
Model-lite Planning for the Web Age Masses:
The Challenges of Planning with Incomplete and Evolving Domain Models

Subbarao Kambhampati∗
Department of Computer Science & Engineering

Arizona State University
http://rakaposhi.eas.asu.edu/rao.html

Abstract

The automated planning community has traditionally focused
on the efficient synthesis of plans given a complete domain
theory. In the past several years, this line of work met with
significant successes, and the future course of the community
seems to be set on efficient planning with even richer mod-
els. While this line of research has its applications, there are
also many domains and scenarios where the first bottleneck
is getting the domain model at any level of completeness. In
these scenarios, the modeling burden automatically renders
the planning technology unusable. To counter this, I will mo-
tivate model-lite planning technology aimed at reducing the
domain-modeling burden (possibly at the expense of reduced
functionality), and outline the research challenges that need
to be addressed to realize it.

Introduction
In the past several years, significant strides have been made
in scaling up plan synthesis techniques. We now have tech-
nology to routinely generate plans with hundreds of actions.
A significant amount of ongoing work in the community (as
well as in my own research group [7]) has been directed at
building up on these advances to provide efficient synthe-
sis techniques under a variety of more expressive conditions
(including partial observability, stochastic dynamics, dura-
tive/temporal actions, over-subscribed resources etc.).

All this work however makes a crucial assumption–that a
complete model of the domain is specified in advance. In
particular, the expected domain model includes precondi-
tions and effects of actions, probabilities of different out-
comes (in the case of stochastic domains), and action costs
and goal utilities (in the case of domains allowing partial
satisfaction).

While there are many domains where knowledge-
engineering such detailed models is necessary as well as fea-
sible (e.g. mission planning domains in NASA, factory-floor
planning), there are also many scenarios where insistence on
correct and complete models renders the current planning
technology unusable. Some high-profile examples of such
scenarios are:

∗For the latest version of this document as well as related re-
sources, please see http://rakaposhi.eas.asu.edu/model-lite
Copyright c© 2007, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

Web Service Composition: It is now common knowledge
that the problem of composing web services has signif-
icant relations to automated planning [29]. Within the
planning community, this realization has lead to work
on supporting planning and composition tasks over richly
specified web services (c.f. [25]). Outside of the planning
community however, the key realization has been that the
main bottleneck in web service composition is getting the
specifications of the services, and arguments have been
made in favor of planning support for light-weight mod-
els. (c.f. [10, 8, 9, 11]).

Workflow Management: Another wide-spread use of
“plans” is in terms of specification and management ofad
hoc workflows generated by lay users (be they scientists
using and modifying scientific workflows or software
engineers specifying flow-charts for applying patches
[23, 6]). Here too, insistence on detailed domain models
seems to be a significant liability (c.f. [21]).

Learning to Plan from Demonstrations: There is in-
creasing interest in supporting learning to plan from
interactive demonstrations. Two of the high-profile
DARPA programs, Integrated Learning and PAL both
involve aspects of this. Domain models acquired in this
fashion are, of necessity, incomplete and evolving [33].

What is needed in such scenarios seems to bemodel-lite
planning that can get by with incomplete domain models.
Ideally, we need anany-knowledgeplanning technology that
is able to cope with a variety of shallow and incompletely
specified domain models and provide automation that is (a)
proportional to the level of the available domain knowledge
and (b) improves with time and experience.

Although there have been isolated attempts at realizing
such model-lite planning technology (c.f. [9, 31, 6, 13]),
there has not been any concerted effort to bring such work
to the mainstream planning community (which continues to
focus on model-rich and interaction-heavy planning). My
aim is to thrust it to the foreground by identifying the bene-
fits as well as exciting research challenges that underlie the
realization of such model-lite planning technology.

My intent is not to argue against model-intensive planning
work that is at the center stage in the community. It clearly
continues to have a role. Rather, I want to persuade that
model-lite planning also deserves serious consideration and

rao
Text Box
To appear in AAAI 2007 Senior Member Track



Plan Critiquing / Retrieval

No Model
Shallow

Models

Approximate

Models

Plan creation

Management

Full

Models

Increasing degree of Completeness of domain models

Planning

Support }

Figure 1: A Spectrum of Incomplete Domain Models and associated planning capabilities

that there are impressive pay-offs as well as exciting techni-
cal challenges in realizing it.

In the following, I will first describe related work and my
own personal motivations. I will then draw a qualitative dis-
tinction between two classes of model-lite planning. This
is followed by three sections that provide a sketch of chal-
lenges I foresee in developing model-lite planning frame-
works, and current progress (in the community at large) to-
wards handling them.

