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Abstract

The current best conformant probabilistic planners encode
the problem as a bounded length CSP or SAT problem. While
these approaches can find optimal solutions for given plan
lengths, they often do not scale for large problems or plan
lengths. As has been shown in classical planning, heuristic
search outperforms CSP/SAT techniques (especially when a
plan length is not given a priori). The problem with apply-
ing heuristic search in probabilistic planning is that effective
heuristics are as yet lacking.
In this work, we apply heuristic search to conformant prob-
abilistic planning by adapting planning graph heuristics de-
veloped for non-deterministic planning. We evaluate a
straight-forward application of these planning graph tech-
niques, which amounts to exactly computing the distribution
over reachable relaxed planning graph layers. Computing
these distributions is costly, so we apply sequential Monte
Carlo techniques to approximate them. We demonstrate on
several domains how our approach enables our planner to
far out-scale existing (optimal) probabilistic planners and still
find reasonable quality solutions.

Introduction
Despite long standing interest [Kushmerick et al., 1994; Ma-
jercik and Littman, 1998; Hyafil and Bacchus, 2003, 2004],
probabilistic plan synthesis algorithms have a terrible track
record in terms of scalability. The current best conformant
probabilistic planners are only able to handle very small
problems. In contrast, there has been steady progress in
scaling deterministic planning. Much of this progress has
come from the use of sophisticated reachability heuristics.
In this work, we show how to effectively use reachability
heuristics to solve conformant probabilistic planning (CPP)
problems. We use work on planning graph heuristics for
non-deterministic planning [Bryce and Kambhampati, 2004;
Hoffmann and Brafman, 2004] as our starting point. The
heuristics we develop significantly improve scalability of
CPP.

We investigate an extension of the work by Bryce et al.
[2004] that uses a planning graph generalization called the
labelled uncertainty graph (LUG). The LUG is used to sym-
bolically represent a set of relaxed planning graphs (much
like the planning graphs used by Conformant GraphPlan
[Smith and Weld, 1998]), where each is associated with a
possible world. While the LUG (as described by [Bryce et

al., 2004]) works only with state uncertainty, it is necessary
in CPP to handle action uncertainty. Extending the LUG
to consider action uncertainty involves symbolically repre-
senting how at each level CGP explicitly splits the planning
graph over all joint outcomes of uncertain actions. In such
a case, each time step has a set of planning graph layers
(each a possible world) defined by the cross product of an
exponential set of joint action outcomes and an exponential
number of possible worlds from the previous level.

Without uncertain actions, the LUG worked well because
while there were an exponential number of possible worlds
at each time step the number was held constant. With uncer-
tain actions, an explicit or symbolic representation of plan-
ning graphs for all possible worlds at each time step is ex-
actly representing an exponentially increasing set. Since we
are only interested in planning graphs to compute heuristics,
it is both impractical and unnecessary to exactly represent
all of the reachable possible worlds. We turn to approximate
methods for representing the possible worlds. Since we are
applying planning graphs in a probabilistic setting, we have
the opportunity to use Monte Carlo techniques to sample the
planning graphs we construct.

There are a wealth of methods, that fall under the name
sequential Monte Carlo (SMC) [Arulampalam et al., 2002;
Doucet et al., 2001], for reasoning about a random variable
over time. The idea in SMC is to represent a probability dis-
tribution as a set of samples (particles), which are updated
over sequential time steps by sampling the system’s transi-
tion function (i.e., simulating each particle). In our setting,
each particle is a planning graph that represents a simula-
tion in the relaxed planning space. Instead of splitting over
all joint outcomes of uncertain actions to represent the true
distribution over possible worlds in the planning graph, we
sample a joint outcome of the actions to simulate the plan-
ning graph. By using more particles, we capture more of
the possible worlds, exploiting the natural affinity between
SMC approximation and heuristic accuracy.

The SMC technique requires multiple planning graphs
(each a particle), but their number is fixed. We could rep-
resent each planning graph explicitly, but they may have
considerable redundant structure. Instead, we generalize the
LUG to symbolically represent the set of planning graph
particles in a planning graph we call the Monte Carlo LUG
(McLUG). We show that by using the McLUG to extract
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a relaxed plan heuristic we are able to greatly out-scale
the current best conformant probabilistic planner CPplan
[Hyafil and Bacchus, 2004, 2003] in a number of domains,
without giving up too much in terms of plan quality.

