
Characterizing Multi-Contributor Causal Structures for Planning

Subbarao Kambhampati
Department of Computer Science and Engineering

Arizona State University
Tempe, AZ 85287-5406

email: rao@asuvax.asu.edu

Abstract

Explicit causal structure representations have been
widely used in classical planning systems to guide
a variety of aspects of planning, including plan
generation, modification and generalization. For
the most part, these representations were limited
to single-contributor causal structures. Although
widely used, single-contributor causal structures
have several limitations in handling partially or-
dered and partially instantiated plans. The fore-
most among these is that they are incapable of
exploiting redundancy in the plan. In this paper,
we explore multi-contributor causal structures as a
way of overcoming these limitations. We will pro-
vide a general formulation for multi-contributor
causal links, and explore the properties of sev-
eral special classes of this formulation. We will
also discuss their applications in plan generation,
modification and generalization.

1 Introduction

Representation and use of causal structure of the plans has
been a long-standing theme in classical planning. Some of
the specific (though similar) causal structure representations
that have been proposed include Protection intervals [19, 20]
[23], goal structure [21], plan rationale [24], causal links
[12], and validations [9]. Such representations have been
used extensively in plan generation to keep track of inter-
actions and to systematize the search process [21][12]; in
plan recognition to capture the plan rationale [14]; in replan-
ning, plan modification and abstraction planning to justify
individual planning decisions and to retract unjustified ones
[9][5][25]; in plan debugging to characterize the plan failures
[19][17]; and in plan generalization to explain plan correct-
ness and use that explanation as a basis for generalization
[10][2].

Most of the previous work modeled plan causal structures
in terms of single-contributor causal links, which capture
the dependencies between a consumer step requiring a pre-
requisite, and a single producer step which contributes that
prerequisite. Such single contributor causal structures suffer
from several disadvantages in capturing the causal structure
of partially ordered partially instantiated plans. The biggest
problem is their inability to deal with, and exploit redundant

contributors. Consider, for example, the prerequisite R of
the step fin in the plan MP shown in Figure 1 (the add and
delete lists literals of each step are shown above the step
with + and � signs, while the prerequisites of the step are in
parentheses under the step). The steps w0; s5 and w2 can all
independently provide R to fin. This type of redundancy
in the causal structure of plan can be gainfully utilized to
make interaction resolution more efficient during planning,
as well as to facilitate more efficient plan modification and
replanning strategies. Unfortunately however, we cannot do
this in a planner using single-contributor causal structures.
In the example above, a planner using single contributor
causal links will have to commit to one of w0; s5 or w2 as
the contributor.

Apart from failing to exploit the redundancy in the causal
structure, such a premature commitment may also lead to
unnecessary backtracking in the planning process (especially
in planners that employ goal protection). Especially trouble-
some in this respect are planners such as [12][18][13] that
widen the definition of protection violation to include both
those nodes that intervene and delete the protected condition
and those which intervene and merely reassert the protected
condition. This stronger definition of un-threatened and
un-usurped causal links is introduced to avoid redundancy
in the planner’s search process (i.e., to make sure that the
planner will not visit two plans with overlapping comple-
tions). Our empirical studies with [18] in a variant of blocks
world (that induces multiple redundant contributors for some
pre-requisites) demonstrate that not only do such planners
fail to exploit redundant contributors, but their performance
actually worsens in the presence of redundant contributors
[11]1.

A way of avoiding this overcommitment, while still keep-
ing down the redundancy in the planner’s search space (See
Section 5), is to model causal links as dependencies be-
tween a prerequisite and several contributor nodes such that
one of those contributor nodes is guaranteed to provide the
prerequisite for every execution sequence of the plan.

Although the idea of multi-contributor causal links has
been first introduced in Tate’s nonlin [21] (see Section 5),
there has not been any systematic study of their properties.

1Note that use of abstraction techniques, such as precondition
abstraction[16, 25] can mitigate this to some extent by postponing
achievement of preconditions which are likely to have multiple
contributors (and thus are easily achievable).

The primary goal of this paper is to develop a formal charac-
terization of multi-contributorcausal structures for planning.
We will present a general formulation for multi-contributor
causal links, and within that formulation explore several
sub-classes with useful properties. We will then describe
the advantages of using these causal structures in plan gen-
eration, modification and generalization. Specifically, we
will describe a planning algorithm based on them, and will
develop a justification framework based on multi-contributor
causal structures that can form the basis for plan modification
and generalization.
Guide to the paper: The rest of the paper is organized as
follows: Section 1.1 introduces some preliminary terminol-
ogy that is used throughout the rest of the paper. Section 2
provides the general formulation of multi-contributor causal
links, and characterizes the correctness of a plan with re-
spect to this formulation. Section 3 defines and explores
a variety of special classes of of multi-contributor valida-
tion structures with useful properties. Section 4 discusses
the applications of these causal structure representations in
planning. Section 4.1 describes a planning algorithm that
can exploit the multi-contributor causal structures described
in preceding sections. Section 4.2 develops the notion
of justifying individual planning decisions with respect to
causal structure, which is useful in plan modification and
generalization. Section 5 discusses the relations with past
research, and Section 6 summarizes the paper and discuss-
es some outstanding issues. Readers eager to understand
the applications of multi-contributor causal structures before
looking at the detailed formulations may want to go directly
to Section 4.1 after Section 2 on their first reading.

1.1 Terminology

In this paper, we will be using the following terminology for
partially ordered partially instantiated plans (widely referred
to also as nonlinear plans): A partially ordered partially
instantiated plan P is represented as a 3-tuple hT;O;�i,
where: T is the set of actions in the plan, and O is a partial
ordering relation over T , and � is a set of codesignation
(binding) and non-codesignation (prohibited bindings) con-
straints on the variables in P. T contains two distinguished
nodes tI and tG, where the effects of tI and the precondi-
tions of tG correspond to the initial and final states of the
plan, respectively. Actions are represented by instantiated
strips-style operators with Add, Delete and Precondition
lists, all of which are conjunctions of functionless first order
literals.