In keeping with the spirit of the title, this short pa-
per does not make any claims on the completeness of
its treatment of model-lite planning. I do hope to
maintain a page of resources related to model-lite plan-
ning as well as any expanded versions of this paper at
rakaposhi.eas.asu.edu/model-lite

Background & Motivations
In a way, the realization that domain models must, of ne-
cessity, be incomplete goes back to the very beginnings of
planning research (c.f. qualification and ramification prob-
lems [26]). Even after planning community embraced state-
variable (STRIPS) representations of the world, some of the
earlier work was explicitly done to allow incomplete domain
specification.

It is interesting to note, for example, that the original mo-
tivation for HTN planning was to handle domains where
one doesn’t have complete causal theory of the domain. In
particular, HTN planning models were supposed to allow
effects and/or dependencies between non-primitive actions
that cannot be explained in terms of the preconditions/effects
of the primitive actions. As time went on however, HTN
planning has come to be seen as an add-on over and above
complete primitive-action theory of the domain.

A similar shift happened in case-based planning. Orig-
inally, case-based planning was supposed to handle do-
mains where the only available domain models were “case-
knowledge” and a store of plausible modification rules (c.f.
[16, 27]). As time went on however, HTN and case-based
planning approaches have come to be seen more as add-ons
over complete and correct STRIPS models. So, at one level,
this paper can be seen as an argument to restore the impor-
tance of handling incomplete models.

My own interest in model-lite planning began with my ef-
forts to adapt planning technology to autonomic computing
[30] (the specific application involved reasoning with and
managing software patching scripts). I have also noticed
this need in web-service composition where we found that

available services have at best “textual” descriptions of the
service capabilities [11].

I was also motivated by my own involvement in
data/information integration research [19, 20, 17]. Tradi-
tionally, the database community worked with model-rich
scenarios where schemas are pre-specified and the capabil-
ities and statistics of the databases under consideration are
readily available. With the advent of web, the community
has realized the need for supporting light-weight models
(c.f. [12, 15]) and this has, in turn, lead to a robust research
program that supplements rather than replaces the traditional
model (schema)-rich database research. I believe a similar
direction can be beneficial to the automated planning com-
munity.

Shallow vs. Approximate Domain Models
I view model-lite planning as planning with incomplete do-
main models. As I mentioned, the aim here is to reduce
the modeling burden (as we shall see, planning itself may
well be harder rather than easier in the face of incomplete
models). I will assume that a “full” domain model includes
enough knowledge to justify the correctness, and optionally,
the optimality of the plan. To this end, a full model includes
effect and cost models of the actions, inter-relations between
the actions as well as background ontologies.

Incompleteness of the domain model is a matter of
degree—ranging from no models to full models (see Fig-
ure 1). In looking at the challenges for handling incomplete
models, we will find it useful to qualitatively distinguish two
ends of incompleteness:

• “Approximate” domain models are those that are almost
complete, but have some missing details. Examples of
missing details could include missing preconditions and
effects of actions (c.f. [13]), or cost models. We would
like to be able to use approximate models to support plan
creation as well as plan critiquing.

• “Shallow” domain models, in contrast, are those that
aim to provide knowledge to support critiquing rather
than creation of plans. Examples of shallow models in-
clude I/O type specifications, task dependency knowl-
edge, case-bases, etc. (see below). Typically, these mod-
els do not involve precondition-effect style characteriza-
tion of the actions.

By supporting approximate domain models, we admit that
models may inevitably be faulty and incomplete. This, in
turn, reduces some of the model-validation burden from the



domain modeler. By supporting shallow models, we can
provide tools for plan critiquing and supporting manual plan
generation, for scenarios where the users are unwilling or
unable to provide generative models. (It is of course possi-
ble to have domain models that are shallow in some aspects
and approximate in other.)

Challenge: Planning Support for Shallow
Domain Models

The twin challenges of planning with shallow models are:

• Investigating wider variety of domain knowledge that can
either be (a) easily specified interactively or (b) can be
mined/learned.

• Types of planning support that can be provided with such
knowledge.

I have already mentioned in the background section that
the original motivation for case-based planning was to sup-
port planning when the only model of the domain involved
past cases. Given the availability of large databases of work-
flows (c.f. [23]), it would be interesting to rekindle the orig-
inal aims of case-based planning. To this, we can add other
shallow models including:

I/O Type Specifications: Some work on web service com-
position has shown that even just the knowledge of in-
put/output types can be gainfully used to support manual
plan generation (c.f. [10, 9]).

Task Dependencies:The research on workflows has fo-
cused on action/activity dependency specification that
cannot directly be explained in terms of the underlying
precondition/effect causal theory (c.f. [3]). Such depen-
dencies were found to be useful in managing software
patching scripts (c.f. [30]).

Clearly, these different models are not mutually exclusive,
and it would be interesting to consider ways in which they
can be gainfully combined. In this connection, one attrac-
tive possibility that is worth exploring is whether the vari-
ous types of domain knowledge can be compiled down into
some common substrate (e.g. equivalent knowledge in state-
variable models; see [30, 31]).

