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Multiresolution  Path Planning for Mobile  Robots 

Abstract-The  problem of  automatic  collision-free path  planning is 
central to mobile  robot  applications.  An approach to automatic path 
planning  based on a  quadtree  representation is presented.  Hierarchical 
path-searching methods are introduced, which  make  use of this  multireso- 
lution representation, to speed up  the path  planning  process  considerably. 
The applicability of this approach to mobile  robot path  planning is 
discussed. 

I. INTRODUCTION 

T HE PROBLEM of automatic collision-free path planning 
is central to mobile robot applications. Path  planning for 

mobile robots is in  many  ways different from the more 
familiar case of path planning for manipulators [ 191. Examples 
of these differences are as follows. 

1)  A mobile robot may have only an incomplete model  of its 
environment, perhaps because it constructs this  model  using 
vision  and thus cannot determine what  is  occluded  by an 
object. 

2) A mobile robot will ordinarily negotiate any given path 
only  once (as opposed to a  manipulator,  which  might perform 
the same task thousands of times). , This implies that it is more 
important to develop a negotiable path  quickly  than it is to 
develop an “optimal” path, which is usually  a  costly 
operation. 

3)  A  mobile robot should keep as far away from obstacles as 
possible. A manipulator’s reason for doing this is mainly 
collision avoidance. For a mobile robot proximity to obstacles 
also gives rise to severe occlusion and reduction in the field of 
view. 

Conventional path-planning algorithms can be divided 
broadly into two categories. In the first category are the 
methods which make trivial (if any) changes to the representa- 
tion  of the image map before planning a path. The regular grid 
search [ 191 and vertex graph methods [9], [ 181, [ 101 fall into 
this category. 

Though these methods keep the representational cost to a 
minimum, their applicability to mobile robot navigation is 
limited. For example, the regular grid search is [19], [20] “too 
local” and its path planning cost increases with grid size rather 
than with the number of obstacles present. Further, both 
regular grid search and vertex graph methods generate paths 
which clip obstacle corners. 
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The methods in the second category make elaborate 
representation changes to convert to a representation, which is 
easier to analyze before planning the path. Free space methods 
[ 11, medial axis transform methods, Voronoi methods, etc., 
fall into this category. A  potential practical shortcoming of 
such  methods for mobile robot navigation is that the path- 
planning cost is still very high because of the representation 
conversion process involved. 

Though the above two categories by no means exhaust the 
existing methods (there are configuration space methods  that 
use  a vertex graph approach [7] and others that use a free space 
approach [8] to solve the manipulator findpath problem), they 
do point out that what mobile robots need  may be a 
compromise between these two categories. 

It is these considerations that motivated the multiresolution 
(hierarchical) representation based path-planning algorithms 
described in this paper [3], [6].  Similar considerations also led 
to the use of hierarchical representations in manipulator 
“findpath” problems (see Section IV for a discussion of 
related work). In this paper, we first develop a  method  of  path 
planning for mobile robots using  a hierarchical representation 
based on quadtrees and then describe staged search as a  way  of 
exploiting the hierarchical nature of the representation to gain 
substantial computational savings. Throughout this paper we 
restrict our attention to two-dimensional path planning without 
rotation and  a vehicle with circular cross-section. 

Section 11 develops a quadtree-planning algorithm based on 
A* search. Section 111 presents a  staged (hierarchical) path- 
planning algorithm, which has computational advantages as 
compared to the pure A* search on quadtrees. The staged 
search involves inclusion of gray nodes in the search. Section 
IV discusses related work, and Section V summarizes the 
conclusions reached from this research and discusses future 
directions. In the remainder of this section we define some 
terms used  in these discussions. 

Quadtree-Related  Terminology: A quadtree is a recursive 
decomposition of  a two-dimensional picture into uniformly 
colored 2’ X 2’ blocks (e.g., see Fig. 1) [16]. A node of a 
quadtree represents a 2 j  x 2j square region of the picture. A 
free node of  a quadtree is  a node of the quadtree representing 
a  region of freespace. An obstacle  node is a node representing 
a region of obstacles. A gray  node is  a  node representing a 
region having  a mixture of freespace and obstacles. A leaf 
node of  a quadtree is a tip node of the tree. In ordinary 
quadtrees, leaf nodes are always obstacle nodes or free nodes, 
but  in pruned quadtrees (see below), they  may also be gray 
nodes. For any gray node G, S(G) denotes the subtree rooted 
at G .  L (G) denotes the number of leaf nodes in S(G). The 
gray  content of a gray node G is defined as the number of 
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Fig. 1. Quadtree representation. A region, its binary array, its  maximal 

blocks and the corresponding quadtree (from [16]). 

obstacle pixels in the region represented by G, and  the 
grayness of G is the percentage of obstacle pixels in  that 
region. 

When  some of the gray nodes of a quadtree are made  leaf 
nodes, thereby pruning the subtrees rooted at those gray 
nodes, the resulting structure is called a pruned quadtree; it 
represents the same space as the original quadtree but with a 
reduced resolution. 