A partially ordered partially instantiated plan corresponds
to a set of totally ordered totally instantiated execution
sequences, called completions, each corresponding to a fully
instantiated topological sort of the plan that is consistent
with the binding constraints � and ordering constraints
O. Such a plan is considered correct if and only if each
of its completions is an executable strips plan capable
of transforming the world to a state where all the pre-
requisites of tG are satisfied. For plans involving strips
type operators without conditional or deductive effects, the
tweak truth criterion [1] provides a set of necessary and
sufficient conditions under which every completion of a
partially ordered partially instantiated plan will be correct in
the above sense.

2 Formulating Multi-contributor causal links

In formulating multi-contributor validation structures we
are faced with a choice as to how conservative our formula-
tion should be. In particular, given a prerequisite p of a step
w which needs contributors, we can be very conservative and
decide to include those and only those contributors that are
absolutely necessary to support p in all the completions of
the plan. On the other hand, we can also be anti-conservative
and include in our formulation any step which can possibly
contribute the prerequisite p (i.e., the step does not follow
w, and it has an effect that can possibly codesignate with p).
Our formulation below strikes a middle ground:

Definition 1 (Causal Link/Protection Interval) A causal
link (or protection interval) of a planP is a 3-tuple hS; p; wi
(or S

p
! w in McAllester’s notation [12]) where (i) w is an

individual step and S is a set of steps belonging to plan P,
(ii) w requires a condition p (iii) 8s 2 S 2(s � w) and (iv)
for each step s 2 S, there exists an effect e 2 effects(s)
such that2(e � p) 2 �.2

Definition 1.1 (Validation) Corresponding to each causal
link hS ; p ; wi, we associate the notion of a validation
hSE ; p; wi , where SE is a set of tuples: fhs; eijs 2 S; e 2
effects(s);2(e � p)g.

Consider again the plan MP shown in Figure 1. From
our definitions, hfw0; w2g; R; fini is a causal link for this
plan, and hfhw0; Ri; hw2; Rig; R; fini is the corresponding
validation. Thus the only difference between a causal
link and the validation is that the latter explicitly lists the
effects of the individual contributors that actually supply the
condition being supported by the causal link. In view of
this tight correspondence, we will use the words causal link,
protection interval and validation interchangeably in the
rest of the paper.

Definition 2 (Violated Causal Links) A causal link
hS ; p ; wi of a plan P is said to be violated if there are
completions of P where none of the contributors of S can
successfully provide the effect p to w, without some other
step s0 of the plan possibly intervening and deleting p. A
causal link is said to hold if and only if it is not violated.

From the definition, we have the following necessary
and sufficient conditions to ensure that a validation is not
violated:

Property 2.1 A validation hS ; p ; wi is not violated if and
only if 8s0 2 P s.t. :q 2 effects(s0) and 3(q � p), either
w � s0 or 9s 2 S such that s0 � s

2Note that requiring that all the contributors of a causal link
must provide an effect that will necessarily codesignate with the
condition being supported, is in general stronger than the constraints
imposed by tweak truth criterion [1]. Consider, for example, the
case of a plan where a step w needs a condition P (v), s1 has an
effect P (x), s2 has an effect P (z), s1 � w, s2 � w, s1 and s2 are
unordered w.r.t. to each other. We also have two other steps sg
and sd such that sg � s1, sd � s2, and sg negates P (u), and sd
negates P (y). Now, if we use a multi-contributor validation link
to support P (v) at w, then the weakest constraints we need are
[x � v ^ z � v]. This is stronger than what is required by the
modal truth criterion for guaranteeing the truth of P (u) at w, which
is [x � v ^ z � v] _ [x � v ^ (y 6� v _ z � v)] _ [z � v ^ (u 6�
v _ x � v)].

�
�
�
�
���

HHHHHHHHHHHHj -

-

--

-

�
�
�
�
���

@
@
@
@
@@R

(T1)

(T2)

+P,+Q

+T2, -P +P, +R

+T1, -P

(P, Q, R, U)

s1 w0 w1

fin

w2s2

s5st

+Q,+R

+U,+R,+T1

Figure 1: MP: A partially ordered plan

hfs1g; T1; w1i hfs2g; T2; w2i
hfw1; w2g; P; fini hfw0; w1g; Q; fini
hfw2; w0g; R; fini hfs5g; U; fini

Figure 2: A multi-contributor validation structure for the
plan MP

The above formulation explicitly admits the possibility
that p is contributed by different members of S for different
completions of the plan. This facilitates a more flexible way
of accommodating plans that are correct by the white-knight
clause of tweak truth criterion [1]. Consider, for example,
the prerequisite P of step fin in the plan MP shown in
Figure 1. Although both w1 and w2 provide P , neither of
them can do it in all the completions of MP. The standard
way of accommodating this type of situations within single-
contributor causal structure representations is to utilize the
white-knight declobbering clause, and to consider one of w1
and w2 as the node contributing P for fin and the other
node as the white-knight. The choice here, of which node to
refer to as the contributor and which to refer to as the white
knight, is completely arbitrary. It hides the fact that w1
and w2 are in fact complementary contributors for different
completions. Multi-contributor causal links obviate this
problem. In particular, the causal link hfw1; w2g; P; fini
can support p for fin according to our formulation.

2.1 Causal Structure and Plan Correctness

Using the definitions above, we can now characterize the
correctness of the plan with respect to a set of causal links in
a straightforward fashion.

Definition 3 (Plan Correctness w.r.t. Validation Struc-
ture) A plan P is said to be correct with respect to a set
of causal links (validations) V, if and only if (i) For each
precondition p of each step w of the plan, there exists a
causal link hS ; p0 ; wi 2 V such that (p0 � p) 2 � and (ii)
None of the causal links of V are violated. The set V is called
a causal structure or the validation structure for the planP.

It can be easily be shown that if a partially ordered partially
instantiated plan P is correct by the above definition, then
every completion of it will constitute a executable solution
for the corresponding planning problem. In particular, we
can show that in any completion of the plan, corresponding
to each prerequisite p of each step w, there will necessarily
be a step s of the plan that provides the prerequisite p to w
without any intervening steps of the plan denying it. 3 Figure
2 shows a set of valid (multi-contributor) causal links under
which the plan MP shown in Figure 1 is correct. The
converse of the above is however not necessarily true. In
particular, a plan may be incorrect according to a validation
structure V and may still be correct according to the modal
truth criterion.

