-
tive for many problems. Evidence of this is apparent in examining the final search episodes for the
problems of Table 2; in the great majority, the PE is found to contain a seed segment (a state from
which regression search will reach the initial state) within the deepest two or three PE levels. This
supports the intuition discussed in the previous section and suggests that the advantage heuristic
state-space planners observed in biasing towards low h-value states (Bonet and Geffner, 1999,
Nguyen and Kambhampati, 2000), translates to some extent to search on the planning graph.

 24

Graphplan

Problem
(steps/actions)

cpu sec
 Stnd. GP-e
 (enhanced)

EGBG

 cpu sec size of PE

me-EGBG
(memory efficient EGBG)

 cpu sec size of PE

SPEEDUP
(me-EGBG
vs. GP-e)

bw-large-B (18/18) 126 11.4 79 7919 9.2 2090 1.2x
rocket-ext-a (7/34) s 3.5 40.3 1020 1.8 174 1.9x
att-log-a (11/79) s 12.2 pe 7.2 1115 1.7x
att-log-b (11/79) s s pe s ~
gripper-8 (15/23) 125 14.1 88 9790 12.9 2313 1.1x
Tower-6 (63/63) s 43.1 39.1 3303 7.6 80 5.7x
Tower-7 (127/127) s 158 s 20.0 166 7.9x
8puzzle-1 (31/31) 667 57.1 pe pe (pe)
8puzzle-2 (30/30) 304 48.3 pe 26.9 10392 1.8x
TSP-12 (12/12) s 454 pe 21.0 7155 21.6x
AIPS 1998 Graphplan GP-e EGBG me-EGBG
grid-y-1 (14/14) 388 16.7 393 16.9 15 1x
grid-y-2 (??/??) pg pg pg pg ~
gripper-x-3 (15/23) 291 16.1 200 9888 8.4 2299 1.9x
gripper-x-4 (19/29) s 190 pe 65.7 6351 2.9x
gripper-x-5 (23/35) s s pe 433 13572 > 5x
log-y-4 (11/56) pg 470 pg pe (pe)
mprime-x-29 (4/6) 15.7 5.5 6.6 4 5.5 4 1x
movie-x-30 (2/7) .1 .05 .06 2 .05 2 1x
mysty-x-30 (6/14) 83 13.5 85 32 13.5 19 1x
AIPS 2000 Graphplan GP-e EGBG me-EGBG
blocks-10-1 (32/32) s 101.4 pe 20.3 6788 5.0x
blocks-12-0 (34/34) s 30.6 pe 21.5 3220 1.42x
logistics-10-0 (15/56) s 30.0 s 16.6 1115 1.81x
logistics-11-0 (13/56) s 78.3 pe 10.0 1377 7.8x
logistics-12-1 (15/77) s s pe 1205 7101 > 2x
freecell-2-1 (6/10) s 98.0 pe pe >12000 (pe)
schedule-8-5 (4/14) pg 63.5 pg 42.9 6 1.5x
schedule-8-9 (5/12) pg 175 pg 164 230 1.1x
AIPS 2002 Graphplan GP-e EGBG me-EGBG
depot-1212 (22/55) pg s pg s ~
depot-6512 (10/26) 239 5.1 219 4272 4.1 456 1.25x
depot-7654a (10/28) s 32.5 s 14.8 2.2x
driverlog-2-3-6a (10/24) 1280 2.8 807 1569 1.0 232 3.8x
driverlog-2-3-6b (7/20) s 27.5 1199 2103 3.9 401 7x
roverprob1425 (10/32) s 21.9 979 10028 12.5 2840 1.8x
roverprob1423 (9/30) s 170 pe 84.4 4009 2.5x
ztravel-3-8a (7/25) s 972 pe 15.6 1353 62x
ztravel-3-8b (6/22) s 11.0 991 3773 10.2 1353 1.1x

Table 2. Search for step-optimal plans: Comparison of EGBG and memory efficient EGBG with
standard, and enhanced Graphplan.

‘Standard Graphplan’: Lisp version by Smith and Peot. GP-e and memory efficient EGBG employ a bi-partite
planning graph, domain preprocessing, EBL/DDB, “adjusted sum” goal ordering, “level-based” action ordering.
 "Size of PE" is final search trace size in terms of the number of "search segments"
 ‘pg’ Exceeded 30 mins. or memory constraints during graph building
 ‘pe’ Exceeded memory limit during search due to size of PE
 ‘s’ Exceeded 30 mins. during search
Times given in cpu seconds on a 900 MHz, Pentium III, 384 MB RAM, running Allegro common lisp. Letter suffix added to
some competition problem names discriminate between different problems with identical names. Numbers in parentheses next
to the problem names list the # of time steps and # of actions respectively in the Graphplan solution

 25

 Results for even the memory efficient version of EGBG reveal two weaknesses in its approach to
search trace directed planning:

1. The intra-segment action assignment vectors that allow EGBG to avoid redundant search effort
are somewhat costly to generate, make significant demands on available memory for problems
that elicit large search (e.g. Table 2 problems: log-y-4, 8puzzle-1, freecell-2-1), and are diffi-
cult to revise when search experience alters drastically in subsequent visits.

2. In spite of its surprising effectiveness in many problems, bottom up visitation of search seg-
ments in the PE is inefficient in others. For Table 2 problems such as freecell-2-1 and essen-
tially all ‘schedule’ domain problems, when the planning graph gets extended to the level from
which a solution can be extracted, that solution arises via a new search branch generated from
the problem goal state. In the search trace parlance, the only seed segment in the PE is the
topmost search segment, so bottom-up visitation of the PE states is more costly than Graph-
plan’s top-down approach. A more flexible and informed traversal order is indicated here.

 The first shortcoming is manifest in classes of problems that do not allow EGBG to exploit the PE
(e.g. problems in which a solution can be extracted in the first search episode). Due to the overhead
associated with building its search trace, EGBG takes a particularly hard hit compared to, for exam-
ple, Graphplan. Another result of using the assignment vectors is that although EGBG employs
EBL/DDB when it conducts new Graphplan-style search, it does not exploit the speedup technique
during the action assignment replay of a search segment, due to the difficulty of dynamically updat-
ing the assignment vectors.

An obvious tact to address the second shortcoming is to traverse the search space implicit in the PE
according to state space heuristics. Unfortunately, EGBG incurs significant processing overhead as-
sociated with visiting the search segments in any order other than bottom up. When an ancestor of
any state represented in the PE is visited before the state itself, EGBG’s search process will regener-
ate the state and any of its descendents (unless it first finds a solution). There is a non-trivial cost
associated with generating the assignment trace information in each of EGBG’s search segments; its
search advantage lies in reusing that trace data without having to regenerate it.

We next consider a different architecture as well as strategy for employing a search trace. The
PEGG planners that lie along the right branch of the Figure 1 family share this approach, which
trades off the chronicle of action assignment vectors for a more skeletal and flexible structure, and
shifts its focus to informed traversal of the state space implicit in the search trace.

5 Tracing at the state level and focusing on the state space view:

 The PEGG planners

The costs associated with EGBG’s generation and use of its search trace are directly attributable to
the storage, updating, and replay of the CSP value assignments for a search segment’s subgoals. We
therefore investigated a stripped down version of the search trace that abandons this tactic and fo-
cuses instead on the embodied state space information. The important difference between EGBG’s
pilot explanation and the pared down, ‘skeletal’ PE used by the PEGG planners, is that the detailed
mutex-checking information contained in the bit vectors of the former is replaced by heuristic

 26

value(s) used to determine visitation order for the
latter. We will show that the PEGG (Pilot Expla-
nation Guided Graphplan) planners employing
this search trace -both the so-PEGG (the step-
optimal version) planner and PEGG (a version
using beam search)- outperform the EGBG plan-
ners on larger problems. The principle tactic
taken by the PEGG planners is to employ avail-
able memory to transform Graphplan’s iterative
deepening depth-first search into iterative expan-
sion of a select set of states that can be traversed
in any desired order. They take a global view of
the search space visited in previous episodes, and
are able to employ a variety of state-space heuris-
tics to preferentially visit promising regions of
the search space.

Following the first search episode, the PEGG
planners have available a search trace providing a concise state space view of their search space. A
planner with freedom to traverse this search space in any desired order has a clear advantage over
one with fixed-order traversal, at least in the episode in which a solution can be found. Figure 8 de-
picts a small hypothetical search trace in the final search episode in order to illustrate this advantage.
Here search segments in the PE at the onset of the episode appear in solid lines and all plan segments
(i.e. states that can be extended to find a valid plan) are shown as double-lined boxes. Note that typi-
cally there may be many such latent plan segments in diverse branches of the search trace at the solu-
tion-bearing episode, and the figure reflects this. Clearly for this problem a planner that can dis-
criminate plan segment states from other states in the PE could solve the problem more quickly than
a planner restricted to a bottom-up traversal (deepest PE level first). In this section, we describe our
investigation of heuristics to direct this traversal of the PE search space for the PEGG planners.
Looking ahead, we note that as long as we are constrained by Graphplan’s policy of exhaustively
searching the planning graph level-by-level (as so-PEGG does), we must eventually visit every
search segment in the PE during each search episode, and any advantage of heuristic-guided traversal
is realized only in the final episode. As discussed in Section 5.4, PEGG (with beam search) relaxes
this constraint and the advantage is thereby extended to all intermediate search episodes.

The pseudo-code of PEGG’s algorithm is given in Figure 9, and it’s apparent that visitation of such
search segments is notably simpler than that depicted for EGBG (Figure 5). It now consists of per-
forming a memo check on the subgoals of Sn and conducting Graphplan’s CSP-style search on an
ordered list of the segment’s subgoals. A child segment is created and linked to Sn (extending the
PE) whenever Sn’s goals are successfully assigned.

The PEGG-PLAN routine combines both state-space and CSP-based aspects in its solution search:

� Choose for expansion the most promising state based on the previous search iteration and state
space heuristics. PEGG is free to traverse the states in its search trace in any order.

 1 2 3 Proposition Levels 7 8

1

A
C
E
F
K

Init
State

.

4

3

2

.

.

.

.
.
.
.

Goal
W
X
Y
Z

.

.
.
.

.

.

Figure 8. The PE for the final search episode of a
hypothetical problem. Search segments in the PE at
the onset of search appear in solid lines, double
lined boxes are plan segments, dashed lined boxes
indicate states newly generated in regression search
during the episode. Visitation order according to
secondary heuristic is indicated.

 27

� Expand the selected state in Graph-
plan’s CSP-style, depth-first fashion,
making full use of all CSP speedup
techniques outlined above.

The first aspect most clearly distinguishes
PEGG from EGBG, in that traversal of the
state space in the PE is no longer con-
strained to be bottom-up, level-by-level.

 Search trace memory management issues
resurface again once we stray from bottom-
up traversal, but we defer addressing this in
favor of first discussing the development
and adaptation of heuristics to search trace
traversal.