A* Terminology: A* is a classical minimum cost graph 
search algorithm, whose  optimality properties are well  known 
[Nilsson 801. In this algorithm OPEN is a list consisting of all 
the nodes  in the search graph that are generated but  not yet 
expanded. CLOSED is the list of  nodes in the graph  that have 
been expanded. Best node is the node that is currently being 
expanded  in the search. This node has the best evaluation (i.e., 
minimal  path cost) among the nodes  on OPEN. The predecessor 
of a node N in the search graph is the node  preceding N on the 
current best  path to N (from the start node). 

11. QUADTREE-BASED PATH PLANNING 

A .  Representation  Preprocessing 
We  have developed an algorithm for mobile  robot  path 

planning  based  on a quadtree representation of the robot's 
immediate environment. If there are large areas of free space 
(or obstacles), then  those areas can be represented by a few 
large blocks in the quadtree and can be dealt with as units by 
the planning algorithm. 

Given a binary array or raster representation of a robot's 
immediate environment we first grow the obstacles by the 
radius of robot's cross section [9]  and then convert the raster 
into a quadtree representation using a raster to quadtree 
conversion algorithm [13]. This algorithm is of complexity 
O(n), where n is the number of pixels in the image being 

converted. In the resulting quadtree blocks  of zeros represent 
free-space nodes  and  blocks of ones represent obstacle  nodes. 

In the second stage of preprocessing, we compute the 
distance transform of the set of O's, i.e., the free-space blocks. 
This determines, for each block of free space, the minimal 
distance between the center of that block and the boundary  of a 
block of obstacles. Samet [14] describes an algorithm for 
computing this distance transform for quadtrees which  is  of 
complexity O(n), where n is now the number of leaf  nodes  in 
the quadtree. 

B. Path-Planning Algorithm 
Given the start and goal points, we first determine the 

quadtree leaf nodes S and G, representing the regions of the 
image containing these points. Next, we  plan a minimum cost 
path  between S and G in the graph formed by the non-obstacle 
leaf  nodes  of the quadtree, using the well  known A* search 
algorithm with the evaluation function f of a node c defined as 

f (c)  = g(c) + h(c). 

Here g(c) represents the cost of the path from S to c and h(c) 
represents the heuristic estimate of the cost  of  the remaining 
path from c to G. 

Since the cost of a path  should depend both  on the actual 
distance travelled along the path  and  the clearance of  the  path 
from the obstacles, we define g(c) as 

g(c) =g(P)+g"o?, c )  

where g(p)  is the cost of the path from S to c's predecessor p 
on the path  and g(p, c) is the cost  of the path segment between 
p and c.  The latter function in turn is  defined as 

g ( p ,  c)=O@, ~ ) + a  * d(c)  

with D(p,  c) representing the actual distance between  nodes p 
and c, given as half the sum  of the node sizes, and d(c) 
representing the cost incurred by  including  node c on  the path. 
d(c) depends upon the clearance of the node c from the nearby 
obstacles. We chose a linear shape for the cost function d,  
defining d(c) as 

d(c)  = omax - O(C) 

where o(c) is the distance of the node c from the  nearest 
obstacle given by the quadtree distance transform and Omax is 
the maximum  such distance for any  node in the quadtree (so 
that d(c) is always positive). a in  the equation for g(p ,  c) is a 
positive constant which determines by  how far the resultant 
path  will  avoid obstacles. 

Finally, h(c) is calculated as the Euclidean distance between 
the midpoints  of the regions represented by c and G. Clearly, 
this measure is a lower bound  on the actual minimum cost path 
between c and G; thus an A* search with  this measure as its 
heuristic estimate is admissible. The power of  this heuristic 
depends  upon the average deviation of the minimum cost path 
from the straight line path. It is highest for the case where a is 
zero and decreases as a increases. It is of course possible to 
use more informed, but inadmissible, heuristics to speed  up 
this search. For example, both  "the  number  of  obstacles 
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intersecting the straight-line path  between c and G,” and “the 
total area of the obstacles intersecting the straight line path 
between c and G” are more powerful heuristics than  the one 
we are using, but they are not admissible. 

The node expansion process involves finding the nonobsta- 
cle leaf  nodes adjacent to the node being expanded. We 
accomplish this by using a neighbor finding strategy similar to 
that  given  by Samet [I51 with two differences. First, only the 
neighbors in  the horizontal and vertical directions are consid- 
ered-diagonal neighbors, which share only single points  with 
the current node, would result in inflexible paths  which clip 
obstacle corners. Secondly, when one of the neighbors given 
by the quadtree neighbor finding algorithm is a gray node, we 
find the nonobstacle leaf nodes, if any, of the quadtree rooted 
at that gray node that are adjacent to the node being  expanded 
and consider them as neighbors. 

The result of applying the above A* algorithm to the 
quadtree is a list of nodes from the quadtree (ordinarily of 
varying sizes) which define a set  of  paths between the start and 
goal nodes. If desired, an optimal path through these blocks 
can be computed, or the center points of consecutive blocks on 
the list can be connected to compute a negotiable  path. 