3 Specializations of Multi-contributor causal
structures

The formulation of multi-contributor validation structure de-
veloped in the previous section is too general in that it does
not differentiate between causal links with irrelevant con-
tributors (i.e., contributors which will always be superseded
by other contributors), redundant contributors (i.e., contribu-
tors which can be removed without affecting the correctness
of the plan), and irredundant contributors (i.e., contributors
which cannot be removed without affecting the correctness
of the plan). In the following we tighten this formulation
by imposing some additional restrictions to derive special
classes of multi-contributorcausal structures with interesting
properties.

3.1 Irredundant Validation Structures

The most stringent restriction on multi-contributor causal
links would be to stipulate that every contributor in the

3To see this, consider a completion T 0 of the plan. Let v be
the last step before w in T 0 such that v deletes p. By definition 3,
there must be a causal link hS ; p0 ; wi in the plan such that p0 = p.
Further more, since the hS ; p0 ; wi is not violated, by definition 2
there must be a step s 2 S such that v � s. Thus, s can contribute
p to w without any intervening nodes denying it.

causal link is required in some strong sense. This is captured
by the notion of irredundant validation structures defined
below:

Definition 4 (Irredundant Contributors) A contributor s
of an initially un-violated causal link hS ; p ; wi is said to be
irredundant if removing s from S will violate the validation
(according to Definition 2).

Property 4.1 Given a validation hS ; p ; wi, a contributor
s 2 S is irredundant if and only if either S is a singleton
set, or there exists some step n in the plan such that: (i)
(n � s) ^ (w 6� n) and (ii) :d 2 effects(n) such that
3(d � p) and (iii) 8si 2 S if (si 6= s) then (n 6� si) (In
other words, s is the only step in the plan capable of foiling
the interaction caused by n.)

Definition 4.1 (Irredundant Validation Structure) A val-
idation structure V is said to be irredundant for a plan P if
and only if each contributor of every validation belonging to
V is irredundant.

Property 4.2 If V is an irredundant validation structure for
a planP, then a validation hS ; p ; wi 2 V will have multiple
contributors (i.e. S is not a singleton) if and only if proving
the truth of p at w in the plan P would require using the
white-knight clause in tweak’s truth criterion [1].

Thus, irredundancy generalizes the single contributor
validation structure (cf [9][12]) just enough to allow plans
that have white-knightinteractions. In particular, irredundant
validation structures admit multiple contributors in causal
links only when they are absolutely necessary. Since they
do not admit any form of redundant contributors, a planning
algorithm that constructs plans with irredundant validation
structures can suffer from the some of the same drawbacks
as the planner’s using single contributor causal links in terms
of premature commitment to contributors (see Section 1)
[12].

3.2 Relevant Validation Structures

Next, we will look at the notion of relevant validation
structure which is more general than irredundant validation
structures --- in that it allows redundant contributors, but
more specific than the formulation in Section 2 as it stipulates
that each contributor should be an effective contributor in at
least one completion of the partially ordered plan. To define
this formally, we need the notion of effective contributor in
a completion:

Definition 5 (Effective Contributor in a completion) Let
CP be a completion of plan P. For every step w in P, and
a precondition p of that step, p holds at w in the completion
CP, if and only if there exists a step s such that s is the
last step before w in CP which asserts p without any other
step between s and w asserting or deleting p. If such a
step s exists (and it is guaranteed to exist, if the plan P is
correct) then that step is called the effective (or relevant)
contributor of p to w in the completion CP.

Definition 6 (Irrelevant Contributors) A step s is said to
be an irrelevant contributor of a validation hS ; p ; wi of a
plan P if and only if s 2 S and s cannot be an effective
contributor of p to w in any completion of the plan P.

Property 6.1 Given a validation hS ; p ; wi, a step s be-
longing to S is an irrelevant contributor if there exists a
step u in the plan P, such that 2(s � u � w) and either
e 2 effects(u) ^2(e � p) or:e 2 effects(u) ^2(e � p)
(i.e., u comes after s and either reasserts or deletes p).

In the validation structure shown in Figure 2, w0 is an
irrelevant contributor for the causal link hfw0; w1g; Q; fini.
This is because w1 follows w0 in every completion of the
plan and thus the latter can never be the last step to assert Q
before fin in any completion of MP.

Definition 6.1 (Relevant Validation Structure) If a plan
P has a validation structure V such that no causal link in
V has any irrelevant contributors, then V is said to be a
relevant validation structure for P.

Property 6.2 All the contributors of a relevant validation
are necessarily unordered with respect to each other

This property can be derived as a corollary of property
6.1, by selecting the step u from S. The validation structure
in Figure 2 is not a relevant validation structure for MP.
However, it can be made relevant by removing w0 from the
validation hfw0; w1g; Q; fini.

It can be easily seen that irredundancy of validation struc-
ture is a stronger condition than relevance. Consequently, the
properties 6.1 and 6.2 also hold for irredundant validation
structures.

3.3 Exhaustive Validation Structures

We will now look at a specialization of relevant validation
structures called exhaustive validation structures. These
have the useful property that for every prerequisite in the
plan, the validation structure will account for every step in
the plan that can possiblybe a contributorof that prerequisite.

Definition 7 (Exhaustive Validation) A vali-
dation hS ; p ; wi of a plan P is said to be exhaustive if
the validation is relevant, and for every completion CP of
the planP, the effective contributor of p to w in CP belongs
to S.

From the definition, we have the following necessary and
sufficient conditions for exhaustiveness of a validation.

Property 7.1 A validation hS ; p ; wi of a plan P is exhaus-
tive if and only if it is relevant, and 8n 2 P, if n has an
effect e such that 3(e � p), then it must either be the case
that n 2 S or it must be the case that w � n or it must be
the case that 9s 2 S such that n � s.

In Figure 2, the validation hfw2; w0g; R; fini is not a
exhaustive validation since s5 also provides R to Fin and
it is not included in the validation. (It can also be seen that
except for this validation and hfs1g; T1; w1i, the rest of the
validations are exhaustive).

Definition 7.1 (Exhaustive Validation Structure) A vali-
dation structure V is said to be exhaustive with respect
to a plan P if and only if all the causal links in V are
exhaustive.