5.1 Informed traversal of the
search trace space

 The HSP and HSP-R state space plan-
ners (Bonet and Geffner, 1999) introduced
the idea of using the ‘reachability’ of
propositions and sets of propositions
(states) to assess the difficulty of a relaxed
version of a problem. This concept under-
lies their powerful ‘distance based’ heuris-
tics for selecting the most promising state
to visit. Subsequent work demonstrated
how the planning graph can function as a
rich source of such heuristics (Nguyen and
Kambhampati, 2000). Since the planning
graph is already available to PEGG, we fo-
cused on employing a heuristic from the
latter work as a secondary heuristic to di-
rect PEGG’s traversal of its search trace
states. Note that the primary heuristic is
the planning graph length that is iteratively
deepened (Section 2.2), so the guarantee of
plan optimality for the PEGG planners does
not depend on the admissibility of this sec-
ondary heuristic.

There are several key differences be-
tween heuristic ranking of states generated

PEGG-PLAN (problem)

 Build planning graph PG until first level, k, for which
problem goals, g, are non-mutex

 - conduct Graphplan-style search on g & build initial PE -
 Create new search segment SS holding goals, g, ordered

according to variable ordering method
 If ASSIGN-GOALS (SS, g, nil, k) returns a search seg-

ment, SS0 --SUCCESS;
Extract solution from linked PE search segments,
beginning with SS0 at level 0.

DONE.
 Else no k-length solution possible;

 -Use PE to direct subsequent search-
o Assess state space heuristic value for new search

segments (optionally reassess existing segments)
o Merge-sort new search segments (states) into the

PE linked-list, according to heuristic value
o Transpose index for all search segments in the PE

up one planning graph level.
o L2: Select the first ranked segment, SS, from PE

that has not yet been visited (opt threshold: If the
f-value of this segment fails to meet heuristic
threshold criteria, skip remaining PE segments)

o Let n = planning graph level associated with the PE
 level of SS

� If SS is indexed to a planning graph level that
doesn’t yet exist, extend the graph k k+1

� Perform a memo check on the segment subgoals.
If they are no-good at level n, remove SS from PE:
 Return to L2.
else -visit search segment SS -

 If ASSIGN-GOALS (SS, nil, n) returns a search
 segment, SS0 --SUCCESS;

� Extract solution from the linked PE search
segments, beginning with SS0 at level 0.

� DONE
 else a subset of SS goals was returned (the
 conflict set):

� Memoize returned goals
� Return to L2

ASSIGN-GOALS (SSJ (search segment) SSgoalsJ (subgoals left
to assign), A (actions already assigned), n (PG level))
 If n is 0 (the initial state) then:

o SUCCESS: Return SSJ to PEGG-PLAN.
 else if SSgoalsJ is empty,
 - initiate regression search on level n-1 -

o Regress SSJ goals over A actions to get SSgoalsK
o Create new search segment SSK holding SSgoalsK goals
o Order goals according to variable ordering heuristic
o Call ASSIGN-GOALS (SSK, SSgoalsK, nil, n-1)
o Memoize returned conflict goals at PG level n-1
o Reorder SSgoalsK according to conflicts returned
o Return

 else there are goals left to satisfy:
…Assign consistent set of actions for remaining goals in
Graphplan’s fashion, augmented by DDB and EBL tech-
niques…After each goal is assigned a valid action, ASSIGN-
GOALS is called on remaining goals

Figure 9. PEGG pseudo code

 28

by a state space planner and ordering of the search segments (states) in PEGG’s search trace. One
difference is rooted in the fact that the state space planner will visit a selected state only once while
PEGG, due to the iterative search process, typically must consider whether to revisit a state in many
consecutive search episodes. Ideally, a heuristic to rank states in the search trace should reflect
level-by-level evolutions of the planning graph, since the transposition process associates a search
segment with a higher level in each successive episode. For each higher planning graph level that a
given set of propositions is associated with, the effective regression search space ‘below’ it changes
as a complex function of the number of new actions that appear in the graph, the number of dynamic
mutexes that relax, and the no-goods in the memo caches.

Another important difference between ordering states in a state space planner’s queue of previ-
ously unvisited states and ordering of states from the search trace, is that in the latter case the set of
states also includes all children of each state generated when it was last visited. Ideally, the value of
visiting a state should be assessed independently of the value associated with any of its children,
which will anyway be assessed in turn. Referring back to the search trace depicted in Figure 8, we
desire a heuristic that can, for example, discriminate between the #4 ranked search segment and the
top goal segment (WXYZ). In a sense we would like the heuristic measure for a state to discount the
value associated with any children already present in the trace, so that only the potential for it to gen-
erate new promising search branches is considered.

In the next two subsections we discuss adaptation of known planning graph based heuristics for ef-
fective use with the search trace and then describe how they can be made more informed for selection
of search trace states based on factors reflecting the potential for new search.

5.1.1 Adoption of distance-based state space heuristics

The heuristic value for a state, S, generated in backward search from the problem goals can be ex-
pressed as: 5-1))(*)()(0 ShwSgSf +=

 where: g(S) is the distance from S to the problem goals (e.g. in terms of steps)

 h(S) is a distance estimate from S to the initial state (e.g. in steps)

 w0 is an optional weighting factor

Since PEGG conducts regression search from the problem goals, the value of g for any state gener-
ated during the search (e.g. the states in the PE) is easily assessed as the cumulative cost of the as-
signed actions up to that point. The h values we consider here are taken from the distance heuristics
adapted to exploit the planning graph by (Nguyen and Kambhampati, 2000). One of the most easily
accessible, given a planning graph, is the notion of level of a set of propositions:

Set Level heuristic: Given a set S of propositions, denote lev(S) as the index of the first level in
the leveled serial planning graph in which all propositions in S appear and are non-mutex with one
another. (If S is a singleton, then lev(S) is just the index of the first level where the singleton ele-
ment occurs.) If no such level exists, then lev(S) = ∞.

 This admissible heuristic embodies a lower bound on the number of actions needed to achieve S
from the initial state and also captures some of the negative interactions between actions (due to the
planning graph binary mutexes). In the Nguyen and Kambhampati study, the set level heuristic was

 29

))(max)(()(:)(∑
∈

∈
−+=

Sp
iSpiadjsum

i
i

plevSlevphSh

found to be moderately effective for the backward state space (BSS) planner AltAlt, but tended to
result in too many states having the same f-value. In directing search on PEGG’s search trace, we
found it somewhat more effective, but it still suffers from a lower level of discrimination than some
of the other heuristics they examined -especially for problems that engender a planning graph with
relatively few levels. Nonetheless, as mentioned in the discussion of memory efficiency improve-
ments (Section 4) we use it as the default heuristic for value ordering as the graph is constructed, due
to the combination of its low computational cost and its synergy with building and using a bi-partite
planning graph. An action a1 first appears in the graph at lev(Prec(a1)), that is, when its precondi-
tions are first present and non-mutex.

The inadmissible heuristics investigated in the Nguyen and Kambhampati work are based on com-
puting the heuristic cost h(p) of a single proposition iteratively to fixed point as follows. Each propo-
sition p is assigned cost 0 if it is in the initial state and ∞ otherwise. For each action, a, that adds p,
h(p) is updated as:

 5-2) h(p) := min{ h(p), 1+h(Prec(a) }

 where h(Prec(a)) is computed as the sum of the h values for the preconditions of action a.

Given this estimate for a proposition’s h-value, a variety of heuristic estimates for a state have been
studied, including summing the h values for each subgoal and taking the maximum of the subgoal h-
values. For this study we will focus on a heuristic termed the ‘adjusted-sum’ (Nguyen and Kamb-
hampati, 2000), that combines the set-level heuristic measure with the sum of the h-values for a
state’s goals. Though not the most powerful heuristic tested by them, it is inexpensive to calculate
for a planning graph based planner and was found to be quite effective for the BSS planners they
tested.

Adjusted-sum heuristic: Define lev(p) as the first level at which p appears in the plan graph and
lev(S) as the first level in the plan graph in which all propositions in state S appear and are non-
mutexed with one another. The adjusted-sum heuristic may be stated as:

 5-3)

It is essentially a 2-part heuristic; a summation, which is an estimate of the cost of achieving S under
the assumption that its goals are independent, and an estimate of the cost incurred by negative inter-
actions amongst the actions that must be assigned to achieve the goals. The latter factor is estimated
by taking the difference between the planning graph level at which the propositions in S first become
non-mutex with each other and the first level in which these propositions first appear together in the
graph.

The adjusted-sum heuristic contains a measure of the negative interactions between subgoals in a
state, but not the positive interactions (i.e. the extent to which an action establishes more than one
relevant subgoal.). One approach that addresses positive interactions is the so-called ‘relaxed plan’
distance-based heuristics, and several studies have demonstrated the power of this genre for back-
ward and forward state-space planners (Nguyen and Kambhampati, 2000, Hoffman, 2001). How-
ever, as reported in the former, the primary beneficial effect of this metric when incorporated in the

 30

adjusted-sum heuristic is to produce shorter make-span plans at the expense of a modest increase in
planning time. Since PEGG’s IDA* search on the planning graph ensures optimal make-span there is
little incentive to incur the expense of the relaxed plan calculation.

5.1.2 Specializing a heuristic for the search trace

 The negative interactions expression in the adjusted-sum heuristic suggests a straightforward means
of using PEGG’s search experience to dynamically improve the estimate. The lev(S) term represents
the planning graph level at which the subgoals are binary non-mutex with each other. However, once
regression search on S at graph level k is complete (and fails) in a given episode, the search process
has essentially discovered an n-ary mutex condition between a subset of the goals in S at level k. At
that point we can conservatively update the estimate of lev(S) to be k+1. This achieves some of the
flavor of a desired heuristic for ranking search trace states; Given two states, an ancestor state and
one of its descendents, that would otherwise have the same adjusted-sum f-value, the lev(S) update
will effectively favor the descendent, i.e. it is biased against the state that has been visited the most
and failed to extend to a solution. This constitutes a simple approach for boosting our heuristic esti-
mator based on search experience, and the PEGG planners use it by default.

We now turn our attention to the issue of boosting sensitivity to planning graph evolution as a
search segment is transposed up successive levels. As discussed above, since the search trace con-
tains all children states that were generated in regression search on a state S in episode n, a heuristic
preference to visit S over other states in the trace in episode n+1 should reflect the chance that it will
directly generate new and promising search branches. The child states of S from search episode n are
competitors with S in the ranking of search trace states, so ideally the heuristic’s rank for S, should
reflect in some sense the value of visiting the state beyond the importance of its children. Consider
now the sensitivity of the adjusted-sum heuristic (and indeed any of the distance-based heuristics) to
possible differences in the implicit regression search space ‘below’ a set of propositions, S, at some
level k versus level k+1. Assuming the propositions are present and binary non-mutex with each
other at level k (necessarily the case if S is a state generated in regression search), only the cost
summation factor in equation 5-3 could conceivably change when S is evaluated at level k+1. This
could occur only if a new action establishing one of the S propositions, say aj, appears for the first
time at level k+1 and the sum of aj’s precondition subgoal costs is less than the precondition costs of
any other establisher of the proposition. In practice this happens infrequently since the later that an
action appears in the graph construction process, the higher its cost tends to be. As such, h-values for
states arising from any of the distance-based heuristics remain remarkably constant for any planning
graph level beyond that at which the propositions appear and are binary non-mutex8.

