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frequently accessed query classes, and learns and stores
statistics only with respect to these classes. We describe Figure 1:The BibFinder User Interface
the details of our method, and present experimental re-

sults demonstrating the efficiency and effectiveness of  several additional sources includih§EE Xploreand Computa-

our approach. tional Geometry Bibliography
The sources integrated IBibFinderare autonomous and par-
1 Introduction tially overlapping. By combining the sourceBjbFinder can

) . . _present a unified and more complete view to the user. However
With the vast number of autonomous information sources avall—It also brings some interesting optimization challenges. Let us

able on the Internet tode_ly, user_s have access to a large variefyi o\ me that the global schema exportedBityFinderincludes
of data sources. Data integration systems [LRO96, ACpsgej’ust the relationpaper(title, author, conference/journal, year)

LKG99, PLOO] are being developed to provide a uniform inter- g4 of the individual sources only export a subset of the global

face to a multitude of information sources, query the relevamrelation. For exampleNetwork Bibliographyonly contains pub-
sources automatically and restructure the information from dif-Iications in Networks,DBLP gives more emphasis on Database
ferent sources. In a data integration scenario, a user interacts Wi%lated publications, whil&cienceDirechas only archival jour-

a mediator system via a mediated schema. A mediated schemajig,| o pjications etc. To efficiently answer users’ queries, we need

‘"’_‘Slet of virtual r_elﬁltlons,lwhlc_:h are effectively storehd ?crs_sshmull-to find and access the most relevant subset of the sources for the
tiple and potentially overlapping data sources, each of which only o o ery. Suppose. the user asks a selection query:

contain a partial extension of the relation. Query optimization in _ . . )
. . . title,author) — paper(title, author, conference/journal, year),
data integration [FKL97, NLF99, NKO1, DHO02 ] thus requires the Qo ) = papex( _“ N ! year)
S ) . conference="AAAI".
ability to figure out what sources are most relevant to the given

query, and in what order those sources should be accessed. FB? answer this query effnmentlﬁ:medemeeds to _know theov-
Eageof each source& with respect to the quer§, i.e. P(S5|Q),

this purpose, the query optimizer needs to access statistics aboﬁ] bability that q wple f | ;
the coverage of the individual sources with respect to the giver% e probability that a random answer tuple for querpelongs to -
ourceS. Given this information, we can rank all the sources in

query, as well as the degree to which the answers they export over: . ) . L
lap. We illustrate the need for these statistics with an example. descending order dP(S'Q)' The.f|rst sourcg in the ranl_<|ng is the
one we want to access first while answering qu@rySince the

Motivating Example: We have been developigjbFinder(Fig- sources may be highly correlated, after we access the sélirce
ure 1, http://rakaposhi.eas.asu.edu/bibfinder), a publicly availablavith the maximum coverag®(S’|Q), we need to access as the
computer science bibliography mediatoBibFinderintegrates  second source, the sour@é that has the highesesidual cov-
several online Computer Science bibliography sources. It curerage(i.e., provides the maximum number of those answers that
rently coversCSB, DBLP, Network Bibliography, ACM Digital  are not provided by the first sour&®). Specifically we need to
Library, ScienceDirectand CiteSeer Plans are underway to add pick the sourceS” that has next best rank in terms of coverage



but has minimabverlap(common tuples) witts’. If we have the

coverage and overlap statistics for every possible query, we can [ o | = —
get the complete order in which to access the sources. Howev(siemoo | [ 1coe | [ asar | [ ece
it will be very costly to remember and learn statistics W.r.t. @Very v tierarchy for the conference Attribute AV Hierarchy for the Year Attribute

source-query combination, and overlap information about every
subset of sources with respect to every possible query!
Fortunately, the users’ interests may only focus on a small
part of the space of all the possible queries. For example, in our ~
BibFinderscenario, the users are much more interested in asking sievoosr 02 , LecpRT | i AL02 |
queries to find papers in some well known conferences such as L= ' [T — oo |
Sigmod and VLDB than some other lesser known conferences, - : B
even through the lesser known conferences may have a larger
number papers stored in some sources. Even if a mediator cafrigure 2: AV Hierarchies and the Corresponding Query Class
not provide accurate statistics for every possible query, it can stilHierarhcy
achieve a reasonable average accuracy by keeping more accurate
coverage and overlap statistics for queries that are asked more fré-1  Grouping Queries into Classes
quently, and less accurate statistics for infrequent queries.
In this paper, we introduc8tatMiner, a statistics mining mod-
ule for web based data integratioStatMinercomprises of a set