Unlike irredundance and relevance, exhaustiveness impos-
es additional constraints on a plan. Given a plan P, it is not
always possible to find a exhaustive validation structure forP

without adding additional constraints to it. 4 Consider the ex-
ample of the validation hfw2; w0g; R; fini in Figure 2. We
can make this validation exhaustive by simply adding s5 as
an additionalcontributor(making it hfw2; w0; s5g; R; fini).
However, the validation hfs1g; T1; w1i cannot be made ex-
haustive without also adding an ordering constraint s5 � w1
to MP. In other words, we cannot find a exhaustive validation
structure for MP as it stands.

In spite of their restrictiveness, exhaustive validation struc-
tures are useful because of their uniqueness: A plan may
have many different relevant or irredundant validation struc-
tures, but it can only have at most one exhaustive validation
structure:

Property 7.2 If V and V0 are two exhaustive validation
structures for a planP, then it must be the case that V = V 0.

An interesting corollary of this property is that in the
single-contributor case, exhaustive validation structures can
be used to define a equivalence class relation between non-
linear plans and their completions. In particular, given a
validation structure V, and a totally ordered totally instan-
tiated plan CP, we can uniquely determine the nonlinear
abstraction of CP to which V is an exhaustive validation
structure. This tight correspondence is used in McAllester’s
planner [12] to ensure the systematicity of the planning
algorithm.

4 Applications of Multi-contributor Causal
Links

4.1 Planning with Multi-Contributor Causal Links
In this section, we will describe how multi-contributor val-
idation structures described in the previous sections can be
used in planning. In particular, we will provide a McAllester
style planning algorithm [12] that is capable of generating
plans with relevant and exhaustive5 validation structures.
One of the advantages of this algorithm is that it enables
the planner to maintain multiple parallel contributors with-
out committing to any one of them prematurely (thereby
avoiding the limitations of the single-contributor validation
structures, described in Section 1).

Before we describe the planning algorithm, we need to
specify the notion of conflict/interaction used by the planner,
and the termination condition for the planner. Since we
want to maintain exhaustive (and thus relevant) validation
structure, from property 7.1, we see that a validation
hS ; p ; wi is threatened by any step v 62 V that either asserts
or deletes p.6 Thus, we define the notion of threat of a
validation as follows:

Definition 8 (Threat for a Validation) A step v is called a
threat to a causal link hS ; p ; wi if v is a step other than w,

4For the special case of single contributor causal structures, the
plans produced by nonlin [21] do not in general have exhaustive
validation structures, while those produced by McAllester’s planner
[12], and Minton et al’s UA planner [13] have exhaustive validation
structures.

5See Section 5 for a rationale for maintaining exhaustive
validation structures

6Note that by Definition 2, a step asserting p will not violate
the validation hS ; p ;wi. Thus the notion of threat is stronger than
that of violation.

and v 62 S and either q 2 effects(v) or :q 2 effects(v)
such that3(q � p).

Although this definition of threat is stronger than that
used in most classical planners, we will see that the use of
multi-contributor causal structures makes sure that it does
not cause any excessive backtracking (as was the case in
[12, 13]). Using this definition, we can now develop the
termination condition for the planner. In particular, we
define a complete plan as follows:

Definition 9 (Complete Plans) A plan P : hT;O;�i is
called complete with respect to a validation structure V if
the following conditions hold

� If w is a step in P, and w has a prerequisite p0, then V
contains some causal link of the form hS ; p ; wi, such
that (p0 � p) 2 �.

� If P contains a causal link hS ; p ; wi, and a step v that
is a threat to the causal link hS ; p ; wi, then O contains
either v � w or v � s for some s 2 S.

� For every causal link hS ; p ; wi 2 V, the members of S
are unordered with respect to each other.

It can be easily seen that completeness is a specialization
of the notion of correctness (definition 3). In particular,
any plan that is complete by the above definition is also
correct by definition 3, has a relevant validation structure
by property 6.2, and has an exhaustive validation structure
by definition 7.1.

The completeness condition should be seen as imposing
a particular bias (c.f. [15]) on the search space of partially
ordered plans defined by Chapman’s truth criterion [1]. It
is easy to show that this bias does not affect the complete-
ness of the planner (in the sense that for every planning
problem solvable by tweak, there exists a plan for that
problem which satisfies the termination condition specified
in definition 9).7

Figure 3 shows a McAllester style planning algorithm
[12] that generates plans that are complete by this definition.
To simplify discussion, we only show the procedure for
generating ground partially ordered plans. The procedure
for generating partially instantiated and partially ordered
plans can be obtained in a straightforward fashion using
the lifting transformation discussed in [12]. The important
difference between our algorithm and the one proposed in
[12] is that ours maintains multiple possible contributors for
each pre-requisite in a systematic fashion. Because of this,
its treatment of unsafe causal links is different.

When the procedure finds an unsafe causal link hS ; p ; wi
(in Step 3), it has three choices: The threat can either be
promoted to come after w (3(a)), or be demoted to come
before one of the the steps in S (3(b)). In addition, if the
threat is adding the prerequisite, then the procedure also
has the choice of merging the threat into the contributor
set S.8 This is what is done in step 3(c). Although all

7However, because of the restrictive nature of exhaustive val-
idation structures, it is possible that there exist plans which are
correct according to the tweak truth criterion, but do not satisfy
the completeness criterion.

8By this stage in the procedure,we know that 6 9s 2 S s:t: v � s.
From this it can easily be shown that no node in S necessarily
follows v. Thus, v can be included in the contributor list, as v is the
last such contributor

The Procedure FindCompletion(P; V; c)

1. If the partially ordered plan P is order inconsistent, or the total cost of the steps in P is greater than c, then fail.