 In contrast to the tendency of conventional distance-based heuristics to be static, we desire a heu-
ristic that will ‘improve’ (i.e. reduce) a state’s h-value when it’s transposed to a graph level at which
new branches of regression search might finally reach the initial state. Conversely, when the plan-
ning graph levels off, search segments that are transposed into static levels typically have a lower
potential for being the root of new search since, by definition, no new actions appear in levels at or

8 This, in part, explains the observation (Nguyen and Kambhampati, 2000) that the AltAlt state space planner performance
generally degrades very little if the planning graph used to extract heuristic values is built only to the level where the prob-
lem goals appear and are non-mutex, rather than extending the graph to level-off.

 31

above level-off. An effective heuristic for ordering segments in the search trace might exhibit a sig-
nificant advantage over distance-based heuristics if it ranks states in static levels low in the queue
when appropriate.

We investigated a variety of alternatives for hybrids of the distance-based heuristics that incorpo-
rate factors reflecting the likelihood that a state visited in episode n at graph level k will give rise to
new child states if visited in episode n+1 at level k+1. This work was guided by Observations 3.1
and 3.2 of Section 3.1, which describe the three planning graph and memo cache properties that de-
termine whether regression search on a subgoal set S will change over successive episodes (on suc-
cessive planning graph levels);

1. There are new actions at level k+1 that establish a subgoal of S
2. There are dynamic mutexes at level k between actions establishing subgoals of S that relax

at level k+1
3. There were no-good memos encountered in regression search on state S during episode n

that will not be encountered at level k+1 (and also the converse).

For convenience we will refer to these measures of the potential for new search branches to result
from visiting a state in the PE as the ‘flux’; the intuition being that the higher the flux, the more
likely that search on a given state will differ from that seen in the previous search episode (and cap-
tured in the PE). As noted previously, if none of the three factors applies to a state under considera-
tion, there is no merit in visiting it, as no new search can result relative to the previous episode.

 The first factor above can be readily assessed for a state (thanks in part to the bi-partite graph struc-
ture). The second flux factor is unfortunately expensive to assess; a direct measure requiring storing
all pairs of attempted action assignments for the goals of S that were inconsistent in episode n and
retesting them at the new planning graph level. Note however, that the graph mechanics underlying
the relaxation of a dynamic mutex between a pair of actions at level k is the relaxation of a dynamic
mutex condition between some pair of their preconditions at level k-1 (one precondition for each ac-
tion). This relaxation, in turn, is either due to one or more new establishing actions for the precondi-
tions at level k-1 or recursively, relaxations in existing actions establishing the preconditions. As
such, the number of new actions establishing the subgoals of a state S in the PE provide (factor 1
above) provide not only a measure of the flux for S, but also a predictor of the flux due to factor 2 for
the parent (and higher ancestors) of S. Thus, by simply tracking the number of new actions for each
state subgoal at it’s current level and propagating an appropriately weighted measure up to its parent,
we can compile a good estimate of flux for the factors 1 and 2 above.

The third flux factor above is perhaps the most unwieldy and costly to estimate; the exact measure
requires storing all child states of S generated in regression search at level k that caused backtracking
due to cached memos, and retesting them to see if the same memos are present at level k+1. (Note
that as long as we are using EBL/DDB, it is not sufficient to just test whether some memo exists for
each child state. The no-good goals contribute to the conflict set used to direct search within S when-
ever such backtracking occurs.)

Combining the two flux measures that track new actions with the largely static adjusted-sum dis-
tance-based heuristic, we define a heuristic that is sensitive to the evolution in search potential as a
state is transposed to higher planning graph levels:

 32

Adjsum-flux heuristic: Define a search segment containing state S associated with planning graph
 level k in search episode n:

5-4)

 where: pI is a proposition in state S
 newacts(pi) is the number of new actions that establish proposition pi of S at its

associated planning graph level
 | S | is a normalization factor; the number of propositions in S
 Sc is the set of all child states of S currently represented in the search trace
 childflux(si) is the sum of the two flux terms of child state si

 w1 and w2 are weighting factors for the flux terms

Here the number of new actions establishing the subgoals of a state are normalized relative to the
number of subgoals in the state. The w1 and w2 weighting factors adjust the h-value bias towards
either the distance-based component or the measure of potential new search. Experimentally, over a
broad range of problems, PEGG’s performance degrades when the flux factor contribution dominates
the h-value and improves over the pure adjusted-sum heuristic when they constitute between 0 and
30% of the h-value. Optimal weighting values are, not surprisingly, highly problem-specific but w1
= 1 and w2 = .1 give reasonably robust performance over the domains we’ve studied, and are the de-
fault values for PEGG results in this report.

Evidence that the adjsum-flux heuristic
outperforms adjusted-sum in so-PEGG is
provided in Figure 10. The chart com-
pares the heuristics across a variety of
problems in terms of the percentage of
the total search trace segments that
PEGG visits in the final episode prior to
finding a seed segment (a state that can
be extended to a solution). This is a di-
rect measure of the power of the search
segment selection heuristic. Three of the
problems feature search traces on which
the adjusted-sum does well and three are
traces with seed segments that the ad-
justed-sum heuristic ranks too low (caus-
ing PEGG to visit them late). Clearly,
adjsum-flux loses little, if any accuracy
relative to adjusted-sum for the former
problems and greatly improves on its ac-
curacy in the latter. Examination of the

∑
∑

∑
⊂

⊂

⊂
∈− ∗−∗−−+=

ci

i

i
i Ss

i
Sp

i

Sp
iSpifluxadjsum schildfluxw

S

pnewacts
wplevSlevphSh)(

||

)(

))(max)(()(:)(21

adjusted-sum terms flux terms minus

0.00 2.00 4.00 6.00 8.00 10.00 12.00

TSP-12

Blocks-10-1

Eight-puzzle-2

Driverlog-3-3-6(b)

Freecell-3-1

ZenoTravel-3-7

Logistics-10-0

Gripper-8

Pr
ob

le
m

Percentage of PE visited

adjusted-sum adjsum-flux

Figure 10. Comparison of heuristic accuracy in selecting a
seed segment from the PE in the solution search episode

 33

PEGG’s search history show that the adjsum-flux heuristic also exhibits the desirable characteristic
mentioned above regarding PE states that lie in levels above planning graph level-off. The planning
graphs for all Figure 10 problems, except the Freecell problem, reach level-off prior to the final
search episode. For problems such as Gripper-8, Eight-puzzle-2, Blocks-10-1, and TSP-12 a large
percentage of the states represented in the PE lie in static levels in the later search episodes. PEGG
using the adjsum-flux heuristic not only ranks these search segments behind higher flux, non-static
level states when appropriate, but has enough sensitivity to boost the rank of static level states when
the only seed segment(s) reside in those levels.

This is the case for the Blocks-10-1 and TSP-12 problems and explains the apparent adjsum-flux
advantage of Figure 10.

5.2 Memory management under arbitrary search trace traversal order

 Consider again the PE at the time of the final search episode in Figure 8. If we allow the search
segments to be visited in an order other than deepest PE level first, we encounter the problem of re-
generating states that are already contained in the PE. The visitation order depicted by numbered
segments in the figure might result from a fairly informed heuristic (i.e. choosing a plan segment as
the 4th search segment to visit), but when followed many states already resident in the PE will be re-
generated. This includes, for example, all the as yet unvisited descendents of the third segment in the
order. Unchecked, this process can significantly inflate search trace memory demands, not to men-
tion the overhead associated with regenerating search segments. Less obvious is the heuristic infor-
mation about a state that is, at least temporarily, lost when the state is regenerated instead of revisited
as an extant PE search segment. Recall that for the adjusted-sum type secondary heuristic PEGG
‘learns’ an improved n-ary mutex level for a search segment’s goals and updates its f-value accord-
ingly in each search episode. In addition, the adjsum-flux heuristic updates the flux value associated
with each PE search segment prior to the search episode and this information is unavailable for the
same state when newly generated.

We address this issue by hashing every search segment generated into an associated PE state hash
table according to its canonically ordered goal set. For efficiency in checking for duplicate states,
one such hash table is built for each PE level. Prior to initiating regression search on a subgoal set of
a search segment, Sn , PEGG first checks the planning graph memo caches and, if no relevant memo
is found, it then checks the PE state hash table to see if Sn’s goals are already embodied in an exist-
ing PE search segment at the relevant PE level. If such a search segment, Se,, is returned by this PE
state check Se is made a child of Sn (if it is not already) by establishing a link, and search can then
proceed on the Se goals (if the state meets the beam search criteria).9

5.3 Learning to order a state’s subgoals

Before presenting PEGG experimental results, we describe here one more method that the search
trace enables the planner to exploit. Because they employ both EBL and a search trace, the PEGG
planners are able to overlay a yet more sophisticated version of variable ordering on top of the

9 In the interests of simplicity, the Figure 8 pseudo code does not outline the search trace memory management process de-
scribed here.

 34

distance-based ordering heuristic. The guiding principle of variable ordering in search is to fail
early, where failure is inevitable. In terms of Graphplan-style search on a regressed state, this trans-
lates as ‘Since all goals in the state must be assigned an action from the planning graph, it is best to
first attempt to assign values to goals that are likely to be most difficult to assign.’ The adjusted-
sum heuristic described above, applied to a single goal, provides an estimate of this difficulty based
on the structure of the planning graph. However, through using EBL during search, we have addi-
tional information on the difficulty of goal achievement based directly on search experience. To wit,
the ‘conflict set’ that is returned by the ASSIGN-GOALS routine used by PEGG to search on a
search segment’s goal set, explicitly identifies which of these goals were responsible for the search
failure. The intuition behind the EBL-based reordering technique, then, is that these same goals are
likely to be the most difficult to assign when the search segment is revisited in the next search epi-
sode. This constitutes a dynamic form of variable ordering in that, unlike the distance-based order-
ing, a search segment’s goals may be reordered over successive search episodes based on the most
recent search experience.

Figure 11 compares the influence of adjusted sum variable ordering and EBL-based reordering
methods on memory demand, in a manner similar to Figure 5. Here the impact of EBL-based reor-
dering on EGBG’s performance is reported because the PEGG planners tightly integrate the various
CSP and efficiency methods, and their independent influence cannot be readily assessed.10 In order
to isolate the impact of EBL-based reordering from that of EBL itself in EGBG, the EBL process is
activated, but the conflict sets produced are
used only in reordering, not during memoi-
zation. The average reduction in search
trace memory over the 12-problem sample is
seen to be about 18% for EBL-based reor-
dering alone. This compares favorably with
the 22% average reduction of the distance-
based ordering especially since, unlike the
adjusted sum ordering, the EBL-based reor-
dering only takes effect in the 2nd search epi-
sode.