Challenge: Plan Creation with Approximate
Domain Models

When the available domain models can be characterized as
missing details from an almost correct model, the central
challenge is to support plan creationdespite the incomplete-
ness. Note that the model incompleteness can be either in
the domain dynamics or in terms of costs of various tasks.
Theoretically, the approximate model can be seen as a stand-
in for all the full models that are consistent with it. Ideally,
we should then generate robust plans that are guranteed to
work for any of the domain models. The plans themselves
may be “conformant” or have branches that are conditioned
on sub-classes of full models. The challenge of course is
doing this efficiently.

Generating Robust Plans: One possible direction is to de-
velop plans that are guaranteed to be robust as minor ad-
ditional features of the underlying domain model are dis-
covered/specified. Beginnings of such techniques can be
found in the work by Garland and Lesh [13] and Ginsberg
[14]. Another possibility is to model the incompleteness
in the domain model asuncertaintyin the domain (or the
problem initial state) and use stochastic/non-deterministic
planning techniques. An example of such an approach can
be found in [2].

Generating Diverse or Multi-option Plans: An al-
ternative approach for handling domain/cost model
incompleteness is to generate a diverse set of plans that
are complete/correct with respect to the possible complete
models consistent with the incomplete one. Approaches
for generating plans that are diverse with respect to
an incompletely specified cost model are described in
[28, 24]. It would also be interesting to characterize these
plans as a single branching “multi-option” plan where
the branching conditions are tests on domain/cost models
(that can potentially be evaluated during run-time).

Challenge: Learning to Improve Completeness
of Domain Models

Learning plays a central role in model-lite planning–either
in terms of acquiring original (shallow) domain models or in
terms of improving them through experience. The last time
there was significant interest in learning techniques in plan-
ning, it was mostly for speedup reasons [18, 34]. Once the
community figured out how to scale up search, that motiva-
tion partially disappeared. The need to deal with incomplete
domain models puts learning for planning back into spot-
light. In particular, we need techniques for learning plan-
ning knowledge from a variety of sources including textual
descriptions, plan traces as well as expert demonstrations.

For shallow models, we expect learning to bootstrap
the domain models by mining (or interactively acquiring)
task dependencies, cases, and I/O type specifications (c.f.
[10, 5]). For approximate models, we expect learning to
help in improving the domain models through experience
(or interactions with humans).

Here too there is a resurgence of recent interest. There has
been work on learning action models either purely from ex-
ample plans [32, 2] or in the presence of background knowl-
edge [5, 22]. There has also been work on learning cost
models indirectly given examples of better and worse plans
[1]. Much however remains to be done. An added bonus
of this direction is that it will naturally re-invigorate inter-
est in knowledge-based learning, a critical area that has lain
dormant in the recent years.

Summary
In this paper, I motivated the need for supporting “model-
lite planning.” I divided model-lite planning into two cat-
egories: planning with shallow models and planning with
approximate models—and identified planning and learning
challenges in both. I also tried to provide references to exist-



ing work that can be seen as implicitly focusing on model-
lite planning.

I believe that in many ways, the time is ripe for the plan-
ning community to focus on model-lite planning. The com-
munity has already started taking domain modeling issues
seriously (as evidenced by the Knowledge Engineering track
of the International Planning Competition, being held for the
second time in 2007). The need for interactive planning sup-
port in the presence of work flows, web services and desk-
top automation also pulls the community towards model-lite
planning. Finally, model-lite planning is also going to gel
well with the recent interest in integrated approaches for
planning and learning (as evidenced, for example, by the
DARPA Integrated Learning program).

Acknowledgements:
I would like to thank Biplav Srivastava for first stoking my
interest in this topic, and J. Benton, Dan Bryce, Will Cush-
ing, Sungwook Yoon and Menkes van den Briel for help-
ing me refine my ideas (without laughing at me). Jose Luis
Ambite, Jim Blythe, Alon Halevy and Joerg Hoffman pro-
vided useful comments and sanity checks on an earlier draft.
Support for this work is provided in part by the DARPA
Integrated Learning Program (through a sub-contract from
Lockheed Martin), NSF grant IIS-0308139, and by ONR
grant N000140610058.

References
[1] J. L. Ambite, C. A. Knoblock, S. Minton. Learning Plan

Rewriting Rules. AIPS 2000: 3-12.