Our presentation starts by describing the relevant back-
ground of CPP and representation within our planner, and
then gives a brief primer on SMC. We follow with a worked
example of how to construct planning graphs that exactly
compute the probability distribution over possible worlds
versus using SMC, as well as how one would symbolically
represent planning graph particles. After the intuitive exam-
ple, we give the details of McLUG and the associated re-
laxed plan heuristic. Finally, we present an empirical anal-
ysis of our technique compared to CPplan, a discussion of
related work, and conclusions.

Background & Representation
Definition 1 (Conformant Probabilistic Planning). The Con-
formant Probabilistic Planning problem is the tupleCPP =
〈F,A, bI , G, τ〉, where F is a set of boolean fluents, A is
a set of actions, bI is an initial belief state, G is a logi-
cal goal description, and τ is a goal satisfaction threshold
(0 < τ ≤ 1).

A solution to CPP is a conformant plan P , where with
probability no less than τ , a final resulting state in an exe-
cution of the plan will satisfy G. The plan P is a sequence
of actions that may have conditional and uncertain effects,
but no observations. For ease of exposition we assume the
goal is described by a conjunctive set of literals, but there
is no conceptual difficulty accommodating a general logical
description.

Belief States: A state of the world is an exhaustive assign-
ment of truth values to every fluent f ∈ F . Fluent truth
values f = l and f = ¬l are termed fluent literals (or just
literals). A belief state is a joint probability distribution over
all fluents. The probability of a state s in belief b, denoted
by b(s), is the marginal probability of the literals in the state
w.r.t. the belief state. A state is said to be in a belief state b
(s ∈ b) if b(s) > 0.

Actions: An action a is a tuple 〈ρe(a),Φ(a)〉, where ρe(a)
is an enabling precondition, and Φ(a) is a set of causative
outcomes. The enabling precondition ρe(a) is a conjunc-
tive set of literals that must hold in every state in a belief
state for the action to be executable. The causative out-
comes Φ(a) is a set of tuples 〈w(a, i),Φ(a, i)〉 represent-
ing possible outcomes (indexed by i), where Φ(a, i) is a set
of several conditional effects (indexed by j), and w(a, i)
is the probability that outcome i is realized. Each con-
ditional effect ϕ(a, i, j) in outcome Φ(a, i) is of the form
ρ(a, i, j) → ε(a, i, j), where both the antecedent (secondary
precondition) ρ(a, i, j) and consequent ε(a, i, j) are a con-
junctive set of literals. This representation of effects follows
the 1ND normal form presented by Rintanen [2003].

Progression: As outlined in the PPDDL standard [Younes
and Littman, 2004], for every action we can use Φ(a) to de-
rive a state transition function T (a, s) that maps state transi-
tions caused by an action into a probability distribution over

successor states s′. As a convenience, we represent these
functions as Algebraic Decision Diagrams (ADDs) [Bryant,
1986], and use symbolic methods to generate a successor
belief state from a belief state (which is also represented as
an ADD).

Search: We use forward-chaining, weighted A* search to
find solutions to CPP. The search graph is organized using
nodes to represent belief states, and edges for actions. A
solution is a path in the search graph from bI to a terminal
node. We define terminal nodes as belief states where the
marginal of the belief state with respect to G is greater than
τ (i.e., b(G) ≥ τ ). The g-value of a node is the length of
the minimum cost path to reach the node from bI . The f-
value of a node is g(b) + 5h(b), using a weight of 5 for the
heuristic. In the remainder of the paper we concentrate on
the very important issue of how to compute h(b).

Sequential Monte Carlo
In many scientific disciplines it is necessary to track the dis-
tribution over values of a random variableX over time. This
problem can be stated as a first-order stationary Markov pro-
cess with an initial distribution p(X0) and transition equa-
tion p(Xk|Xk−1). It is possible to compute the proba-
bility distribution over the values of X after k steps as
p(Xk) = p(Xk|Xk−1)...p(X2|X1)p(X1|X0)p(X0). In
general, p(Xk) can be very difficult to compute exactly.

SMC techniques allow us to approximate p(Xk) as a set
of N samples (particles) {xn

k}N−1
n=0 , where the probability

that Xk takes value xk,

P (Xk = xk) ≈ |{xn
k |xn

k =xk}|
N

is the proportion of particles taking on value xk. At time
k = 0, the set of samples is drawn from the initial distri-
bution p(X0). At each time step k > 0, we simulate each
particle from time k− 1 by sampling the transition equation
xn

k ∼ p(Xk|xn
k−1). In our application of SMC to planning

graphs, samples represent possible worlds and our transition
equation resembles the Conformant GraphPlan [Smith and
Weld, 1998] construction semantics.