The plot also reveals that the two modes
of ordering are complimentary to a signifi-
cant extent. Based on tests across a variety
of problems and domains, we found the fol-
lowing approach to be most effective in
combining distance-based variable ordering
and EBL-based reordering;

10 Based on the success of the various memory-efficiency methods with EGBG, all versions of PEGG implement them by de-
fault. Although an graph analogous to Figure 5 for the PEGG planner would differ in terms of the actual memory reduction
values, we are confident that the overall benefits of the techniques would persist, as would the relative benefit relationship
between techniques.

 10 20 30

 1
0

 2

0

30

Figure 11: Memory demand impact along two dimen-
sions for ‘adjusted sum’ variable ordering and EBL-
based reordering techniques when applied independ-
ently and together (within EGBG).

%
 re

du
ct

io
n

in
 P

E
(s

ea
rc

h
tra

ce
) m

em
or

y
i

% reduction in planning graph, memo cache memory

 EBL- Reordering

Var Ordering (adjsum) &
EBL- Reordering

Variable Ordering (adjsum)

 35

1. A newly created search segment’s goals are ordered according to the distance-based heuristic

2. After each visit of the search segment, the subset of its goals that appear in the conflict set are
reordered to appear first

3. The distance-based heuristic is then used to order goals in the conflict set and this list is ap-
pended to non-conflict goals, which are also set in distance-based order.

As indicated in Figure 11, this hybrid form of variable ordering not only boosts the average memory
reduction to almost 30%, but also significantly reduce the wide fluctuation in performance of either
method in isolation. We re-emphasize here that this search experience-informed goal ordering is
only available to a search algorithm that maintains a memory of states it has visited. As such, it is
not portable to any Graphplan-based planner we know of, including the GP-e system.

5.3 Experimental results with so-PEGG

 We can now characterize the performance of the step-optimal version of PEGG outfitted with the
adjsum-flux secondary heuristic and EBL-based reordering. Table 4 compares so-PEGG against GP-e
and the memory efficient version of EGBG over most of the same problems as Table 3. (We defer
discussion of the ‘PEGG’ and associated ‘Speedup’ columns until the next section.) It also includes a
variety of larger problems that neither of the latter two planners can handle. Table 3 problems that
were easily solved for GP-e and me-EGBG, such as those in the AIPS-98 ‘movie’ and ‘mystery’ do-
mains, are omitted in Table 4. Focusing for now, only on the GP-e, me-EGBG, and so-PEGG (step
optimal) columns, we clearly see the impact of the tradeoff between storing and exploiting all the
intra-segment action assignment information in the PE. Of the 16 problems for which me-EGBG ex-
ceeds available memory due to the size of the PE, only one pushes that limit for so-PEGG. Seven of
these problems are actually solved by so-PEGG while the remainder exceed the time limit during
search. In addition, so-PEGG handles a half-dozen problems in the table that GP-e fails on. These
problems typically entail extensive search in the final episode, where the PE efficiently shortcuts the
full-graph search conducted by GP-e. The speedup advantage of so-PEGG relative to GP-e ranges
between a slight slowdown on two problems to almost 87x on the Zeno-Travel problems, with an av-
erage of about 5x. (Note that the speedup values reported in the table are not for so-PEGG.)

 Generally, so-PEGG can be expected to under perform GP-e on single search episode problems
such as grid-y-1, in which a search trace serves only to increase runtime. The fact that so-PEGG suf-
fers little relative to GP-e in this case is directly attributable to the low overhead associated with
building so-PEGG’s search trace. On the majority of problems that both systems can solve, so-PEGG
slightly under performs me-EGBG. We would generally expect me-EGBG to dominate for problems
with multiple search episodes, as long as memory constraints are not an issue, since the skeletal
PEGG search trace lacks the information needed to avoid most of the redundant consistency-
checking effort. The fact that me-EGBG’s advantage over so-PEGG is not greater for such problems,
appears to be attributable both to so-PEGG’s ability to move about the PE search space in the final
search episode (versus me-EGBG’s bottom-up traversal) and its reduced demands in maintaining its
more concise search trace. Note that, since both planners visit all states in their PE for search

 36

Table 4. so-PEGG and PEGG vs. Graphplan and enhanced Graphplan
 GP-e: Graphplan enhanced with bi-level PG, domain preprocessing, EBL/DDB, goal & action ordering
 me-EGBG: memory efficient EGBG (bi-level PG, domain preprocessing, EBL/DDB, etc.)
 so-PEGG: step-optimal, same enhancements as GP-E, search via the PE, traversal according to heuristic
 PEGG: bounded PE search, best 50 search segments visited, as ordered by the adjsum-flux state
 space heuristic
 Parentheses adjacent to cpu time give (# of steps / # of actions) in returned solution.
 Allegro Lisp platform, runtimes (excl. gc time) on Pentium 900 mhz, 384 M RAM

Graphplan
Problem cpu sec (steps/acts)

 Stnd. GP-e
 (enhanced)

me-EGBG
cpu sec

(steps/acts)

so-PEGG
heur:istic:

adjsum-flux
cpu sec

(steps/acts)

PEGG
heur: adjsum-flux

cpu sec
(steps/acts)

Speedup
(PEGG

vs. GP-e)

bw-large-B 194.8 11.4 (18/18) 9.2 7.0 4.9 (18/18) 2.3x
bw-large-C s s (28/28) pe 1104 24.2 (28/28) > 74x
bw-large-D s s (38/38) pe pe 388 (38/38) > 4.6x
rocket-ext-a s 3.5 (7/36) 1.8 2.8 (7/34) 1.1 (7/34) 3.2x
att-log-a s 31.8 (11/79) 7.2 2.6 (11/72) 2.2 (11/62) 14.5x
att-log-b s s pe s 21.6 (13/64) > 83x
Gripper-8 s 14.0 (15/23) 12.9 16.6 5.5 (15/23) 2.5x
Gripper-15 s s pe 347.5 46.7 (31/45) > 38.5x
Tower-7 s 158 (127/127) 20.0 14.3 6.1 (127/127) 26x
Tower-9 s s (511/511) 232 118 23.6 (511/511) > 76x
8puzzle-1 2444 57.1 (31/31) pe 31.1 9.2 (31/31) 6.2x
8puzzle-2 1546 48.3 (30/30) 26.9 31.3 7.0 (32/32) 6.9x
TSP-12 s 454 (12/12) 21.0 7.2 8.9 (12/12) 51x
AIPS 1998 Stnd GP GP-e me-EGBG so-PEGG PEGG
grid-y-1 388 16.7 (14/14) 17.9 16.8 16.8 (14/14) 1x
gripper-x-5 s s 433 512 110 (23/35) > 16x
gripper-x-8 s s pe s 520 (35/53) > 3.5x
log-y-5 pg 470 (16/41) pe 361 30.5 (16/34) 15.4x
AIPS 2000 Stnd GP GP-e me-EGBG so-PEGG PEGG
blocks-10-1 s 95.4 (32/32) 20.3 18.7 6.9 (32/32) 13.8x
blocks-12-0 ~ 26.6 (34/34) 21.5 23.0 9.4 (34/34) 2.8x
blocks-16-2 s s pe s 58.7 (54/54) > 31 x
logistics-10-0 ~ 30.0 (15/56) 16.6 21 7.3 (15/53) 4.1x
logistics-12-1 s s 1205 (15/77) 1101 (15/75) 17.4 (15/75) > 103x
logistics-14-0 s s pe s 678 (15/74) > 2.7x
freecell-2-1 pg 98.0 (6/10) pe 75 52.9 (6/10) 1.9x

freecell-3-5 pg 1885 (7/16) pe s 101 (7/17) 18.7x
schedule-8-9 pg 173 (5/12) 164 170 155 (5/12) 1.1x
AIPS 2002 Stnd GP GP-e me-EGBG so-PEGG PEGG
depot-6512 239 5.1 (14/31) 4.1 5.0 2.1 (14/31) 2.4x
depot-1212 s s (22/55) s s 127 (22/56) > 14x
depot-7654a s 32.5 (10/28) 14.8 12.9 13.2 (10/26) 2.7x
driverlog-2-3-6e s 166 (12/28) 3.9 2.2 66.6 (12/26) 2.5x
driverlog-4-4-8 s s pe s 889 (23/38) > 2x
roverprob1423 s 170 (9/30) pe 63.4 15.0 (9/26) 11.3x
roverprob4135 s s pe s 379 (12 / 43) > 4.7x
roverprob8271 s s pe s 444 (11 / 39) > 4x
ztravel-3-7a s s pe 1434 (10/23) 222 (11/24) > 8x
ztravel-3-8a s 972 (7/25) 15.6 11.2 3.1 (9/26) 314x

 37

episodes in which a solution cannot be extracted, there is no obvious advantage to prefer one state
traversal order over the other in these ‘intermediate’ episodes.11

 The next section describes the last evolution of the search trace based planners we report on; an
approach that more fully exploits the advantage provided by a search trace in the ‘intermediate’
search episodes, i.e. those from which no solution can be extracted. This tactic boosts planning
speed by an order of magnitude and further cuts memory demands tied to the search trace, in some
cases even for the planning graph itself.

5.4 Trading off guaranteed step-optimality for speed and reach:

 The PEGG planner

Many of the large, more difficult problems to solve with Graphplan’s IDA* style search have 20 or
more such search episodes before the episode in which a solution can be extracted is reached. The
cumulative search time associated with these episodes can be a large portion of the total search time,
so there is considerable motivation to reduce it. Here we consider an effective alternative to Graph-
plan’s search routine (as well as that of EGBG and so-PEGG), which exhausts the entire search space
in each episode up to the solution bearing level. It is, of course, this very strategy that gives the step-
optimal guarantee to Graphplan’s solutions, but it can exact a high cost to ensure what is, after all,
only one aspect of plan quality. Having a search trace available across all but the first search epi-
sode, we investigated possibilities for using it to conduct focused search on a k-length planning graph
only until it’s deemed unlikely that it contains a solution. We are interested in the extent to which
this can be pursued while producing plans with the same or nearly same makespan as Graphplan’s
solution.

