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We introduce an algorithm to automatically learn probabilistic Hierarchical Task Networks (pH-

TNs) that capture a user’s preferences on plans by observing only the user’s behavior. HTNs

are a common choice of representation for a variety of purposes in planning, including work on
learning in planning. Our contributions are two-fold. First, in contrast with prior work, which

employs HTNs to represent domain physics or search control knowledge, we use HTNs to model

user preferences. Second, while most prior work on HTN learning requires additional information
(e.g., annotated traces or tasks) to assist the learning process, our system only takes plan traces

as input. Initially we will assume that users carry out preferred plans more frequently, and thus

the observed distribution of plans is an accurate representation of user preference. We then gen-
eralize to the situation where feasibility constraints frequently prevent the execution of preferred

plans. Taking the prevalent perspective of viewing HTNs as grammars over primitive actions, we

adapt an Expectation-Maximization (EM) technique from the discipline of probabilistic grammar
induction to acquire probabilistic context-free grammars (pCFG) that capture the distribution on

plans. To account for the difference between the distributions of possible and preferred plans, we
subsequently modify this core EM technique, by rescaling its input. We empirically demonstrate

that the proposed approaches are able to learn HTNs representing user preferences.

Categories and Subject Descriptors: 2.11 [AI Technology]: Planning; 2.16 [AI Technology]: Hierarchical Task
Networks learning

Additional Key Words and Phrases: Hierarchical Task Networks, learning user preferences, plan-

ning

1. INTRODUCTION

Application of learning techniques to planning is an area of long standing research interest
[Zimmerman and Kambhampati 2003]. Most work (e.g., [Ilghami et al. 2002; Yang et al.
2005; Langley and Choi 2006; Yang et al. 2007; Hogg et al. 2008]) in this area to-date has,
however, only considered learning domain physics or search control. Knowledge acquired
by these algorithms helps planners to generate feasible plans, either with greater reliability
or less computation. A relatively neglected alternative application of learning, and the
focus of this work, is to produce higher quality plans: we apply automated learning to
acquire users’ preferences concerning plans.
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Fig. 1. Hierarchical task networks in a travel domain.

It has long been understood that, in practice, (1) the framework of classical planning [Fikes
and Nilsson 1971] is not up to the task of representing complex constraints on whole
plans [Nau et al. 2003], and (2) that user preferences can indeed be quite complex in this
regard [Baier and McIlraith 2008]. Hierarchical Task Networks (HTNs) are, among other
choices, an effective and popular means of representing such complex constraints on plans.

We view task networks as (context-free) grammars [Kambhampati et al. 1998; Geib and
Steedman 2007], saying that a plan is parseable if it satisfies the constraints represented
by an HTN (and feasible if it satisfies the remainder of the constraints, i.e., the classical
planning constraints). So, to begin with, we can represent absolute preferences by consid-
ering a plan to be valid only if it is both feasible and parseable. That is, unparseable yet
feasible plans are held to be so loathed by the user at hand that it would be better to fail than
to offer the alternative [Kambhampati et al. 1998]. To represent degree of preference we
immediately generalize our chosen representation language to Probabilistic Hierarchical
Task Networks (pHTNs).

Elaborating, consider Figure 1. It depicts the preferences, modeled as an HTN, of a
hypothetical user for the Travel domain. So, for this user, both Gobytrain and Gobybus are
acceptable reductions of the Travel task. In contrast, the plan of hitch-hiking (modeled as
a single action), while executable and goal achieving, is not considered valid — the user
in question loathes that mode of travel to the point of giving up rather than hitch-hiking.
For some other user we might very well have included an arrow directly from the Travel
task to hitchhiking. Such ‘boolean’ preferences are themselves interesting, but clearly it is
desirable to accommodate degrees of preference. To do so we attach probabilities to the
methods that reduce tasks into subtasks, equating “probable” with “preferred”, arriving at
probabilistic Hierarchical Task Networks (pHTNs).

Note that one can employ HTNs to encode complex executability constraints as well.
This is the view taken when learning domain physics in the form of HTNs. Indeed, one
need not even attach any meaning to the primitives of a domain at all, instead representing
all planning constraints by parseability of the given network. Likewise one can very well go
about representing all constraints purely in the form of preconditions and effects. We do not
seek a homogenous representation of all constraints. We envisage separate representations
for simple physical constraints as preconditions and effects of primitives, for simple quality
constraints as goals of achievement, for complex physical constraints as task reductions of
a HTN (or set of logical assertions in LTL, Golog, . . . ), and, the topic of this paper, for
complex quality constraints as probabilistic task reductions of a pHTN.

To automatically learn pHTNs, then, we view them as mere Probabilistic Context-Free
Grammars (pCFGs) and try to ‘simply’ apply the proven techniques for probabilistic gram-
mar induction [Collins 1997; Charniak 2000; Lari and Young 1990]. Doing so requires
ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.
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significant compromises, since HTNs, by default, are a significantly richer formalism than
CFGs. Moreover, the application areas of planning and natural language processing are
quite distinct: the mapping between plans as sequences of actions and sentences as se-
quences of words (etc.) is only sound at a first pass. Then the work here undertaken is
to adapt the techniques of (probabilistic) grammar induction to account for the differences
between the appropriate assumptions for natural language processing and the assumptions
appropriate for planning. We make two contributions:

(1) We eliminate the need for structurally annotated input.
(2) We learn the user’s desired, rather than typical, behavior.

The following two subsections elaborate on the two issues considered and our approach to
resolving them.

(Lack of) Known Structure: The first order of business is to overcome the assumption
from natural language processing that significant information is available concerning the
correct structure of the grammar. Since the point of language is to communicate mental
constructs, it is indeed reasonable to suppose that significant information concerning the
‘right’ grammar nonprimitives could be obtained prior to learning. That is, the ‘right’
non-primitives (verb, noun, noun phrase, . . . ) are common to many users. So specifically
algorithms for part-of-speech tagging (for example) are acceptable preprocessing steps in
grammar induction. In contrast, preference is personal: the correct non-primitives are not
common to an overwhelming majority of users.

We develop a Structure Hypothesizer (SH) to invent (out of thin air) the ‘concepts’
needed by the subsequent application of the specific Expectation-Maximization (EM) ap-
proach we borrow from the literature on probabilistic grammar induction [Lari and Young
1990]. We empirically demonstrate that, despite the lack of correctness guarantees of
SH, the final performance is nonetheless promising. We further validate our approach
by comparing it to the well known inside-outside algorithm for grammar induction, and
demonstrating the superiority of our approach [Lari and Young 1990].

Feasibility Constraints: The second order of business is to correct for the assumption that
the point of learning is to reproduce the input distribution [Li et al. 2009]. For, say, support-
ing expectation-based parsing (analogously: plan recognition [Geib and Steedman 2007]),
one does indeed wish to learn the typical distribution of utterances. But, for preferences,
the desired output of learning is the distribution over what the user wants to do (i.e., ‘say’),
rather than the distribution encoding the user’s typical behavior (i.e., typical ‘utterances’).
As a first pass we use this insight merely to motivate the choice of performance metric in
our empirical evaluations.

The second part of the paper considers in greater depth the issue that feasibility con-
straints can prevent users from engaging in preferred behavior, and, thus, also obscure our
ability to infer preferences by simple observation of behavior. To resolve the issue, we per-
mit ourselves to ‘observe’ the alternatives that the user might have hypothetically executed
(in addition to the actual choice of behavior). For example, in (computer-aided) travel
planning systems (e.g., Orbitz), we can indeed directly observe possible flight reservations
shown to, but not chosen, by the user.1 More generally we propose the use of diverse
(automated) planning to fill in any gaps of knowledge concerning plausible alternatives

1This example is provided by one of the anonymous reviewers.
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Table I. A probabilistic Hierarchical Task Network in Chomsky Normal Form.

Primitives: Buyticket, Getin, Getout, Hitchhike;
Tasks: Travel, A1, A2, A3, B1, B2;
Travel → A2 B1, 0.2 Travel → A1 B2, 0.8
B1 → A1 A3, 1.0 B2 → A2 A3, 1.0
A1 → Buyticket, 1.0 A2 → Getin, 1.0 A3 → Getout, 1.0

to observed behavior. In any case, we implement a simple rescaling approach that uses
this additional information to rescale the input distribution to the learner so as to better
reflect desire rather than behavior, and empirically demonstrate its effectiveness [Li et al.
2009]. More accurately, the approach consists of clustering, transitive closure, and, finally,
rescaling.

In the following sections, we start by formally stating the problem of learning probabilis-
tic Hierarchical Task Networks (pHTNs). Next, we present an algorithm that acquires pH-
TNs by observing only plan traces. The algorithm modifies the techniques of probabilistic
grammar induction by performing structure-learning prior to the subsequent application of
an expectation-maximization (EM) approach to parameter-learning. We compare the pro-
posed approach with a straightforward application of pCFG learning method by evaluating
the acquired pHTNs against idealized models of users. The experimental results show that
the learner outperforms the inside-outside algorithm, and at least in the ideal case, can in
fact capture its input distribution given a reasonable number of samples. Subsequently we
consider possible obfuscation of user’s preferences due to feasibility constraints. The ap-
proach is to rescale the input so that the initially described learner will behave as desired
without further modification. We again conduct an empirical evaluation for idealized mod-
els of users, by considering ‘worst-case’ models of feasibility constraints, thereby giving
the technique maximum room for improving performance. Finally we discuss related as
well as future work, and summarize our contributions.

2. DEFINITIONS

In this section we formally define the problem of learning user preferences using Proba-
bilistic Hierarchical Task Networks (pHTNs) as the model. These are exactly equivalent in
form, but not in application, to Probabilistic Context Free Grammars.

Table I provides an example of a candidate pHTN potentially modeling the preferences
of some hypothetical user in the Travel domain (see Figure 1). The example emphasizes
the precise nature of the problem faced by the pHTN learner we develop. In particular,
unlike the case of learning pCFGs for natural language, the internal non-primitives have
no externally ascribed interpretation.

We begin with several supporting definitions.

HTN: A Hierarchical Task Network (HTN)H = 〈A, T ,M〉 consists of a set of actionsA
(the primitives), a set of tasks T (the non-primitives), and a set of methodsM (the rules).
We follow the, notably restricted, SHOP notion of HTNs [Nau et al. 2003]. So each method
m ∈ M is an (` + 1)-tuple, 〈Z, t1, t2, . . . , t`〉, also written Z → t1 . . . t`, specifying
how the task Z ∈ T may be performed by sequentially performing each ti. (In terms of
production rules, one rewrites Z into the right-hand side of the chosen method.) Denote
all the available methods for performing a task Z asM(Z) = {m ∈M | m = 〈Z, . . .〉}.
ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.



