
IEEE JOURNAL OF ROBOTICS AND AUTOMATION, VOL. RA-2, NO. 3, SEPTEMBER 1986 135

Multiresolution Path Planning for Mobile Robots

Abstract-The problem of automatic collision-free path planning is
central to mobile robot applications. An approach to automatic path
planning based on a quadtree representation is presented. Hierarchical
path-searching methods are introduced, which make use of this multireso-
lution representation, to speed up the path planning process considerably.
The applicability of this approach to mobile robot path planning is
discussed.

I. INTRODUCTION

T HE PROBLEM of automatic collision-free path planning
is central to mobile robot applications. Path planning for

mobile robots is in many ways different from the more
familiar case of path planning for manipulators [191. Examples
of these differences are as follows.

1) A mobile robot may have only an incomplete model of its
environment, perhaps because it constructs this model using
vision and thus cannot determine what is occluded by an
object.

2) A mobile robot will ordinarily negotiate any given path
only once (as opposed to a manipulator, which might perform
the same task thousands of times). , This implies that it is more
important to develop a negotiable path quickly than it is to
develop an “optimal” path, which is usually a costly
operation.

3) A mobile robot should keep as far away from obstacles as
possible. A manipulator’s reason for doing this is mainly
collision avoidance. For a mobile robot proximity to obstacles
also gives rise to severe occlusion and reduction in the field of
view.

Conventional path-planning algorithms can be divided
broadly into two categories. In the first category are the
methods which make trivial (if any) changes to the representa-
tion of the image map before planning a path. The regular grid
search [191 and vertex graph methods [9], [181, [101 fall into
this category.

Though these methods keep the representational cost to a
minimum, their applicability to mobile robot navigation is
limited. For example, the regular grid search is [19], [20] “too
local” and its path planning cost increases with grid size rather
than with the number of obstacles present. Further, both
regular grid search and vertex graph methods generate paths
which clip obstacle corners.

Manuscript received October 23, 1985; revised February 18, 1986. This
work was supported by the Defense Advanced Research Projects Agency and
the U.S. Army Night Vision and Electro-Optics Laboratory under contract

The authors are with the Computer Vision Laboratory, Center for
Automation Research, University of Maryland, College Park, MD 20742,
USA.

DAAK70-83-K-0018.

IEEE Log Number 8608952.

The methods in the second category make elaborate
representation changes to convert to a representation, which is
easier to analyze before planning the path. Free space methods
[11, medial axis transform methods, Voronoi methods, etc.,
fall into this category. A potential practical shortcoming of
such methods for mobile robot navigation is that the path-
planning cost is still very high because of the representation
conversion process involved.

Though the above two categories by no means exhaust the
existing methods (there are configuration space methods that
use a vertex graph approach [7] and others that use a free space
approach [8] to solve the manipulator findpath problem), they
do point out that what mobile robots need may be a
compromise between these two categories.

It is these considerations that motivated the multiresolution
(hierarchical) representation based path-planning algorithms
described in this paper [3], [6]. Similar considerations also led
to the use of hierarchical representations in manipulator
“findpath” problems (see Section IV for a discussion of
related work). In this paper, we first develop a method of path
planning for mobile robots using a hierarchical representation
based on quadtrees and then describe staged search as a way of
exploiting the hierarchical nature of the representation to gain
substantial computational savings. Throughout this paper we
restrict our attention to two-dimensional path planning without
rotation and a vehicle with circular cross-section.

Section 11 develops a quadtree-planning algorithm based on
A* search. Section 111 presents a staged (hierarchical) path-
planning algorithm, which has computational advantages as
compared to the pure A* search on quadtrees. The staged
search involves inclusion of gray nodes in the search. Section
IV discusses related work, and Section V summarizes the
conclusions reached from this research and discusses future
directions. In the remainder of this section we define some
terms used in these discussions.

Quadtree-Related Terminology: A quadtree is a recursive
decomposition of a two-dimensional picture into uniformly
colored 2’ X 2’ blocks (e.g., see Fig. 1) [16]. A node of a
quadtree represents a 2 j x 2j square region of the picture. A
free node of a quadtree is a node of the quadtree representing
a region of freespace. An obstacle node is a node representing
a region of obstacles. A gray node is a node representing a
region having a mixture of freespace and obstacles. A leaf
node of a quadtree is a tip node of the tree. In ordinary
quadtrees, leaf nodes are always obstacle nodes or free nodes,
but in pruned quadtrees (see below), they may also be gray
nodes. For any gray node G, S(G) denotes the subtree rooted
at G . L (G) denotes the number of leaf nodes in S(G). The
gray content of a gray node G is defined as the number of

0882-4967/86/0900-0135$01.00 O 1986 IEEE

136 IEEE JOURNAL OF ROBOTICS AND AUTOMATION, VOL. RA-2, NO. 3, SEPTEMBER 1986

37 38 39 40 57 58 59 60

(dl
Fig. 1. Quadtree representation. A region, its binary array, its maximal

blocks and the corresponding quadtree (from [16]).

obstacle pixels in the region represented by G, and the
grayness of G is the percentage of obstacle pixels in that
region.

When some of the gray nodes of a quadtree are made leaf
nodes, thereby pruning the subtrees rooted at those gray
nodes, the resulting structure is called a pruned quadtree; it
represents the same space as the original quadtree but with a
reduced resolution.