The approach reported here shortcuts the time spent in search during these intermediate episodes
by using the distance-based heuristic to not only direct the order in which PE states are visited, as so-
PEGG does, but to prune the search space visited in the episode. This beam search seeks to visit only
the most promising PE states, as measured by their f-values and according to a user-specified limit.
The implemented planner, which we call simply PEGG, can be seen as taking another step away from
Graphplan’s IDA* search process, as it is released from exhaustive search of the planning graph in
all search episodes. In so doing, PEGG trades off Graphplan’s (and so-PEGG’s) guarantee of finding
an optimal make-span solution, and indeed, even completeness. The empirical evidence indicates
that the trade-off is worthwhile in virtually all cases, as PEGG exhibits dramatic speedup over GP-e
and so-PEGG in all search episodes and yet generally finds a step-optimal solution. In addition, we
will show that this beam search approach has an important dual benefit for PEGG in that it further
reduces the memory demands of its search trace and depending on the problem, even the planning
graph.

The primary modification required of the PEGG algorithm in order to implement this beam search
is to set a threshold such that only PE states with secondary search f-values lower than this limit are
visited. This is indicated in italics at the step labeled L2 of the Figure 9 pseudo code. The intent is to

11 Empirically, we have in fact found advantages with respect to traversal order even in intermediate search episodes for
some problems or domains. However, since this aspect is highly problem-dependent, we do not consider it in this study.

 38

avoid visiting (and optionally, retaining) search segments that hold little promise of being extended
into a solution, as predicted by the heuristic used. When the first segment exceeding this threshold is
reached on the sorted queue the search episode ends.

Devising a highly effective threshold test is an interesting problem. It must reconcile the compet-
ing goals of minimizing search in non-solution bearing length planning graphs, while maximizing the
likelihood that the PE retains and visits (preferably as early as possible), a search segment that’s ex-
tendable to a solution once the graph reaches the first level with an extant solution. The narrower the
window of states to be visited, the more difficult it is for the heuristic that ranks states to ensure it
includes a plan segment -one that is part of a step-optimal plan. PEGG will return a step-optimal
plan as long as its search strategy leads it to visit any plan segment (including the top, ‘root’ segment
in the PE) belonging to any plan latent in the PE, during search on the first solution-bearing planning
graph. The heuristic’s job in selecting the window of search segments to visit is made less daunting
for many problems because there are many step-optimal plans latent at the solution-bearing level.

There is a wide variety of strategies for conducting beam search on PEGG’s search trace. Before
discussing experimental results of the particular strategy we found most broadly effective, we touch
briefly in the next subsections on two issues that impact the effectiveness of the search process.

5.4.1 Memory management for beam search on the search trace

Search trace memory management issues resurface yet again when we adopt beam search on the
PE. Under beam search PEGG will only visit a subset of the PE states -a set we will call the ‘active’
PE. This suggests that our strategy for dealing ‘inactive’ portion of the PE might further reduce its
memory footprint. At first blush, one might be tempted to pursue a strategy with minimal memory
footprint by retaining in memory only the active search segments in the PE. However unlike Graph-
plan, PEGG cannot extract a solution when the initial state is reached by unwinding the complete se-
quence of action assignment calls in a search episode, since it begins its regression search episodes
from particular states in any branch of the search trace tree. It depends instead on the link between a
child search segment and its parent. As such, we must retain as a minimum, the active search seg-
ments and all of their ancestor segments up to the root node. Beyond this requirement, there is a
wide range of strategies that might be used in managing the inactive portion of the PE.

The approach we settled on for this study in fact does not attempt to reduce PE memory require-
ments along these lines. We instead placed more emphasis on what might be termed the search space
‘field of view’. The success of conducting beam search on the search trace depends significantly on
how informed the heuristic is and the actual states that are represented in the trace, from which the
heuristic selects. For a generally static heuristic estimate such as adjusted-sum, there is little incen-
tive to retain a large portion of the inactive search segments in the PE since once they are determined
to lie outside the heuristically best set there is little chance that they will ever move back into the ac-
tive set. However, the adjsum-flux heuristic was specifically designed to dynamically respond to the
evolution of the planning graph and the f-value of a given state can change significantly from one
search episode to the next. This being the case, the larger the set of feasible states (search segments
previously generated in regression search) available to be compared heuristically, the more likely that
a plan segment will be included in the active PE.

 39

Since PEGG’s skeletal search trace reduces the associated memory footprint to where it is a much
less critical issue most of our experimental work has adopted the strategy of retaining in memory all
search segments generated during search and updating their f-values prior to ranking them and select-
ing those to be visited in the beam search. The heuristic updating process is relatively inexpensive
and this approach gives the beam search a wide selection of states contending for ‘active’ status in a
given search episode. Empirically we have found that under these conditions search segments often
move between active and inactive status in consecutive search episodes.

5.4.2 Using flux to filter the beam

As an adjunct to distance-based heuristics, the flux measure detailed in section 5.1.2 provides a
modest improvement in search performance for the final search episode. Under beam search the flux
measure can much more strongly impact every search episode as it influences the states actually in-
cluded in the active PE. Moreover, empirically we find that the same flux measure exhibits even
greater impact as a filter. When used in this mode, search segments with an assessed flux below a
specified threshold are skipped over even if their f-value places them in the active PE. The intuition
here is that a state which qualified for the active PE due to a low f-value based entirely on the
(largely static) distance heuristic, is not likely to be worth visiting if its flux does not exceed some
minimal threshold. That is, it is only worthwhile to (re)visit a search segment at the new planning
graph level it is associated with if it has some potential for engendering new search branches above
and beyond any its descendents might produce. The flux metric introduced in section 5.1.2 and al-
ready used in the adjsum-flux heuristic estimates precisely this.

This flux measure actually proves more effective as a filter than it does as an adjunct to the secon-
dary heuristic PEGG uses to direct traversal of its search space. This is due, in part, to the difficulty
of finding values for the weights of the adjsum-flux heuristic (eqn 5-4) that are highly effective
across a wide variety of domains and problems. The size of the flux terms in equation 5-4 can vary
by factors of 10 - 100 across problem domains and for a given set of weights may either overwhelm
the adjusted-sum terms or become insignificant. However, when the flux terms are used as a filtering
measure against a threshold of ‘0’ (which, in fact, we find to be the most effective value), the weights
become irrelevant. Admittedly the flux metric is indeed just an estimate of the potential for search
on a state to generate new search branches, and it’s possible for such new search to occur under a
search segment with 0 flux. Empirically the estimate proves accurate enough to often filter out hun-
dreds of states that are otherwise candidates to be visited without pruning plan segments in the step-
optimal solution.

5.5 Experimental results with PEGG

The variety of parameters associated with the beam search approach described above admits consid-
erable flexibility in biasing PEGG towards producing plans of different quality. Shorter makespan
plans are favored by more extensive search of the PE states in each episode while heuristically trun-
cated search will tend to generate non-optimal plans more quickly, often containing redundant or un-
necessary actions. Here we focus on the former aspect In order to focus on the domain-independent
performance of PEGG for these results we fix the various search control parameters on values that

 40

were determined to perform well on average across a variety of domains and problems. These are as
follows:

o Goal ordering: based on proposition distance as determined by the adjusted-sum heuristic.

o Value ordering: based on planning graph level at which an action first appears.

o Secondary heuristic for visiting states:
 adjsum-flux with w0=1 (eqn 5-3) w1 = 1, w2 = 0.1 (eqn 5-4)

o Beam search: visit the 50 best (lowest f-value) search segments per search episode

o Filtering: only search segments with flux > 0 are visited.

Returning now to Table 4, the column labeled ‘PEGG’ reports results generated under these pa-
rameters. Clearly, the beam search greatly extends the size of problem that PEGG can be handle;
note the fourteen large problems of Table 4 that could not be solved by either so-PEGG or enhanced
Graphplan. Speed-wise PEGG handily outperforms the other planners on every problem. As indi-
cated by the right-hand column of the table, PEGG solves problems up to 314 times faster than GP-e,
the highly enhanced version of Graphplan. This is a conservative bound on PEGG’s maximum ad-
vantage relative to GP-e since speedup values for problems that GP-e fails to solve were conserva-
tively calculated using a GP-e runtime of 1800 seconds.

The problems for which PEGG exhibits the least advantage over GP-e roughly fall into two
classes; 1) Those for which the planning graph construction cost constitutes a large fraction of over-
all runtime 2) Those needing only a couple of search episodes prior to reaching a solution-bearing
level. In the first category lie problems like those in the AIPS-98 planning competition ‘GRID’ do-
main. The effort spent constructing the planning graph heavily dominates runtime for such problems,
so that a system that focuses on major reduction of search time will show little impact. A closer ex-
amination of the PEGG runtime trace for each of the problems reveals that the beam search indeed
dramatically reduces search time in every episode, so much so that for a majority of the problems the
cumulative search time has been trimmed to within a factor of 1-2 of the graph construction time.

Figure 12. Speedup vs. number of search episodes:
 Logistics '00 and Ztravel '02 domains

0.1

1.0

10.0

100.0

1000.0

1 2 3 4 5 6 7

search episodes in problem

sp
ee

du
p

w
rt

en
ha

nc
ed

G

ra
ph

pl
an

so-PEGG: log

PEGG: log

so-PEGG: ztravel

PEGG:ztravel

 41

Further dramatic improvement on such problems must rely as much on reducing graph construction
costs as search costs.

The second category above draws attention to the particular class of planning problem that PEGG
excels at; those in which there are numerous, prolonged search episodes conducted prior to extending
planning graph to the solution-bearing length. Figure 12 vividly illustrates this characteristic of the
planner by plotting the speedup factors of both so-PEGG and PEGG (under beam search) for a series
of problems ordered according to the number of search episodes that Graphplan would conduct prior
to finding a solution. The data was gathered by running the GP-e, so-PEGG, and PEGG planners on
two different domains (the Logistics domain from the AIPS-00 planning competition, and the Ztravel
domain from the AIPS-02 competition) and then averaging the speedups observed for problems with
the same number of observed search episodes. Noting that the speedups are plotted on a logarithmic
scale, we see the striking advantage of exploiting a search trace on multiple search episode problems.
Moreover, PEGG using beam search handily outperforms so-PEGG for all problems of three or more
search episodes, largely because it does not exhaustively search the planning graph in each episode.

5.5.1 Plan quality profile

 Turning now to the plan quality side of the coin, we compare the makespan for GP-e and PEGG
problem solutions reported in Table 4. As indicated by the annotated steps and actions numbers
given in parenthesis next to successful GP-e and PEGG runs12, the step-optimal produced by en-
hanced Graphplan is matched by PEGG for all but four of the 36 problems reported. (Problems for
which PEGG returns a solution with longer makespan than the step-optimal are ndicated by boldface
step/action values.) In these four problems, PEGG returns solutions within two steps of optimum, in
spite of the highly pruned search it conducts. We found this to be a robust property of PEGG’s beam
search on the search trace across all problems tested to date.