We would like to point out that our SMC technique is in-
spired by, but different from the standard particle filter. The
difference is that we are using SMC for prediction and not
on-line filtering. We do not filter observations to weight our
particles for re-sampling. Particles are assumed to be unit
weight throughout simulation.

Monte Carlo Planning Graph Construction
We start with an example to give the intuition for sequen-
tial Monte Carlo in planning graph construction. Consider
a simple logistics domain where we wish to load a specific
freight package into a truck and loading works probabilis-
tically (because rain is making things slippery). There are
two possible locations where we could pick up the package,
but we are unsure of which location. There are three flu-
ents, F = { atP1, atP2, inP }, our initial belief state bI is
0.5: s0 = {atP1, ¬atP2, ¬inP }, 0.5: s1 = {¬atP1, atP2,
¬inP }, and the goal is G ={inP}. The package is at loca-
tion 1 (atP1) or location 2 (atP2) with equal probability, and
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is definitely not in the truck (inP). Our actions are LoadP1
and LoadP2 to load the package at locations 1 and 2, respec-
tively. Both actions have an empty enabling precondition
{}, so they are always applicable, and have two outcomes.
The first outcome with probability 0.8 loads the package if
it is at the location, and the second outcome with probability
0.2 does nothing (“Noop”). We assume for the purpose of
exposition that driving between locations in not necessary.
The descriptions of the actions are:

LoadP1 = 〈{}, {〈0.8, {atP1→inP}〉, 〈0.2, {Noop}〉}〉
LoadP2 = 〈{}, {〈0.8, {atP2→inP}〉, 〈0.2, {Noop}〉}〉

Each action has two outcomes. The first outcome has a sin-
gle conditional effect, and the second outcome has no ef-
fects.

Figure 1 illustrates several approaches to planning graph
based reachability analysis for our simplified logistics do-
main. (We assume we are evaluating the heuristic value
h(bI) of reaching G from our initial belief.) The first is
in the spirit of Conformant GraphPlan, where uncertainty
is handled by splitting the planning graph layers for all out-
comes of uncertain events. CGP creates a planning graph
that resembles a tree, where each branch corresponds to a
deterministic planning graph.

CGP: In Figure 1a, we see that there are two initial literal
layers (denoted by literals in boxes), one for each possi-
ble world at time zero. We denote the uncertainty in the
source belief state by X0, which takes on values s0, s1 (for
each state in our belief). Both load actions are applica-
ble in both possible worlds because their enabling precon-
ditions are always satisfied. The edges leaving the actions
denote the probabilistic outcomes (each a set of conditional
effects). While it is possible for any outcome of an action
to occur, the effects of the outcome may or may not have
their secondary precondition supported. In world s0, if out-
come Φ(LoadP1, 0) occurs, then effect ϕ(LoadP1, 0, 0) (de-
noted by atP1→inP) is enabled and will occur, however even
if Φ(LoadP2, 0) occurs ϕ(LoadP2, 0, 0) is not enabled and
will not occur.

The set of possible worlds at time one is determined by the
cross product of action outcomes in each world at time zero.
For instance, possible world x00 is formed from world s0
when outcomes Φ(LoadP1, 0) and Φ(LoadP2, 0) co-occur.
Likewise, world x12 is formed from world s1 when out-
comes Φ(LoadP1, 1) and Φ(LoadP2, 0) occur. (The edges
from outcomes to possible worlds in Figure 1a denote which
outcomes are used to form the worlds.)

CGP is exactly representing the reachable literal layers for
all possible worlds. In our example, CGP could determine
the exact distribution overX1 for every value ofX0. We see
that our goal is satisfied in half of the possible worlds at time
1, with a total probability of 0.8. It is possible to back-chain
on this graph like CGP search to extract a relaxed plan (by
ignoring mutexes) that satisfies the goal with 0.8 probabil-
ity. However, we note that this is not efficient because it is
exactly representing all possible worlds (which can increase
exponentially).

McCGP: Next, we illustrate a sequential Monte Carlo ap-
proach we call Monte Carlo CGP (McCGP), in Figure 1b.
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Figure 1: Variations on planning graph representations.
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The idea is to represent a set of N planning graph particles.
In our example we sampleN = 4 states {xn

0}N−1
n=0 ∼ P (X0)

and create an initial literal layer for each. To simulate a par-
ticle we first insert the applicable actions. We then insert
effects by sampling from the distribution of joint action out-
comes. It is possible to sample the outcome of each action
independently because the outcome of each action is inde-
pendent. Finally, the subsequent literal layer is constructed,
given the sampled outcomes. Note that each particle is a
deterministic planning graph.