A* Terminology: A* is a classical minimum cost graph
search algorithm, whose optimality properties are well known
[Nilsson 801. In this algorithm OPEN is a list consisting of all
the nodes in the search graph that are generated but not yet
expanded. CLOSED is the list of nodes in the graph that have
been expanded. Best node is the node that is currently being
expanded in the search. This node has the best evaluation (i.e.,
minimal path cost) among the nodes on OPEN. The predecessor
of a node N in the search graph is the node preceding N on the
current best path to N (from the start node).

11. QUADTREE-BASED PATH PLANNING

A . Representation Preprocessing
We have developed an algorithm for mobile robot path

planning based on a quadtree representation of the robot's
immediate environment. If there are large areas of free space
(or obstacles), then those areas can be represented by a few
large blocks in the quadtree and can be dealt with as units by
the planning algorithm.

Given a binary array or raster representation of a robot's
immediate environment we first grow the obstacles by the
radius of robot's cross section [9] and then convert the raster
into a quadtree representation using a raster to quadtree
conversion algorithm [13]. This algorithm is of complexity
O(n), where n is the number of pixels in the image being

converted. In the resulting quadtree blocks of zeros represent
free-space nodes and blocks of ones represent obstacle nodes.

In the second stage of preprocessing, we compute the
distance transform of the set of O's, i.e., the free-space blocks.
This determines, for each block of free space, the minimal
distance between the center of that block and the boundary of a
block of obstacles. Samet [14] describes an algorithm for
computing this distance transform for quadtrees which is of
complexity O(n), where n is now the number of leaf nodes in
the quadtree.

B. Path-Planning Algorithm
Given the start and goal points, we first determine the

quadtree leaf nodes S and G, representing the regions of the
image containing these points. Next, we plan a minimum cost
path between S and G in the graph formed by the non-obstacle
leaf nodes of the quadtree, using the well known A* search
algorithm with the evaluation function f of a node c defined as

f (c) = g(c) + h(c).

Here g(c) represents the cost of the path from S to c and h(c)
represents the heuristic estimate of the cost of the remaining
path from c to G.

Since the cost of a path should depend both on the actual
distance travelled along the path and the clearance of the path
from the obstacles, we define g(c) as

g(c) =g(P)+g"o?, c)

where g(p) is the cost of the path from S to c's predecessor p
on the path and g(p, c) is the cost of the path segment between
p and c. The latter function in turn is defined as

g (p , c)=O@, ~) + a * d(c)

with D(p, c) representing the actual distance between nodes p
and c, given as half the sum of the node sizes, and d(c)
representing the cost incurred by including node c on the path.
d(c) depends upon the clearance of the node c from the nearby
obstacles. We chose a linear shape for the cost function d,
defining d(c) as

d(c) = omax - O(C)

where o(c) is the distance of the node c from the nearest
obstacle given by the quadtree distance transform and Omax is
the maximum such distance for any node in the quadtree (so
that d(c) is always positive). a in the equation for g(p , c) is a
positive constant which determines by how far the resultant
path will avoid obstacles.

Finally, h(c) is calculated as the Euclidean distance between
the midpoints of the regions represented by c and G. Clearly,
this measure is a lower bound on the actual minimum cost path
between c and G; thus an A* search with this measure as its
heuristic estimate is admissible. The power of this heuristic
depends upon the average deviation of the minimum cost path
from the straight line path. It is highest for the case where a is
zero and decreases as a increases. It is of course possible to
use more informed, but inadmissible, heuristics to speed up
this search. For example, both "the number of obstacles

KAMBHAMPATI AND DAVIS: MULTIRESOLUTION PATH PLANNING FOR MOBILE ROBOTS 137

intersecting the straight-line path between c and G,” and “the
total area of the obstacles intersecting the straight line path
between c and G” are more powerful heuristics than the one
we are using, but they are not admissible.

The node expansion process involves finding the nonobsta-
cle leaf nodes adjacent to the node being expanded. We
accomplish this by using a neighbor finding strategy similar to
that given by Samet [I51 with two differences. First, only the
neighbors in the horizontal and vertical directions are consid-
ered-diagonal neighbors, which share only single points with
the current node, would result in inflexible paths which clip
obstacle corners. Secondly, when one of the neighbors given
by the quadtree neighbor finding algorithm is a gray node, we
find the nonobstacle leaf nodes, if any, of the quadtree rooted
at that gray node that are adjacent to the node being expanded
and consider them as neighbors.

The result of applying the above A* algorithm to the
quadtree is a list of nodes from the quadtree (ordinarily of
varying sizes) which define a set of paths between the start and
goal nodes. If desired, an optimal path through these blocks
can be computed, or the center points of consecutive blocks on
the list can be connected to compute a negotiable path.

C. Results
Fig. 2 contains a simple example of a path obtained using

this algorithm. Fig. 2(a) is a binary array with start and goal
points marked, along with an indication of the path determined
by the algorithm. Fig. 2(b) contains the tree data structure that
represents the quadtree, in which the blocks on the computed
path are hatched. It is important to note the reduction in the
number of nodes achieved by the algorithm. Fig. 3(a) shows a
path planned on a more complicated image map with the
constant a set to one, and Fig. 3(b) shows the same example
with a set to zero. Notice that the time taken in the former case
is considerably higher than in the latter. This should be
expected, since as noted in the last section, the heuristic power
of h reduces as a increases.

It is also interesting to note that although it is true that the
quadtree representation is sensitive to displacements of obsta-
cles with respect to the grid boundaries, the savings in space
and computation afforded by this method are still very high on
the average. Further, Samet et al. [17] point out that for
complicated images the positioning of the image origin is
likely to have little effect on the number of nodes in the
resultant quadtree.