2. If P is complete (by definition 9), then return hP;Vi.

3. Threatened Causal Links: If there is a causal link hS ; p ;wi in V and a +ve or -ve threat v to this link in the plan P , such that P does
not contain either (v � w) or (v � s) for some s 2 S , then nondeterministically return one of the following:

(a) FindCompletion(P + (w � v); MakeRelevant(V; (w � v)); c)
(b) if v deletes p, non-deterministically choose some s from S and return

FindCompletion(P + (v � s); MakeRelevant(V; (v � w)); c)
(c) If v adds p, then return

FindCompletion(P + (v � w); MakeRelevant(V � hS ; p ;wi + hS + v; p;wi; (v � w)); c)

4. There must now exist some open prerequisite (a step w and a prerequisite p of w, such that there is no causal link of the form
hS ; p ;wi in V). In this case, nondeterministically do one of the following:

(a) Let s be (nondeterministically) some step in P that adds p. Return the plan
FindCompletion(P + (s � w);MakeRelevant(V + hfsg; p;wi; (s � w)); c)

(b) Select (nondeterministically) an operator Oi from the allowed set of operations such that Oi adds p. Create a new step s in P
corresponding to the operator Oi. Then return the plan

FindCompletion(P + hfsg; p;wi + (s � w); c)

The Procedure MakeRelevant(V; (s1 � s2))
foreach hS ; p ;wi 2 V do

If prec(s1) \ S 6= ; and S \ succ(s2) 6= ;
then V V � hS ; p ;wi + hS n prec(s1); p; wi

od
Return V .

Figure 3: MP : A procedure for generating ground plans with exhaustive and relevant multi-contributor causal structures

3. Threatened Causal Links: If there is a causal link hS ; p ;wi in V and a -ve threat v to this link in the plan P , such that P does not
contain either (v � w) or (v � s) for some s 2 S , then nondeterministically return one of the following:

(a) FindCompletion(P + (w � v); MakeRelevant(V; (w � v)); c)
(b) Non-deterministically choose some s from S and return

FindCompletion(P + (v � s); MakeRelevant(V; (v � w)); c)
(c) Non-deterministically choose some step v0 (if any) in the plan such that (v � v0) and v0 adds p, and return

FindCompletion(P + (v0 � w); MakeRelevant(V � hS ; p ;wi + hS + v0; p; wi; (v0 � w)); c)

Figure 4: Treatment of threatened causal links in MP-I

the three choices are applicable to a threat that adds the
prerequisite, it is obviously heuristically advantageous to
prefer the alternative 3(c).

Finally, in step 4.a. when the procedure establishes an
open prerequisite with the help of existing steps of the plan,
it simply selects one of the possible contributors nondeter-
ministically. The contributor set will grow appropriately at a
later point, when threats are discovered and merged.9

Any time we introduce ordering constraints between two
existing steps of the plan (as is done in steps 3(a), 3(b), 3(c)
and 4(a)), it is possible to make some contributors of some
causal links irrelevant, thereby affecting the relevance of the
validation structure. We use the sub-routine called Mak-
eRelevant to maintain the relevance of the plan validation
structure all through the planning cycle.10 This procedure
takes the existing causal structure and the newly introduced
ordering relation as inputs, removes any irrelevant contrib-
utors from the causal links, and returns the resultant causal
structure (which is guaranteed to be relevant with respect to
the current plan). The algorithm uses the functions prec(s)
and succ(s). The former comprises of s and all the nodes
that necessarily precede s, while the latter comprises of s
and all its the nodes that necessarily follow s. The idea
behind this procedure is the following: When we add an
ordering between two steps s1 and s2, we essentially have
to be worried about the situation where we have a valida-
tion hS ; p ; wi such that S contains both s1 or some of its
predecessors, and s2 or some of its successors. When this
happens, the members of S are no longer unordered with
respect to each other, and thus hS ; p ; wi will no longer be
relevant. We can however make it relevant by removing s1
and its predecessors from S.

Note that since the procedure removes only irrelevant
contributors, for any step s that is removed from any val-
idation hS ; p ; wi, there will be a step s0 2 S such that
s � s0. Further, the test at the beginning of step 3 in the
procedure ignores any threat that necessarily precedes any of
the current contributors of the validation. Thus, once a step
has been removed from a causal link by MakeRelevant, it
will never be reintroduced into that link in that branch of the
search process (in other words, there will not be any looping
behavior because of removal of irrelevant contributors).

When the procedure FindCompletion terminates success-
fully, it returns a plan P and a validation structure V. It
can be easily shown that P will be correct, and that V will
be a relevant and exhaustive validation structure for P. The
advantage of this algorithm is that it exploits redundancy in
the plan causal structure, and avoids excessive backtrack-
ing. At the same time, by maintaining exhaustive (and
relevant) validation structures, it keeps the redundancy in
the planner’s search space low. We are currently conducting
empirical experimentation with an implementation algorithm

9In implementing this procedure, it is possible to reduce some
of this later interaction resolution by setting S initially to the set of
steps that are the last incoming contributors of p in each branch.
(Such steps are called the critical PV nodes in nonlin terminology
[21]).

10An alternative to maintaining a relevant validation structure
all through the planning cycle is to wait until a correct plan is
generated and then check for irrelevant contributors. However,
this latter alternative can produce spurious interactions involving
irrelevant contributors during planning and bog down the planner.

to characterize the computational benefits it can offer.
There is one other point to be noted about the treatment

of unsafe causal links in algorithm in Figure 3. In step 3
of the algorithm, when the threat v is deleting the condition
being supported by the causal link hS ; p ; wi, one possibility
is to see if there is a way of eliminating this interaction
by removing some non-irredundant contributor from S (
cf. [21]). If this is possible, then we can eliminate the
interaction without putting any further constraints on the
plan (see Section 5). Such a step, however, introduces two
complications: (i) Allowingremoval of contributorsas a way
of resolving interactions introduces retraction into the truth
criterion of the planner. This is contrary to the philosophy
of most first principles generative planners (such as tweak
[1]) which have monotonic refinement truth criteria. (ii)
Even if the planner were to allow retraction as a part of its
truth criterion, retraction in general introduces superfluous
constraints into the plan, affecting its minimality. Failing
to remove these superfluous constraints in turn can lead to
loss of completeness11. To deal with this, we need a way
of keeping track of the dependencies between the planning
decisions. For both these reasons, in the algorithm shown in
Figure 3, we avoided doing interaction resolution through
retraction. We will however discuss how retraction can
be accomplished without loss of completeness in the next
section, where we will describe a validation-structure based
justification framework that can be used for this purpose.