Learning pHTNs as pCFGs to Capture User Preferences · 5

Chomsky Normal Form: Without loss of generality,2 we immediately restrict our atten-
tion to Chomsky Normal Form: each method decomposes a task into either two tasks or
one primitive. So for any method m, either m = 〈Z,X, Y 〉 (also written Z → XY ), with
X,Y ∈ T , or m = 〈Z, a〉 (also written Z → a) with a ∈ A.

Actions: Classical Planning: We suppose that actions are defined as in classical plan-
ning [Fikes and Nilsson 1971]. Abstractly, a planning domain delinates a set of possible
states and ascribes partial (state) transition functions to each of the actions (the primitives
A). For simplicity, identify actions with their partial transition functions. Then an action a
is executable from s if a(s) is defined. A plan φ = a1, a2, . . . , an (an action sequence) is
just defined by left-to-right partial function composition (φ(s) = an(an−1(. . . a1(s) . . .)));
so, as with actions, φ is executable from s if φ(s) is defined. A plan φ achieves G from s
if φ is executable from s and φ(s) ∈ G is true, equivalently: φ(s) ∈ G is defined and true.
A planning problem is given by its initial state and goal (semantically a set of states). A
feasible plan achieves the goal from the initial state.

Tasks: HTN Planning: HTN planning is an extension of classical planning by some HTN
H = 〈A, T ,M〉 and top-level task T ∈ T . Plans remain as action sequences. An action
sequence is a solution if it is both feasible and parseable to the task T by the methods
M. In short, a parse just records generating a plan from the top-level task according to the
given methods.

Formally: A parse (tree)X = (V,E) of an action sequence φ = a1, . . . , an by the meth-
odsM to the task T is an ordered labeled binary tree on n leaves with root r satisfying the
following. Label each vertex v ∈ V with task T (v) ∈ T and method m(v) ∈ M(T (v)).
Partition the vertices V into the ordered leaves L = `1, `2, . . . , `n and parents P (internal
vertices): V = L ∪ P . Then:

(1) T (r) = T ,
(2) for each parent p ∈ P , with ordered children x, y: m(p) = T (p)→ T (x)T (y),
(3) for each leaf `i ∈ L: m(`i) = T (`i)→ ai.

Now we come to the generalization of the formal model to probabilities.

pHTNs: A probabilistic Hierarchical Task Network (pHTN) H = 〈A, T ,M, θ〉 is an
extension of the underlying HTN 〈A, T ,M〉 by an assignment of conditional probabilities
θ, a.k.a. parameters, to the methodsM such that, for each task Z ∈ T :

P (m ∈M(Z) | Z) = θ(m), i.e., (1)
∑

θ(M(Z)) = 1. (2)

Recall that M(Z) denotes all methods by which one might perform the task Z: pHTNs
extend HTNs by specifying the prior distribution over each such choice. The parameters θ
then also induce a prior distribution on action sequences as follows.

Prior Probability: Fix the top-level task T and the pHTN H = 〈A, T ,M, θ〉. Let X be
any parse (to T byM). Say X{v} is the sub-tree of X with root v ∈ V (X ). With x and y
the ordered children of any parent p ∈ P(X ), the prior probability of the sub-tree X{p},

2This may no longer be true when generalizing to probabilities.

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.



6 · Li et al.

given its root task, is, recursively:

P (X{p} | T (p)) = θ(m(p)) · P (X{x} | T (x)) · P (X{y} | T (y)). (3)

The base cases, i.e., the trivial sub-trees on each leaf ` ∈ L(X ), are just:

P (X{`} | T (`)) = θ(m(`)). (4)

So the prior probability of an entire parse tree is:

P (X ) =
∏

v∈V (X )

θ(m(v)). (5)

For convenience saym(V ) is the multiset: m(V ) =
⋃
v∈V {m(v)}. Similiarly let θ(M) be

the multiset θ(M) =
⋃
m∈M{θ(m)}. Finally permit the abbreviation θ(X ) = θ(m(V (X ))).

So P (X ) =
∏
θ(X ). Should T and H = 〈A, T ,M, θ〉 be not fixed then say explicitly:

P (X | T,H) =
∏
θ(X ).

Then the prior probability of an action sequence is the sum of prior probabilities of
every parse of that sequence (every complete parse is a disjoint event). Let X(φ) = {X |
X is a parse of φ to T byM(H)} be those parses. So:

P (φ | T,H) =
∑

X∈X(φ)

P (X | T,H), (6)

=
∑

X∈X(φ)

∏
θ(X ). (7)

This is the probability of generating φ by simply evaluating H top-down from T . Note
that plans with non-zero priors are parseable (and thus are considered valid according to
non-probabilistic HTNs, c.f. [Kambhampati et al. 1998]).

Most Probable Parse: A nice feature of Chomsky Normal Form is that the prior probabil-
ity of a plan is straightforward to calculate exactly: there can only be finitely many possible
parses of a fixed sequence of primitives.3 Nonetheless, there may very well be exponen-
tially many possible parses, which is not much better, in practice, than infinitely many
possible parses. So in the remainder we will end up considering just the most probable
parse of φ. With respect to some fixed pHTNH and top-level task T , define:

X ∗(φ) = argmaxX∈X(φ)

∏
θ(X ). (8)

The (same) nice properties of Chomsky Normal Form are, in this case, actually exploitable:
the most probable parse can be computed reasonably efficiently by the cubic-time dynamic
programming algorithm described in the following [Li et al. 2009].

Posterior Probability: Now suppose that not all plans are possible. Say F is the set of
feasible plans in some specific situtation, and write [φ ∈ F ] to mean converting true to 1
and false to 0. Then the posterior distribution on plans given F is:

P (φ | T,H, F ) = [φ ∈ F ] · P (φ | T,H)∑
φ′∈F P (φ′ | T,H)

. (9)

3Conversely, that general pCFGs lack this property may be a loss of generality.
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Plans with non-zero posterior probability are then feasible and parseable, so, such plans
are solutions.

Quality: As a compromise, we use “probable” as a surrogate for “preferable”. There are
very interesting ways in which the connections between probability and preference are
stronger than they may initially appear [Koller and Friedman 2009, page 15]. So, given a
top-level task T ∈ T and pHTN H = 〈A, T ,M, θ〉, define the quality of a plan φ as just
its prior probability P (φ | T,H). For example, if P (A|T,H)

P (B|T,H) = 2 we say the option A is
twice as valuable/good as the option B — in the sense that we have observed the choice of
A twice as often as we have observed the choice of B.

Note that solutions can be ranked by either posterior or prior probability: the two are
proportional over solutions. It is ever so slightly better, though, to define quality as inde-
pendent of feasibility as much as possible. For example,

max
φ

P (φ | T,H)−max
φ′∈F

P (φ′ | T,H)

is a measure of the gap between (our limited understanding of) the reality F and the user’s
personal utopia.

Learning pHTNs: Abstractly, the problem is: automatically learn a user-specific quality
metric on plans based on pure observation of behavior. The preceding sets up the specific
concrete interpretation we pursue, most importantly: take pHTNs as defining the notions
of plan and quality. Formally: Fix the total number of task symbols k,4 and the top-level
task T . Given i.i.d. samples Φ = {φ1, φ2, . . . , φn} of observed action sequences, find the
most likely Chomsky Normal Form pHTN on k task symbols,H∗:

H∗ = argmaxH P (H | Φ, T ). (10)

The likelihood of a model, though, has not been defined. We employ the standard exploit
of Bayes Rule to transform to the problem of maximizing the, defined, likelihood of the
observation:

H∗ = argmaxH P (H | Φ, T ),

= argmaxH P (Φ | T,H) · P (H | T )

P (Φ | T )
, (Bayes Rule)

= argmaxH P (Φ | T,H), (assume a uniform prior)5

= argmaxH
∏

φ∈Φ

P (φ | T,H). (11)

4Actually, the learner, in its first phase, picks its own k, but not in any especially principled fashion. While
ad-hoc, any automated guess is surely no worse than demanding human input (“fix k”): one is always free to
simply override automated guesses. In any case, as the learner does not deeply consider the merits of varying k,
the definition is accurate enough.
5Other choices than a uniform prior are possible. For example, one could generalize to varying k (in a principled
fashion) by applying information theory, perhaps ending up with, say,H∗ = argmaxH log k · P (Φ | T,H).
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3. LEARNING PHTNS FROM USER GENERATED PLANS

Our formalization of (probabilistic) Hierarchical Task Networks is isomorphic to formal
definitions of (probabilistic) Context Free Grammars. This comes at a price: HTNs, even
of just SHOP [Nau et al. 2003], are normally taken to be rather richer languages for rep-
resenting constraints over plans. The advantage is that grammar induction techniques are
more or less directly applicable. As far as the insight from pCFGs is concerned: For
parameter-learning we adapt the Expectation-Maximization (EM) approach from [Lari and
Young 1990].

However, despite formal equivalence, casting the problem as learning pHTNs (rather
than pCFGs) does make a difference in what assumptions are appropriate. For example,
we do not allow hints concerning non-primitives to be given in any form, and in particular
we do not permit such hints as annotations on the primitives of observations. For language
learning the non-primitives of interest are widely agreed upon: noun, verb phrase, and so
forth. It is impossible to communicate without such agreement. In particular, information
sources such as dictionaries and informal grammars can be mined relatively cheaply in
order to provide useful annotations, as in part-of-speech tagging.

In contrast, in the case of preference learning for plans, the non-primitives of inter-
est, preferences, are user-specific mental constructs. Then it is unreasonable to rely upon
annotated observations: our system must invent non-primitives of its own accord. We de-
velop a Structure Hypothesizer (SH) to, among other things, engage in such invention of
non-primitives. Because of the manner in which it functions it could be easily modified
to accept (certain kinds of) hints concerning non-primitives should such be available. By
default though, it assumes only plain observations of behavior.

In the remainder of the section we describe the details of the full learner. It operates
in two phases. First the Structure Hypothesizer (SH) considers the problem of inventing
sufficiently rich structure (the tasks and methods) so as to allow the parsing of each obser-
vation to the top-level task. At its conclusion we have an HTN. In the second phase, the
probabilities of the methods are set by a variant of the Expectation-Maximization (EM)
approach from [Lari and Young 1990]. The final result is, naturally, a local optima in the
space of pHTNs.