D. Advantages of the Quadtree Approach
Compared to the first category of path-planning algorithms

mentioned in the introduction, such as the grid search method,
the path-planning cost for quadtree-based search will be
substantially lower because the number of nodes to be
searched in the quadtree approach is considerably smaller. In
fact, the number of leaf nodes in a quadtree of an image map
having polygonal obstacles is approximately 2/3 - O(p) [161,
where p is the sum of the perimeters of the (polygonal)
obstacles in terms of the lowest resolution units, in our case
pixels (or grid points). Thus A* search will only have to deal
with about O(p) nodes in the case of a quadtree, instead of the

I‘ I

T I M E B
EXPANDED 9/17
PURE R *

17 18 19 20 21 22 23 24
(b)

Fig. 2. (a) Single stage path planning on a quadtree representation. The
figure shows a binary image with obstacles represented by black regions,
start node indicated by S, and goal node indicated by G. The nodes on the
path found by the algorithm are represented by hatched regions. All the
node boundaries are outlined with black lines. (b) Tree data structure
representing the quadtree of the binary image in (a). The black nodes
correspond to the obstacle regions; S and G correspond to the start and the
goal nodes; and the hatched nodes represent the nodes that fall on the path
generated by the algorithm.

n2 grid points in the case of a grid search, a substantial
reduction. Similarly the “local-bound’’ behavior of the first
category algorithms is absent in this approach, because the
nodes are on the average much larger than single pixels and it
is straightforward to determine the “nearness” of the nodes to
the obstacles. Moreover, a hierarchy of different levels of
description of the space that is available with quadtrees enables
us to search for a path close to obstacles only when necessary.
Corner-clipping inflexible paths are eliminated by considering
only neighbors in the horizontal and vertical directions.

Unlike the second category of methods that involve a costly
change of representation, the proposed approach has a very
small representation overhead. As pointed out in Section 11-A,
both the representation algorithms involved are of complexity
O(n), whereas many methods of the second category have a
representational cost that is far higher.

Thus quadtree based path planning is a good compromise
between free-space algorithms and grid-search type al-
gorithms. In addition, the path produced by the quadtree
algorithm, although not “optimal”, is a “negotiable” path
which can be computed relatively quickly. Apart from this, the
hierarchical nature of the representation gives many advan-
tages in path planning. For example, we can easily constrain
the path to satisfy certain conditions, such as specification of
minimal clearance of the path. More importantly, we can
make the search staged, i.e., plan a path at a coarser lever and
subsequently refine it as needed, thus reducing the planning

138 IEEE JOURNAL OF ROBOTICS AND AUTOMATION, VOL. RA-2, NO. 3, SEPTEMBER 1986

T I M E 28

PURE A * [ALPHA 1)
EXPFItIIDED 191,499

(a)

T I M E 11
EXPANDED 91,499
PURE Fi* [ALPHA 611

(b)

Fig. 3. Example of single stage planning. (a) Result of single stage A* search on the pure quadtree representation of an image, with
(Y set to 1. S and G represent start and goal nodes and hatched regions represent nodes on the planned path. (b) The same example as
in Fig. 3(a), but with (Y set to 0.

cost substantially. The advantage of the former has been
discussed in Section II-B. We will discuss the latter at greater
length in the next section.

111. STAGED PATH PLANNING

A . Motivation
Though the algorithm which we presented in the Section I1

is relatively efficient, it can be improved upon substantially.
We often get undesirably small “black” (obstacle) nodes in
the quadtree representation. One obvious source for this may
be the existence of very small obstacles in a region of the
environment that is otherwise obstacle-free. A more important
source of these black nodes i s the representation of irregular
obstacles in quadtrees. Due to the recursive nature of the
quadtree, these small black nodes will fragment the free space,
giving rise to an undesirable increase in the depth of the
quadtree and the number of leaf nodes and consequently
increasing the cost of the search.

We can deal with this problem by first planning the path in a
reduced-resolution quadtree, called a pruned quadtree, that
contains gray leaf nodes, corresponding to mixtures of
obstacles and free space. This implies that a node can now
have gray neighbors. An algorithm capable of planning a
global path at this coarser level, and subsequently developing
the path inside the gray nodes (which are included in the global
path) in the second stage, can give rise to savings in terms of
computation without significant degradation of the path
obtained. As mentioned in Section II-D, the number of leaf
nodes is on the order of the sum of the perimeters of the
obstacles, measured in the lowest resolution units. Thus
conducting search at a resolution I levels below the pixel
resolution reduces the “sum of the perimeters” and “number
of leaf nodes” by a factor of 2‘ thereby substantially reducing
the time complexity of the search.

There are two aspects to this staged search that deserve
detailed attention-the treatment of gray leaf nodes during
planning and the generation of the pruned quadtree from the

original quadtree. In the next two subsections we shall discuss
these two aspects in detail.

B. Dealing with Gray Leaf Nodes

When planning a path through the pruned quadtree, we have
to deal with gray leaf nodes. Specifically, the following three
questions must be answered: 1) what is done when one of the
neighbors of the current best node (the node that is currently
being expanded in the A * search) is a gray node? 2) how is the
current path expanded when the current best node is a gray
node? and 3) how is the first stage path, involving gray leaf
nodes, processed to get the final path that contains free nodes
exclusively?

We shall address these in the following subsections.
I) Gray Leaf Neighbors: If one of the neighbors N of the

current best node B is a gray node, then before putting N on
the OPEN list we must ensure that N can be entered from B . If B
is a free node, then N can be entered if and only if there exists
at least one free node rn in S(N) , such that rn is adjacent to B.
In addition, if B itself is a gray node, then N can be entered
from B as long as there exists a free node e in S(B) such that e
is adjacent to m. Note that checking this entry condition alone
does not guarantee that the gray node N is passable, i.e., that a
path from B through N to a third node C exists. For example
in Fig. 4, N can be entered from B, through the free node m,
but N cannot be exited, except back to B.