C. Results 
Fig. 2 contains a simple example of a path  obtained  using 

this algorithm. Fig. 2(a) is a binary array with start and  goal 
points marked, along with  an indication of the path determined 
by the algorithm. Fig. 2(b) contains the tree data structure that 
represents the quadtree, in  which the blocks  on the computed 
path are hatched. It is important to note the reduction in the 
number  of nodes achieved by the algorithm. Fig. 3(a)  shows a 
path planned on a more complicated image map with the 
constant a set to  one, and Fig. 3(b) shows the same example 
with a set to zero. Notice that the time taken in the former case 
is considerably higher than  in the latter. This should be 
expected, since as noted in the last section, the heuristic power 
of h reduces as a increases. 

It is also interesting to note  that although it is true that  the 
quadtree representation is sensitive to displacements of obsta- 
cles with respect to the grid boundaries, the savings in space 
and computation afforded by this method are still very  high  on 
the average. Further, Samet et al. [17]  point  out  that for 
complicated images the positioning of the image origin is 
likely to have little effect on  the  number  of  nodes  in  the 
resultant quadtree. 

D. Advantages of the Quadtree Approach 
Compared to the first category of path-planning algorithms 

mentioned  in the introduction, such as the grid search method, 
the path-planning cost for quadtree-based search will  be 
substantially lower because the  number  of  nodes to be 
searched in the quadtree approach is considerably smaller. In 
fact, the number of  leaf nodes in a quadtree of an image  map 
having polygonal obstacles is approximately 2/3 - O(p) [ 161, 
where p is the sum of the perimeters of the (polygonal) 
obstacles in terms of the lowest resolution units, in our case 
pixels (or grid points). Thus A* search will  only  have to deal 
with about O(p)  nodes in the case of a quadtree, instead  of  the 
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Fig. 2. (a) Single stage path planning on a quadtree representation. The 
figure shows a binary image with obstacles represented by black regions, 
start node indicated by S, and goal node indicated by G.  The nodes  on the 
path found by the algorithm are represented by hatched regions. All the 
node boundaries are outlined with black lines. (b) Tree data structure 
representing the quadtree of the binary image in (a). The black  nodes 
correspond to the obstacle regions; S and G correspond to the start and the 
goal nodes; and the hatched  nodes represent the nodes that fall on the  path 
generated by the algorithm. 

n2 grid points in the case of a grid search, a substantial 
reduction. Similarly the “local-bound’’ behavior of the first 
category algorithms is absent in this approach, because the 
nodes are on the average much larger than single pixels and it 
is straightforward to determine the “nearness” of the nodes to 
the obstacles. Moreover, a hierarchy of different levels of 
description of the space that  is available with quadtrees enables 
us to search for a path close to obstacles only  when necessary. 
Corner-clipping inflexible paths are eliminated by considering 
only neighbors in the horizontal and vertical directions. 

Unlike the second category of  methods  that involve a costly 
change of representation, the proposed approach has a very 
small representation overhead. As  pointed out in Section 11-A, 
both the representation algorithms involved are of complexity 
O(n), whereas many methods of the second category have a 
representational cost that is far higher. 

Thus quadtree based path planning  is a good compromise 
between free-space algorithms and grid-search type al- 
gorithms. In addition, the path produced by the quadtree 
algorithm, although not “optimal”, is a “negotiable” path 
which  can be computed relatively quickly. Apart from this, the 
hierarchical nature of the representation gives many advan- 
tages in  path planning. For example, we can easily constrain 
the path to satisfy certain conditions, such as specification of 
minimal clearance of the path. More importantly, we can 
make the search staged, i.e., plan a path at a coarser lever and 
subsequently refine it  as needed, thus reducing the planning 



138 IEEE  JOURNAL OF ROBOTICS AND AUTOMATION, VOL. RA-2, NO. 3, SEPTEMBER 1986 

T I M E  28 

PURE A *  [ALPHA 1) 
EXPFItIIDED 191,499 

(a) 

T I M E  11 
EXPANDED 91,499 
PURE Fi* [ALPHA 611 

(b) 

Fig. 3. Example of single stage planning.  (a)  Result of single  stage A* search on the pure quadtree representation of an image, with 
(Y set to 1. S and G represent start and goal nodes  and  hatched  regions represent nodes  on  the  planned path. (b) The same  example as 
in Fig. 3(a),  but  with (Y set to 0. 

cost substantially. The advantage of the former has  been 
discussed in Section II-B. We will discuss the latter at greater 
length in the next section. 

111. STAGED PATH PLANNING 

A .  Motivation 
Though the algorithm which we presented in the Section I1 

is relatively efficient, it can be improved upon substantially. 
We often get undesirably small “black” (obstacle)  nodes  in 
the quadtree representation. One obvious source for this may 
be the existence of  very  small obstacles in a region of the 
environment that is otherwise obstacle-free. A more important 
source of these black nodes i s  the representation of irregular 
obstacles in quadtrees. Due to the recursive nature  of the 
quadtree, these small  black  nodes  will fragment the free space, 
giving rise to an undesirable increase in the depth of the 
quadtree and the number  of  leaf  nodes  and  consequently 
increasing the cost of the search. 