3.1 Structure Hypothesizer (SH)

We develop a Structure Hypothesizer (SH) in order to generate a set of methods that can,
at least, parse all plan examples. More than that, it seeks to parse all the plan examples
without resorting to various kinds of trivial grammars (for example, parsing each plan
example with a disjoint set of methods). The basic idea is to iteratively factor out frequent
common subsequences, in particular frequent common pairs since we work in Chomsky
Normal Form. We describe the details in the following. Figure 2 summarizes the algorithm
in pseudocode.

SH learns methods in a bottom-up fashion. It starts by initializing H with tasks, Za,
each distinctly reducing to one of the primitives: Za → a for all a ∈ A. Then all plan
examples are rewritten, backwards (i.e., parsed), using this initial set of methods. All this
amounts to is ‘converting to upper case’ — the initialization is minor notational fantasy to
formally satisfy the requirements of Chomsky Normal Form.6

6Implementations can, instead, treat primitives as instances of tasks not permitted to appear on left-hand-sides.

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.



Learning pHTNs as pCFGs to Capture User Preferences · 9Learning pHTNs as PCFGs to Capture User Preferences · 7

Algorithm 1: SH(plan examples Φ, primitive actions A) returns pHTN H
H := {Za → a | a ∈ A} ; // primitive action schemas1
Φ := rewrite-plans(Φ, H);2
while not empty(Φ) do3

case |φ := shortest-plan(Φ)| ≤ 24
if |φ| = 2 then H := H + (T → φ);5
else H := H ∪ {T → α | Z → α ∈ H} // φ = Z for some Z6

case (�Z, X, d� := best-simple-recursion(Φ)) is good enough7
if d = left then H := H + (Z → Z X);8
if d = right then H := H + (Z → X Z);9

case otherwise10
(X, Y ) := most-frequent-pair(Φ);11
H := H + (ZXY → X Y ); // ZXY is a new task12

Φ := rewrite-plans(Φ, H); // Plans rewritten to T are removed13

end14
H := initialize-probabilities(H);15
return H16

separate reduction for each primitive (from distinct non-primitives); this is a minor tech-
nical requirement of Chomsky normal form.4 Then all plan examples are rewritten using
this initial set of rules: so far not much of import has occurred.

Next the algorithm enters its main loop: hypothesizing additional schemas until all plan
examples can be parsed to an instance of the top level task, T .5 In short, SH hypoth-
esizes a schema, rewrites the plan examples using the new schema as much as possible
and repeats until done. At that point probabilities are initialized randomly, that is, by as-
signing uniformly distributed numbers to each schema and normalizing by task (so that�

m∈M(Z) θ(m) becomes 1 for each task Z) — the EM phase is responsible for fitting the
probabilities to the observed distribution of plans.

In order to hypothesize a schema, SH first searches for evidence of a recursive schema:
subsequences of symbols in the form {sz, ssz, sssz} or {zs, zss, zsss} (simple repeti-
tions). Certainly patterns such as zababab have recursive structure, but these are identified
at a later stage of the iteration. The frequency of such simple repetitions in the entire plan
set is measured, as is their average length. If both meet minimum thresholds, then the
appropriate recursive schema is added to H. The thresholds themselves are functions of
the average length and total number of plan examples in Φ. One simple example is that
if the average length of such repetitions is longer than 30% of the average length of plan
examples, and the repetitions appear in more than 10% of the plan examples, the recursive
schema is added.

If one or both thresholds are not met, then the frequency count of every pair of symbols
is computed, and the maximum pair is added as a reduction from a distinct (i.e., new)
non-primitive. In the prior example of a symbol sequence zababab, eventually ab might

4It is not necessary to use a distinct non-primitive for each reduction to a primitive, but it does not really hurt
either, as synonymous primitives can be identified one level higher up in the grammar at a small cost in number
of rules.
5The implementation in fact allows the single rule T → Z instead of the set in line 6, but for the sake of notation
(elsewhere) we assume a strict representation here.

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

Fig. 2. Pseudocode for the structure hypothesizer.

Next the algorithm enters its main loop: hypothesizing additional structure until all plan
examples can be parsed to an instance of the top level task, T .7 In short, SH hypoth-
esizes a method, rewrites the plan examples using the new method as much as possible
and repeats until done. At that point probabilities are initialized randomly, that is, by as-
signing uniformly distributed numbers to each method and normalizing by task (so that∑
θ(M(Z)) = 1) — the EM phase is responsible for fitting the probabilities to the ob-

served distribution of plans.
In order to hypothesize a method, SH first searches for evidence of simple loops: sub-

sequences of symbols in the form {SZ, SSZ, SSSZ} or {ZS,ZSS,ZSSS}. Certainly
patterns such as ZABABAB also have looping structure; these are identified at a later
stage. The frequency of such simple repetitions in the entire plan set is measured, as is
their average length. If both meet minimum thresholds, then the appropriate method (e.g.,
Z → ZS) is added to H. Note that such loops already possess base cases due to the
bottom-up strategy. This process corresponds to lines 7–9 in Figure 2. The thresholds
themselves are functions of the average length and total number of plan examples in Φ.
For example, if the average length of such repetitions is longer than 30% of the average
length of plan examples, and the repetitions appear in more than 10% of the plan examples,
the method is added.

If one or both thresholds are not met, then the frequency count of every pair of sym-
bols is computed, and the maximum pair is added as a reduction from a distinct (i.e., new)
task. This is done in lines 11–12 of Figure 2. In the prior example of a symbol sequence
ZABABAB, eventually AB might win the frequency count, and be replaced with some
new symbol, say S. After rewriting, the example sequence becomes ZSSS, lending evi-
dence in future iterations, of the kind SH recognizes, to the existence of a simple loop (of
the form Z → ZS). If eventually that method is added then the example gets rewritten to
just Z.

7The implementation though in fact allows the single rule T → Z.

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.
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Fig. 3. A trace of the Structure Hypothesizer on a variant of the Travel domain.

Example: Consider a variant of the Travel domain (Figure 1) allowing the traveler to
purchase a day pass (instead of a single-trip ticket) for the train. Two training plans are
shown in Figure 3. First SH rewrites the primitives (line 1): A1 → Buyticket,A2 → Getin,
and A3 → Getout. The updated plans are shown as level 2 in the figure. Next, since
A2A3 is the most frequent pair in the plans (and there is insufficiently obvious evidence
of looping), SH introduces the task and method S1 → A2A3 (line 11). After updating the
plans (line 13), the plans becomeA1S1 andA1S1S1S1, depicted as level 3 in the figure. At
this point SH perceives the loop (the simple repetitionA1S1S1S1), and so adds the method
A1 → A1S1 (line 8). After rewriting (line 13), all plans are parseable to the symbol A1

(let T = A1), so SH is done: the final structure is at the bottom left of Figure 3.

3.2 Setting Probabilities: Expectation-Maximization

In this section we describe the Expectation-Maximization (EM) approach we take to fitting
appropriate parameters to the HTN returned by the preceding structure learning step (SH),
thereby arriving at a pHTN.

In general, EM is a gradient-ascent method with two phases to each iteration: first the
current model is used to compute ‘Expected’ values for the hidden variables (the E-step),
and then the model parameters are updated to maximize the likelihood of those particu-
lar values for the hidden variables (the M-step). To show convergence it is more useful to
characterize both steps as maximizing a single many-dimensional loss function, by holding
disjoint subsets of dimensions fixed in each step. So ‘Expected’ actually means that one
determines values for the hidden variables that maximize some loss function while holding
model parameters constant. Then both steps are monotonically increasing the same func-
tion and convergence follows; of course global optimality does not follow.8 The following
gives the details of the E-steps and M-steps as applied to learning pHTNs.

Setup: Actually the structure learning step performs a trivial initialization of the probabil-
ities (with no regard for the training data): say H0 = 〈A, T ,M, θ0〉 is the initial pHTN.
Later iterations update the pHTN, sayHt at iteration t, by updating the parameters θt.

E-step: In the E-step, the current parameters θt are used to compute the most probable
parse tree X ∗t (φ) of each example plan φ = a1, . . . , an ∈ Φ (from the given start task T ):
X ∗t (φ) = argmaxX∈X(φ)

∏
v∈X θt(v). The combined output is the current parse forest

8Perhaps surprisingly, theoretically speaking, it need not even be the case that convergence is to a local maxima.
Even a local minima can be the final answer if it cannot be escaped by (a) changing only hidden variables, nor by
(b) changing only model parameters. Such a point, if not also a maxima, requires a coordinated change in both
parameters and variables in order to improve the loss function.
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Xt =
∑
φ∈Φ X ∗t (φ) of all of the observed plans Φ. This computation can be implemented

reasonably efficiently in a bottom-up fashion since any subtree of a most probable parse is
also a most probable parse (of the subsequence it covers, given its root, etc.). That is, the
following identity holds:9

max
X

P (X | ai, . . . , aj , Z,Ht) =

max
`

m=Z→XY ∈M(Z)

(θt(m) ·max
Xleft

P (Xleft | ai, . . . , a`, X,Ht)·

max
Xright

P (Xright | a`+1, . . . , aj , Y,Ht)). (12)

The parsing then consists of computing all of its instantiations. More specifically, it suffices
to bottom-up record the above products in a 4-dimensional table indexed by i < ` < j ∈
[n] and each of the methodsM, interleaving that with filling out the smaller 3-dimensional
table (recording the left-hand maximizations) indexed by i, j and the tasks T . By also
recording the specific methods and midpoints witnessing the left-hand maximizations, the
presently most probable parse of φ, X ∗t (φ), can be easily extracted top-down, i.e., by
beginning at the method and midpoint witnessing maxX P (X | a1, . . . , an, T,Ht). So
with r the number of methods, the parsing is bounded by O(n3r).

Notes: (a) In theory the number of methods could be cubic in the number of tasks, but in
practice, the point of structure learning is to prevent this. A careful implementation can
exploit that assumption (that the grammar will not really permit anything close to allowing
every symbol to reduce to every other pair of symbols) so as to not quite so literally fill out
the tables described.

(b) This simple (dynamic programming) description of the parsing is convenient as it
also outlines the framework for bottom-up generation of all possible parses: replace the
maximizations with manipulation of weighted sets of parses.