If we decide to put N on the OPEN list then we shall include in
the heuristic value of N a measure of the “path complexity”
c(N) inside N. (This measure should be zero for a free node
since the path inside the free node can be a straight line.) In
general, it is difficult to give a measure which truly represents
the complexity of a path inside the gray node, since at this
point in the search the direction in which the path will be
exiting the gray node i s unknown. But in practice any measure
depending upon the gray content (number of obstacle pixels
inside the gray node) of the gray node will be a good choice.
One such normalized complexity measure for the gray node N

KAMBHAMPATI AND DAVIS: MULTIRESOLUTION PATH PLANNING FOR MOBILE ROBOTS 139

Fig. 4. Dealing with a gray neighbor. The gray neighbor Nwill be placed on
OPEN since there is a free node m in S(N) that is adjacent to e, the exit node
of the best node B corresponding to N. Notice that the presence of a gray
node on OPEN does not guarantee the passability of the node; for example,
in the present case, N cannot be excited to any node other than B.

is
gray content (N)

size (N)
c (N) =

Given two gray nodes having the same gray content, the path
complexity should intuitively be higher for the gray node
representing a region with more obstacle nodes. Thus a better,
although costlier, complexity measure of the gray node N will
take into account the number of obstacle nodes in S(N).

Once the heuristic value is calculated, the gray node is
placed on the OPEN list and it can be selected for expansion
whenever its f -value is the best among the nodes on the OPEN

list.
2) Expanding Gray Nodes During Search: When the

current best node B happens to be a gray node, expanding B
becomes a more involved operation. After generating B’s
neighbors we must ensure‘that for each of these neighbors N
there exists a path through B that connects B’s predecessor P
on the current path to N (see Fig. 5). We refer to this as the
“reachability” analysis for neighbor N. Secondly, for each
neighbor N that can thus be reached we have to record as N s
g-value an estimate of the shortest path to N through B. This
estimate should take into account the fact that the shortest path
through B may not be a straight line path, since B is a gray
node.

One way to achieve the above two objectives is by
performing an A* search rooted at B to determine if N can be
reached from P. If the A* search finds such a path to N, then
we can use the cost of that path as the g-value of neighbor N.
The advantage of this method is that we have the full power of
A* search. The principal disadvantage to this method is that
we need to perform this A* search once for every neighbor of
By a rather large price to pay for path optimality. To avoid this
disadvantage, we follow a distance-transform-based gray-
node-expansion strategy, described below’.

Let f be a free node in S(B) such that f is adjacent to B’s
predecessor, P. Notice that there can be more than one such
free node in S(B). If P is a gray node, then we require thatfbe
adjacent to a free node in S(P) (called an “exit node” for P).
This exit node would have been determined when P was being

Fig. 5. Expanding a gray node. In the figure, B represents the current best
node in the A* search; N is a neighbor of B. S and G represent start and
goal nodes respectively. The path to B consists of nodes S-1-2-3-4-
5-6-7-P-B in that order; thus P i s B s predecessor on the current path.
Of the two nodesfandf’ that are adjacent to P,f is nearer to G; sofis the
entry node of B. Of the four nodes e, e‘, e ” , and e‘“ that are adjacent to
node N, N cannot be entered from e ” , and e’” cannot be reached fromf.
Thus e and e’ are the possible candidates for exit nodes. e is chosen as the
exit node for B corresponding to N since it is nearer to f than e ’ . e-dl-

the second stage of path planning.
dz- . . . -d8-frepresents the path that will be developed inside B during

expanded. We illustrate all this in Fig. 5. P is the predecessor
of the best node By and N is a neighbor of B. Both f andf’ are
free nodes in S(B), and they are also adjacent to P. In such a
situation, we choose the free node which has the least straight
line distance to the goal node-in this case f . Thus the current
path enters B through f . f is recorded as the entry node of B.

Next, we compute a distance transform of the region
represented by B with respect to f . This involves recording for
each free node f’ in S(B), f’ ’s shortest distance (which we
refer to as dis (f , f’)) from f . To carry out this computation,
we first initialize dis (f , f) to zero (see Fig. 5), and dis (f, f’)
for all other free nodesf’ in S(B) to 03. Next, we carry out the
propagation step: we find all the neighbors off, f’ , which are
in S(B) and for each such neighborf’ calcuiate dis (f , f’), as
the sum of dis (f , f) and the nodal distance between f and f’ ,
D(f , f’). To ensure that the path inside B will take clearance
from the obstacles into consideration, we include the cost of
the node d (f ’) (see Section 11-B) in dis (f , f’). We repeat this
prspagation step for all the neighbors off, with the neighbors
taking the role off, and so on, until we exhaust all the free
nodes in S(B). The detailed procedure is given in an
algorithmic fashion in Listing 1 . and is, essentially, the
familiar shortest path algorithm for the case of “single source
multiple destinations” [5] .

Having computed the distance transform of B with respect
to f , as detailed above, we are now ready to continue with the
expansion of B. For each of B’s neighbors N, N is marked
reachable if there exists a free node e in S(B) which satisfies
the following two conditions (see Fig. 5):

140 IEEE JOURNAL OF ROBOTICS AND AUTOMATION, VOL. RA-2, NO. 3, SEPTEMBER 1986

Listing 1 . Distance Transform Algorithm.