In our example, the simulation was lucky and the literal
layer for each particle at time 1 satisfies the goal, so we may
think the best one step plan achieves the goal with certainty.
From each of these graphs where the goal is satisfied it’s pos-
sible to extract a relaxed plan, which can then be aggregated
to give a heuristic as described by Bryce and Kambhampati
[2004].

While McCGP improves memory consumption by bound-
ing the number of possible worlds, it still wastes quite a bit
of memory. Of the planning graphs many of the literal layers
are identical. Symbolic techniques can help us compactly
represent the set of planning graph particles.

Symbolic-McCGP: To see the intuition for symbolic rep-
resentation of planning graphs and why it is useful for
our Monte Carlo techniques, consider our third example,
symbolic-McCGP, in Figure 1c. In McCGP our sampling
gave us two copies of the initial literal layers for each initial
literal layer in CGP. We can capture the same notion of sam-
ples by representing the unique literal layers once and asso-
ciating a label with each. The label signifies which samples
use the literal layer. By labelling entire literal layers we are
improving our use of memory, but we can do better.

McLUG: Using ideas from Bryce et al. [2004] , we can rep-
resent a single literal layer at every time step for all samples
in a planning graph called the Monte Carlo LUG (McLUG),
in Figure 1d. By analogy with the symbolic-McCGP plan-
ning graph, we associate a label with each literal instead of
each literal layer. The idea is to union the connectivity of
multiple planning graphs into a single planning graph skele-
ton, and use labels on the actions and literals to signify the
original, explicit planning graphs in which an action or lit-
eral belongs. The contribution in the McLUG is to represent
a set of particles symbolically and provide a relaxed plan ex-
traction procedure that takes advantage of the symbolic rep-
resentation.

Symbolic Representation
Bryce et al. [2004] describe a planning graph generalization
called the Labelled Uncertainty Graph (LUG), used in non-
deterministic conformant planning, that symbolically repre-
sents the exponential number of planning graphs used by
Conformant GraphPlan [Smith and Weld, 1998]. Bryce et
al. [2004] construct multiple planning graphs symbolically
by propagating “labels” over a single planning graph skele-
ton. The skeleton serves to represent the connectivity be-
tween actions and literals in their preconditions and effects.
The labels on actions and literals capture non-determinism
by indicating the outcomes of random events that support the

actions and literals. In the problems considered by Bryce et
al. [2004] there is only a single random event X0 captured
by labels because the actions are deterministic. Where CGP
would build a planning graph for each possible state, the
LUG is able to use labels to denote which of the explicit
planning graphs would contain a given literal or action in a
level. For instance, if CGP built a planning graph for pos-
sible worlds s1, ..., sn (each a state in a source belief state)
and the planning graphs for s1, ..., sm each had literal p in
level k, then the LUG would have p in level k labelled with a
formula !k(p) whose models are {s1, ..., sm}. In the worst
case, the random event X0 captured by the labels has 2|F |
outcomes (i.e., all states are in the belief), characterized by
a logical formula over log2(2|F |) = |F | boolean variables.

Bryce et al. [2004] construct the LUG until all goal literals
are labelled with all states in the source belief, meaning the
goal is strongly reachable in the relaxed plan space. The
authors defined a strong relaxed plan procedure that back-
chains on the LUG to support the goal literals in all possible
worlds. This relaxed plan proved effective for search in both
conformant and conditional non-deterministic planning.

Exact Symbolic Representation
Despite the utility of the LUG, it has a major limitation
in that it does not reason with actions that have uncertain
effects, an essential feature of probabilistic planning. We
would like to complete the analogy between the LUG and
CGP by symbolically representing uncertain effects. How-
ever, as we argue, exactly representing all possible worlds is
still too costly even with symbolic techniques.

We previously noted that the LUG symbolically repre-
sents p(X0) using |F | boolean variables. When we have
uncertain actions, the distribution p(X1|X0)p(X0) requires
additional boolean variables to represent p(X1|X0). For ex-
ample, if the action layer contains |A| actions, each with
m probabilistic outcomes, then we would require an addi-
tional log2(m|A|) = |A|log2(m) boolean variables (for a
total of |F | + |A|log2(m) boolean variables to exactly repre-
sent the distribution p(X1|X0)p(X0)). For the distribution
after k steps, we would need |F | + k|A|log2(m) boolean
variables. In a reasonable sized domain, where |F | = 20,
|A| = 30, and m = 2, a LUG with k = 3 steps could
require 20+(3)30log2(2) = 110 boolean variables, and for
k = 5 it needs 170. Currently, a label function with this
many boolean variables is feasible to construct, but is too
costly to use in heuristic computation. We implemented this
approach (representing labels as BDDs) and it performed
very poorly; in particular it ran out of memory construct-
ing the first planning graph for the p2-2-2 logistics problem,
described in the next section. Consequently, we shift our
focus to approximating the distribution using particles.