(c) In other contexts, namely learning pCFGs, it is also convenient to note that the pars-
ing easily accomodates direct, even noisy, observations of non-primitives (as generated by,
say, a part-of-speech tagger). This is because the parsing computes most probable sub-
trees conditioned on every conceivable sub-tree root; with minor modifications, additional
observations can be permitted in the form of non-uniform priors over the sub-tree roots.

M-step: After getting the most probable parse trees (with respect to the current parame-
ters) for all plan examples, the learner moves on to the M-step. In this step, the probabili-
ties associated with each method are updated by maximizing the likelihood of generating
those particular parse trees singled out by the E-step. This merely consists of setting each
probability according to its relative frequency in the parse trees just computed.

To derive that update rule: LetM [event] count events in the parse forest of most probable
parse trees computed in the E-step: Xt =

∑
φ∈Φ X ∗t (φ). Let V = V (X) be all of the

vertices of all the most probable parse trees. Then more specifically, let M [Z] count those
vertices v ∈ V satisfying T (v) = Z and let M [m] count those satisfying m(v) = m. So,
with m ∈ M(Z), the answer will be θt+1(m) = M [m]

M [Z] . Say X ∈ Xt to mean that X is

9The base case is particularly simple since we associated, for convenience, every primitive a, with a distinct
non-primitive Za and method Za → a.
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one of the components, a most probable parse tree, of Xt, then:

θt+1 = argmaxθ P (Xt | T,A, T ,M, θ),

= argmaxθ
∏

X∈Xt

P (X | T,A, T ,M, θ),

= argmaxθ
∏

X∈Xt

∏

v∈V (X )

P (m(v) | T (v), θ),

= argmaxθ
∏

v∈V
θ(m(v)),

= argmaxθ
∏

Z∈T

∏

m∈M(Z)

θ(m)M [m]. (13)

The last step is justifed becauseM [m] will be 0 for any method not appearing in any of the
parses, so, the extra terms being introduced into the product are all 1: take 00 = 1. (Which
will indeed be the form of the extra terms for the maximizing choice of θ.)

Each sub-product (i.e., for each Z ∈ T ) is a multinomial in the variables θ(M(Z)),
subject to the constraint

∑
θ(M(Z)) = 1. There are no other constraints, so, each such

sub-product can be independently maximized. Abstracting, the form of the problem is:

maximize
∏

i

xyii , (14)

subject to
∑

i

xi = 1. (15)

This is a classic problem [Koller and Friedman 2009, chapter 17]. As normal, one differ-
entiates the logarithm in order to solve it. The answer is: ∀i, xi = yi

α (for α =
∑
i yi). So

in the parameters θt+1 we have, as claimed, for all Z ∈ T ,m ∈M(Z):

θt+1(m) =
M [m]∑

m′∈M(Z)M [m′]
, (16)

=
M [m]

M [Z]
. (17)

Carrying out this simple update is linear in Xt. So an efficient implementation need
not even remember all the parse trees. Indeed, the M [] counters can be computed during
parsing itself, obviating the need to even remember a single complete parse tree. So the
run-time per iteration, an E-step followed by an M-step, is linear in the training set: O(|Φ|).
(Or, if parsing times are highly variable across plans, but stable across iterations, then
estimate by O(X) instead.) In any case, the per-iteration time is not the big question.
How many iterations to run EM for is. While guaranteed to converge, convergence is
only to a local optima. So, somewhat less obvious stopping rules such as “run for 1000
iterations” can be quite effective, if, say, EM is embedded in one of the many meta-learning
strategies for dealing with locally optimizing learners given multimodal objectives. In our
experiments plain EM sufficed, and was more than fast enough to just permit it to run for
very large iteration counts.

Summary: The E-step completes the input data Φ by computing the parses of Φ ‘expected’
by H`. Subsequently the M-step treats those parses as ground truth, by setting the new
ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.
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method probabilities to the ‘observed’ frequency of their application in the completed data.
This improves the likelihood of the model (under the assumptions of the above derivation,
such as i.i.d. random variables), and the process is repeated until convergence to a local
optima of the likelihood function.

3.3 Discussion

Hard-EM: As described, the method is the more intuitive, but nonstandard, version of EM
known as hard-EM. In our case the choice of hard-EM has the specific effect of introducing
bias in favor of less ambiguous grammars. That is, letting X denote the forest of parse trees
(over the plans Φ), hard-EM is actually examining the question of maximizing P (H,X |
Φ) rather than the true objective of maximizing P (H | Φ). (Soft-EM examines the true
objective.) This single design choice has quite a few advantages, or if you prefer, one
fundamental effect that presents itself in different ways. Beyond (a) the computational
advantage of considering only most probable parses, and (b) the well-known generalization
advantage afforded by bias against complex models, there is a less-discussed advantage that
we exploit in the following: (c) hard-EM seeks models which are easier to explain/justify in
terms of a limited number of examples. The very same effect also carries the disadvantage
that hard-EM can be expected to fail to produce the true solution to the learning problem
even provided data well in excess of sample complexity. For much more analysis and
discussion of the specific tradeoffs between hard- and soft-EM see [Kearns et al. 1997;
Kandylas et al. 2007]; for a comprehensive treatment of theoretical and practical issues in
probabilistic reasoning over graphs in general see [Koller and Friedman 2009].

Structure versus Parameter Learning: Although the EM phase of learning does not in-
troduce new methods, it does (potentially) participate in structure learning in the sense
that it can effectively delete methods by assigning zero probability. Accordingly the im-
plementation, in post-processing, actually deletes such methods. Moreover it deletes any
methods with probabilities too close to 0 (on the grounds of numerical instability and/or
further regularization). For this reason SH does not attempt to find a completely minimal
grammar before running EM. So specifically SH may introduce slightly more tasks and
methods than strictly necessary. Then the EM phase has some freedom to play a (limited)
role in the choice of the structure of the final grammar. As-is this increase in the number of
tasks is quite small and there is little danger of ruining goodness-of-fit, sample complex-
ity, and other such curse-of-dimensionality issues. The important issues and tradeoffs to
be considered when examining the relationship between parameter and structure learning
techniques are beyond the scope of this paper: see [Koller and Friedman 2009].

But to illustrate the issues: No simple loop (Z → ZS) fits as closely as the disjunction
over all finite prefixes of the recursion actually witnessed in the training data. Provided
with such rules, and the right starting parameters, the EM phase will ‘delete’ the loop
in preference to its unrollings, because it can achieve ‘perfect’ fit that way. Of course
the resulting model will not fare so well on the test data. Conversely, roughly this very
same behavior is indeed correct in the slightly elaborated situation that the majority of
training data consists of examples of long repeating sequences with just a minority of
short examples. The hypothesis that such (bimodal) data was produced by a loop with a
stochastic exit event is weak. (It is much more plausible that a single event determines
short/long, with any subsequent variation in length explained perhaps as loops with high
exit probability.) An ideal parameter learning approach would, given the opportunity, have
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no difficulty in making the correct, structural, decision: ‘delete’ the explanation as a single
simple loop. But treating all structure as parameters is hardly feasible, which is of course
the motivation for considering structure learning as a separate problem in the first place. In
short the interplay is a complex topic.

Contextual Dependencies: In general one might very well want to model/learn prefer-
ences such as “If in Europe, prefer traveling by trains to planes.”; however, the setup as
given insists on purely context-free statements. There is a general mapping between the
context-sensitive and context-free settings best illustrated by example. One considers each
term like “(buy ?customer ?vendor ?location ?product ?price ?unit)” and every specific
instantiation such as “(buy mike joe walmart bat 3 dollars)”, and instead represents these
along the lines of “buy-mike-joe-walmart-bat-3-dollars”. (For the sake of discussion, push
all implicit dependencies, as on global variables, explicitly into parameters.) Then methods
which appear to be restricted to context-free settings can be seen to be implicitly perform-
ing context-sensitive inference — but the mapping is an exponential translation. So, taken
literally, such mappings are far from practical. Nonetheless one can get a surprising amount
of mileage from the perspective so long as one does not literally write down the full ground
representation ahead of time. The ‘trick’ is to only write down small pieces of the ground
representation, i.e., on an as-needed basis, in some clever fashion.

Concretely, applying our techniques to learn context-sensitive preferences entails a feature-
selection step to write down primitives along the lines of BuyTicketInEurope rather than
just BuyTicket. Note that such a feature-selection step already ‘exists’ — we have already
chosen to write BuyTicket rather than merely Buy. Future work could build on this work
by automating the feature-selection step in order to better address contextual dependen-
cies [Guyon and Elisseeff 2003; Liu and Yu 2005].

3.4 Evaluation

To evaluate our pHTN learning approach, we designed and carried out experiments in
both synthetic and benchmark domains. All the experiments were run on a 3.06 GHz
Mac machine with 4GB of RAM. Although we focus on accuracy (rather than CPU time),
we should clarify up-front that the runtime for learning is quite reasonable — between less
than a millisecond to 4ms per training plan. We take an oracle-based experimental strategy,
that is, we generate an oracle pHTNH∗ to represent a possible user and then subsequently
use it to generate a set of preferred plans Φ. Our learner then induces a pHTN H from
only Φ, allowing us to assess the effectiveness of the learning in terms of the differences
between the original and learned models. In some settings (e.g., knowledge discovery) it
is very interesting to directly compare the syntax of learned models against ground truth,
but for our purposes such comparisons are much less interesting: we can be certain that,
syntactically, H will look nothing like a real user’s preferences (as expressed in pHTN
form) for the trivial reason (among others) that H will be in Chomsky normal form. For
our purposes, since user preferences are expressed as the distribution of observed plans,
the correctness ofH should be measured as whether it is able to generate an approximately
correct distribution on plans. So the ideal evaluation is some measure of the distance
between distributions (on plans), for example Kullback-Leibler (KL) divergence:

DKL(PH∗ || PH) =
∑

φ

PH∗(φ) · log
PH∗(φ)

PH(φ)
, (18)
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wherePH andPH∗ are the distributions of plans generated byH andH∗ respectively. This
measure is lower-bounded by 0, achieved by equal distributions, and otherwise diverges to
positive infinity. (There are both positive and negative terms, but, the positive terms always
dominate.) It is not symmetric.