A variety of methods of trading off the guarantee of
finding an optimal length plan in favor of reduced
search effort have been investigated in the planning
community, of course. In comparison, PEGG’s beam
search approach appears to be biased towards produc-
ing a very high quality plan at possibly some expense
in runtime. For example, in their paper focusing on an
action selection mechanism for planning, Bonet et. al.
briefly describe some work with an “N-best first algo-
rithm” (Bonet, Loerincs, Geffner, 1997). Here they
employ their distance-based heuristic to conduct beam
search in forward state space planning. They report a
small set of results for the case where the 100 best
states are retained in the queue to be considered dur-
ing search, and Table 5 reproduces those results

12 Where more than one of the guaranteed step-optimal planners (GPE-e, me-EGBG and so-PEGG) finds a solution the steps
and actions are reported only for one. since they all will have the same makespan.

Problem ‘N-best’

[state-space

search,

N=100]

PEGG

(adjsum-flux

heur, 100

best ssegs)

SATPLAN

(optimal)

bw-large-a 8 6 6

bw-large-b 12 9 9

bw-large-c 21 14 14

bw-large-d 25 18 18

Table 5. Plan quality comparison of PEGG
with N-best beam search for a forward state
space planner (Bonet, et. al., 1997)

 42

alongside PEGG’s performance on the same problems using beam search with 100 search segments
visited in each intermediate search episode. The 1997 study compared the N-best first approach
against SATPLAN, which produces the optimal length plan, to make the point that the approach
could produce plans reasonably close to optimal with

much less search. The ‘N-best first’ code is not available to run on our test platform, so we focus
only the length of the plans produced here.13 Even in this serial domain, the parallel planner PEGG
produces a much shorter plan than the ‘N-best first’ state space approach, and in fact finds the opti-
mum length plan generated by SATPLAN in all cases.

 More recently, a planner whose search is tightly integrated with the planning graph was awarded top
honors at the AIPS-2002 planning competition, due to its ability to quickly produce high quality
plans across a variety of domains currently of interest. In the Figure 13 scatter plot, solution quality
for LPG (Gerevini, Serina, 2002) and PEGG are compared against the optimal for 22 problems from
just three domains of the 2002 AIPS planning competition. LPG’s results are particularly apt in this
case since that planner also non-exhaustively searches the planning graph at each level before
extending it, although it’s search process differs markedly from PEGGs. LPG, too, can be biased to
produce plans of higher quality (generally at the expense of speed) and here we report its perform-
ance when operating in the ‘quality’ mode. PEGG’s exploitation of the search trace clearly excels in
this regard, as it’s maximum deviation from optimum is three steps, and most of the plot points for its
solutions lie right on the optimal makespan axis.

PEGG often finds plans with fewer actions than GP-e for parallel domains and it is interesting to
note that this ‘Graphplan hybrid’ system is not just effective in parallel domains, Graphplan’s forte,
but impressive in serial domains such as blocksworld as well.

13 We note only that PEGG’s solution times on our platform are over a factor of 10 faster than the SATPLAN results reported
in the 1997 study, while producing the same optimal length plan.

Figure 13: Makespan comparison of PEGG and LPG
 -Departure from step-optimal plan length

0
2
4
6
8

10
12
14
16
18

0 2 4 6 8 10 12 14 16 18

Problem number

St
ep

s
ov

er
 o

pt
im

al

LPG: dlog
LPG: depot
LPG: ztravel
PEGG: dlog
PEGG: depot
PEGG: ztravel

 43

Table 6. PEGG and a state space planner using the
 ‘adjusted-sum heuristic
 PEGG: bounded PE search, best 50 search segments
 visited in each search episode, as ordered by
 adjsum-flux state space heuristic
 AltAlt: Lisp version, state space planner using planning
 graph distance-based heuristic. “adjusum2” and
 “combo” are the most effective heuristics

 Allegro Lisp platform, runtimes (excl. gc time) on a
 Pentium III, 900 mhz, 384 M RAM

5.5.2 Comparison to heuristic state
space search

We do not yet have an equitable platform
for comparing PEGG’s runtimes against other
planners from the most recent planning com-
petition that are capable of producing parallel
plans. The version of PEGG reported here is
written in Lisp and all experiments were run
on a 900 Mhz laptop with 384 MB RAM,
while the competition planners were gener-
ally coded in C and the published results are
based on the execution on the competition
machines. Given PEGG’s close coupling
with the planning graph, the most relevant
comparisons might be made with other paral-
lel planners that also employ the graph in
some form. For such comparisons, we would
like to isolate the search component of the
runtime from planning graph construction,
since there are a variety of routines that pro-
duce essentially the same graph with widely
different expenditures of computational time
and memory. The reported runtimes for the
LPG planner in the AIPS-02 competition are
generally much smaller than PEGG’s, but
there it’s difficult to isolate the impact of
graph construction and platform-related ef-
fects, not to mention the disparity in the
makespan of the plans produced.

 Table 6 compares PEGG against a Lisp ver-
sion of one of the fastest distance-based
heuristic state space planners using most of
the same problems as Table 4. AltAlt
(Srivastava, Zimmerman, et. al., 2001), like
PEGG, depends on the planning graph to de-
rive the powerful heuristics it uses to direct its
regression search on the problem goals. This
facilitates planner performance comparison
based on differences in search without confus-
ing graph construction time issues. The last
column of Table 6 reports AltAlt performance
for two of the most effective heuristics devel-

Problem

PEGG
heuristic: adjsum-flux

cpu sec
(steps/acts)

Alt Alt (Lisp version)
 cpu sec (/ acts)
 heuristics:
adjusum2 combo

bw-large-B 4.9 (18/18) 67.1 (/ 18) 19.5 (/28)
bw-large-C 24.2 (28/28) 608 (/ 28) 100.9 (/38)
bw-large-D 388 (38/38) 950 (/ 38) ~
rocket-ext-a 1.1 (7/34) 23.6 (/ 40) 1.26 (/ 34)
att-log-a 2.2 (11/62) 16.7 (/56) 2.27(/ 64)
att-log-b 21.6 (13/64) 189 (/ 72) 85 (/77)
Gripper-8 5.5 (15/23) 6.6 (/ 23) *
Gripper-15 46.7 (36/45) 10.1 (/ 45) 6.98 (/45)
Gripper-20 1110.8 (40/59) 38.2 (/ 59) 20.92 (/59)
Tower-7 6.1 (127/127) 7.0 (/127) *
Tower-9 23.6 (511/511) 28 (/511) *
8puzzle-1 9.2 (31/31) 33.7 (/ 31) 9.5 (/39)
8puzzle-2 7.0 (32/32) 28.3 (/ 30) 5.5 (/ 48)
TSP-12 8.9 (12/12) 21.1 (/12) 18.9 (/12)
AIPS 1998 PEGG Alt Alt (Lisp version)
grid-y-1 16.8 (14/14) 17.4 (/14) 17.5 (/14)
gripper-x-5 110 (23/35) 9.9 (/35) 8.0 (/37)
gripper-x-8 520 (35/53) 73 (/48) 25 (/53)
log-y-5 30.5 (16/34) 44 (/38) 29 (/42)
mprime-1 2.1 (4/6) 722.6 (/ 4) 79.6 (/ 4)
AIPS 2000 PEGG Alt Alt (Lisp version)
blocks-10-1 6.9 (32/32) 13.3 (/32) 7.1 (/36)
blocks-12-0 9.4 (34/34) 17.0 (/34)
blocks-16-2 58.7 (54/54) 61.9 (/56)
logistics-10-0 7.3 (15/ 53) 31.5 (/53)
logistics-12-1 17.4 (15/75) 80 (/77)
freecell-2-1 52.9 (6/10) 49 (/12)

schedule-8-9 155 (5/12) 123 (/15)
AIPS 2002 PEGG Alt Alt (Lisp version)
depot-6512 2.1 (14/31) 1.2 (/33)
depot-1212 127 (22/56) 290 (/61)
driverlog-2-3-6e 66.6 (12/26) 50.9 (/32)
driverlog-4-4-8 889 (23/38) 461 (/44)
roverprob1423 15 (9/28) 2.0 (/33)
roverprob4135 379 (12 / 43) 292 (/48)
roverprob8271 444 (11 / 39) 300 (/ 45)
ztravel-3-7a 222 (11/24) 77 (/28)
ztravel-3-8a 3.1 (9/26) 15.4 (/31)

 44

oped for the planner (Nguyen and Kambhampati, 2000), the first of which is the version of the ad-
justed-sum heuristic that was described in section 5.1.1. Surprisingly, in the majority of problems
PEGG returns a parallel, generally step-optimal plan faster than AltAlt returns its serial plan. As a
backward state space planner AltAlt cannot construct a plan with parallel actions. (However very
recent work with a highly modified version of AltAlt does, in fact, construct such plans -Nigenda and
Kambhampati, 2003). The PEGG plans are also seen to be of comparable length in terms of number
of actions to the best of the AltAlt plans.

6 Discussion and Related Work

In terms of related work, we will not further discuss here the wide assortment of work directly re-
lated to some of the search techniques, efficiencies, and data structures that underpin the ability of
EGBG and PEGG to successfully employ a search trace. These include investigations of more
memory efficient bi-partite representations of the planning graph, explanation based learning and
dependency directed backtracking in the context of search on the planning graph, variable and value
ordering strategies, and the evolution of distance-based heuristics, as well as the potential for ex-
tracting them from the planning graph. We have endeavored to cite these sources above, where each
topic is first discussed. Here we focus on related or alternative strategies for employing search heu-
ristics in planning, generating parallel plans, or making use of memory to expedite search.

Exploitation of a search trace can be seen as directly addressing IDA*’s inadequate use of avail-
able memory. The only information carried over from one iteration to the next in standard IDA*
search is the upper bound on the f-value. Graphplan’s IDA*-style search shares this inefficient use
of memory, though it partially compensates with its memo caches that store learned no-goods for
use in successive episodes. The search trace goes much further, reducing IDA*’s redundant regen-
eration of nodes by serving as a memory of the states in the visited search space of the previous epi-
sode. In this respect PEGG’s search is closely related to methods such as MREC (Sen, Anup and
Bagchi, 1989), MA*, and SMA* (Russell, 1992) which lie in the middle ground between the mem-
ory intensive A* and IDA*’s scant use of memory. A central concern for these algorithms is using a
prescribed amount of available memory as efficiently as possible. Like the EGBG and PEGG plan-
ners, they retain as much of their search experience as memory permits to avoid repeating and re-
generating node and depend on a heuristic to order the nodes in memory for visitation. Noteworthy
differences include the backing up of a deleted node’s f-value to the parent node’s in all three of the
above algorithms. This ensures the deleted branch is not re-expanded until no other more promising
node remains on the open list. We have not implemented this in PEGG (though it would be straight-
forward to do so) primarily because empirical evidence to date shows that the worst f-value states
that could be deleted from PEGG’s search trace rarely ever become candidates for expansion before
a solution is found via another branch.

EGBG and PEGG are the first planners to directly interleave the CSP and state space views in
problem search, but interest in synthesizing different views of the planning problem has lead to
some related approaches. The Blackbox system (Kautz and Selman 1999) constructs the planning
graph but instead of exploiting its CSP nature, it is converted into a SAT encoding after each exten-
sion and a k-step solution is sought. GP-CSP (Do and Kambhampati, 2000), similarly alternates be-

 45

tween extending a planning graph and converting it, but they transform the structure into CSP for-
mat and search to satisfy the constraint set in each search phase.