[2] E. Amir. Learning Partially Observable Deterministic Action
Models. IJCAI 2005: 1433-1439

[3] P. C. Attieet. al. Specifying and Enforcing Intertask Depen-
dencies. VLDB 1993: 134-145

[4] J. Blythe et. al. The Role of Planning in Grid Computing.
ICAPS 2003: 153-163

[5] J. Blythe. Task learning by instruction in tailor. IUI 2005: 191-
198

[6] J. Blythe, E. Deelman, Y. Gil. Automatically Composed Work-
flows for Grid Environments. IEEE Intelligent Systems 19(4):
16-23 (2004)

[7] D. Bryce, S. Kambhampati. A Tutorial on Planning Graph
Based Reachability Heuristics. AI Magazine. Vol 28, No 1,
Spring 2007. Tutorial delivered at ICAPS 2006 and IJCAI 2007.

[8] M. Carman, C. Knoblock. Learning Semantic Descriptions of
Web Information Sources, IJCAI, 2007.

[9] M. Carman, L. Serafini, P. Traverso. Web Service Composition
as Planning. ICAPS Workshop on Planning for Web Services.
2003

[10] X. Dong et. al. Similarity Search for Web Services. VLDB
2004.

[11] J. Fan and S. Kambhampati. A Snapshot of Public Web Ser-
vices. SIGMOD Record, March 2005.

[12] M. Franklin, A. Halevy and D. Maier. From Databases to
Dataspaces: A new abstraction for information management.
ACM SIGMOD Record. December 2005.

[13] A. Garland, N. Lesh. Plan Evaluation with Incomplete Action
Descriptions. AAAI/IAAI 2002: 461-467

[14] M. Ginsberg. Approximate Planning. Artif. Intell. 76(1-2):
89-123 (1995)

[15] A. Halevyet. al.Crossing the Structure Chasm. CIDR 2003

[16] K. J. Hammond. Case-Based Planning: A Framework for
Planning from Experience. Cognitive Science 14(3): 385-443
(1990)

[17] T. Hernandez, S. Kambhampati. Integration of Biological
Sources: Current Systems and Challenges Ahead. SIGMOD
Record 33(3): 51-60 (2004)

[18] S. Kambhampati. Learning Techniques in Planning. Lectures
given at 2006 Machine Learning Summer School. Canberra.
2006rakaposhi.eas.asu.edu/ml-summer.html

[19] S. Kambhampati, C. Knoblock. Tutorial on In-
formation Integration on the Web. Offered at
AAAI 2002 (and to be offered at AAAI 2007).
http://rakaposhi.eas.asu.edu/i3-tut.html

[20] S. Kambhampati, G. Wolf, Y. Chen, H. Khatri, B. Chokshi, J.
Fan, U. Nambiar. QUIC: Handling Query Imprecision & Data
Incompleteness in Autonomous Databases. CIDR 2007.

[21] J. Kim, M. Spraragen, Y. Gil. An intelligent assistant for in-
teractive workflow composition. IUI 2004: 125-131

[22] G. Levine, G. DeJong. Explanation-Based Acquisition of
Planning Operators. ICAPS 2006.

[23] B. Ludscher, C. A. Goble: Guest editors’ introduction to the
special section on scientific workflows. SIGMOD Record 34(3):
3-4 (2005)

[24] K. L. Myers. Metatheoretic Plan Summarization and Com-
parison, in ICAPS 2006.

[25] M. Pistore, P. Traverso, P. Bertoli. Automated Composition of
Web Services by Planning in Asynchronous Domains. ICAPS
2005: 2-11

[26] R. Reiter.Knowledge in Action: Logical Foundations for
Specifying and Implementing Dynamical Systems. The MIT
Press. 2001.

[27] R. G. Simmons, R. Davis. Generate, Test and Debug: Com-
bining Associational Rules and Causal Models. IJCAI 1987:
1071-1078

[28] B. Srivastava, S. Kambhampati, T. Nguyen, M. B. Do, A.
Gerevini. Domain independent approaches for finding diverse
plans. IJCAI 2007.

[29] B. Srivastava. The Synthy Approach for End to End Web Ser-
vices Composition. Planning with Decoupled Causal and Re-
source Reasoning. AAAI 2006

[30] B. Srivastava and S. Kambhampati. The case for automated
planning in Autonomic Computing. 2nd Intl. Conf. on Auto-
nomic Computing. 2005.

[31] B. Srivastava, J. Vanhatalo, J. Koehler. Managing the Life Cy-
cle of Plans. AAAI 2005: 1569-1575

[32] Q. Yang, K. Wu, Y. Jiang. Learning Actions Models from
Plan Examples with Incomplete Knowledge. ICAPS 2005.

[33] S. Yoon and S. Kambhampati. Hierarchical Strategy Learn-
ing with Mixed Representations. AAAI Workshop on Acquiring
Planning Knowledge Via Demonstrations. 2007.

[34] T. Zimmerman, S. Kambhampati. Learning-Assisted Auto-
mated Planning: Looking Back, Taking Stock, Going Forward.
AI Magazine 24(2): 73-96 (2003)