Procedure Distrans (B, f);
/*B is the gray node representing the region in
whichf is a free node. The algorithm computes the
distance transform of B with respect to f. */

begin
Vnode ES(B) dis (f, node) + 00;
dis (f,f) +- 0;
distran-OPEN + list (1);
distrans-CLOSED + nil;
until null (distrans-OPEN)
do

f’ +- first (distrans-OPEN);
distrans-OPEN + rest (distrans-OPEN);
NBRS + get-neighbors-inside-he-node (f’ , B);
/* get the neighbors off’ that lie in S(B)*/
foreach nbr E NBRS

do
newdis + D(f’ , nbr) + cr.node-cost (nbr) + dis(f, f’);
if dis (f, nbr) > newdis and nbr E distrans-CLOSED then

distrans-CLOSED + remove (distrans-CLOSED, nbr);
dis (f, nbr) + min {dis (f, nbi), newdis];
if nbr a distrans-OPEN and nbi distrans-CLOSED then

od
distrans-OPEN + append (distrans-OPEN, nbr);

od
end Distrans;

1) dis (f, e) < 03. This ensures that there is a path between
e and f inside S(B).

2) N can be entered from e. AS discussed in Section III-B-
1, if N is a free node, this condition is satisfied as long as
Nand e are adjacent. On the other hand, if N is a gray
node then the condition is satisfied if there exists a free
node rn in S(N) such that rn and e are adjacent.

The node e, satisfying the above two conditions is marked as
the exit node of gray node B with respect to N. Notice again
that there may be more than one such node. For example, in
Fig. 5 , e and e‘ satisfy both conditions, since there is a path
fromfto each of these nodes, and N can be entered from both
the nodes. In such a situation, we select the node with smaller
distance to f as the exit node. Thus, in Fig. 5 , e would be
chosen as the exit node of B with respect to N.

Neighbor N of the best node B is placed on the OPEN list only
if there exists an exit node e, for B with respect to N. If Ndoes
go on to the OPEN list, the sum of the g-value of B’s
predecessor P, g(P), and dis (f, e) is recorded as g(N). If N is
a gray node, we have to include in h p s heuristic value h(N) an
estimate of the path complexity inside N as discussed in
Section 111-B-1. This completes the discussion of the expan-
sion of the best gray node B.

At this point it is worth noting the advantages of using the
distance transform in dealing with gray leaf nodes: First, it
eliminates the necessity of multiple rooted A* searches. The
distance transform computation is efficient on the quadtree
representation. Second, developing the path inside the gray
nodes, after the first stage, is very simple.
3) Developing the First Stage Path Containing Gray

Nodes: At the end of the first stage of the staged search the
planned path may contain gray nodes as well as free nodes.
The path inside the gray nodes is developed in the second
stage.

If rooted A* search were used in expanding gray nodes (as

discussed in the previous subsection), then this second stage
would simply amount to concatenating these paths through
gray nodes with the free nodes.

If the distance transform is used instead of rooted A*
search, then the path development inside gray nodes is not as
simple. The path development computation involves the
following (refer again to Fig. 5):

For each gray node B on the path we retrieve B’s entry node
f (recorded while expanding B) and B’s predecessor P and
successor N on the path. Next, using N, we retrieve the exit
node e, for B corresponding to N. Now developing the path
inside B amounts to finding the shortest path between e and f
and inserting it in between Nand P. Finding the shortest path
between e and f simply involves backing up to f through
neighbors having smallest distance transform values. In Fig.
5 , for example, the shortest path between e and f, as found by
this method, is e - dl - d2 - - * -d8 - f.

C. Pruned Quadtree Generation Methods
The primary motivation for pruned quadtree based staged

search, as noted in Section 111-A, is to offset the disadvantages
of the fixed grid uniform recursive decomposition involved in
quadtree representation. By choosing an appropriate pruned
quadtree, we can avoid a profusion of nodes in a region of the
image map, which is relatively obstacle-free. This poses the
question of how to decide when a region, or the gray node
representing it, is relatively obstacle-free. None of the simple
measures (such as grayness of the node) alone can answer this
question entirely satisfactorily. For example, the grayness of a
node tells us nothing about the distribution of the obstacles in
the region represented by that node, and in the extreme case a
small value of grayness may actually be the result of a streak
of obstacle pixels through the middle of the node. More
commonly, a small grayness value of a gray node may be due
to a scattered obstacle distribution inside the gray node, which
fragments the free space. In such a case, the gray node is
obviously a bad candidate for a leaf node in the pruned
quadtree. At the same time, we do not want to base our
decision on a very involved analysis of the gray node, because
this may increase the cost of pruned quadtree generation to the
point where the staged search is, overall, less efficient than
searching the original quadtree.

Keeping all these considerations in mind we experimented
with the following pruned-quadtree-generation strategies.

1) Using the Grayness of the Gray Node: This method
uses a threshold on grayness to identify leaf nodes of the
pruned quadtree. The quadtree is traversed in a breadth first
fashion and any gray node whose grayness falls below the
threshold is made a leaf node of the pruned quadtree. Once a
gray node G is chosen as a leaf node, the breadth first traversal
ignores S(G). Fig. 6(b) shows the pruned quadtree gener-
ated from the quadtree in Fig. 6(a), using this method, and
also gives the result of a staged search on this pruned quadtree.
This method sometimes chooses very large gray nodes, having
a small grayness but a scattered obstacle distribution, as leaf
nodes. This is undesirable, since the cost of the distance
transform increases polynomially (O(n2)) with the number of
free nodes inside the region represented by the gray node. We

KAMBHAMPATI AND DAVIS: MULTIRESOLUTION PATH PLANNING FOR MOBILE .ROBOTS 141

EXPANDED 345,787
PURE R *

(a)

EXPANDED 126,348
GREY-THRESH 2 8 2

(b)

T I M E 16
EXPANDEn 124,424 EXPANDED 3 5 / 6 4
GR-TH 28% L E V - L I M 1 LEVEL-CUT 2

(C) (dl

T I M E 13
E X P A N D E n 2 4 / 3 1
LEAF-THRESH 58

(e)
Fig. 6 . Experiments with various pruned quadtree generation strategies. (a) An example of single stage planning on a pure quadtree.