We can deal  with  this problem by first planning  the  path in a 
reduced-resolution quadtree, called a pruned quadtree, that 
contains gray leaf nodes, corresponding to mixtures of 
obstacles and free space. This implies that a node  can now 
have gray neighbors. An algorithm capable of planning a 
global path at this coarser level, and  subsequently  developing 
the path inside the gray nodes (which are included in the global 
path) in the second stage, can give rise to savings  in terms of 
computation without significant degradation of the  path 
obtained. As mentioned  in Section II-D, the  number of leaf 
nodes is on the order of  the  sum  of the perimeters of the 
obstacles, measured in the lowest resolution units. Thus 
conducting search at a resolution I levels below the pixel 
resolution reduces the “sum of the perimeters” and “number 
of leaf nodes” by a factor of 2‘ thereby substantially reducing 
the time complexity of the search. 

There are two aspects to this staged search that deserve 
detailed attention-the treatment of  gray  leaf  nodes during 
planning  and the generation of the pruned quadtree from the 

original quadtree. In the next  two subsections we shall discuss 
these two aspects in detail. 

B. Dealing  with  Gray Leaf  Nodes 

When planning a path through the pruned quadtree, we  have 
to deal  with  gray  leaf nodes. Specifically, the following three 
questions must  be answered: 1) what is done  when one of the 
neighbors of the current best  node (the node  that  is currently 
being expanded in the A * search) is a gray  node? 2)  how is the 
current path  expanded  when the current best  node is a gray 
node?  and 3) how  is the first stage path, involving gray leaf 
nodes, processed to get the  final  path  that contains free nodes 
exclusively? 

We shall address these in the following subsections. 
I )  Gray Leaf Neighbors: If one of  the  neighbors N of the 

current best  node B is a gray node, then before putting N on 
the OPEN list we must ensure that N can be entered from B .  If B 
is a free node, then N can be entered if  and  only  if there exists 
at least one free node rn in S(N) ,  such  that rn is  adjacent to B.  
In addition, if B itself  is a gray  node,  then N can  be entered 
from B as long as there exists a free node e in S(B) such  that e 
is adjacent to m. Note  that  checking  this entry condition  alone 
does  not guarantee that the gray node N is passable, i.e., that a 
path from B through N to a third node C exists. For example 
in Fig. 4, N can  be entered from B, through the free node m, 
but N cannot  be exited, except back to B. 

If  we decide to put N on the OPEN list  then  we  shall include in 
the heuristic value of N a measure of the “path complexity” 
c(N)  inside N. (This measure should be zero for a free node 
since the path inside the free node can be a straight line.) In 
general, it is difficult to give a measure which truly represents 
the complexity of a path inside the gray node, since at this 
point  in the search the direction in  which the path  will be 
exiting the gray node i s  unknown. But  in practice any measure 
depending  upon the gray content (number of obstacle pixels 
inside the gray node) of the gray  node  will  be a good choice. 
One  such normalized complexity  measure for the gray node N 
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Fig. 4. Dealing  with a gray  neighbor.  The  gray  neighbor Nwill be  placed on 
OPEN since  there is a  free node m in S(N) that  is  adjacent  to e, the  exit  node 
of the best node B corresponding  to N. Notice that the  presence of a gray 
node  on OPEN does  not  guarantee  the  passability  of  the  node; for  example, 
in the present  case, N cannot  be  excited  to  any  node  other  than B. 

is 
gray content ( N )  

size ( N )  
c (N)  = 

Given two gray nodes having the same gray content, the  path 
complexity should intuitively be higher for the gray node 
representing a region with more obstacle nodes. Thus a better, 
although costlier, complexity measure of the gray node N will 
take into account the number of obstacle nodes in S(N). 

Once the heuristic value is calculated, the gray node  is 
placed on the OPEN list and it can be  selected for expansion 
whenever its f -value is the best among the nodes on the OPEN 

list. 
2) Expanding Gray Nodes During Search: When the 

current best node B happens to be a gray node, expanding B 
becomes  a more involved operation. After generating B’s 
neighbors we  must ensure‘that for each of these neighbors N 
there exists a  path through B that connects B’s predecessor P 
on the current path to N (see Fig. 5). We refer to this as the 
“reachability” analysis for neighbor N. Secondly, for each 
neighbor N that can thus be reached we  have to record as N s  
g-value an estimate of the shortest path to N through B. This 
estimate should take into account the fact that the shortest path 
through B may  not be a straight line path, since B is  a gray 
node. 

One  way to achieve the above two objectives is by 
performing an A* search rooted at B to determine if N can be 
reached from P. If the A* search finds  such a path to N, then 
we can use the cost of  that  path as the g-value of neighbor N. 
The advantage of this method  is  that  we have the full power of 
A* search. The principal disadvantage to this method is that 
we need to perform this A* search once for every neighbor of 
By a rather large price to pay for path optimality. To avoid this 
disadvantage, we follow a distance-transform-based gray- 
node-expansion strategy, described below’. 