Query Class Hierarchy

AV Hierarchy: Since we are considering selection queries, we
can classify the queries in terms of the selected attributes and their

of connected techniques that estimate the coverage and overlé(ﬁlues' To abstract the classes further we assume that the mediator
statistics while keeping the amount of needed statistics tightly1aS access to the so-called “attribute value hierarchies for a sub-
under control. Since the number of potential user queries carjet Of the attributes of each mediated relation. Aihierarchy

be quite high,StatMineraims to learn the required statistics for (or attribute value hierarchy) over an attributds a hierarchical
query classes.e. groups of queries. SpecificalltatMiner classification of the values of the attribute The leaf nodes of

will group queries into classes and efficiently discover frequentth® hierarchy correspond to specific concrete values,oihile

query classes. For each discovered frequent class, our approa non-leaf nodes are abstract values that correspond to the union
probes sources using the most frequently accessed queries withf{ values belo"‘{‘ them. Flgu”re 2 SPOWS”tWO very simple ’ﬁv h|er;
the class and learns class-source association rules w.r.t. to tfichies for the “conference” and “year” attributes of the “paper
probing results. An example class-source association rule coulff'ation. Note that hierarchies do not have to exist for every at-
be: SIGMOD — DBLP with confidence 100%. which means tribute, but rather only for those attributes over which queries are

information sourceD BL P covers all the paper information for classified. We call these attributes ttlassificatory attributes.
SIGMOD related queries. The statistics for infrequently ac- We can choose as the classificatory attributes thefbattibutes
cessed query classes will not be learned. Instead we use t}.yghose values differentiate the sources the most, where the number

statistics of a more general abstract query class which has thi IS decided based on a tradeoff between prediction performance
total frequency more than the threshold to estimate the coverYersus computational complexity of learning the statistics by us-

age and overlap of the queries in the infrequent classes. In thihg thesek attributes. The selection of the classificatory attributes
way, we will provide more accurate statistics for frequently ac-

may either be done by the mediator designer or using automated
cessed queries. Our objective is to keep the number of statisti

ct,gchniques. The AV hierarchies themselves can either be hand-

low enough while still providing high average accuracy for users' €0ded by the designer, or can be leared automatically.
future queries. Here we assume that queries asked by the usRdlery ClassesSince we focus on selection queries, a typical
in future will have the same distribution as the past queries. Ifquery will have values of some set of attributes bound. We group
the assumption holds, then the average accuracy of the mediato@iCh queries into query classes using the AV hierarchies of the
coverage and overlap estimation will be higher if we provide moreclassificatory attributes. A quefgature is defined as the assign-
accurate statistics for more frequently asked queries. ment of a classificatory attribute to a specific value from its AV

The rest of the paper is organized as follows. In the next sechierarchy. A feature is “abstract” if the attribute is assigned an
tion, we give an overview of our approach and define the neededbstract (non-leaf) value from its AV hierarchy. Sets of features
terminology. This is followed by a detailed description of our ex- &€ used to define query classes. Specifically, query class is a
perimental setup and the results we obtained demonstrating theet of (selection) queries that all share a particular set of features.
efficiency of our learning algorithms and the effectiveness of theT ne space of query classes is just the cartesian product of the AV
learned statistics. Next, we discuss the related work and severdiérarchies of all the classificatory attributes. SpecificallyHet

important potential extensions to the basic framework. Finally web€ the set of features derived from the AV hierarchy of iffe
conclude with a summary of our contributions. classificatory attribute. Then the set of all query classes (called

classSet) is simply H; x Hs X ... x Hn. The AV hierarchies
induce subsumption relations among the query classes. A class
C; is subsumed by clags; if every feature inC; is equal to, or

In order to better illustrate the novel aspects of our association rul@ specialization of, the same dimension featur€jnA queryQ
mining approach, we purposely limit the queries to just projectionbelongs to a clas€’ if the values of the classificatory attributes
and selection queries. in @ are equal to or are specializations of the features defining

2 Overview



mediator is actually mapped to the claSs It can be computed

Conference| Year | Frequency using the following formula:
SIGMOD | 2001 150
ICDE | 2001 | 50 Pr(@)= D> PQ
ICDE | NULL 10 Q is mapped t@
AAAI 2001 90 Since the classes may overlap in terms of queries they subsume,
the the summation ove?(C') for all classC will add to greater
Table 1:Tuples in the table QList than 1. However since each query is mapped into only one class,