This is going to be compared to the various pruned quadtree generation methods. @) An example of staged path planning, with
grayness thresholding (method 1) as the pruned quadtree generation method; the threshold is 20 percent. The leaf node boundaries
are outlined and the nodes on the path are hatched. Notice the large gray leaf node in the top left quadrant and the second stage path
developed inside that node. (c) Staged path planning with a pruned quadtree generation method that takes both grayness and size
information into account (method 2). Compare the results to (b). (d) Staged path planning where the pruned quadtree is generated by
truncating the original quadtree below a fixed level (method 3); level *reshold is two. (e) Staged path planning with leaf node
thresholding (method 4) as the pruned quadtree generation strategy. This method is adopted as the pruned quadtree generation
strategy for the subsequent experiments.

142 IEEE JOURNAL OF ROBOTICS AND AUTOMATION, VOL. RA-2, NO. 3 , SEPTEMBER 1986

can partially offset this problem by adaptively setting the
grayness threshold to lie between zero and the minimum of the
grayness of the top few gray nodes of the quadtree (say, the
root node and its four sons), thus ensuring that none of those
top level gray nodes become leaf nodes. More importantly,
pruned quadtrees generated using this method are potentially
unstable with respect to the grayness threshold-a small
change in the threshold may change the structure of the pruned
quadtree drastically.

2) Using Size Information with GraynessThreshold: This
is one way of avoiding the problem of overly large gray leaf
nodes associated with the first method. This method also
traverses the original quadtree in a top-down breadth-first
fashion. When it encounters a gray node whose grayness falls
below the grayness threshold, it checks that the size of the gray
node falls below the size threshold before making the gray
node a leaf node. This method is superior to the first one,
because it will not choose large gray nodes with small
grayness and scattered obstacle distribution as leaf nodes. Fig.
6(c) shows the pruned quadtree generated from the quadtree in
Fig. 6(a), using this method and also gives the result of a
staged search on this pruned quadtree.

3) Truncating the Tree Below a Fixed Level: This method
makes any gray node of the original quadtree lying at a fixed
level a leaf node of the pruned quadtree. Fig. 6(d) shows a
pruned quadtree generated from the quadtree in Fig. 6(a) using
this method and also gives the result of a staged search on this
pruned quadtree. The level of truncation could be determined
based on a histogram analysis on the obstacle node levels. This
relatively straightforward method turns out to be unsatisfac-
tory since depending upon the level of truncation it may make
either of the following two undesirable decisions: a) it may
choose very large gray nodes with scattered obstacle distribu-
tions as leaf nodes (like the first method) and b) it may prevent
moderately large gray nodes, which represent regions with
small grayness and very few free nodes, from becoming leaf
nodes.

From the above three methods, it is obvious that the criteria
for pruning should be independent of the size of a gray node
and should instead depend mainly on the cost of gray-node
evaluation. As observed already, the cost of the distance
transform on a gray node G depends upon the level of
fragmentation of the region represented by G. L(G), the
number of leaf nodes in S(G), is a good measure of the
fragmentation of the region: the higher L(G), the higher the
fragmentation and the costlier the distance transform. Notice
that L(G) does not depend on the size of G; thus larger nodes
with relatively low fragmentation will also be included in the
pruned quadtree as leaf nodes. Method 4, which we chose as
our method of pruned quadtree generation, uses L(G) as its
basis for pruning.

4) Using L(G), the Number of Leaf Nodes in S(G): This
method uses a threshold on L(G) to identify leaf nodes of the
pruned quadtree. Any gray node G, whose L(G) is lower than
the threshold, is made a leaf node of the pruned quadtree in a
breadth-first traversal of the quadtree. Computation of L(G) is
straightforward and is in fact even cheaper than grayness
computation. For a given threshold, there is an upper bound

on the cost of gray-node evaluation based on the distance
transform, and thus the cost of the staged search can be
effectively controlled. One important advantage of this method
is that the threshold on L(G) is relatively independent of the
specific image and depends only on global criteria such as
maximum allowable gray node evaluation cost and maximum
allowable suboptimality of the resultant path. Figure 6(e)
shows a pruned quadtree generated using this method from the
quadtree in Fig. 6(a), and it also gives the result of a staged
search on this pruned quadtree.

An important difference between methods 1,2, and 4 is that
the latter may also include a gray node with very high gray
value as gray leaf node, as long as its L(G) value falls below
threshold. This means that we are no longer assured of the fact
that all gray nodes are relatively obstacle-free. Thus there is an
increased need to penalize gray nodes on OPEN having higher
grayness so that the search is inhibited from expanding these
nodes unless absolutely necessary.

Finally, we observe that none of the above methods uses a
criterion that properly reflects the distribution of obstacles
inside the gray leaf node. This is not serious since the
passability question is completely answered by gray-node
evaluation based on the distance transform.