Symbolic Particle Representation (McLUG)
We describe how to construct a McLUG, a symbolic ver-
sion of McCGP that we use to extract relaxed plan heuris-
tics. There are noticeable similarities to the LUG, but by
using a fixed number of particles we avoid adding boolean
variables to the label function at each level of the graph. We
implement labels as boolean formulas, but find it convenient
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in this context to describe them as sets of particles (where
each particle is in reality a model of a boolean formula).
The McLUG is constructed with respect to a belief state
encountered in search which we call the source belief state.
The algorithm to construct the McLUG starts by forming
an initial literal layer L0 and an inductive step to generate a
graph level {Ak, Ek,Lk} consisting of an action, effect, and
literal layer. We describe each part of this procedure in detail
and follow with a description of relaxed plan extraction.

Initial Literal Layer: The initial literal layer is constructed
with a set of N particles {xn

0}N−1
n=0 drawn from the source

belief state. Each particle xn
0 corresponds to a state s ∈ b in

the source belief state. (The super-script of a particle denotes
its identity, and the sub-script denotes its time index.)

In the example (assuming N=4), the samples map to the
states: x0

0 = s0, x1
0 = s0, x2

0 = s1, x3
0 = s1.

The initial literal layer L0 is a set of labelled literals
L0 = {l|!0(l) �= ∅}, where each literal must be labelled
with at least one particle. A literal is labelled !0(l) =
{xn

0 |l ∈ s, xn
0 = s} to denote particles that correspond to

states where the literal holds.
In the example, the initial literal layer is L0 = {atP1,

¬atP1, atP2, ¬atP2, ¬inP}, and the labels are:

!0(atP1) = !0(¬atP2) = {x0
0, x

1
0}

!0(¬atP1) = !0(atP2) = {x2
0, x

3
0}

!0(¬inP) = {x0
0, x

1
0, x

2
0, x

3
0}

Action Layer: The action layer at time k consists of all
actions whose enabling precondition is enabled, meaning
all of the enabling precondition literals hold together in at
least one particle. The action layer is defined as all en-
abled actions Ak = {a|!k(a) �= ∅}, where the label of each
action is the set of particles where it is enabled !k(a) =⋂

l∈ρe(a) !k(l). When the enabling precondition is empty,
the label contains all particles.

In the example, the zeroth action layer is A0 = {LoadP1,
LoadP2}, and the labels are:

!0(LoadP1) = !0(LoadP2) = {x0
0, x

1
0, x

2
0, x

3
0}

Both actions are enabled in all particles because their en-
abling preconditions are {}, thus always enabled.

Effect Layer: The effect layer contains all effects that are
labelled with a particle Ek = {ϕ(a, i, j)|!k(ϕ(a, i, j)) �= ∅}.
Determining which effects get labelled requires simulating
the path of each particle. The path of a particle is simulated
by sampling from the distribution over the joint outcomes
of all enabled actions, xn

k+1 ∼ p(Xk+1|xn
k ). We sample by

first identifying the actions that are applicable for a particle
xn

k . An action is applicable for particle xn
k if xn

k ∈ !k(a).
For each applicable action we sample from the distribution
of its outcomes. The set of sampled outcomes identifies the
path of xn

k to xn
k+1. We record the path by adding xn

k+1

to the labels !k(ϕ(a, i, j)) of applicable effects of sampled
outcomes. Note that even though an outcome is sampled for
a particle, some of its effects may not be applicable because
their antecedents are not supported by the particle (i.e. xn

k �∈⋂
l∈ρ(a,i,j) !k(l)).

In the example, we first simulate x0
0 by sampling the out-

comes of all actions applicable in x0
0, which is both Load

actions. Suppose we get outcome 0 for LoadP1 and out-
come 1 for LoadP2, which are then labelled with x0

1. Par-
ticle x1

0 happens to sample the same outcomes as x0
0, and

we treat it similarly. Particle x2
0 samples outcome 0 of

both actions. Note that we do not label the effect of out-
come 0 for LoadP1 with x2

1 because the effect is not en-
abled in x2

0. Finally, for particle x3
0 we sample outcome 1 of

LoadP1 and outcome 0 of LoadP2. Thus, the effect layer is
E0 = {ϕ(LoadP1, 0, 0), ϕ(LoadP1, 1, 0), ϕ(LoadP2, 0, 0),
ϕ(LoadP2, 1, 0)}, labelled as:

!0(ϕ(LoadP1, 0, 0)) = {x0
1, x

1
1}

!0(ϕ(LoadP1, 1, 0)) = {x3
1}

!0(ϕ(LoadP2, 0, 0)) = {x2
1, x

3
1}

!0(ϕ(LoadP2, 1, 0)) = {x0
1, x

1
1}

Literal Layer: Literal layer Lk contains all literals that are
given by an effect in Ek−1. Each literal is labelled by the
particles of every effect that gives it support. The literal layer
is defined as Lk = {l|!k(l) �= ∅}, where the label of a literal
is !k(l) =

⋃
l∈ε(a,i,j),ϕ(a,i,j)∈Ek−1

!k−1(ϕ(a, i, j)).
In the example, the level one literal layer is L1 = L0 ∪

{inP}. The literals are labelled as:

!1(atP1) = !1(¬atP2) = {x0
1, x

1
1}

!1(¬atP1) = !1(atP2) = {x2
1, x

3
1}

!1(inP) = !1(¬inP) = {x0
1, x

1
1, x

2
1, x

3
1}

The literals from the previous literal layer L0 persist
through implicit noop actions, allowing them to be labelled
as in the previous level – in addition to particles from any
new supporters. The inP literal is supported by two effects,
and the union of their particles define the label.

Termination: McLUG construction continues until a literal
layer supports the goal with probability no less than τ . We
assess the probability of the goal at level k by finding the set
of particles where the goal is supported and taking the ratio
of its size with N. Formally,

p(G|Xk) ≈ | T

l∈G �k(l)|
N

We also define level off for the McLUG as the condition
when every literal in a literal layer is labelled with the same
number of particles as in the previous level. If level off is
reached without p(G|Xk) ≥ τ , then we set the heuristic
value of the source belief state to ∞.

Heuristics
We just defined how to terminate construction of the
McLUG at level k, and we can use k as a measure of the
number of steps needed to achieve the goal with probability
no less than τ . This heuristic is similar to the level heuris-
tic defined for the LUG [Bryce et al., 2004]. As has been
shown in non-deterministic and classical planning, relaxed
plan heuristics are often much more effective, despite be-
ing inadmissible. Since we are already approximating the
possible world distribution of the planning graph and losing
admissibility, we decide to use relaxed plans as our heuris-
tic. Our relaxed plan extraction is almost identical to the
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relaxed plan extraction in the LUG. The extraction is very
fast because it makes use of the symbolic representation to
obtain a relaxed plan for all particles at once, rather than
each individually and aggregating them. The intuition be-
hind the relaxed plan is that we know which particles support
the goal literals and which paths the particles took through
the McLUG, so we can pick actions, labelled with these
particles, that support the goal.

In our example, the goal inP is labelled with four
particles {x0

1, x
1
1, x

2
1, x

3
1}. Particles x0

1, x
1
1 are supported

by ϕ(LoadP1, 0, 0), and particles x2
1, x

3
1 are supported by

ϕ(LoadP2, 0, 0), so we include both LoadP1 and LoadP2
in the relaxed plan. For each action we subgoal on the an-
tecedent of the chosen conditional effect as well as its en-
abling precondition. By including LoadP1 in the relaxed
plan to support particles x0

0, x
1
0, we have to support atP1 for

the particles. We similarly subgoal for the particles sup-
ported by LoadP2. Fortunately, we have already reached
level 0 and do not support the subgoals further. The value of
the relaxed plan is two because we included two actions.

Often there are many choices for supporting a subgoal in
a set of particles. Consider a subgoal g that must be sup-
ported in a set of particles {x1

k, x
2
k, x

3
k} and is supported by

effect ϕ in particles x1
k and x2

k, ϕ′ in particles x2
k and x3

k,
and ϕ′′ in x2

k. Choosing support in the wrong order may
lead us to include more actions than needed, especially if
the effects are of different actions. This problem is actually
a set cover, which we solve greedily. For example, until the
set of particles for g is covered, we select supporting effects
based on the number of new particles they cover (except for
literal persistence actions, which we prefer over all others).
The number of particles an effect can support is proportional
to the probability with which the effect supports the literal.
Say we first pick ϕ because it covers two new particles, then
ϕ′ can cover one new particle, and ϕ′′ covers no new par-
ticles. We finish the cover by selecting ϕ′ for particle x3

k.
Notice that even though ϕ′ can support two particles we use
it to support one. When we subgoal to support ϕ′ we only
support it in particle x3

k to avoid “bloating” the relaxed plan.
As studied in an extension of the LUG that propagates cost
information [Bryce and Kambhampati, 2005], this set cover
can become a weighted set cover that is sensitive to the cost
of having to subgoal for a supporter.