4.2 Justifying Plans with Multi-contributor Causal
Structures

Causal structure representations have been shown to be very
valuable in guiding plan modification [9][5], and general-
ization [10]. From a first principles perspective, the only
augmentation that is needed to enable a generative planner to
modify a given plan to solve a new problem, or to generalize
a given plan by removing unnecessary constraints, is the
ability to retract some constraints on the plan. Retracting de-
cisions from a plan typically may introduce inconsistencies
and/or superfluities into the plan which need to be handled
appropriately.

Causal structures can help in this process by serving
as a basis to justify individual planning constraints (steps,
ordering constraints and binding constraints) of a plan. In
particular, we can justify causal links in terms of the over all
goals of the plan, and then justify the other constraints in the

11Note however, that the removal of irrelevant contributors in
the procedure MakeRelevant in Figure 3 does not introduce any
superfluous constraints into the plan. To see why, consider the
case where a step s1 has just been removed from a causal link
hS ; p ;wi. Then it must have been the case that some node s 2 has
just been added to S such that s1 � s2. The question we need to
answer is whether there are any constraints that we imposed when
making s1 a contributor of p that we can remove now. Obviously,
the constraint s1 � w cannot be removed since s1 � s2 � w. The
only other constraints may have been some orderings imposed on
the plan to allow s1 to contribute p to w. Suppose, at the time we
decided to have s1 as a contributor, we had threat v such that v
deletes p. Obviously, if it was the case that s1 � v � w, then we
could not have avoided that interaction anyway. The only other
possibility is that v was unordered with respect to either s1 or w. In
either of these cases, v will still be a threat to the new validation,
and thus any constraints added to the plan to deal with v will still
remain justified.

plan in terms of the causal links they support [9][25][4]. Such
a justification structure allows the planner to locate parts of
the plan that become superfluous whenever a particular
retraction occurs.

When we allow multi-contributor causal structures, how-
ever, the mere fact that a step is supporting a validation
does not necessarily mean that it is justified. This is because
the step could be a redundant or irrelevant contributor of
the validation and consequently removing it will not lead
to incorrectness of the plan. In the following, we will
develop a framework for justifying a plan in terms of a
multi-contributor causal structure. We will start by justify-
ing causal links in terms of plan correctness, and then go on
to justify individual constraints in terms of the causal links.

Definition 10 (Causal Link Justification) Given a plan P
with a validation structure V, a causal link hS ; p ; wi 2 V
is justified if and only if it ultimately supports a prerequisite
of the goal step tG. That is either w = tG and 9q 2
prerequisites(tG) such that (q � p) or there exists another
justified causal link hS 0; p0; w0i such that w 2 S 0.

Definition 11 (Step Justification) A step s of a plan P
is said to be justified with respect to a relevant validation
structureV if and only if there exists a validation hS ; p ; wi 2
V such that s 2 S. In particular, the set of such validations
for which s is a contributor is defined as its justification. 12

A step s is said to be strongly justified if s is an irredundant
contributor for at least one validation.

A step s is said to be weakly justified if s is not strongly
justified, and every co-contributor of s in any causal link
that s participates in is strongly justified.

A justified step that is neither strongly justified nor weakly
justified is said to be conditionally justified.

In the validation structure of Figure 2 for the plan MP, the
stepsw1; w2; s1; s2 and s5 are all strongly justified. But, the
stepw0 is not strongly justified since w0 is not a irredundant
contributor with respect to any of the two validations in
which it participates. Additionally since the co-contributors
of w0 are all strongly justified, w0 is weakly justified.

The idea of conditional justification applies to steps that
are redundant contributors to every causal link to which they
contribute. No strongly justified steps can be removed from
the plan without making the plan incorrect (by definition
3). All unjustified steps and weakly justified steps can be
removed simultaneously without affecting the correctness of
the plan (in the later case, some redundancy in the validation
structure is eliminated). Any one conditionally justified step
can be removed without affecting the correctness of the
plan. Removing more than one conditionally justified step
simultaneously can make the plan incorrect. This is because
the step could be a redundant contributor of a causal link
along with another step. Each contributor by itself can be
removed without violating the causal link, but not both at the
same time.

Similar justifications can also be developed for ordering
constraints and binding constraints:

Definition 12 (Ordering justification) An ordering rela-
tion (s1 � s2) 2 O of a plan P : hT;O;�i is said to

12Note: For the special case of single-contributor validation
structures, this definition reduces to that of of e-conditions of a step
defined in [9][10].

be justified with respect to a validation structure V of the
plan, if and only if one of the following conditions is true:
(i) 9hS ; p ; wi 2 V such that s1 2 S ^ s2 = w or (ii)
9hS ; p ; wi 2 V such that s1 = w and :q 2 effects(s2)
and 3(q � p) or (iii) 9hS ; p ; wi 2 V such that s2 2 S
and :q 2 effects(s1) and 3(q � p). Additionally we say
that the ordering relation s1 � s2 is strongly justified if it is
either justified by one of the last two clauses, or if it justified
by the first clause and s1 is an irredundant contributor of
hS ; p ; wi.

Definition 13 (Codesignation justification)
A codesignation constraint (q � p) 2 � of a plan P :
hT;O;�i is justified with respect to a validation structure
V if and only if there exists a causal link hS ; p ; wi 2 V
such that 9s 2 S and q 2 effects(s) (i.e., the validation
corresponding to the causal link hS ; p ; wi (see Definition
1.1) is SE such that hs; qi 2 SE).

Further, if s is an irredundantcontributor of the validation
hS ; p ; wi, then the codesignation constraint is said to be
strongly justified.

Definition 13.1 (Separation justification)
A non-codesignation constraint (q 6� p) 2 � of a plan
P : P : hT;O;�i is justified with respect to a vali-
dation structure V if and only if there exists a causal
link hS ; p ; wi 2 V, and a step u in the plan such that
:q 2 effects(u), and 8s 2 S 3(s � u � w).

Additionally, every justified non-codesignation constraint
is also said to be strongly justified.

Finally, using the justifications for individual constraints,
we can now discuss the notion of justifying a plan with
respect to a validation structure as follows:

Definition 14 (Justification of a plan w.r.t. to a validation
structure) A plan P : hT;O;�i is said to be justified with
respect to a validation structure V if and only if every causal
link in V is justified, and every step s 2 T , every ordering
constraint o 2 O and every binding constraint c 2 � is
justified with respect to V.