The original idea of employing available memory to record a trace of search experience so as to
avoid redundancy in Graphplan’s iterative search process has led in unexpected directions. The
work evolved such that the resulting planning system, PEGG, no longer derives its primary advan-
tage from learning to avoid unnecessary search effort, but rather from it’s ability to exploit strengths
of both CSP and state space approaches to search on the planning graph. The search trace essen-
tially provides a state space view of Graphplan’s search experience allowing us to investigate the
adaptation and augmentation of planning graph based distance heuristics to not only direct the plan-
ner’s traversal of the search space from a previous episode, but to actively prune that space so as to
keep its search focused.

The beam search concept is employed in the context of prepositional satisfiability in GSAT (Sel-
man, Levesque, Mitchell, 1992) and is an option for the Blackbox planner (Kautz and Selman,
1999). For these systems greedy local search is conducted by assessing in each episode, the n-best
‘flips’ of variable values in a randomly generated truth assignment (Where the best flips are those
that lead to the greatest number of satisfied clauses). If n flips fail to find a solution, GSAT restarts
with a new random variable assignment and again tries the n-best flips. There are a number of im-
portant differences relative to PEGG’s visitation of the n-best search trace states. The search trace
captures the state aspect arising out of Graphplan’s regression search on problem goals and, as such,
PEGG exploits reachability information implicit in its planning graph in choosing its n-best nodes
for expansion in each episode. In conducting their search on a purely propositional level, SAT
solvers can leverage a global view of the problem constraints but cannot exploit state-space informa-
tion. Whereas GSAT (and Blackbox) do not improve their performance based on the experience
from one n-best search episode to the next, PEGG learns in a variety of modes; improving its heuris-
tic estimate for the states visited, reordering the state goals based on prior search experience, and
memorizing the most general no-goods based on its use of EBL.

Perhaps the feature that most distinguishes the EGBG, me-EGBG, so-PEGG, and PEGG systems
from other planners that exploit the planning graph, is their aggressive use of available memory to
learn online from their episodic search experience so as to expedite search in subsequent episodes.
Although they each employ a search trace structure to log this experience, the EGBG and PEGG sys-
tems differ in both the content and granularity of the search experience they track and the aggres-
siveness in their use of memory. In addition, they each confront in different ways a common prob-
lem faced by learning systems; the relative utility of the learned information versus the cost of stor-
ing and accessing the information when needed.

Our first efforts, motivated by the large fraction of Graphplan’s computation effort spent in consis-
tency checking, focused primarily on using a search trace to learn mutex-related redundancies in the
episodic search process. Although the resulting planners, EGBG and me-EGBG, can avoid virtually
all redundant mutex checking based on search experience embodied in their PE’s, empirically we
find that it’s a limited class of problems for which this is a winning strategy. The utility of tracking
the mutex checking experience during search is a function of the number of times the information is
subsequently used, specifically;

 46

 where; Umt is the utility of tracking search mutex checking experience
 p is a planning problem
 EPS(p) is the number of search episodes in problem p
 PEvisit(e) is the number of PE search segments visited in search
 episode e
 PEadd(e) is the number of new search segments added to the PE

 in search episode e

Essentially, equation 6-1 indicates that amortization of the high overhead of logging consistency-
checking experience associated with search on subgoal sets (search segments) depends on the num-
ber of times the sets are revisited relative to the total number of subgoal sets generated (and added to
the PE) during the problem run. This characteristic explains the less than 2x speedups observed for
me-EGBG on many Table 2 problems. The approach is in fact, a handicap for single search episode
problems. It is ineffectual for problems where search in the final search episode generates a large
number of states relative to previous episodes and when the only seed segment(s) are at the top or in
the first levels of the PE (due to need for bottom-up visitation of the search segments in EGBG’s
search trace).

 We adopted a straightforward approach to capturing and reusing Graphplan’s consistency-checking
effort in a search episode, essentially logging the results of mutex checks in a bit vector and then re-
playing them to minimize redundant checking in the next episode (see section 3.2). This has its
drawbacks, as evidenced by the sixteen problems of Table 4 for which even the memory-efficient
version of EGBG encounters memory limitations. In addition, the tightly ordered relationships be-
tween the action assignment bit vectors makes it difficult to fully accommodate what we found to be
an important adjunct to learning for these systems; dependency directed backtracking. The full
benefit of DDB is sacrificed when the dictates of the action assignment vectors are adhered to. It is
possible that a less memory-intensive, more flexible, and more efficient algorithm might boost the
utility of capturing the consistency checking information in a search trace, but it’s not apparent how
else to soundly encapsulate the process and still correctly accommodate possible new actions and
relaxed dynamic mutexes in subsequent episodes.

The PEGG results of Tables 2 and 3 demonstrate that the utility of a search trace is not limited to
minimizing redundant consistency-checking effort. The PE can be thought of as a snapshot of the
‘regression search reachable’ (RS reachable) states for a search episode. That is, once the regression
search process generates a state at level k of the planning graph, the state is reachable during search
at all higher levels of the graph in future search episodes. Essentially, the search segments in the PE
represent not just the RS reachable states, but a candidate set of partial plans with each segment’s
state being the current tail state of such a plan. Our experimental results indicate that the utility of
learning the states that are RS reachable in a given search episode generally outweighs the utility of
learning details of the episode’s consistency-checking, and can be accomplished with greatly reduced
memory demand. Freed from the need to regenerate the RS reachable states in IDA* fashion during
each search episode, PEGG can directly revisit any such state in an attempt to extend the partial plan
to a solution, if it appears sufficiently promising.

∑

∑

=

=∝−)(

1

)(

1

)(

)(
)()16 pEPS

e
add

pEPS

e
visit

mt

ePE

ePE
pU

 47

 We note at this point an important aspect in which PEGG’s beam search on the PE states differs
from an ‘N-best first’ approach for a state space planner, such as reported in Table 5. When conduct-
ing search, PEGG enforces the user-specified limit on state f-values only when selecting PE search
segments to visit. Once a search segment meeting the f-value criterion is chosen, Graphplan-style
regression search on its goals continues until either a solution is found or all sub-branches fail. We
could instead adopt a greedy approach by also applying the heuristic bound during this regression
search. That is, we could backtrack whenever a state is generated that exceeds the f-value bound re-
stricting which search segments are visited. This can be seen as a translation of the Greedy Best First
Search (GBFS) algorithm employed by HSP-r (Bonet and Geffner, 1999) for state space search, into
a form of hill-climbing search on the planning graph. The problem with incorporating this into
PEGG is that its regression search is greatly expedited by explanation based learning as well as DDB.
The regressed conflict set that these techniques rely on is undefined when the f-value limit precludes
search on a child state. Without conducting such search there is no reasonably informed basis for
returning anything other than the full set of subgoals in the state, and returning the entire state gener-
ally undermines the entire EBL/DDB process for continued search on the ancestors of the child state.

Experimentally we found that, when PEGG was adapted to enforce the PE state f-value limit on its
regression search (returning the entire state as a conflict set), improvements were unpredictable at
best. Speedups of up to a factor of 100 were observed in a few cases (all logistics problems) but in
most cases runtimes increased or search failed entirely within the time limit. In many cases, we
traced this directly to the degradation of the EBL/DDB processes, but for other cases, the fault ap-
peared to lie with the difficulty of ranking newly generated states with those already in the PE ac-
cording to their f-values. The latter problem appears rooted in the complex interaction of two factors
that impact the assessed f-value of states in the PE, but not newly generated states;

� The heuristic values of PE states tend to increase based on PEGG’s use of search experience to
improve h-value estimates each time a state is visited (Section 5.1.2)

� The heuristic values of PE states are adjusted lower due to the flux adjunct in the adjsum-flux
heuristic.

The quality (make-span) of the returned solutions suffered across a broad range of problems. The
degradation of solution quality as we shift PEGG closer to a greedy search approach such as this,
may be an indicator that PEGG’s remarkable ability to return step-optimal plans (as evidenced by
Table 4 results) is rooted in its interleaving of best-state selection from the PE with Graphplan-style
depth-first search on the state’s subgoals.

Like PEGG the LPG system (Gerevini and Serina, 2002), heavily exploits the structure of the
planning graph, leverages a variety of heuristics to expedite search, and generates parallel plans.
However, LPG conducts greedy local search in a space composed of subgraphs on a given length
planning graph, while PEGG combines a state space view of its search experience with Graphplan’s
CSP-style search on the graph itself. LPG does not systematically search the planning graph before
heuristically moving to extend it, so the guarantee of step-optimality is forfeited. PEGG can operate
either in a step-optimal mode or in modes that tradeoff optimality for speed to varying degrees.

 48

We are currently investigating an interesting parallel to LPG’s ability to simultaneously consider
candidate partial plans of different lengths. In principle, there is nothing that prevents PEGG from
simultaneously considering a given PE search segment Sn, in terms of its heuristic rankings when it’s
transposed onto various levels of the planning graph. This is tantamount to simultaneously consid-
ering which of an arbitrary number of candidate partial plans of different implied lengths to extend
first (each such partial plan having Sn as its tail state). The search trace again proves to be very use-
ful in this regard as any state in it can be transposed up any desired number of levels -subject to the
ability to extend the graph correspondingly- and have its heuristics re-evaluated at each level. For
example, referring back to Figure 4, after the first search episode pictured (top), the XEHY state in
the PE could be transposed up from planning graph level 5 to levels 6, 7, or higher, heuristically
evaluated at each level, and then be simultaneously compared as distinct states to be visited. Ide-
ally, we’d like to move directly to evaluating XEHY at planning graph level 7, since at that point it
becomes a plan segment for this problem (its state is part of a valid plan). If our secondary heuristic
can discriminate between the solution potential for XEHY at the levels it can be transposed to, we
should have an effective means for further shortcutting Graphplan’s level-by-level search process.
It seems likely that the flux adjunct will be one key to boosting the sensitivity of a distance-based
heuristic in this regard.

 This would be a prohibitive idea in terms of memory requirements if we had to store multiple
versions of the PE, but we can retain only the one version of it and simply store any level-specific
heuristic information in its search segments as values indexed to their associated planning graph lev-
els. Challenges that must be dealt with include such things as what range of plan lengths should be
considered at one time and how to avoid having to deal with plans with steps consisting entirely of
‘persists’ actions.