Let f be a free node  in S(B) such  that f is adjacent to B’s 
predecessor, P. Notice that there can be more than one such 
free node in S(B). If P is  a gray node, then we require thatfbe 
adjacent to a free node in S(P) (called  an “exit node” for P). 
This exit node  would have been determined when P was being 

Fig. 5. Expanding a  gray node. In the figure, B represents the current best 
node  in  the A* search; N is a neighbor of B. S and G represent start and 
goal  nodes respectively. The  path  to B consists of nodes S-1-2-3-4- 
5-6-7-P-B in  that order; thus P i s  B s  predecessor on the current  path. 
Of the  two nodesfandf’ that are adjacent  to P,f is  nearer to G; sofis the 
entry  node  of B. Of the four nodes e,  e‘, e ” ,  and e‘“ that are adjacent  to 
node N,  N cannot  be entered from e ” ,  and e’” cannot be reached fromf. 
Thus e and e’ are  the possible  candidates for exit  nodes. e is  chosen  as  the 
exit  node for B corresponding to N since it is  nearer  to f than e ’ .  e-dl- 

the  second stage of  path  planning. 
dz- . . . -d8-frepresents  the  path  that  will be developed inside B during 

expanded. We illustrate all this in Fig. 5. P is the predecessor 
of the best node By and N is  a neighbor of B.  Both f andf’  are 
free nodes in S(B), and  they are also adjacent to P. In such a 
situation, we choose the free node  which has the least straight 
line distance to the goal node-in this case f .  Thus the current 
path enters B through f .  f is recorded as the entry  node of B.  

Next, we compute a distance transform of the region 
represented by B with respect to f .  This involves recording for 
each free node f’ in S(B), f’ ’s shortest distance (which  we 
refer to as dis ( f ,  f’)) from f .  To carry out this computation, 
we first initialize dis ( f ,  f )  to zero (see Fig. 5), and dis (f, f’) 
for all other free nodesf’ in S(B) to 03. Next, we carry out  the 
propagation step: we  find all the neighbors off, f’ , which are 
in S(B) and for each such neighborf’ calcuiate dis ( f ,  f’), as 
the sum of dis ( f ,  f) and the nodal distance between f and f’ , 
D( f ,  f’). To ensure that the path inside B will take clearance 
from the obstacles into consideration, we include the cost of 
the  node d ( f ’ )  (see Section 11-B) in dis ( f ,  f’). We repeat this 
prspagation step for all the neighbors off, with the neighbors 
taking  the role off, and so on, until we exhaust all the free 
nodes in S(B). The detailed procedure is given in an 
algorithmic fashion in Listing 1 .  and is, essentially, the 
familiar shortest path algorithm for the case of “single source 
multiple destinations” [5 ] .  

Having computed the distance transform of B with respect 
to f ,  as detailed above, we are now  ready to continue with the 
expansion of B. For each of B’s neighbors N, N is marked 
reachable if there exists a free node e in S(B) which satisfies 
the following two conditions (see Fig. 5): 
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Listing 1 .  Distance Transform Algorithm. 

Procedure Distrans (B, f); 
/*B is the gray node representing the region  in 
whichf  is  a free node. The algorithm computes the 
distance transform of B with  respect to f. */ 

begin 
Vnode ES(B) dis (f, node) + 00; 
dis (f,f) +- 0; 
distran-OPEN + list (1); 
distrans-CLOSED + nil; 
until null (distrans-OPEN) 
do 

f’ +- first (distrans-OPEN); 
distrans-OPEN + rest (distrans-OPEN); 
NBRS + get-neighbors-inside-he-node ( f’ , B); 
/* get the neighbors off’ that lie in S(B)*/ 
foreach nbr E NBRS 

do 
newdis + D(f’ ,  nbr) + cr.node-cost (nbr) + dis(f, f’); 
if dis (f, nbr) > newdis and nbr E distrans-CLOSED then 

distrans-CLOSED + remove (distrans-CLOSED, nbr); 
dis (f, nbr) + min {dis (f, nbi), newdis]; 
if nbr a distrans-OPEN and nbi distrans-CLOSED then 

od 
distrans-OPEN + append (distrans-OPEN, nbr); 

od 
end Distrans; 

1) dis (f, e) < 03. This ensures that there is a path  between 
e and f inside S(B). 

2) N can be entered from e. AS discussed in Section  III-B- 
1, if N is a free node, this condition  is satisfied as long as 
Nand e are adjacent. On the other hand, if N is a gray 
node then the condition is satisfied if there exists a free 
node rn in S(N) such  that rn and e are adjacent. 

The node e, satisfying the above two conditions is marked as 
the exit node of gray node B with respect to N. Notice again 
that there may be more than one such node. For example, in 
Fig. 5 ,  e and e‘ satisfy both conditions, since there is a path 
fromfto each of these nodes, and N can  be entered from both 
the nodes. In such a situation, we select the node with smaller 
distance to f as the exit node. Thus, in Fig. 5 ,  e would  be 
chosen as the exit node of B with respect to N. 

Neighbor N of the best  node B is  placed  on  the OPEN list only 
if there exists an exit node e, for B with respect to N. If Ndoes 
go on to the OPEN list, the sum  of the g-value of B’s 
predecessor P,  g(P), and dis (f, e) is recorded as g(N). If N is 
a gray node, we  have to include in h p s  heuristic value h(N) an 
estimate of the path  complexity inside N as discussed in 
Section 111-B-1. This completes the discussion of  the expan- 
sion  of the best gray node B. 

At this  point it is  worth  noting the advantages of  using the 
distance transform in dealing with gray leaf nodes: First, it 
eliminates the necessity  of  multiple  rooted A* searches. The 
distance transform computation is efficient on the quadtree 
representation. Second, developing the path inside the gray 
nodes, after the first stage, is very simple. 
3) Developing the First Stage Path Containing  Gray 

Nodes: At the end  of the first stage of the staged search the 
planned  path may contain gray nodes as well as  free nodes. 
The path inside the gray nodes  is  developed in the second 
stage. 