D. Results of the Staged Search
Figs. 7-10 depict the paths found by pure A* search on the

original quadtree, the first stage of staged search on the pruned
quadtree (with gray nodes in the path), and the second stage of
staged search (after paths inside the gray nodes are devel-
oped). The pruned quadtree used in the staged search is
generated automatically, as discussed in the section on pruned
quadtree generation. Each of the figures lists the cpu time
taken for path planning, number of nodes considered by the
search versus total number of leaf nodes, and details of the
method of pruned quadtree generation used.

The path generated by the staged search is comparable to the
optimal path generated by the pure A* search. However, the
total cpu time taken (with compiled Franz Lisp running on a
VAXlU785) by staged search (for pruned quadtree genera-
tion, A * search and second stage path development) is three to
ten times less than that taken by the pure A * search. (See Figs.
7-10) for detailed timings for the examples presented. The
timings are in CPU seconds and involve substantial page
swapping overhead.) Our experiments show that the computa-
tional savings are much higher for cluttered environments than
for relatively free environments-compare Figs. 7 and 10, for
example. This is reasonable since the fragmentation of free
space is much higher in cluttered environments.

IV. RELATED WORK
As pointed out in Section I, hierarchical representations

have been used previously in manipulator findpath tasks. In
this section we discuss some of that previous work in relation
to our own.

Wong et al. [21] use a modified version of quadtrees to
solve three-dimensional findpath problems by planning a path
in the three orthogonal two-dimensional projections of the
three-dimensional environment. Their approach essentially

KAMBHAMPATI AND DAVIS: MULTIWOLUTION PATH PLANNING FOR MOBILE ROBOTS 143

TIME 54 TIME 12
EXPANDED 283,514 EXPANDED 21/22
PURE A* LEAF-THRESH 58

(a) (b)

Fig. 7. Staged vs. single stage path planning (example 1). (a) Results of
single stage planning. (b) Results of staged planning.

TIME 84 T I M E 1 6
EXPANDED 468,835 EXPANDED 44/49
PURE A* LEAF-THRESH 58

(a) (b)
Fig. 8. Staged vs. single stage path planning (example 2). (a) shows the
results of single stage planning and (b) shows the results of staged planning.

TIME 38 T T M F 1 3 E X P R N D E ~
PURE A*

272,688

(a) (b)

Fig. 9. Staged vs. single stage path planning (example 3). (a) shows the
results of single stage planning and (b) shows the results of staged planning.

144 IEEE JOURNAL OF ROBOTICS AND AUTOMATION, VOL. RA-2, NO. 3, SEPTEMBER 1986

T I M E 168
EXPANDED 542,2863
PURE A *

(a)

EXPANDED 2’3,124
LEAF-THRESH 58

(b)
Fig. 10. Staged vs. single stage path planning (example 4). (a) Results of single stage planning. @) Results of staged planning.

searches for a path in a “point-based’’ quadtree representa-
tion. (See [16] for a comparison between “region based” and
“point based” quadtrees.) Faverjon [4] uses octrees (an
extension of quadtrees to three-dimensions) for reducing the
time complexity of the three-dimensional findpath problem for
a six joint manipulator.

Lozano-PCrez [8] represented free space in the “configura-
tion space” as a hybrid hierarchical structure consisting of
rectanguloid and polyhedral cells. However, he planned a cell
path strictly among the free cells of the representation, thus
missing the computational advantages of hierarchical staged
search. Another problem with his approach was that the path
search could fail because the resolution of the representation
was not fine enough. Brooks and Lozano-PCrez later remedied
these problems in [2]. The approach presented in their paper
comes closest to our “staged search” approach. They cut the
free space hierarchically into full (obstacle), empty (free), and
mixed rectanguloid cells, with the mixed cells representing
areas of unexplored configuration space. They first try to plan
a path exclusively through the free cells. If that fails, they then
repeat the search, this time considering the mixed cells also.
Next, for each mixed cell in the cell path, they try to develop a
path through the mixed cell. If any of the mixed cells turns out
to be impassable, then they may have to repeat the search
again, finding another free-mixed cell path. Since they use the
A* search algorithm as the main engine for all these different
searches, the overall process turns out to be very expensive
computationalIy. Both [SI and [2] refine their cell paths into
point paths, since the cell path in configuration space
represents a set of possible solutions to the findpath problem.

V. CONCLUSION
In this paper we have presented methods of short range path

planning for mobile robots, using quadtree hierarchical data
structures. We demonstrated the merits of quadtree-based path
planning and also discussed in detail a method of staged path
planning with improved computational cost compared to pure
quadtree based single stage path planning.

Lozano-PCrez [S] observes that the most important heuris-
tic for a path-planning space representation is to avoid excess

detail (and therefore time spent) on parts of the space that do
not affect the planning operation. The quadtree representation
naturally provides such a description of free space. Short-
range planning for a mobile robot should be based on
decomposition of free space into units larger than pixels for the
search to be global. Hierarchical decompositions like the
quadtree are a good way to achieve this, especially since the
representation cost involved is small. The hierarchical decom-
positions may not be as descriptive as decomposing free space
into channels or other such natural shapes, but the latter
methods have a higher representation cost. Some of the
suboptimality of uniform grid recursive decomposition in-
volved in quadtree representation is offset by the staged
version of the path planner.

Another important use of staged search in dynamic path
planning is that it offers an elegant way of treating uncharted
areas. These can be represented as gray nodes with very high
cost, and when they get included in the search, further
processing can be expended to “chart” those regions [12].