. ) __the summation over al,,., (C) will add to 1.
C. Figure 2 shows an example class hierarchy for a very simple

mediator with the two example AV hierarchies. The query classes;2 3 Coverage and Overlap w.r.t Query Classes
are shown at the bottom, along with the subsumption relations o

between the classes. The coverageof a data sourcé& with respect to a query, de-
noted byP(S|Q), is the probability that a random answer tAupIe
2.2 Class Access Probability of query @ is present in sourc&. The overlapamong a sef

of sources with respect to a quet}; denoted byP(§|Q), is the

As we discussed earlier, it may be prohibitively expensive to Iea"brobability that a random answer tuple of the quérys present
and keep in memory the coverage and overlap statistics for eVery, cach sourcs < S. The overlap (or coverage whéhis a sin-

possible query class. In order to keep the number of aSSOCiatiOBIeton) statistics w.r.t. a quety be computed using the following
rules low, we would like to prune query classes which are rarelyformula

used. We use a threshold on the support of a class (i.e., percentage - N (§)
i s statisti P(SIQ) = =%
of total frequency of queries that use that class’s statistics), called No

minfreq to identify frequent access query classes. Coverage and

overlap statistics are learned only with respect to these frequerft®€Ve(5) is the number of common answer tuples é@ithat
classes. are fromsS, Ng is the total number of answer tuples f@r We as-

We assume the mediator maintains a queryQistst, which sume that the union of the contents of the available sources within

keeps track of the user queries and their access frequency. In gfjpe system covers 100% of the answers of thg query. In gther
ble 1, we show an example query list. We Us&q, to denote the words, coverage and overlap is measured relative to the available

access frequency of a que€y, and FR to denote the total fre- SOUrCes:
quency of the all the queries in QList. Theery probabilityof a The cgverageof a §9urceS w.rt. a classC, denoted by
queryQ, denoted byP(Q), is the probability that a random query P(S|C), is the probability that a random answer tuple of a ran-

posed to the mediator is the quegy It can be computed using dom query belonging to the clagsis present in sourc§. The
the formula: P(Q) = FR9 Theclass probabilityof a classC, overlapamong a sef of sources with respect to a claSs de-

denoted byP(C), is thg}?:)robability that a random query posed noted byP(§|C’), is the probability that a random answer tuple of

to the mediator is subsumed by the classit can be computed & "andom query belonging to the classs present in each source
using the following formula: S € S. The overlap (or coverage whehis a singleton) statis-

tics w.r.t. a query clas€' can be computed using the following
PC)= Z P(Q) formula:

QeC . P(CNS)  Ygec PSIQ)P(Q)

The class probability of a class is solely dependent on the total P(S|C) = P(C) = P(C)

frequency of the all the queries belonging to the class. We use L )

the termcandidate frequent clag® denote any class with class Thg coverage and overlap statistics w.r.t. a clasis used )
to estimate the source coverage and overlap for all the queries

probability more than the minimum frequency threshwlitifreq X "
that are mapped int@’. These coverage and overlap statistics

The example classes shown in Figure 2 with solid frame lines b ontl tod usi i le mini
are candidate frequent classes. As we can see some queries m%@ﬁ € conveniently computed using an association rule mining

have multiple lowest level ancestor classes which are candidatgpproaCh'
frequent classes and not subsumed by each other. For example, - .
the query (or class) (ICDE,01) has both the class (DB,01) and‘f'4 Mining Class-Source Association Rules
class (ICDE,RT) as it's parent class. For a query with multiple In order to define the term class-source association rule, we first
ancestor classes, we need to htiqe query into a single ancestor define the ternsource setlLet 7, = {8, S2, ..., Sm } be a set of
class with lowest class probability, whose statistics will be moreall the sources available to a mediator. A subset.af referred
relevant to the query. to as a source set.
The class access probabilityof a classC, denoted by A class-source association rutepresents strong associations
Prap(C), is the probability that a random query posed to the between a query class and a source set. Specifically, we are inter-
IMapDi - . . _ested in the association rules of the fo@i— S, whereC is a
apping the queries into query classes is straightforward for queries ~ . .
binding classificatory attributes. In general (e.g. for queries that bind nonduery class, and'is a source set (possibly singleton). Tép-

classificatory attributes), mapping becomes an instance of classificatioROrt of the classC' (denoted byP(C)) refers to the class prob-
learning problem [HKOO]. ability of the classC, and the overlap (or coverage whéhis




a singleton) statistioD(§\C) is simply theconfidenceof such  distance function is that we consider two queries similar if their

an association rule(denoted W§|C) _ p}(vc(g)s)). Examples sourcg (f:overage and overlap statistics are similar. See [NK02] for
more information.

of such association rules includedAAI — Si, AI — S,
AT&2001 — S; and2001 — S1 A Ss.