Additionally, it is said to be strongly justified w.r.t. V if
all the steps, ordering constraints and binding constraints
are strongly justified.

Justifications like these can be computed for each in-
dividual decision in polynomial time or can be maintained
incrementally during planning and plan modification (cf [9]).
These justifications can be used to retract superfluous con-
straints from the plan while preserving the correctness of
the plan. In the following we describe two slightly different
justification procedures with differing properties:
Justifying a Plan: Justifying a plan is an iterative process.
Given a plan P and a causal structure V, we construct the
justified plan P 0 by removing all constraints of P that are
unjustified with respect to V. The resultant plan P 0 will
still be correct with respect to V. V may however contain
some unjustified causal links with respect to P 0 as a result
of this retraction. If this is the case, then we construct a new
validation structure V 0 by removing all the unjustified causal
links from V. We then repeat the whole process for P0 and
V0 (untilP 0 is justified w.r.t. V 0 and vice versa).
Minimizing a Justified Plan: A justified plan is not neces-
sarily the minimal such plan capable of achieving the goals
of the problem. In particular, there may be weakly justified

and conditionally justified constraints in the plan. We can
minimize a justified plan further by removing such weakly
justified constraints. However, every time a conditional-
ly justified constraint is retracted, we need to update the
justifications before retracting another one, since removal
of one conditionally justified constraint can make another
constraint strongly justified.

When justifyinga plan, we attempt to keep the intent of the
validation structure intact. If for example, the plan was de-
signed to have redundant contributors for some prerequisite
(either to increase robustness or ensure exhaustiveness), then
justifying a plan will not thwart this intent. Minimization,
on the other hand, cares only about the correctness of the
plan. If V is a relevant and exhaustive validation structure
for a plan P, and P0 is the result of strongly justifying P
with respect to V. Then V is not guaranteed to be a relevant
or exhaustive validation structure for P 0. Both these notion-
s of justifications become equivalent in single contributor
validation structures.

The justification framework described in this section can
form the basis for plan modification [9] and plan gener-
alization (cf. [10]) procedures, based on multi-contributor
validation structures. It can also be used to support retraction
of contributors as a way of resolving interactions during
planning (as discussed at the end of Section 4.1).

5 Related Work

To our knowledge, nonlin [21] and its successors are the
only previous planners to have used multi-contributor causal
links. nonlin’s GOST table, in conjunction with its Q&A
procedure, was capable of maintaining multiple redundant
contributors for each prerequisite in the plan. nonlin’s
method of maintaining the multiple contributors was not
complete, however. It would include multiple contributors
only when it was achieving the prerequisite for the first
time. In this case, it used its Q&A procedure (which is
equivalent to tweak truth criterion for ground plans) to
check for simple establishment. If Q&A returns more than
one possible contributor (the so called critical PV-nodes in
nonlin terminology13), then all such nodes are included as
contributorsof the prerequisite. During subsequent planning,
additionalcontributorsof that prerequisite may be introduced
into the plan, but nonlin will not increment the contributor
set unless there is negative interaction between the effects of
some newly introduced node and one of the contributors of
the pre-requisite. Thus, the validations in the GOST are not
in general guaranteed to be either relevant or exhaustive.

During interaction resolution, nonlin exploited the pres-
ence of multiple contributors -- when a particular interaction
clobbers the desired effect of one of the contributors for a
prerequisite, nonlin would check to see if there were other
contributors that are unaffected. If so, nonlin would simply
delete the affected contributors from GOST and continue.
The initial implementations of nonlin did not attempt to
re-justify the plan after such a retraction. This may leave
the plan with unjustified constraints (thereby affecting the

13Critical PV-nodes are essentially the last nodes on each in-
coming branch which assert the condition, without it being asserted
or deleted subsequently in that branch. Thus, none of the initial
contributors are all irrelevant. However, subsequent planning may
introduce ordering relations among them, making them irrelevant

minimality of the plan and the completeness of the planner).
O-plan [3], a successor of nonlin, has some provisions
to rectify this [4]. The development of justification frame-
work in Section 4.2 provides a systematic basis for doing
this. O-plan also had a more generalized notion of protec-
tion intervals called ‘‘clouds’’ [22], which were designed to
manage the contributors and terminators of aggregated sets
of dependencies. Clouds also allowed O-plan to manage
multiple contributors all through the planning, by actively
keeping track of the ‘‘last incoming contributor’’ wavefront.

There are also some interesting relations between this
paper and the recent work on systematic nonlinear planning
algorithms. In contrast to traditional planning algorithms
like nonlin [21] and tweak [1], the planning algorithms
described in [12] and [13]14 maintain exhaustive validation
structures. As mentioned in Section 3.3, exhaustiveness
property provides a tight correspondence between a nonlinear
plan and its completions, which is used in these planners to
avoid redundancy in the search space. As we pointed out
in Section 3.3, maintaining exhaustive validation structures
in general forces the planner to make additional (ordering
and binding) commitments on the plan. Our empirical
experimentation with a systematic planner ([12]) shows that
this increased commitment leads to excessive backtracking
on the average and thereby adversely affect the planners
performance [11].

What we have here is a tradeoff between redundancy in
the search space explored by the planner, and the amount of
commitment the planner is making. Planners like tweak
[1] have very low commitment, but may be searching in
highly redundant search spaces. Planners like UA [13] and
SNLP [12, 18] guarantee systematicity, but impose higher
commitment and thus may lead to more backtracking. The
tradeoff between non-redundancy in search space and least-
commitment will depend to a large extent on the density
of solutions in the domain [6]. In particular, if the domain
is such that the planner is forced to go through most of
its search space before finding a solution, a planner with
low redundancy in its search space can be expected to do
better than a fully least-committed planner such as tweak
[1]. On the other hand, when the solution density is not
very low, a planner which provides systematicity property
through increased commitment may do worse than tweak.