However, as given the summation is over the infinite set of all plans, so instead we
approximate by sampling, but this exacerbates a deeper problem: the measure is trivially
infinite if PH gives 0 probability to any plan (that PH∗ does not). So in the following,
for every oracle pHTN H∗ with n tasks, we take measurements by sampling 100n plans
from each of H∗ and H, obtaining sample distributions P̂H∗ and P̂H, then we prune any
plans not in P̂H∗ ∩ P̂H, renormalize, obtaining P̂ ′H∗ (say P1) and P̂ ′H (say P2), and finally
compute:

D̂(H∗ || H) = DKL(P1 || P2) =
∑

φ

P1(φ) · log
P1(φ)

P2(φ)
. (19)

This is not a good approach if the intersection is small, but in our experiments |P̂H∗ ∩
P̂H|/|P̂H∗ ∪ P̂H| is close to 1 (i.e. greater than 0.98 on average). This measure remains
non-symmetric, non-negative, and divergent in a sense. But effectively the measure is
upper-bounded byO(log n), because probabilities cannot be smaller than 1

n in distributions
defined by n samples.

3.5 Experiments in Randomly Generated Domains

In these experiments, we randomly generate the oracle pHTNH∗ by randomly generating
a set of recursive and non-recursive methods on n tasks. In non-recursive domains, the
randomly generated methods form a binary and-or tree with the goal as the root. The
probabilities are also assigned randomly. Generating recursive domains is similar with the
only difference being that 10% of the methods generated are recursive. For measuring
overall performance we provide 10n training plans and take 100n samples for testing;
for any given n we repeat the experiment 100 times and plot the mean. We compare
the performance of the proposed learner with the inside-outside algorithm. The results
are shown in Figure 4(a) and 4(b). We also discuss two additional, more specialized,
evaluations.

Learning Curves: In order to test the learning speed, we first measured KL divergence
values with 15 non-primitives given different numbers of training plans. The results are
shown in Figure 4(a). We can see that even with a relatively small number of training
examples, our learning mechanism can still construct pHTNs with divergence no more
than 0.2. As expected, the performance further improves given many training examples.
As briefly discussed in the setup, our measure is not interesting unless the learned pHTN
can reproduce most testing plans with non-zero probability, since any 0 probability plans
are ignored in the measurement — so we do not report results given only a very small
number of training examples (the value would be artificially close to 0). Here ‘very small’
means too small to give at least one example of every/most reductions in the oracle pHTN;
without at least one example the structure hypothesizer will (rightly) prevent the generation
of plans with such structure.

Comparison with Inside-Outside: To better understand the effectiveness of the pro-
posed learner, we also compared our schema learner with the famous inside-outside al-
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Fig. 4. Experimental results in synthetic domains (a) KL Divergence values with dif-
ferent number of training plans. (b) Normalized KL Divergence values of the proposed
schema learner (SL) and the inside-outside algorithm (IO) with different number of train-
ing plans. (c) Measuring conciseness in terms of the ratio between the number of actions
in the learned and original schemas.

gorithm [Lari and Young 1990]. 10 The inside-outside algorithm was also tested with do-
mains of size 15 given an increasing number of training examples. Since the inside-outside
algorithm requires a pre-specified number of non-primitives symbols given in addition to
the training traces as input, we give it the actual number of non-primitives used by the ora-
cle. Our modified measure of distribution divergence removes plans not in P̂H∗ ∩ P̂H; but
in fact few plans were removed in the case of evaluating the proposed learner. The same
manipulation removes about 15% of plans in the case of the inside-outside algorithm, sig-
nificantly boosting its apparent performance. Despite the advantage, our approach still out-
performs the inside-outside algorithm: 0.046 versus 0.268 in the non-recursive domains,
and 0.120 versus 0.240 in the recursive domains, given 150 training plans, on the perfor-
mance metric originally defined.

In an attempt to quantify the magnitude of the advantage given to the Inside-Outside
algorithm under the original performance metric, we also evaluated a different measure of
divergence between distributions, normalized KL divergence, as follows. First we compute
P̂ 1

2 (H+H∗) = 1
2 (P̂H∗ + P̂H), i.e., take the union of both sample sets, and then compute

the KL divergence between P̂H and P̂ 1
2 (H+H∗). This is an extremely generous evalua-

tion framework: the learner gets credit for any output whatsoever. In particular the worst
possible learner, producing only plans loathed by a user, for this measure anyways scores
1 log 2. Taking the base of logarithms at 2 (which is natural for this sort of expression) the
measure is bounded by 0 and 1. The measure is still non-symmetric.

As shown in Figure 4(b), the proposed learner consistently outperforms the inside-
outside algorithm with different numbers of the training plans. Sign tests show that the
differences are significant (p < 0.0001) across various numbers of training plans. A rea-
sonable explanation begins by noting that the inside-outside algorithm begins with non-
zero probability of every possible method, and inspection reveals that in our experiments
many methods are retained (probability not close to 0) even after learning. The design
choice of soft-EM does not help in this regard. In contrast our learner begins with a struc-
ture learning step to effectively limit the scope of the subsequent parameter learning. (Fur-
thermore it uses hard-EM, thereby encouraging grammar unambiguity.) Having a plethora

10The implementation is by Mark Johnson: http://www.cog.brown.edu/˜mj/Software.htm
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Fig. 5. Experimental results in synthetic domains (a) KL Divergence between plans gener-
ated by original and learned pHTNs in non-recursive domains. (b) KL Divergence between
plans generated by original and learned pHTNs in recursive domains.

of parameters brings at least two dangers into play: overfitting and sample complexity.
As the test distributions were in fact identical to the training distributions (up to sampling
error), the greatest obstacle facing the inside-outside algorithm is likely the lack of suffi-
ciently many samples to set its many parameters reliably. Albeit, discussed above, about
15% of plans failed to appear in the intersection during testing, so overfitting may also be
playing a role. This catastrophic ambiguity of the pHTNs considered by the inside-outside
algorithm has one final negative feature that we will note (once more exacerbated by soft-
EM): its per plan training times range from 100–303 milliseconds. (Our learner uses less
than 4 milliseconds per plan.)

Conciseness: The conciseness of the learned model is also an important factor measuring
the quality of the approach (despite being a syntactic rather than semantic notion), since
allowing huge pHTNs will overfit (with enough available symbols the learner could, in
theory, just memorize the training data). A simple measure of conciseness, the one we
employ, is the ratio of non-primitives in the learned model to non-primitives in the oracle
(n) — the learner is not told how many symbols were used to generate the training data.
Figure 4(c) plots results. For small domains (around n = 10) the learner uses between
10% and 20% more non-primitives, a fairly positive result. However, for larger domains
this result degrades to 60% more non-primitives, a somewhat negative result. Albeit the
divergence measure improves on the test set, so while there is some evidence of possible
overfitting, the result is not alarming. Future work in structure learning should nonetheless
examine this issue (conciseness and overfitting) in greater depth.

Effectiveness of the EM Phase: To examine the effect of the EM phase, we carried out
experiments comparing the divergence (to the oracle) before and after running the EM
phase. Figures 5(a) and 5(b) plot results in the non-recursive and recursive cases respec-
tively. Overall the EM phase is quite effective, for example, with 50 non-primitives in
the non-recursive setting the EM phase is able to improve the divergence from 0.818 (the
divergence of the model produced by SH) to the much smaller divergence of 0.066. The
result is statistically significant under sign-testing, p < 0.001, except for domains of size
5 (where the difference in performance is not statistically significant). Our best explana-

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.



18 · Li et al.

Table II. Learned schemas in Logistics

Primitives: load, fly, drive, unload;
Tasks: movePackage, S0, S1, S2, S3, S4, S5;
movePackage → movePackage movePackage, 0.17
movePackage → S0 S5, 0.25 S5 → S3 S2, 1.0
movePackage → S0 S4, 0.58 S4 → S1 S2, 1.0
S0 → load, 1.0 S1 → fly, 1.0
S2 → unload, 1.0 S3 → drive, 1.0

tion based on careful inspection of the experimental results is that random domains on 5
non-primitives are just too simple to sufficiently penalize the default assigment SH makes.

Note: Divergence in the recursive case is consistently larger than in the non-recursive case
across all experiments: this is expected. In the recursive case the plan space is actually
infinite; in the non-recursive case there are only finitely many plans that can be generated.
So, for example, in the non-recursive case, it is actually possible for a finite sample set
to perfectly represent the true distribution: simply memorizing the training data will pro-
duce 0 divergence eventually. In infinite plan spaces no finite set of samples can perfectly
represent the true distribution.

3.6 Benchmark Domains

In addition to the experiments with synthetic domains, we also evaluated on two domains
inspired by benchmarks of the International Planning Competition [Malte Helmert and
Refanidis 2008]. In each, we hand-craft pHTNs encoding our own preferences and from
there continue to employ the same oracle-based evaluation approach. The two domains
are Logistics and GoldMiner; but in both we simplify by taking our primitives as just the
operator names (rather than a full ground representation). For Logistics the preference is
for planes over trucks, and fewer vehicles over more vehicles. In Gold Miner the preference
encompasses the entire solution strategy (rather than the more localized preferences of
logistics). Both domains feature simple looping behavior, which in the preceding synthetic
experiments had a notable negative impact on performance, despite the fact that SH is
specifically built to recognize simple looping behavior.

Logistics Planning: The domain we used in the first experiment is a variant of the Logis-
tics planning domain, inside which both planes and trucks are available to move packages,
and every location is reachable from every other. There are 4 primitives in the domain:
load, fly, drive and unload. We use 11 tasks to express, in the form of an oracle pHTNH∗
(in Chomsky Normal Form, hence 11 tasks), our preferences concerning logistics plan-
ning. We presented 100 training plans of lengths ranging from 3 to 15 to the learning
system; by inspection we verified that these demonstrate our preference for moving pack-
ages by planes rather than trucks and for using overall fewer vehicles. The divergence of
the learned model is 0.04 agains a test set of size 1000 on a single run.