3 Preliminary Results

2.5 The StatMiner Architecture We designed a simple mediator which only exports data for the
In StatMiner the frequent query classes are discovered by usingpaper relation (see the motivating example in Section 1). In Fig-
the DFC, an algorithm we developed to efficiently identify the ure 4, we show the two AV hierarchies we use. We setup 20 data
query classes with sufficiently large support (for more informa- sources each of which contains data for the global relatigmr.

tion see [NKO2]), and learn the coverage and overlap statistic3 he data of the sources are the papers in DBLP published by com-
using a variant of the Apriori algorithm [AS94]. The resolution puter science researchers in Database and Atrtificial Intelligence.
of the learned statistics is controlled in an adaptive manner withThe sources have different concentration of the data. For example,
the help of three thresholds. A threshaehinfreqis used to de- one source may contain only papers published in SIGMOD after
cide whether a query class has large enough support to be remerh996. Some of the sources are highly correlated for some queries.
bered. When a particular query class doesn't satisfy the mini-The queries can be selection query with conference and/or year at-
mum support thresholdgtatMiner in effect, stores statistics only tribute bound. The query list we used to discover frequent query
with respect to some abstraction (generalization) of that class. Alasses was generated manually. The frequency of the queries
thresholdminoverlapis used to decide whether or not the overlap are assigned proportionally to the statistics provided by NEC Re-
statistics between a set of sources and a remembered query claggarch Index. We combine the statistics about the impact of the
should be stored. Another threshatdnprobeis used to control ~ conferences and the most frequently accessed papers in Research
the minimum percentage of the total query frequency of all thelndex to simulate the query frequency of our experimental sys-
queries in a class covered by the chosen probing queries to leatem. We setup a one second delay for answering each query sent
coverage and overlap statistics for the class. to a source to simulate the probing cost.

Using DFC we then classify user queries based on AV Hier- In order to evaluate the effectiveness of our learned statistics,
archies and dynamically identify frequent classes for which thewe implemented th&imple Greedy and Greedy Selectalgo-
query access frequency is above the specified threshiifteq rithms described in [FKL97] to generate query plans using the
We learn and store statistics only with respect to these identifiedearned source coverage and overlap statistiSénple greedy
frequent classes (see [NK02] for more information). When thegenerates plans by greedily selecting #osources ranked ac-
mediator, in our cas8ibFinder encounters a new user query, it cording to their coverages, whilreedy selecselects sources
maps the query to one of the query classes for which statisticwith high residual coverages calculated using both the coverage
are available. Since we use thresholds to control the set of quergnd overlap statistics. A simpRandom Selecialgorithm is also
classes for which statistics are maintained, it is possible that thergsed to randomly choose k sources as the top k sources.
is no query class that exactly matches the user query. In this case, After we learn the statistics, we randomly issue 100 queries
we map the query to the nearest abstract query class that has availecording to the frequency distribution of the query list to test the
able statistics. The loss of accuracy in statistics entailed by thisiccuracy of these statistics. We generate plans using the learned
step should be seen as the cost we pay for keeping the amount sfatistics and the above algorithms. The effectiveness of the statis-
stored statistics low. Once the query class corresponding to thtics is estimated according to how good the plans are. The good-
user query is determined, the mediator uses the learned coveragess of the plan is evaluated by calling the sources in the plan and
and overlap statistics to rank the data sources that are most rele!l the other sources available to the mediator. We define the pre-
vant to answering the query. cision of a plan to be the fraction of sources in the estimated plan,