Looking further, the mobile robot needs to continually
update the planned path, as it traverses it, in the light of new
information. To do this efficiently, we need to be able to “add
to” and “delete from” (or update) the representation of the
image map with relatively low cost. In the context of dynamic
path updating, one desirable property of a free-space represen-
tation is that the individual obstacles affect the representation
only in their immediate locality. A disadvantage of quadtree
representation of free space is that it does not localize the
effect of obstacles on the representation. This is a general
shortcoming of representations that cut free space into
rectanguloid cells. In contrast, the generalized cone represen-
tation of free space described in [l] satisfies this property. One
way of “adding to” the quadtree representation satisfying the
localization property is discussed in [6] but this is not general
enough to handle scroll updates.

REFERENCES
[l] R. A. Brooks, “Solving the findpath problem by good representation of

free space,” IEEE Trans. Syst. Man, Cybern., vol. 13, pp. 190-197,
1983.

[2] R. A. Brooks and T. Lozano-Wrez, “A subdivision algorithm in

KAMBHAMPATI AND DAVIS: MULTIRESOLUTION PATH PLANNING FOR MOBILE ROBOTS 145

131

[41

171

configuration space for findpath with rotation,” in Proc. Eighth Int.
Joint Conf. Artifcia1 Intelligence, 1983.
L. S. Davis, F. Andresen, R. Eastman, and S. Kambhampati, “Visual
algorithms for autonomous navigation,” in Proc. ZEEE Znt. Conf.
Robotics Automat., Mar. 1985.
B. Faverjon, “Obstacle avoidance using an octree in the configuration
space of a manipulator,” in Proc. ZEEE Znt. Conf. Robotics, Mar.
1984.
E. Horowitz and S. Sahni, Fundamentals of Data Structures.
Rockville, MD: Computer Science, 1982, chap. 6.
S. Kambhampati, “Multiresolution path planning for mobile robots,”
Masters thesis, Department of Computer Science, University of
Maryland, College Park, 1985.
T. Lozano-PBrez and M. A. Wesley, “An algorithm for planning
collision-free paths among polyhedral obstacles,” Commun. ACM,

T. Lozano-PBrez, “Automatic planning of manipulator transfer move-
ments,” ZEEE Trans. Syst., Man, Cybern., vol. 11, pp. 681-698,
1981.
H. Moravec, “Rover visual obstacle avoidance,” in Proc. Seventh
Znt. Joint Con$ Artifcia1 Zntell., 1981.
N. J. Nilsson, “A mobile automation: an application of artificial
intelligence techniques,” in Proc. First Znt.’ Joint Conf. Artificial
Zntell., 1969.
-, Principles of Arttficial Intelligence. Palo Alto, CA: Tioga,
1980, chap. 2.
S . Puri and L. S. Davis, “Navigation algorithms for a quadtree based
mobile robot system,” Center for Automation Research, University of
Maryland, College Park. Technical Report in Preparation.
H. Samet, “An algorithm for converting rasters to quadtrees,” ZEEE
Trans. Patt. Ana&. Mach. Zntell., vol. 3, 1981, pp. 93-95.
-, “Distance transform of images represented by quadtrees,”
ZEEE Trans. Patt. Anal. Mach. Zntell., 4, 1982, 298-303.
-, “Neighbor finding techniques for images represented by
quadtrees,” Comput. Graphics Image Processing, vol. 18, pp. 37-
57, 1982.
-, “The quadtree and related hierarchical data structures,” tech.
rep. 23, Center for Automation Research, University of Maryland,
College Park, Nov. 1983.
H. Samet et ai., “Application of hierarchical data structures to
geographical information systems: Phase 111,” tech. rep. 99, Center for
Automation Research, University of Maryland, College Park, p. 59,
Nov. 1984.
A. M. Thompson, “The navigation system of the JPL robot,” in Proc.
Fifth Znt. Joint Conf. Artificial Zntelligence, 1977.

V O ~ . 22, pp. 560-570, 1979.

[19] C. Thorpe, “Path relaxation: path planning for a mobile robot,” in
Proc. Nat. Conf. Artificial Zntell., 1984.

[20] R. Wallace, “Two-dimensional path planning and collision avoidance
for three-dimensional robot manipulators,” in Representation and
Processing of Spatial Knowledge, tech. rep. 1275, Department of
Computer Science, University of Maryland, May 1983.

[21] E. K. Wong and K. S. Fu, “A hierarchical orthogonal space approach
to collision-free path planning,” in Proc. ZEEE Znt. Conf. Robotics,
Mar. 1985.

Subbarao Kambhampati was born in Pedda-
puram, AP, India, on August 17, 1961. He received
the B.Tech. degree in Electrical Engineering (Elec-
tronics) from the Indian Institute of Technology,
Madras, in 1983 and the M.S. degree in Computer
Science from the University of Maryland, College
Park, in 1985.

He is currently a‘ doctoral candidate in the
department of Computer Science at the University
of Maryland. Since June, 1984, he has been a
research assistant in the Center for Automation

Research there. His current research interests are Machine Learning and
Robotics. He has authored three papers in Robotics.

Mr. Kambhampati is a member of the American Association for Artificial
Intelligence and Association for Computing Machinery.

Larry S. Davis (S’74-M’77) was born in New
York on February 26, 1949. He received the B.A.
degree in mathematics from Colgate University,
Hamilton, NY, in 1970, and the M.S. and Ph.D.
degrees in computer science from the University of
Maryland, College Park, in 1972 and 1976, respec-
tively.

From 1977-1981 he was an Assistant Professor
in the Department of Computer Science, University
of Texas, Austin. He is currently an Associate
Professor and Associate Chairman in the Depart-

ment of Computer Science, University of Maryland. He is also the Head of the
Computer Vision Laboratory of the Center for Automation Research at the
University of Maryland and is the Acting Director of the University of
Maryland Institute for Advanced Computer Studies.