It is interesting to note that the learned structure is smaller than the oracle structure. As
the oracle structure associated meaningful names with non-terminals it is indeed plausible
that there is a degree of approximate redundancy to the manner of its encoding — it could
very well be that legitimate encoding of our preferences can be had more compactly. So
while we are generally unconcerned with syntax of the learned model, it is interesting to
consider in this case: Table II shows the learned model. With some effort one can ver-
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Table III. Learned schemas in Gold Miner
Primitives: move, getLaserGun, shoot, getBomb, getGold;
Tasks: goal, S0, S1, S2, S3, S4, S5, S6;
goal → S0 goal, 0.78 goal → S1 S6, 0.22
S0 → move, 1.0 S5 → S2 S0, 1.0
S1 → getLaserGun, 0.22 S1 → S1 S5, 0.78
S2 → shoot, 1.0 S6 → S3 S4, 1.0
S3 → getBomb, 0.29 S3 → S3 S0, 0.71
S4 → getGold, 1.0

ify that the learned schemas do capture our preferences: the second and third methods
for ‘movePackage’ encode delivering a package by truck and by plane respectively (and
delivering by plane has significantly higher probability), and the first method permits re-
peatedly moving packages between vehicles, but with relatively low probability. That is, it
is possible to recursively expand ‘movePackage’ so that one package ends up transferring
between vehicles, but, the plan that uses only one instance of the first method per package
is significantly more probable (by 0.17−k, according to the learner, for k transfers between
vehicles).

Gold Miner: The second domain we used is inspired by Gold Miner, introduced in the
learning track of the 2008 International Planning Competition. The setup is a (futuristic)
robot tasked with retrieving gold (blocked by rocks) within a mine; the robot can employ
bombs and/or a laser cannon. The laser cannon can destroy both hard and soft rocks,
while bombs only destroy soft rocks. However, the laser cannon will also destroy any
gold immediately behind its target. The desired strategy, which we encode in pHTN form
using 12 tasks (H∗), for this domain is roughly: 1) get the laser cannon, 2) shoot the rock
until reaching the cell next to the gold, 3) get a bomb, 4) use the bomb to get gold. As in
Logistics, though, the training data consists merely of the names of the operators (so there
is no way to express “hard rock”, “soft rock” and “next to the gold”).

We gave the system 100 training plans of various lengths ranging from 6 to 49 (generated
by H∗). The learner achieved a divergence of 0.52. This is a much larger divergence
than in the case of Logistics above, which can perhaps be explained by the significantly
longer applications of looping behavior (using the laser cannon repeatedly). As noted in
the random experiments, performance is negatively impacted by the use of recursion/loops.

Nonetheless the learner did succeed in qualitatively capturing our preferences, which
can be seen by inspection of the learned model in Table III. Specifically, the learned model
only permits plans in the order given above: get the laser cannon, shoot, get and then use
the bomb, and finally get the gold. Observe that the learner made such a leap of faith on
just 100 training examples failing to demonstrate any other possible order: the use of a
separate structure learning step is presumably to thank. One does not imagine a robust
implementation of EM, or any other form of parameter-learning, capable of driving so
many parameters to 0 on just 100 training examples. At least it tends to be the case, for
parameter learners, that once logical certainty is reached by a parameter, it becomes stuck
there forevermore. For robustness then, one takes steps to prevent assigning 0 or 1.
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4. PREFERENCES CONSTRAINED BY FEASIBILITY

In general, users will not be so all-powerful that behavior and desire coincide. Instead
a user must settle for one (presumably the most desirable) of the feasible possibilities.
Supposing those possibilities remain constant then there is little point in distinguishing
desire and behavior; indeed, the philosophy of behaviorism defines preference by consid-
ering such controlled experiments. Supposing instead that feasible possibilities vary over
time, then the distinction becomes very important. Consider for example the fact that the
observed travel behaviors of a poor grad student might all consist of her driving. Only
in the rare situation that such a student’s travel is funded, so we get to observe her true
preference for planes over cars (or for that matter, cars over walking). In addition to that
example, consider the requirement to go to work on weekdays (so the constraint does not
hold on weekends). Clearly the weekend activities are the preferred activities. However,
the learning approach developed so far would be biased — by a factor of 5

2 — in favor of
the weekday activities. In the following we consider how to account for this effect: the
effect of feasibility constraints upon learning preferences.

Recall that we assume that we can directly observe a user’s behavior, for example by
building upon the work in plan recognition. In this section we additionally assume that
we have access to the set of feasible alternatives to the observed behavior — for example
by assuming access to the planning problem the user faced and building upon the work in
automated planning [Nau et al. 2004]. In cases where we only have access to the planning
problem description (i.e., the initial state and the goal), we could use planners capable of
generating diverse plans [Srivastava et al. 2007; Nguyen et al. 2009]. Note that there might
be an enormous number of feasible alternatives, but only a subset of them may have been
chosen by the user at least once. Never chosen plans are considered as undesired plans,
and thus do not need to be modeled by the acquired pHTNs. Therefore, when considering
feasible alternatives, we can restrict our attention to a subset on the order of the number of
observed plans. So, in this section, the input to the learning problem becomes:

Input. The ith observation, (φi, Fi) ∈ Φ, consists of a set of feasible possibilities, Fi,
along with the chosen solution: φi ∈ Fi.

In the rest of the section we consider how to exploit this additional training information
(and how to appropriately define the new learning task). The main idea is to rescale the
input (i.e., attach weights to the observed plans φi) so that rare situations are not penalized
with respect to common situations. One way of viewing the rescaling mechanism is that it
makes appropriate numbers (i.e., weights) of plan duplicates based on different feasibility
situations. Hence, in the above example, even if we have only observed that the poor
graduate student travels by plane once, since this is a rare but informative situation, we
could attach a large weight to the travel-by-plane plan. This is like we pretend that we
have seen this plan carried out much more often in the “ideal” world situation.

We approach the learning problem from the perspective that our evidence for preference
consists just of φi over the remainder of Fi. The question then becomes how to merge such
evidence across differing feasibility situations: Fi 6= Fj . The approach is to consider plans
in the intersection of both situations, using these to mediate an indirect comparison. That
is, we attempt to take our original evidence and transitively close it. This may still leave
us with disconnected components of situations. Here we essentially give up, and permit
the system to answer ‘unknown’ concerning pairs of plans from distinct components. This
additional capability somewhat complicates evaluation (as the base system can only an-
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swer ’yes’ or ’no’ to such queries). To answer queries about comparable plans: we apply
the base learner to each rescaled component, arriving at a set of pHTNs capturing user
preferences.

4.1 Analysis

Previously we assumed the training data (observed plans) Φ was sampled (i.i.d.) directly
from the user’s true preference distribution (say U):

P (Φ | U) =
∏

φ∈Φ

P (φ | U). (20)

But now we assume that varying feasibility constraints intervene. For the sake of notation,
imagine that such variation is in the form of a distribution, say F , over planning problems
(but all that is actually required is that the variation is independent of preferences, as as-
sumed below). Note that a planning problem is logically equivalent to its solution set. Then
we can write P (F | F) to denote the prior probability of any particular set of solutions F .
Since the user chooses among such solutions, we have that chosen plans are sampled from
the posterior of the preference distribution:

P (Φ | U ,F) =
∏

(φ,F )∈Φ

P (φ | U , F ) · P (F | F). (21)

Again since what is possible should not depend upon desire, and desire should not depend
upon what is possible, we assume that preferences and feasibility constraints are mutually
independent. One can certainly imagine either dependence — respectively Murphy’s Law
(or its complement) and the fox in Aesop’s fable of Sour Grapes (or envy) — but it seems
to us more reasonable to assume independence. Then we can rewrite the posterior of the
preference distribution:

P (Φ | U ,F) =
∏

(φ,F )∈Φ

P (φ | U)∑
φ′∈F P (φ′ | U)

· P (F | F) (by assumption). (22)

Assuming independence is important, because it makes the preference learning problem
attackable. In particular, the posteriors preserve relative preferences — for all φ, φ′ ∈ F ,
the odds of selecting φ over φ′ are:

O(φ, φ′) :=
P (φ | U , F )

P (φ′ | U , F )
, (23)

=
P (φ | U)∑

φ′′∈F P (φ′′ | U)
÷ P (φ′ | U)∑

φ′′∈F P (φ′′ | U)
, (24)

=
P (φ | U)

P (φ′ | U)
. (25)

Therefore we can, given sufficiently many of the posteriors, reconstruct the prior by tran-
sitive closure; consider φ, φ′, φ′′ with φ, φ′ ∈ F and φ′, φ′′ ∈ F ′:

O(φ, φ′′) = O(φ, φ′) ·O(φ′, φ′′),

=
P (φ | U , F )

P (φ′ | U , F )
· P (φ′ | U , F ′)
P (φ′′ | U , F ′) . (26)
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So then the prior can be had by normalization:

P (φ | U) =
1

1 +
∑
φ′ 6=φO(φ′, φ)

. (27)

Of course none of the above distributions are accessible; the learning problem is only given
Φ. Let MF [φ] = |{i | (φ, F ) = (φi, Fi) ∈ Φ}|, MF =

∑
φMF [φ], and M =

∑
F MF =

|Φ|. Then Φ defines a sampling distribution, for any F :

P̂ (φ, F | Φ) =
MF [φ]

M
, so,

P̂ (φ | F,Φ) =
MF [φ]

MF
,

≈ P (φ | U , F ) (in the limit),

in particular:

ÔF (φ, φ′) :=
MF [φ]

MF [φ′]
≈ P (φ | U)

P (φ′ | U)
(in the limit). (28)

However, for anything less than an enormous amount of data one expects ÔF and ÔF ′ to
differ considerably for F 6= F ′, therein lying one of the subtle aspects of the following
rescaling algorithm. The intuition is, however, simple enough: pick some base plan φ
and set its weight to an appropriately large value w, and then set every other weight, for
example that of φ′, to w · Ô(φ′, φ) (where Ô is some kind of aggregation of the differing
estimates ÔF which we will describe in more detail later); finally give the weighted set
of observed plans to the base learner. From the preceding analysis, in the limit of infinite
data, this setup will learn the (closest approximation, within the base learner’s hypothesis
space, to the) prior distribution on preferences.

To address the issue that different situations will give different estimates (due to sam-
pling error) for the relative preference of one plan to another (ÔF and ÔF ′ will differ) we
employ a merging process on such overlapping situations. Consider two weighted sets of
plans, c and d, and interpret the weight of a plan as the number of times it ‘occurs’,11 i.e.,
say wc(φ) = Mc[φ]. In the simple case that there is only a single plan in the intersection,
{α} = c ∩ d, then there is only one way to take a transitive closure — for all φ in c and
φ′ ∈ d \ c:

Ôcd(φ, φ
′) = Ôc(φ, α) · Ôd(α, φ′), (29)

=
Mc[φ]

Mc[α]
· Md[α]

Md[φ′]
, (30)

=
Mc[φ]

s ·Md[φ′]
, with s =

Mc[α]

Md[α]
, (31)

so in particular we can merge d into c by first rescaling d:

Mcd[φ] =

{
Mc[φ] if φ ∈ c,
s ·Md[φ] otherwise.