Empirical Analysis
We externally evaluate our planner and its heuristic based
on the McLUG by comparing with the leading approach to
CPP, CPplan [Hyafil and Bacchus, 2003, 2004]. We also in-
ternally evaluate our approach by adjusting the number of
particles N that we use in each McLUG. We refrain from
comparing with POMDP solvers, as did [Hyafil and Bac-
chus, 2004], because they were shown to be effective only on
problems with very small state spaces (e.g., slippery gripper
and sandcastle-67) and we care about problems with large
state spaces. Our approach does only slightly better than
CPplan on the small state space problems and we doubt we
are superior to the POMDP solvers on these problems.

Our planner is implemented in C and uses several exist-
ing technologies. It employs the PPDDL parser [Younes

and Littman, 2004] for input, the IPP planning graph con-
struction code [Koehler et al., 1997] for the McLUG, and
the CUDD BDD package [Brace et al., 1990] for represent-
ing belief states, actions, and labels. We use four test do-
mains for our evaluation: logistics, grid, slippery gripper,
and sandcastle-67. In our test setup, we used a 2.66 GHz
P4 Linux machine with 1GB of memory, with a timeout of
20 minutes for each problem. We note that CPplan performs
marginally worse than previously reported because our ma-
chine has one third the memory of the machine Hyafil and
Bacchus [2004] used for their experiments.

CPplan is an optimal bounded length planner that uses a
CSP solver for CPP. Part of the reason CPplan works so well
is its efficient caching scheme that re-uses optimal plan suf-
fixes to prune possible solutions. In comparison, our work
computes a relaxation of plan suffixes to heuristically rank
partial solutions. CPplan finds the optimal probability of
goal satisfaction for a given plan length (an NPPP -complete
problem [Littman et al., 1998]), but our planner, like Buri-
dan [Kushmerick et al., 1994], finds plans that satisfy the
goal with probability no less than τ (an undecidable prob-
lem [Madani et al., 1999]). CPplan could be used to find an
optimal length plan that exceeds τ by iterating over increas-
ing plan lengths (similar to BlackBox [Kautz et al., 1996]).

To compare with CPplan, we run CPplan on a problem for
each plan length until it exceeds our time or memory limit.
We record the probability that CPplan satisfies the goal for
each plan length. We then give our planner a series of prob-
lems with increasing values for τ (which match the values
found by CPplan). If our planner can solve the problem
for all values of τ solved by CPplan, then we increase τ by
fixed increments thereafter. We ran our planner five times on
each problem and present the average run time, plan length,
and expanded search nodes. Comparing the planners in this
fashion allows us to compare the plan lengths found by our
planner to the optimal plan lengths found by CPplan for the
same value of τ . Our planner often finds plans that exceed
τ and include more actions, whereas CPplan meets τ with
the optimal number of actions. Nevertheless, we feel the
comparison is fair and illustrates the pro/cons of an optimal
planner with respect to a heuristic planner.

Logistics: The logistics domain has the standard logistics
actions of un/loading, driving, and flying, but adds uncer-
tainty. Hyafil and Bacchus [2004] enriched the domain de-
veloped by Hoffmann and Brafman [2004] to not only in-
clude initial state uncertainty, but also action uncertainty.
In each problem there are some number of packages whose
probability of initial location is uniformly distributed over
some locations and un/loading is only probabilistically suc-
cessful. Plans require several loads and unloads for a sin-
gle package at several locations, making a relatively simple
deterministic problem a very difficult stochastic problem.
We compare on three problems p2-2-2, p4-2-2, and p2-2-
4, where each problem is indexed by the number of possible
initial locations for a package, the number of cities, and the
number of packages. See [Hyafil and Bacchus, 2004] for
more details.