Although our current experiments witBtatMineruse hand-  which turn out to be the real top sources after we execute the
coded hierarchies, we are extenditatMinerto automatically — query. The average precision and number of answers returned by
build AV hierarchies using an agglomerative hierarchical cluster-executing the plan are used to estimate the accuracy of the learned
ing algorithm (see [NKO2] for more information) from the query statistics.
list maintained by the mediator. The basic idea of generating an In Figure 3 (a), we observe the number of candidate frequent
AV hierarchy is to cluster similar attribute values into classes inquery classes and the number of frequent query classes. As we
terms of the coverage and overlap statistics of their correspondsan see from the figure, as we increase the threshoitteq the
ing selection queries binding these values. Then the problem ofiumber of candidate frequent classes and frequent classes will
finding similar attribute values becomes the problem of findingboth decrease, and there is a sharp drop for the small thresholds.
similar selection queries. In order to find similar queries, we de-We also see, for almost all the minfreq thresholds, we always
fine a distance function to measure the distance between a pair piune more than a half of the candidate frequent class discovered

selection querie{1, Q2). from DFC with low class access probability.
In Figure 3 (b), we observe the statistics learning time which
d(Q1,Q2) = \/Z[P(SilQl) . P(§¢|Q2)}2 includes the time for discovering frequent query classes, probing
- the sources and computing the coverage and overlap statistics. As

you can see as we increase the minfreq, the total learning learning
WhereS; denotes thé'™ source set. The interpretation of the time decreases. In the experiment, we just probe the sources with
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Figure 4:AV Hierarchies

a very small number of queries whose total frequency cavéms  the users’ interests may change over different time period, an im-
probe=20% of the total frequency of all the queries in the class.portant extension is to incrementally update the learned statistics
The thresholdninoverlapis set to 0.5%. w.r.t. the users’ most recent interests. We are currently consid-
In Figure 3 (c), we observe the average number of answerering an incremental statistics updating approach to incremen-
by executing the plans generated by the three algorithms for théally modify the existing class hierarchy by splitting, merging
100 randomly generated queries. In Figure 3 (d), we observe thand deleting existing classes (and their respective statistics) in the
average precision of the plans. As we can see the plans generatel@iss hierarchy.
using our learned statistics are much better both in terms of the |n this paper, we only discussed how to learn coverage and
number of answers we get and in terms of the precision of theyverlap statistics of select and project queries. The techniques
plans for these queries than the ones generated without using agjescribed in this paper can however be extended to join queries.
statistics. Specifically, we consider the join queries with the same subgoal
Altogether the experiments show that our association rule mintelations together. For the join queries with the same subgoal re-
ing approach can effectively control the number of statistics redations, we can classify them based on their bound values and use
quired by a mediator to deal with the tradeoff between the acsimilar techniques for selection queries to learn statistics for fre-
curacy of the statistics and the cost of leaning and rememberinguent join query classes.
these statistics. As we can see, the number of statistics and the |, thjs paper, we assume the mediators will maintain a query

learning time drop dramatically as we increase the thresinte |5t O 7.is¢. However theQ List may not be available for media-
freq, while the average accuracy of the learned statistics dropggrs at their beginning stages, the paper [NNVKO02] introduces a
smoothly. size-based approach to learning statistics in such beginning sce-
We are currently evaluating the effectiveness of our approactharios. [NNVK02] assumes that query classes with more an-
by applying it to BibFinder, where we automatically learn AV swers tuples will be accessed more frequently, and learns cov-
hierarchies from it's recorded query list. The learned AV hierar- erage statistics w.r.t. large query classes. Although the size-based
chies are used by the DFC algorithm to discover frequent quengpproach can be seen as complementary to the frequency-based
classes and to map a user’s query into a query class. approach introduced in this paper, it's worth mentioning that the
underlying technical details of the approaches are significantly

4 Discussion and Related Work different.

There has been some previous work on using probing tech-
In order to better illustrate the novel aspects of applying associniques to learn database statistics both in multi-database litera-
ation rule mining techniques to source coverage statistics gatheture and data integration literature. Zhu and Larson [ZL96] de-
ing, we have purposely simplified some aspects of our frameworkscribe techniques for developing regression cost models for multi-
To complete the discussion, we now describe several importandatabase systems by selective querying. Adali et. al [ACPS96]
potential extensions to the basic framework. discuss how keeping track of rudimentary access statistics can
In our discussion we assume that queries asked by the users help in doing cost-based optimizations. More recently, the work
future will have the same distribution as the past queries. Sincéy Gruser et. al. [GRZ00] considers mining response time



statistics for sources in data integration scenario. Given that botfDGLOQ] Oliver M. Duschka, Michael R. Genesereth, Alon Y.
coverage and response time statistics are important for query op-evy. Recursive Query Plans for Data Integration.Journal of
timization (c.f. [NKO1,DHO02]), our work can be seen as comple- Logic Programming, Volume 43(1pages 49-73, 2000.

mentary to theirs.