(32)

11The scaling calculations will likely produce non-integer weights though.
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Table IV. An illustration of merging two clusters process.

Gobyplane Gobytrain Gobybike
Cluster c 5 1
Cluster d 3 1

Merged cluster {c, d} 15 5 3

In general let scdα = Mc[α]
Md[α] for any α ∈ c∩ d be the scale factor of c and d w.r.t. α. Then in

the case that there are multiple plans in the intersection we are faced with multiple ways of
performing a transitive closure, i.e., a set of scale factors. These will normally be different
from one another, but, in the limit of data, assuming preferences and feasibility constraints
are actually independent of one another, every scale factor between two clusters will be
equal. So, then, we take the average:

scd :=
1

|c ∩ d| ·
∑

α∈c∩d
scdα , and, (33)

Mcd[φ] :=

{
Mc[φ] if φ ∈ c,
scd ·Md[φ] otherwise.

(34)

In short, if all the assumptions are met, and enough data is given, the described process will
reproduce the correct prior distribution on preferences. Figure 6 provides the remaining
details in pseudocode, and in the following we discuss these details and the result of the
rescaling/merging process operating in the Travel domain.

4.2 Rescaling

Output. The result of rescaling is a set of clusters of weighted plans,C = {c1, c2, . . . , cn}.
Each cluster, c ∈ C, consists of a set of plans with associated weights; we write p ∈ c for
membership and wc(p) for the associated weight.

Clustering: First, we consider input records associated with the same set of feasible plans
are produced under the same or similar situations. We collapse all of the input records from
the same or similar situations into single weighted clusters, with one count going towards
each instance of an observed plan participating in the collapse. For example, suppose we
observe 3 instances of Gobyplane chosen in preference to Gobytrain and 1 instance of the
reverse in similar or identical situations. Then we will end up with a cluster with weights
3 and 1 for Gobyplane and Gobytrain respectively. In other words wc(p) is the number
of times p was chosen by the user in the set of situations collapsing to c (or ε if p was
never chosen). This happens in lines 2–20 in Figure 6, which also defines ‘similar’ (as set
inclusion). Future work should consider more sophisticated clustering methods.

Transitive Closure: Next we make indirect inferences between clusters; this happens by
iteratively merging clusters with non-empty intersections. Consider two clusters, c and
d, in the Travel domain. As shown in Table IV, d contains Gobyplane and Gobytrain
with counts 3 and 1 respectively, and c contains Gobytrain and Gobybike with counts 5
and 1 respectively. From this we infer that Gobyplane would be executed 15 times more
frequently than Gobybike in a situation where all 3 plans are possible, since it is executed
3 times more frequently than Gobytrain which is in turn executed 5 times more frequently
than Gobybike. We represent this inference by scaling one of the clusters so that the shared
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Algorithm 2: Rescaling
Input: Training records Φ, �.
Output: Clusters C.
initialize C to empty1

// Cluster plans from similar situations
forall (φ, F ) ∈ Φ do2

if ∃c ∈ C such that F ⊆ c or F ⊇ c then3
forall p ∈ F \ c do4

add p to c with wc(p) := �5
end6
if wc(φ) ≥ 1 then7

increment wc(φ)8
else9

wc(φ) := 110
end11

else12
initialize c to empty13
add c to C14
forall p ∈ F do15

add p to c with wc(p) := �16
end17
wc(φ) := 118

end19

end20
// Merge clusters with non-empty intersections

while ∃c, d ∈ C such that c ∩ d �= ∅ do21
sum ratios := 022
forall p ∈ c ∩ d do23

sum ratios += wc(p)
wd(p)24

end25

scale := sum ratios
|c ∩ d|26

forall p ∈ d \ c do27
add p to c with wc(p) := wd(p) · scale28

end29
remove d from C30

end31

return C32

Table IV. An illustration of merging two clusters process.

Gobyplane Gobytrain Gobybike
Cluster c 5 1
Cluster d 3 1

Merged cluster {c, d} 15 5 3

several alternative strategies for plans in the intersection). Computing the scaling factor
happens in lines 21–26 and the entire merging process happens in lines 21–31 shown in
Figure 2.

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

Fig. 6. Pseudocode for the rescaling algorithm

plan has the same weight, and then take the union. In the example, supposing we merge d
into c, then we scale d so that c ∩ d = {Gobytrain} has the same weight in both c and d,
i.e., we scale d by 5 = wc(Gobytrain)

wd(Gobytrain) . For pairs of clusters with more than one shared plan

we scale d \ c by the average of wc(·)
wd(·) for each plan in the intersection, but we leave the

weights of c ∩ d as in c (one could consider several alternative strategies for plans in the
intersection). Computing the scaling factor happens in lines 21–26 and the entire merging
process happens in lines 21–31 shown in Figure 6.
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4.3 Learning

We learn a set of pHTNs for C by applying the base learner (with the obvious generaliza-
tion to weighted input) to each c ∈ C:

H = {Hc = EM(SH(c)) | c ∈ C}. (35)

While the input clusters will be disjoint, the base learner may very well generalize its input
such that various pairs of plans become comparable in multiple pHTNs within H. Any
disagreement is resolved by voting; recall that, given a pHTN H and a plan p, we can
efficiently compute the most probable parse of p by H. Let `H(p) denote “the (a priori)
likelihood of p”, but, actually set it to the probability of the most probable parse of p.
Given two plans p and q we let ≺H order p and q by `H(·), i.e., p ≺H q ⇐⇒ `H(p) <
`H(q); if either is not parseable (or tied) then they are incomparable by H. Given a set of
pHTNs H = {H1,H2, . . .}, we take a simple majority vote to decide p ≺H q (ties are
incomparable):

p ≺H q ⇐⇒ |{H ∈ H | q ≺H p}| < |{H ∈ H | p ≺H q}|. (36)

So, each pHTN votes, based on likelihood, for p ≺ q (meaning p is preferred to q), or
q ≺ p (q is preferred to p), or abstains (the preference is unknown). Summarizing, the
input Φ is 1) clustered, 2) transitively closed producing a smaller set of clusters, and 3)
each is given to the base learner resulting in a set of pHTNs H. Finally, the learned pHTNs
H model the user’s preferences via the relation ≺H.

4.4 Evaluation

In this part we are primarily interested in evaluating the rescaling extension of the learn-
ing technique, i.e., the ability to learn preferences despite feasibility constraints. We de-
sign a simple experiment to demonstrate that learning purely from observations is easily
confounded by constraints placed in the way of user preferences, and that our rescaling
technique is able to recover preference knowledge despite obfuscation.

4.4.1 Setup.
Performance: We again take an oracle-based experimental strategy, that is, we imagine a
user with a particular ideal pHTN, H∗, representing that user’s preferences, and then test
the efficacy of the learner at recovering knowledge of preferences based on observations
of the imaginary user. More specifically we test the learner’s performance in the following
game. After training, the learner produces Hr; to evaluate the effectiveness of Hr we pick
random plan pairs and ask both H∗ and Hr to pick the preferred plan. There are three
possibilities: Hr agrees with H∗ (+1 point), Hr disagrees with H∗ (-1 point), and Hr

declines to choose (0 points)12.
The distribution on testing plans is not uniform and will be described below. The number

of plan pairs used for testing is scaled by the size ofH∗; 100t pairs are generated, where t
is the number of non-primitives. The final performance for one instance of the game is the
average number of points earned per testing pair. Pure guessing, then, would get (in the
long-term) 0 performance.

12This gives rescaling a potentially significant advantage, as learning alone always chooses. We also tested
scoring “no choice” at -1 point; the results did not (significantly) differ.
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Domains/Users: As in the prior evaluation we evaluate on 1) randomly generated pHTNs
modeling possible users, and on 2) hand-crafted pHTNs modeling our preferences in Lo-
gistics and Gold Miner. Both are extended with the same randomized model of feasibility
constraints.

Training Data: We generate random problems by generating random solution sets in a
particular fashion, that is, we model feasibility constraints using a particular random dis-
tribution on solution sets. To evaluate whether the proposed approach is able to recover
the user’s true preference when the observed plan distribution is obfuscated by feasibility
constraints, the random solution sets model the “worst case” of feasibility constraints, in
the sense that it is the least preferred plans that are most often feasible — much of the time
the hypothetical user will be forced to pick the least evil rather than the greatest good. We
describe this process in detail below, but note that the learning algorithm is general and not
restricted to the type of feasibility obfuscation tested here.

We begin by constructing a list of plans, P , from 100t samples of H∗, removing dupli-
cates by maintaining only the first appearance of the same plans (so |P| ≤ 100t). Since
more preferred/probable plans are more likely to be generated first, in general, the order
will be roughly from most to least preferred. We reverse that order, still denoted P , and
associate it with (a discrete approximation to) a power-law distribution. The result is that
least preferred plans are, under P , most likely. Both training and test plans are drawn from
this distribution. Then, for each training record (φi, Fi), we take a random number13 of
samples from P as Fi. We sample the nominally observed plan, φi, from Fi by `, that is,
the probability of a particular choice φi = p is `(p)∑

q∈F `(q)
.

Baseline: The baseline for our experiments will be the original approach: the base learner
without rescaling. That is, we take a single cluster, where the weight of each plan is the
number of times it is observedw(φ) = |{i | φ = φi}|, and apply the base learner, obtaining
a single pHTN, Hb = {H}, and score it in the same manner that the extended approach is
scored by.

4.4.2 Results: RandomH∗.
Learning Curves: Figure 7(a) presents the results of a learning-rate experiment against
randomly selected H∗. For these experiments the number of non-primitives is fixed at 5
while the amount of training data is varied; we plot the average performance, over 100
samples ofH∗, at each training set size.

We can see that with a large number of training records, rescaling before learning is able
to capture nearly full user preferences, whereas learning alone performs slightly worse
than random chance. This is expected since without rescaling the learning is attempting
to reproduce its input distribution, which was the distribution on observed plans — and
“feasibility” is inversely related to preference by construction. That is, given the question
“Is A preferred to B?” the learning alone approach instead answers the question “Is A
executed more often than B?”.