If rooted A* search were used  in expanding gray nodes (as 

discussed in the previous subsection), then  this  second stage 
would  simply  amount to concatenating these paths through 
gray  nodes  with  the free nodes. 

If the distance transform is  used  instead  of  rooted A* 
search, then  the  path  development inside gray nodes is not as 
simple. The path development computation  involves the 
following (refer again to Fig. 5):  

For each gray node B on the path we retrieve B’s entry node 
f (recorded while expanding B)  and B’s predecessor P and 
successor N on  the path. Next, using N,  we retrieve the exit 
node e, for B corresponding to N. Now developing  the  path 
inside B amounts to finding the shortest path  between e and f 
and inserting it in  between Nand P. Finding the shortest path 
between e and f simply  involves backing up to f through 
neighbors  having smallest distance transform values. In Fig. 
5 ,  for example, the shortest path  between e and f, as found by 
this method, is e - dl - d2 - - * -d8 - f. 

C. Pruned  Quadtree  Generation Methods 
The primary motivation for pruned quadtree based  staged 

search, as noted  in  Section 111-A, is  to  offset the disadvantages 
of the fixed grid uniform recursive decomposition  involved in 
quadtree representation. By choosing an appropriate pruned 
quadtree, we can avoid a profusion of  nodes in a region  of  the 
image map, which  is relatively obstacle-free. This poses  the 
question  of  how to decide when a region, or the gray  node 
representing it, is relatively obstacle-free. None  of the simple 
measures  (such as grayness of the node) alone can answer this 
question entirely satisfactorily. For example, the grayness of a 
node tells us nothing about the distribution of the  obstacles  in 
the region represented by that node, and  in the extreme case a 
small value of grayness may  actually  be the result of a streak 
of obstacle pixels through the  middle  of the node. More 
commonly, a small grayness value of a gray node  may be due 
to a scattered obstacle distribution inside the gray node,  which 
fragments the free space. In such a case, the gray node  is 
obviously a bad candidate for a leaf  node  in  the  pruned 
quadtree. At the same time, we do not  want to base our 
decision on a very  involved analysis of  the gray node,  because 
this may increase the cost of pruned quadtree generation to the 
point where the staged search is, overall, less efficient than 
searching the original quadtree. 

Keeping  all these considerations in  mind  we experimented 
with  the  following pruned-quadtree-generation strategies. 

1) Using the Grayness of the Gray Node: This  method 
uses a threshold on grayness to identify  leaf  nodes of the 
pruned quadtree. The quadtree is traversed in a breadth  first 
fashion  and  any gray node whose grayness falls below  the 
threshold is made a leaf  node of the pruned quadtree. Once a 
gray node G is chosen as a leaf  node, the breadth first traversal 
ignores S(G). Fig. 6(b) shows the pruned quadtree gener- 
ated from the quadtree in Fig.  6(a), using this method, and 
also gives the result of a staged search on  this  pruned quadtree. 
This method sometimes chooses very large gray nodes, having 
a small grayness but a scattered obstacle distribution, as leaf 
nodes. This is undesirable, since the cost  of the distance 
transform increases polynomially (O(n2)) with the number of 
free nodes inside the region represented by the gray node. We 
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PURE R *  
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EXPANDED  126,348 
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T I M E  16 
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GR-TH 28% L E V - L I M  1 LEVEL-CUT 2 

(C) (dl 

T I M E  13 
E X P A N D E n   2 4 / 3 1  
LEAF-THRESH 58 

(e) 
Fig. 6 .  Experiments with various pruned  quadtree  generation strategies. (a) An example  of single  stage planning  on  a pure  quadtree. 

This is going to be  compared  to  the various pruned  quadtree  generation  methods. @) An example  of staged path planning, with 
grayness thresholding  (method 1) as  the  pruned quadtree generation  method;  the  threshold is 20 percent.  The leaf  node boundaries 
are outlined  and  the  nodes on the  path are  hatched. Notice  the large gray  leaf  node  in  the top left quadrant and  the  second stage path 
developed  inside  that node. (c) Staged  path  planning  with  a  pruned quadtree generation  method  that takes both grayness and size 
information into  account (method 2). Compare  the results to (b). (d)  Staged  path  planning  where  the  pruned quadtree is generated by 
truncating  the original  quadtree below  a  fixed level (method 3); level *reshold  is two. (e)  Staged  path  planning  with  leaf node 
thresholding  (method 4) as  the  pruned  quadtree  generation strategy. This  method is adopted as the pruned quadtree  generation 
strategy for the  subsequent experiments. 
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can partially offset this problem by adaptively setting the 
grayness threshold to lie between zero and the minimum of the 
grayness of the top few gray nodes  of the quadtree (say, the 
root node  and its four sons), thus ensuring that  none  of  those 
top level gray nodes  become  leaf nodes. More importantly, 
pruned quadtrees generated using this method are potentially 
unstable  with respect to the grayness threshold-a  small 
change in the threshold may change the structure of the pruned 
quadtree drastically. 