We haven’t specifically examined PEGG in the context of real-time planning here, but its use of
the search trace reflects some of the flavor of the real-time search methods, such as LRTA* (Learn-
ing Real-Time A*, Korf, 1990) and variants such as B-LRTA* (Bonet, Loerincs, and Geffner, 1997),
-a variant that applies a distance-based heuristic oriented to planning problems. Real-time search al-
gorithms interleave search and execution, performing an action after a limited local search. LRTA*
employs a search heuristic that is based on finding a less-than-optimal solution then improving the
heuristic estimate over a series of iterations. It associates an h-value with every state to estimate the
goal distance of the state (similar to the h-values of A*). It always first updates the h-value of the
current state and then uses the h-values of the successors to move to the successor believed to be on a
minimum-cost path from the current state to the goal. Unlike traditional search methods, it can not
only act in real-time but also amortize learning over consecutive planning episodes if it solves the
same planning task repeatedly. This allows it to find a sub-optimal plan fast and then improve the
plan until it converges on a minimum-cost plan.

Like LRTA*, the PEGG search process, iteratively improves the h-value estimates of the states it
has generated until it determines an optimal make-span plan. Unlike LRTA*, PEGG doesn’t actually
find a sub-optimal plan first, instead it converges on a minimum-cost plan by either exhaustively ex-
tending all candidate partial plans of monotonically increasing length (so-PEGG) or extending only
the most promising candidates according to its secondary heuristic (PEGG with beam search). Inter-
estingly, a real-time version of PEGG more closely related to LRTA* might be based on the method

 49

just described above, in which search segments may be simultaneously transposed onto multiple
planning graph levels. In this mode PEGG would be biased to search quickly for a plan of any
length, and subsequent to finding one, could search in anytime fashion on progressively shorter
length planning graphs for lower cost plans. This methodology is of direct relevance to work we
have reported elsewhere on a version of PEGG that operates in an anytime fashion, seeking to opti-
mize over multiple plan quality criteria. The current version of multi-PEGG (Zimmerman and
Kambhampati, 2002) first returns the optimal make-span plan, and then exploits the search trace in a
novel way to efficiently stream plans that monotonically improve in terms of other quality metrics.
As discussed in that paper, an important step away from multi-PEGG’s bias towards the make-span
plan quality metric would be just such a modification. Co-mingling versions of the same state trans-
posed onto multiple planning graph levels would enable the planner to concurrently consider for visi-
tation candidate search segments that might be seed segments for latent plans of various lengths.

7 Conclusions

We have investigated and presented a family of methods that make efficient use of available mem-
ory to learn from different aspects of Graphplan’s iterative search episodes in order to expedite
search in subsequent episodes. The motivation, design, and performance of four different planners
that build and exploit a search trace are described. The methods differ significantly in either the in-
formation content of their trace or the manner in which they leverage it. However, in all cases the
high-level impact is to transform the IDA* nature of Graphplan’s search by capturing a state space
view of search experience in the first episode, and using it to guide search in subsequent episodes,
dynamically updating it along the way.

The approach melds two of the most effective views of planning, CSP and state space search, and
demonstrates that it can exploit strengths of both. Since the planners retain Graphplan’s efficient
routines for finding consistent sets of parallel actions, we have focused on their ability to speed up
production of parallel plans as close to optimal make-span as possible.

The EGBG and me-EGBG planners employ a more aggressive mode of tracing search experience
than the PEGG planners. They track and use the action assignment consistency checking performed
during search on a subgoal set (state) to minimize the effort expended when the state is next visited.
The approach was found to be memory intensive, motivating the incorporation of six techniques from
the planning and CSP fields; variable ordering, value ordering, explanation based learning (EBL),
dependency directed backtracking (DDB), domain preprocessing and invariant analysis, and transi-
tion to a bi-partite planning graph. Beyond their well-known speedup benefits, we have provided
experimental evidence of the impressive impact that these methods have on search trace memory de-
mands. The resulting planner, me-EGBG, is frequently two orders of magnitude faster than either
standard Graphplan or EGBG and for problems it can handle, it is generally the fastest of the guaran-
teed step-optimal approaches we investigated. In comparisons to GP-e, a version of Graphplan en-
hanced with the same space saving and speedup techniques, me-EGBG solves problems on average 5
times faster.

The PEGG planners adopt a more skeletal search trace, sacrificing EGBG’s ability to minimize re-
dundant consistency checking during search, in favor of a design more conducive to informed tra-

 50

versal of the search trace states. Ultimately this proves to be a more powerful approach to exploiting
the episodic search experience. We describe the adaptation of distance-based heuristics to support
informed traversal of the search space implicit in the PEGG search trace. We then develop an adjunct
heuristic we call flux, which augments the distance heuristic with sensitivity to changes in the poten-
tial for a search trace state to seed new search branches as it is transposed to higher planning graph
levels. Empirical evidence is provided supporting the advantages of employing the flux metric both
in the ‘adjsum-flux’ heuristic and as a filter. We additionally develop some new techniques that lev-
erage the search experience captured in the search trace and demonstrate their effectiveness.

The so-PEGG planner, which like me-EGBG produces guaranteed optimal parallel plans, also av-
erages a 5x speedup over GP-e. However its advantage is apparent in the greatly extended range of
problems it can handle, exceeding available memory for only one problem of our test set versus 16
failures for me-EGBG. The most dramatic evidence of the potential for a search trace guided plan-
ner is provided by PEGG. This version employs beam search based on the heuristic values of states
in its search trace. Since it no longer exhaustively searches the planning graph in each episode,
PEGG sacrifices the guarantee of returning an optimal make-span plan. Nonetheless, even when we
limit the beam search to just 50 states in each episode, PEGG returns the step-optimal plan in almost
90% of the test bed problems and comes within one or two steps of optimal in the others. It does so
at speedups ranging over two orders of magnitude above GP-e, and quite competitively with a state-
of-the-art state space planner (which finds only serial plans).

 The code for the PEGG planners with instructions for running them in various modes is available
for download at http://rakaposhi.eas.asu.edu/pegg.html

References

Blum, A. and Furst, M.L. (1997). Fast planning through planning graph analysis. Artificial Intelligence.
90(1-2). 1997.

Bonet, B., Loerincs, G., and Geffner, H. 1997. A robust and fast action selection mechanism for planning.
In Proceedings of AAAI-97.

Bonet, B. and Geffner, H. (1999). Planning as heuristic search: New results. In Proceedings of ECP-99.
Do, M.B. and Kambhampati, S. (2000). Solving Planning-Graph by compiling it into CSP. In

Proceedings of AIPS-2000.
Fox, M., Long, D. (1998). The automatic inference of state invariants in TIM. JAIR, 9:317-371.
Frost, D. and Dechter, R. (1994). In search of best constraint satisfaction search. In Proceedings of AAAI-

94.
Gerevini , A., Schubert, L. (1996). Accelerating Partial Order Planners: Some techniques for effective

search control and pruning. JAIR 5:95-137.
Gerevini, A. Serina, I., (2002). LPG: A planner based on local search for planning graphs with

action costs. In Proceedings of the Sixth International Conference on Artificial Intelligence
Planning and Scheduling. Toulouse, France, April, 2002.

Haslum, P., Geffner, H. (2000). Admissible Heuristics for Optimal Planning. In Proc. of The Fifth
International Conference on Artificial Intelligence Planning and Scheduling.

Hoffman, J. (2001) A heuristic for domain independent planning and its use in an enforced hill-climbing
algorithm. Technical Report No. 133, Albert Ludwigs University.

 51

Kambhampati, S. (1998). On the relations between Intelligent Backtracking and Failure-driven
Explanation Based Learning in Constraint Satisfaction and Planning. Artificial Intelligence. Vol 105.

Kambhampati, S. (2000). Planning Graph as a (dynamic) CSP: Exploiting EBL, DDB and other CSP
search techniques in Graphplan. Journal of Artificial Intelligence Research, 12:1-34, 2000.

Kambhampati, S. and Sanchez, R. (2000). Distance-based Goal-ordering heuristics for Graphplan. In
Proceedings of AIPS-00.

Kambhampati, S., Parker, E., Lambrecht, E. (1997). Understanding and extending Graphplan. In
Proceedings of 4th European Conference on Planning.

Kautz, H. and Selman, B. (1996). Pushing the envelope: Planning, prepositional logic and stochastic
search. In Proceedings of AAAI-96.

Kautz, H. and Selman, B. (1999). Unifying SAT-based and Graph-based Planning. In Proceedings of
IJCAI-99, Vol 1.

Koehler, D., Nebel, B., Hoffman, J., Dimopoulos, Y., 1997. Extending planning graphs to an ADL subset.
In Proceedings of ECP-97, pages 273-285, Springer LNAI 1348.

Korf, R. 1985. Depth-first iterative-deepening: an optimal admissible tree search. Artificial Intelligence,
27(1): 97-109.

Korf, R. 1990. Real-time heuristic search. Artificial Intelligence, 42: 189-211.
Long, D. and Fox, M. (1999). Efficient implementation of the plan graph in STAN. JAIR, 10, 87-115.
Mittal, S., Falkenhainer, B. (1990). Dynamic constraint satisfaction problems. In Proceedings of AAAI-

90.
McDermott, D. (1999). Using regression graphs to control search in planning. Artificial Intelligence,

109(1-2):111-160.
Nigenda, R., Kambhampati, S. (2003). AltAltp: Online Parallelization of Plans with Heuristic State

Search. To appear: JAIR 2003.
Nguyen, X. and Kambhampati, S. (2000). Extracting effective and admissible state space heuristics from

the planning graph. In Proceedings of AAAI-2000.
Prosser, P. (1993). Domain filtering can degrade intelligent backtracking search. In Proceedings of IJCAI-

93.
Russell, S.J., (1992). Efficient memory-bounded search methods. In proceedings of ECAI 92; 10th

European Conference on Artificial Intelligence, pp 1-5, Vienna, Austria.
Sen, A.K., Bagchi, A., (1989). Fast recursive formulations for best-first search that allow controlled use

of memory. In Proceedings of IJCAI-89.
Selman, B, Levesque, H., Mitchell, D. (1992). A new method for solving hard satisfiability problems. In

Proceedings of AAAI-92.
Smith, D., Weld, D. (1998). Incremental Graphplan. Technical Report 98-09-06. University of

Washington.
Srivastava, B., Zimmerman, T., Nguyen, X., Kambhampati, S., Do, M., Nambiar, U. Nie, Z., Nigenda, R.

(2001). AltAlt: Comjbining Graphplan and Heuristic State Search. In AI Magazine, American
Association for Artificial Intelligence, Fall 2001.

Zimmerman, T. and Kambhampati, S. (1999).. Exploiting Symmetry in the Planning-graph via
Explanation-Guided Search. In Proceedings of AAAI-99.

Zimmerman, T., Kambhampati, S. (2002). Generating parallel plans satisfying multiple criteria in
anytime fashion. Sixth International Conference on Artificial Intelligence Planning and Scheduling,
workshop on Planning and Scheduling with Multiple Criteria, Toulouse, France. April, 2002.

Zimmerman, T. and Kambhampati, S. (2003). Using available memory to transform Graphplan’s search.
To appear: Proceedings of IJCAI-03, 2003.