Size Dependence: We also tested the performance of the two approaches under varying
number of non-primitives (using 50t training records); the results are shown in Figure

13The number of samples taken is |P| · n/2, subject to minimum 2 and maximum |P|, where n is drawn from
the standard distributionN (0, 1). Larger solution sets model “easier” planning problems.
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Fig. 7. Experimental results for random H∗. “EA” is learning with rescaling and “OA” is learning without
rescaling. Higher scores are better: 1 is perfect. Negative scores are worse than randomly guessing. (a) Learning
curves for non-recursiveH∗. (b) Size dependence: “R” for recursiveH∗ and “NR” for non-recursiveH∗.

7(b). For technical reasons, discussed at the end of Section 4.4.3, the base learner is much
more effective at recovering user preferences despite feasibility obfuscation when these
take the form of recursive schemas, so there is less room for improvement. Nonetheless
the rescaling approach improves upon learning alone in both experiments.

Significance: As shown in Figure 7(b), the learners with rescaling (EA-NR, EA-R) outper-
form the base learners (OA-NR, OA-R). To test whether the difference is significant or not,
we carried out a sign test. For each domain size (i.e., 5, 10, 20), we compare the scores of
the extended learner with the scores of the base learner over 100 schemas. The result shows
that in both recursive and non-recursive domains, the score of the learner with rescaling is
significantly higher (p < 0.02) for all domain sizes.

4.4.3 Results: Hand-craftedH∗.
We re-use the same pHTNs encoding our preferences in Logistics and Gold Miner from

the first set of evaluations. As mentioned we use the same setup as in the random exper-
iments, so it continues to be the case that the distribution on random ‘solutions’ is biased
specifically against the encoded preferences. Moreover, due to the level of abstraction used
(truncating to action names), as well as the nature of the pHTNs and domains in question,
the randomly generated sets of alternatives, Fi, are in fact sets of solutions to some problem
expressed in the normal fashion (i.e., as an initial state and goal).

Logistics: After training with 550 training records (50t, for 11 non-primitives) the baseline
system scored only 0.342 (0 is the performance of random guessing) whereas rescaling
before learning performed much better with a score of 0.847 (0.153 away from perfect
performance).

Gold Miner: After training with 600 examples (50t for 12 non-primitives) learning alone
scored a respectable 0.605, still, rescaling before learning performed better with a score of
0.706. The greater recursion in Gold Miner, as compared to Logistics is both hurting and
helping. On the one hand the full approach scores worse (0.706 vs. 0.847), while on the
other hand, the baseline’s performance is hugely improved (0.605 vs. 0.342). As discussed
previously, the presence of recursion in the preference model makes the learning problem
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much harder (since the space of acceptable plans is then actually infinite), which continues
to be a reasonable explanation of the first effect (degrading performance).

The latter effect is more subtle. The experimental setup, roughly speaking, inverts the
probability of selecting a plan, so that using a recursive method many times in an ob-
served plan is more likely than using the same method only a few times. Then the baseline
approach is attempting to learn a distribution skewed towards more recursion to less re-
cursion, all else being equal. However, there is no pHTN that prefers more recursion to
less recursion all else being equal: fewer uses of a recursive method always increases the
probability of a plan. The closest the baseline can come is simply to fit an inappropriately
large probability to any recursive method. So it will assess the likelihood of plans incor-
rectly. But, queried about the relative ordering on two plans, differing only in their depth
of recursion over some method, the baseline will nonetheless produce the correct answer
(prefer less recursion) despite assigning the wrong likelihoods. No other result is possible
given the definition of pHTNs: always fewer uses of a method is (monotonically) more
probable. Naive Bayes Classifiers exhibit an analogous effect [Koller and Friedman 2009,
Box 17.A].

5. DISCUSSION AND RELATED WORK

In the planning community, HTN planning has for a long time been given two distinct
and sometimes conflicting interpretations (c.f., [Kambhampati et al. 1998]): it can be in-
terpreted either in terms of domain abstraction14 or in terms of expressing complex plan
constraints on plans15. The original HTN planners were motivated by the former view
(improving efficiency via abstraction). In this view, only top-down HTN planning makes
sense as the HTN is supposed to express effective search control. Paradoxically, w.r.t. that
motivation, the complexity of HTN planning is substantially worse than planning with just
primitive actions [Erol et al. 1996]. The latter view explains the seeming paradox easily —
finding a solution should be easier, in general, than finding one that also satisfies additional
complex constraints. From this perspective both top-down and bottom-up approaches to
HTN planning are appropriate (the former if one is pessimistic concerning the satisfiability
of the complex constraints, and the latter if one is optimistic). Indeed, this perspective lead
to the development of bottom-up approaches to HTN planning [Barrett and Weld 1994].

Despite this dichotomy, most prior work on learning HTN models (e.g., [Ilghami et al.
2002; Langley and Choi 2006; Yang et al. 2007; Hogg et al. 2008]) has focused only on the
domain abstraction angle. Typical approaches here either require the structure of the reduc-
tion schemas to be given as input, or need additional information such as annotated plan
traces and tasks to assist the learning process, whereas our work only requires plan traces
as input. Moreover, these efforts focus on learning domain physics or search control. As
we mentioned, a significant amount of work was also directed at learning domain physics
as action schemas [Yang et al. 2005]. In contrast, our work focuses on learning HTNs as a
way to capture user preferences, given only successful plan traces. The difference in focus
also explains the difference in evaluation techniques. While most previous HTN learning
efforts are evaluated in terms of whether the learned schemas and applicability conditions
are able to assist the planner to find feasible and goal-achieving plans, we evaluate them
in terms of how close the distribution of plans generated by the learned model is to the

14Non-primitives are seen as abstract actions, mediating access to the concrete actions.
15Non-primitives are seen as standing for complex preferences (or even physical constraints).
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distribution generated by the actual model.
An intriguing question is whether pHTNs learned to capture user preferences can, in

the long run, be over-loaded with domain semantics. In particular, it would be interesting
to combine the two HTN learning strands by sending our learned pHTNs as input to the
method applicability condition learners. Presuming the user’s preferences are amenable,
the applicability conditions thus learned might then allow efficient top-down interpretation
(of course, the user’s preferences could, in light of the complexity results for HTN plan-
ning, be so antithetical to the nature of the domain that efficient top-down interpretation is
impossible). An interesting theoretical result is that context-free languages are not closed
under intersection; one might be unable to effectively merge two HTNs modeling different
sets of complex constraints.

The connection between HTN schemas and grammars has been identified by several
authors [Kambhampati et al. 1998; Geib and Steedman 2007]. Recently, Geib [2009] pro-
poses an algorithm, ELEXIR, which represents plans to be recognized with Combinatory
Categorial Grammar(CCG), and shows that this mechanism prevents early commitment to
plan goals. Our work exploits the same connections to learn the pHTNs as grammars.

Our framework also incorporates ideas from other research on grammar induction. For
example, the E-step in the algorithm to build the most probable parse trees bears a clear
resemblance to the parsing algorithms in [Collins 1997; Charniak 2000]. Collin’s [1997]
parser represents parse trees using probabilities of dependencies, while our approach uses
reduction schemas to represent parse trees. Charniak’s [2000] work defines a maximum-
entropy-inspired score function based on features chosen from certain feature schemata to
measure the quality of the parse. The parser then returns the parse tree with the highest
score. In contrast, our approach scores parse trees based on a probabilistic model of the
derivation process (i.e. Equation 5).

Other research on pCFG acquisition is also quite relevant. Most work in this area di-
vides the learning process into two steps as we do. The learning algorithms first acquire
the grammar rules using CFG induction algorithms. Due to the high complexity of CFG
learning, typical approaches in the direction either require additional structural informa-
tion besides training examples to be given (e.g., [Sakakibara 1992]), or focus on restricted
classes of CFGs (e.g., [Takada 1988; Ishizaka 1989]). In the second step, the learning
algorithm uses the grammar rules acquired from previous step, and estimates the proba-
bilities that fit best (e.g., [Lari and Young 1990; Ra and Stockman 1999; Sakakibara et al.
1994]). Genetic algorithms are also used to acquire pCFGs directly [Kammeyer and Belew
1996; Keller and Lutz 2005]. To the best of our knowledge, we are the first to apply pCFG
learning to the area of user preference acquisition. An interesting future study would be
to anyways compare the performance of the other learning algorithms on the problem of
acquiring user preferences, despite the fact that these algorithms were not designed for this
application. However, considering the performance of the inside-outside algorithm in our
empirical evaluations, and the performance of our base learner once we took feasibility
constraints into account, it does not seem likely that these algorithms would perform well
when the surrounding context is dramatically altered.

Besides pHTNs, there are other representations for expressing user preferences, such as
trajectory constraints expressed in linear temporal logic e.g., [Baier and McIlraith 2008;
Gerevini et al. 2009]. Sohrabi et al. [2009], in particular, extend the Planning Domain
Definition Language PDDL3 [Gerevini et al. 2009] with HTN-like preference constructs.

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.



30 · Li et al.

These works consider modeling user preferences, not automatically learning them. It will
be interesting to explore methods for learning preferences in those representations too,
and to see to what extent typical user preferences are actually expressible in (p)HTNs and
alternatives.

6. CONCLUSION

Learning in the context of planning has received significant interest. However, most prior
work focused only on learning domain physics or search control. In this paper, we ex-
panded this scope by learning user preferences concerning plans. We developed a frame-
work for learning probabilistic HTNs from a set of example plans, drawing from the litera-
ture on probabilistic grammar induction. Assuming the input distribution is in fact sampled
from a pHTN, we demonstrated that the approach finds a pHTN generating a similar dis-
tribution. It is, however, a stretch to imagine that we can sample directly from preference
distributions — observed behavior arises from a complex interaction between preferences
and domain physics. We demonstrate a technique overcoming the effect of such feasibil-
ity constraints, by reasoning about the available alternatives to the observed user behavior.
The technique is to rescale the distribution to fit the assumptions of the base pHTN learner
developed in the first part. We evaluate our approach, and demonstrate both that the base
learner is easily confounded by constraints placed upon the preference distribution, and
that rescaling is effective at reversing this effect.

We also discussed several remaining important directions for future work to address.
Of these, the most directly relevant technical pursuit is learning parameterized pHTNs, or
more generally, learning conditional preferences. Fully integrating an automated planner
with the learner would gain the important abilities to (a) automatically generate feasible
alternatives prior to learning, and (b) exploit the learned knowledge during planning (so as
to make better recommendations). Subsequently running user studies, i.e., on humans, is a
very important pursuit.
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