2) Using Size Information with  GraynessThreshold: This 
is one way  of avoiding the problem of overly large gray leaf 
nodes  associated  with the first method. This method also 
traverses the original quadtree in a top-down  breadth-first 
fashion. When it encounters a gray node  whose grayness falls 
below the grayness threshold, it checks that the size of the gray 
node falls below the size threshold before making  the gray 
node a leaf node. This method  is superior to the first one, 
because it will not choose large gray nodes  with small 
grayness and scattered obstacle distribution as leaf nodes. Fig. 
6(c) shows the pruned quadtree generated from the quadtree in 
Fig.  6(a), using  this  method  and also gives the result of a 
staged search on this pruned quadtree. 

3) Truncating the Tree Below  a Fixed Level: This method 
makes  any gray node  of the original quadtree lying at a fixed 
level a leaf  node  of the pruned quadtree. Fig. 6(d) shows a 
pruned quadtree generated from the quadtree in Fig. 6(a) using 
this method  and also gives the result of a staged search on  this 
pruned quadtree. The level of truncation could be determined 
based  on a histogram analysis on the obstacle node levels. This 
relatively straightforward method turns out to be unsatisfac- 
tory since depending upon the level of truncation it may make 
either of  the following two undesirable decisions: a) it  may 
choose very large gray nodes  with scattered obstacle distribu- 
tions as leaf nodes (like the first method)  and b) it may prevent 
moderately large gray nodes, which represent regions  with 
small grayness and very few free nodes, from becoming  leaf 
nodes. 

From the above three methods, it is obvious that the criteria 
for pruning should  be independent of the size of a gray node 
and  should  instead  depend  mainly on the cost of gray-node 
evaluation. As observed already, the cost of the distance 
transform on a gray node G depends upon the level of 
fragmentation of the region represented by G.  L(G), the 
number of leaf  nodes  in S(G), is a good measure of the 
fragmentation of  the region: the higher L(G), the higher the 
fragmentation and the costlier the distance transform. Notice 
that L(G) does not  depend  on  the  size  of G; thus larger nodes 
with relatively low fragmentation will also be  included  in the 
pruned quadtree as leaf nodes. Method 4, which  we chose as 
our method of pruned quadtree generation, uses L(G) as its 
basis for pruning. 

4) Using L(G),  the  Number of  Leaf  Nodes in S(G): This 
method  uses a threshold on L(G) to identify  leaf  nodes  of the 
pruned quadtree. Any gray node G, whose L(G) is lower than 
the threshold, is made a leaf node of the pruned quadtree in a 
breadth-first traversal of the quadtree. Computation of L(G) is 
straightforward and  is in fact even cheaper than grayness 
computation. For a given threshold, there is an upper  bound 

on the cost of gray-node evaluation based  on  the  distance 
transform, and thus the cost of the staged search can be 
effectively controlled. One important advantage of this  method 
is  that the threshold on L(G) is relatively independent of the 
specific image and depends only  on global criteria such as 
maximum allowable gray node evaluation cost and  maximum 
allowable suboptimality of the resultant path. Figure 6(e) 
shows a pruned quadtree generated using  this  method from the 
quadtree in Fig. 6(a), and  it also gives  the result of a staged 
search on this pruned quadtree. 

An important difference between  methods 1,2,  and 4 is that 
the latter may also include a gray node  with very high gray 
value as gray leaf node, as long as its L(G) value falls below 
threshold. This means  that  we are no longer assured of the  fact 
that  all gray nodes are relatively obstacle-free. Thus there is an 
increased need to penalize gray nodes  on OPEN having higher 
grayness so that  the search is  inhibited from expanding these 
nodes  unless absolutely necessary. 

Finally, we observe that  none  of the above methods  uses a 
criterion that properly reflects the distribution of obstacles 
inside the gray leaf node. This is not serious since  the 
passability  question  is completely answered by gray-node 
evaluation based  on  the distance transform. 

D. Results of  the Staged  Search 
Figs. 7-10 depict the paths found by pure A* search on the 

original quadtree, the first stage of  staged search on the pruned 
quadtree (with gray nodes  in  the path), and  the  second  stage  of 
staged search (after paths inside the gray nodes are devel- 
oped). The pruned quadtree used  in  the  staged  search  is 
generated automatically, as discussed in the section on pruned 
quadtree generation. Each of the figures lists the cpu time 
taken for path planning, number  of  nodes considered by the 
search versus total number  of leaf nodes, and  details of the 
method  of pruned quadtree generation used. 

The path generated by the staged search is comparable to the 
optimal  path generated by the pure A* search. However, the 
total cpu time taken (with compiled Franz Lisp running on a 
VAXlU785) by staged search (for pruned quadtree genera- 
tion, A * search and second stage path development) is three to 
ten  times less than  that taken by the pure A * search. (See Figs. 
7-10) for detailed timings for the examples presented. The 
timings are in CPU seconds and involve substantial  page 
swapping overhead.) Our experiments show  that  the  computa- 
tional savings are much higher for cluttered environments than 
for relatively free environments-compare Figs. 7 and 10, for 
example. This is reasonable since the fragmentation of free 
space is  much higher in cluttered environments. 