The planning algorithm based on multi-contributor causal
structures, described in Figure 3 strikes an interesting bal-
ance here. In particular, by using multi-contributor valida-
tion structures, our planner reduces amount of commitment,
while stillmaintaining exhaustiveness. Compared totweak
[1], which does not maintain any type of causal structures,
this algorithm still does more commitment and higher back-
tracking. However, by maintaining exhaustive and relevant
validation structures during planning, it also keeps down the
redundancy in its search space.

6 Conclusion and Future Directions

Although widely used in classical planning, single-
contributor causal structures have several disadvantages in

14Although Minton et al’s planner does not explicitly keep track
of causal structures, the net effect of the unambiguity restriction
used in their planner seems to be to provide exhaustiveness of
causal structure.

dealing with partially ordered partially instantiated plans,
which can be overcome by using multi-contributor causal
structures. The primary contribution of this paper is a clear
characterization of multi-contributor causal structures for
classical planning. We provided a general formulation of
multi-contributor causal links, and explored a variety of
sub-classes of this formulation with interesting properties.
We have also discussed applications of these formulations
in plan generation, modification and generalization.

There are several issues that remain to be addressed re-
garding multi-contributorcausal structures. Foremost among
these is characterizing their effect on the planning perfor-
mance. In Section 5, we suggested that the algorithm shown
in 3 strikes the middle ground between planners such as
tweak [1] which have very low commitment but have high
redundancy in the search space, and planners such as SNLP
[12] and UA [13] which have very high commitment but
avoid redundancy in the search space. Our next task will be
to implement the planning algorithm shown in Figure 3, and
conduct empirical experimentation to test this conjecture.

Acknowledgements:
Thanks are due to Austin Tate, who read a draft of this
paper and provided many valuable suggestions and pointers;
to Mark Drummond who listened to some of these ideas
in the early stages and provided useful feedback; to John
Bresina, whose comments about validation structure based
generalization of plans lead me to look into multi-contributor
validation structures seriously in the first place; and to the
anonymous reviewers of AAAI-92 and AIPS-92 for their
helpful comments.

References
[1] D. Chapman. Planning for conjunctive goals. Artificial

Intelligence, 32:333--377, 1987.

[2] S.A. Chien. An Explanation-Based Learning Approach to
Incremental Planning. (Ph.D. Dissertation). Available as
Technical Report UIUCDCS-R-90-1646, Dept. of Computer
Science, University of Illinois, Urbana, IL, 1990.

[3] K. Currie and A. Tate. O-Plan: The Open Planning
Architecture. Artificial Intelligence, 52:49-86.

[4] L. Daniels. Planning and operations research. In: Artificial
Intelligence: Tools, Techniques, and Applications (T. O’Shea
and M. Eisenstadt (Ed). Harper & Row, New York, 1984.

[5] S. Hanks and D. Weld. Systematic Adaptation for Case-Based
Planning. Technical Report 91-10-03, Department of Com-
puter Science and Engineering, University of Washington,
Seattle, WA, 1991.

[6] P. Langley. Systematic and Nonsystematic search strategies.
Submitted to AAAI-92.

[7] S. Kambhampati. Mapping and retrieval during plan reuse:
A validation-structure based approach. In Proceedings of 8th
National Conference on Artificial Intelligence, August 1990.

[8] S. Kambhampati. A theory of plan modification. In Proceed-
ings of 8th National Conference on Artificial Intelligence,
August 1990.

[9] S. Kambhampati and J.A. Hendler. A validation structure
based theory of plan modification and reuse. Artificial
Intelligence (To appear). (Available as Technical Report
STAN-CS-90-1312, Computer Science Department, Stanford
University).

[10] S. Kambhampati and S.T. Kedar. Explanation-Based Gen-
eralization of Partially Ordered Plans. In Proc. 9th AAAI,
1991.

[11] S. Kambhampati. Characterizing Multi-Contributor Causal
Structures for Planning. Technical Report, Dept. of Computer
Science and Engineering, Arizona State University, Tempe,
AZ 85287.

[12] D. McAllester and D. Rosenblitt. Systematic Nonlinear Plan-
ning. In Proc. 9th AAAI, 1991.

[13] S. Minton, J. Bresina and M. Drummond. Commitment
Strategies in Planning: A Comparative Analysis. In Proc.
12th IJCAI, 1991.

[14] M.E. Pollack. A Model of Plan Inference that Distinguishes
Between the Beliefs of Actors and Observers. In Proceedings
of the 1986 Workshop on Reasoning about Actions and Plans,
Morgan Kaufmann, Palo Alto, 1987.

[15] P.S. Rosenbloom, S. Lee and A. Unruh. Bias in Planning and
Explanation-Based Learning. In Machine Learning Meth-
ods for Planning and Scheduling. S. Minton (Ed.). Morgan
Kaufmann (in press)

[16] E. Sacerdoti. Planning in a Hierarchy of Abstraction Spaces.
Artificial Intelligence, 5(2), 1975.

[17] R. Simmons. A Theory of Debugging. In Proceedings of 7th
AAAI, St. Paul, MN, 1988.

[18] S. Soderland A. Barrett and D. Weld. The effect if step-order
representations on planning. Technical Report 91-05-06,
Department of Computer Science and Engineering, University
of Washington, Seattle, WA, June 1991.

[19] G.J. Sussman. A Computer Model of Skill Acquisition. Amer-
ican Elsevier, New York, 1975

[20] A. Tate. Interacting Goals and Their Use. In Proceedings of
IJCAI-75, pages 215-218, Tbilisi, USSR, 1975.

[21] A. Tate. Generating Project Networks. In Proceedings of
IJCAI-77, pages 888--893, Boston, MA, 1977.

[22] A. Tate. Goal Structure, Holding Periods and ‘‘Clouds.’’
In Proceedings of 1986 Timberline workshop on Reasoning
about Actions and Plans, pages 267-277, Morgan Kaufmann,
1986.

[23] R. Waldinger. Achieving several goals simultaneously. In
Machine Intelligence 8, Ellis Horwood Limited, Chichester,
1977.

[24] D. Wilkins Domain Independent Planning: Representation
and Plan Generation. Artificial Intelligence, 22:3, 1984.

[25] Q. Yang and J.D. Tenenberg. abtweak: Abstracting a
nonlinear, least-commitment planner. In Proceedings of 8th
AAAI, 1990.