The utility of quantitative coverage statistics in ranking the
sources is first explored by Florescu et. al. [FKL97]. The pri-
mary aim of both these efforts was however was on the “use” o
coverage statistics, and they do not discuss how such coverag&RZ"00] Jean-Robert Gruser, Louiga Raschid, Vladimir
statistics could be learned. In contrast, our main aim in this papeZadorozhny, Tao Zhan: Learning Response Time for WebSources
is to provide a framework for learning the required statistics. Using Query Feedback and Application in Query Optimization.

There has also been some work on ranking text databases MLDB Journal 9(1): 18-37 (2000)
the context of key word queries submitted to meta-search engine
Recent work ([WMYO0Q], [IGS01]) considers the problem of clas-
sifying text databases into a topic hierarchy. While our approachC
is similar to these approaches in terms of using concept hierafiGS01] P. Ipeirotis, L. Gravano, M. Sahami. Probe, Count, and
chies, and using probing and counting methods, it differs in sevClassify: Categorizing Hidden Web Dababases Ptaceedings
eral significant ways. First, the text database work uses a sinef SIGMOD-01 2001.

gle topic hierarchy and does not have to deal with computation .
of overlap statistics. In contrast we deal with classes made up-KG99] E. Lambrecht, S. Kambhampati and S. Gnanaprakasam.

from the cartesian product of multiple AV hierarchies, and areOPlimizing recursive information gathering plans.Aroceeding

also interested in overlap statistics. This makes the issue of spa@é the International Joint Conference on Artificial Intelligence (1J-

consumed by the statistics quite critical for us, necessitating oufAD: 1999.

threshold-based approaches for controlling the resolution of thél RO96] A. Levy, A. Rajaraman, J. Ordille. Query Heteroge-

statistics. neous Information Sources Using Source Description§/LIDB
Conferencel996.

[FKL97] D. Florescu, D. Koller, and A. Levy. Using probabilistic
information in data integration. IRroceeding of the International
fConference on Very Large Data Bag®4.DB), 1997.

fHKOO] Jiawei Han and Micheline Kamber. Data Mining: Con-
epts and Techniques. Morgan Kaufmman Publishers, 2000.

5 Conclusions [NLF99] F. Naumann, U. Leser, J. Freytag. Quality-driven Inte-

In this paper we motivated the need for automatically mining thegration of Heterogeneous Information SystemsvVLibB Confer-
coverage and overlap statistics of sources w.r.t. frequently acencel999.

cessed query classes for efficient query processing in a data inte-
gration scenario. We then presented a set of connected techniques
that discover frequent query classes and use a limited number g
probing queries to estimate the coverage and overlap statistics for
these classes. We described the details and implementation of ofMK02] Z. Nie and S. Kambhampati. Frequency-Based Cover-
approach. We also presented a preliminary empirical evaluatiomge Statistics Mining for Data Integration. ASU CSE TR 02-004.
of the effectiveness of our approach in a realistic setting. OumDept. of Computer Science & Engg. Arizona State University.
experiments demonstrate that (i) we can systematically trade thkttp : //www.public.asu.edu/ ~ zaigingn/tech_freqc.pdf
statistics learning time and number of statistics remembered fo&

KO01] Z. Nie and S. Kambhampati. Joint optimization of cost
d coverage of query plans in data integration. In ACM CIKM,
tlanta, Georgia, November 2001.

NVKO02] Z. Nie, U. Nambiar, S. Vaddi and S. Kambhampati.
ining Coverage Statistics for Websource Selection in a Media-
r. Proc. CIKM 2002.

accuracy by varying the frequent class thresholds. (ii) The learne
statistics provide tangible improvements in the source ranking,[0
and the improvement is proportional to the type (coverage alone
vs. coverage and overlap) and granularity of the learned statistic§PL00] Rachel Pottinger , Alon Y. Levy , A Scalable Algorithm
We are currently evaluating the effectiveness of our approachior Answering Queries Using Views Proc. of the Int. Conf. on
by applying it to BibFinder, where we automatically learn AV  Very Large Data Bases(VLDB) 2000.
hierarchies from it's recorded query list. The learned AV hierar-
chies are used by the DFC algorithm to discover frequent quer
classes and to map a user’s query into a query class.

WMYO00] W. Wang, W. Meng, and C. Yu. Concept Hierarchy
ased text database categorization in a metasearch engine envi-
ronment. In WISE2000, June 2000.
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