IV. RELATED WORK 
As  pointed  out in Section I, hierarchical representations 

have  been  used previously in manipulator findpath tasks. In 
this  section  we discuss some of that previous work in relation 
to our own. 

Wong et al. [21] use a modified version of quadtrees to 
solve three-dimensional findpath problems by planning a path 
in the three orthogonal two-dimensional projections of the 
three-dimensional environment. Their approach essentially 
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TIME 54 TIME 12 
EXPANDED 283,514 EXPANDED 21/22 
PURE A* LEAF-THRESH 58 

(a) (b) 

Fig. 7. Staged vs. single stage path  planning (example 1). (a) Results of 
single stage planning. (b) Results of staged planning. 

TIME 84 T I M E  1 6  
EXPANDED 468,835 EXPANDED 44/49 
PURE A* LEAF-THRESH 58 

(a) (b) 
Fig. 8. Staged vs. single stage path  planning  (example 2). (a)  shows the 
results of single stage planning and (b) shows the results of staged planning. 

TIME 38 T T M F  1 3  E X P R N D E ~  
PURE A* 

272,688 

(a) (b) 

Fig. 9. Staged vs. single stage path planning (example 3). (a) shows the 
results of single stage planning and (b) shows the results of staged planning. 
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T I M E  168 
EXPANDED 542,2863 
PURE A *  

(a) 

EXPANDED 2’3,124 
LEAF-THRESH 58 

(b) 
Fig. 10.  Staged  vs.  single stage path  planning  (example 4). (a)  Results of single stage planning. @) Results of staged planning. 

searches for a path  in a “point-based’’ quadtree representa- 
tion. (See [16] for a comparison between “region based” and 
“point based” quadtrees.) Faverjon [4] uses octrees (an 
extension of quadtrees to three-dimensions) for reducing  the 
time  complexity of the three-dimensional findpath  problem for 
a six joint manipulator. 

Lozano-PCrez [8] represented free space in the “configura- 
tion space” as a hybrid hierarchical structure consisting of 
rectanguloid  and polyhedral cells. However, he  planned a cell 
path strictly among the free cells of the representation, thus 
missing the computational advantages of hierarchical staged 
search. Another problem with  his approach was  that the path 
search could fail because the resolution of the representation 
was  not fine enough. Brooks  and  Lozano-PCrez later remedied 
these problems in [2]. The approach presented in their paper 
comes closest to our “staged search” approach. They cut the 
free space hierarchically into  full (obstacle), empty (free), and 
mixed rectanguloid cells, with the mixed cells representing 
areas of unexplored configuration space. They first try to plan 
a path  exclusively through the free cells. If  that fails, they  then 
repeat the search, this time considering the mixed  cells also. 
Next, for each mixed cell in the cell path, they  try to develop a 
path through the mixed cell. If any  of the mixed cells turns out 
to be impassable, then  they may have to repeat the search 
again, finding another free-mixed cell path. Since they  use the 
A* search algorithm as the  main engine for all these different 
searches, the overall process turns out to be  very expensive 
computationalIy.  Both [SI and  [2] refine their cell paths into 
point paths, since the cell path  in configuration space 
represents a set of possible solutions to the findpath problem. 

V. CONCLUSION 
In this paper we have presented methods of short range path 

planning for mobile robots, using quadtree hierarchical data 
structures. We demonstrated the merits of quadtree-based path 
planning  and also discussed in detail a method of staged  path 
planning  with  improved  computational cost compared to pure 
quadtree based single stage path planning. 

Lozano-PCrez [S] observes that the most important heuris- 
tic for a path-planning space representation is to avoid excess 

detail (and therefore time spent) on parts of the space that do 
not affect the planning operation. The quadtree representation 
naturally provides such a description of free space. Short- 
range planning for a mobile robot should  be  based  on 
decomposition of free space into units larger than  pixels for the 
search to be global. Hierarchical decompositions like the 
quadtree are a good  way to achieve this, especially  since the 
representation cost involved  is small. The hierarchical decom- 
positions may  not be as descriptive as decomposing free space 
into channels or other such  natural shapes, but the latter 
methods have a higher representation cost. Some  of the 
suboptimality of uniform grid recursive decomposition in- 
volved  in quadtree representation is offset by the staged 
version  of the path planner. 

Another important use  of staged search in  dynamic  path 
planning is that it offers an elegant way  of treating uncharted 
areas. These can be represented as gray nodes  with  very  high 
cost, and  when  they get included in the search, further 
processing can be expended to “chart” those  regions [12]. 

Looking further, the mobile  robot  needs to continually 
update the planned path, as it traverses it, in the light of  new 
information. To do this efficiently, we  need to be able to “add 
to” and “delete from” (or update) the representation of the 
image map with relatively low cost. In  the  context of dynamic 
path updating, one desirable property of a free-space represen- 
tation is that the individual obstacles affect the representation 
only in their immediate locality. A disadvantage of quadtree 
representation of free space  is  that it does not localize the 
effect of obstacles on the representation. This is a general 
shortcoming of representations that cut free space into 
rectanguloid cells. In contrast, the generalized cone represen- 
tation of free space described in [l] satisfies this property. One 
way  of “adding to” the quadtree representation satisfying  the 
localization property is discussed in [6] but  this is  not general 
enough to handle scroll updates. 
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