The plots in Figures 2, 3, and 4 compare the total run
time in seconds (left), the plan lengths (center), and num-
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Figure 2: Run times (s), Plan lengths, and Expanded Nodes vs. τ (log scale) for Logistics p2-2-2
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Figure 3: Run times (s), Plan lengths, and Expanded Nodes vs. τ (log scale) for Logistics p4-2-2
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Figure 4: Run times (s), Plan lengths, and Expanded Nodes vs. τ (log scale) for Logistics p2-2-4

ber of expanded search nodes (right) of our planner with
16/32/64/128 particles in the McLUG versus CPplan. In
this domain we also use helpful actions from the relaxed plan
[Hoffmann and Nebel, 2001]. We notice that CPplan is able
to at best find solutions where τ ≤ 0.26 in p2-2-2, τ ≤ 0.09
in p4-2-2, and τ ≤ 0.03 in p2-2-4. In most cases our planner
is able to find plans much faster than CPplan for the prob-
lems they both solve. It is more interesting that our planner
is able to solve problems for much larger values of τ . Our
planner finds solutions where τ ≤ 0.95 in p2-2-2, τ ≤ 0.85
in p4-2-2, and τ ≤ 0.15 in p2-2-4, which is respectively 3.7,
9.6, 5.2 times the maximum values of τ solved by CPplan.
In terms of plan quality, the average increase in plan length
for the problems we both solved was 4.6 actions in p2-2-2,
4.2 actions in p4-2-2, and 6.4 actions in p2-2-4. We believe
that some of the spikes in run times as τ increases are due to
the McLUG coming very close to τ in a layer, but extending
an extra layer to exceed τ . When the McLUG extends the
extra layer, the relaxed plan will likely contain more actions

and increase the heuristic estimate. This could be leading
search away from easy solutions that will exceed τ .

The plot of plan lengths gives some intuition for why CP-
plan has trouble finding plans for greater values of τ . The
plan lengths for the larger values of τ approach 40-50 ac-
tions and CPplan is limited to plans of around 10-15 ac-
tions. For our planner we notice that plan length and total
time scale roughly linearly as τ increases. Combined with
the results in the plot showing the number of search node ex-
pansions we can see that the McLUG relaxed plan heuristic
directs search very well.

We would also like to point out some differences in how
our planner performs when the number of particles changes.
As τ increases, using more particles makes the search more
consistent (i.e., fluctuation in terms of run time, plan length,
and expanded nodes is minimized). Total time generally
increases as the number of particles increases because the
number of generated search nodes is roughly the same and
the heuristic is costlier.
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Figure 5: Run times (s), Plan lengths, and Expanded Nodes vs. τ for Grid-0.8
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Figure 6: Run times (s), Plan lengths, and Expanded Nodes vs. τ for Grid-0.5

Grid: The Grid domain, as described by [Hyafil and Bac-
chus, 2004], is a 10x10 grid where a robot can move one of
four directions to adjacent grid points. The robot has imper-
fect effectors and moves in the intended direction with high
probability (0.8), and in one of the two perpendicular direc-
tions with a low probability (0.1). As the robot moves, its
belief state grows and it becomes difficult to localize itself.
The goal is to reach the upper corner of the grid. The initial
belief state is a single state where the robot is at a known
grid point. We test on the most difficult instance where the
robot starts in the lower opposite corner.

Figure 5 shows total run time, plan lengths, and expanded
search nodes for the problem. We notice that CPplan can
solve the problem for only the smallest values of τ , whereas
our planner scales much better. For the single problem we
both solve, we were on average finding solutions with 4.75
more actions. Again, our planner scales roughly linearly be-
cause the McLUG heuristic is very informed. In this prob-
lem, we are able to do very well with only 4-8 particles,
leading us to believe that there are only a few very impor-
tant regions of the distribution over possible worlds and we
actually capture them.

Doing so well with only a few particles made us question
whether the McLUG is really needed. As a sanity check,
we show results for a variation of the grid problem in Figure
6. This problem defines the probability that the robot moves
in the intended direction to 0.5 and to 0.25 for the adjacent
directions. The result is that as the robot moves, the belief
state will be much less peaked and harder to capture with
few particles. We see that our doubts are quieted by the
results. More particles are required to get good quality plans
and make search more effective.

Slippery Gripper: Slippery Gripper is a well known prob-
lem that was originally presented by Kushmerick et al.
[1994]. There are four probabilistic actions that clean and
dry a gripper and paint and pick-up a block. The goal is to
paint the block and hold it with a clean gripper. Many of the
lower values of τ find very short plans and take very little
run time, so we focus on the higher values of τ where we
see interesting scaling behavior.

Figure 7 shows the total time and plan length results for
this problem in the two left-most plots. For short plans,
CPplan is faster because the McLUG has some additional
overhead, but as τ increases and plans have to be longer
the McLUG proves useful. Using 8 particles, we are able
to find solutions faster than CPplan in the problems where
τ > .99. Using more particles, we are able to find solu-
tions faster for most problems where τ ≥ .998. In terms of
plan quality, our solutions are usually 1-2 extra actions with
3 extra actions in the worst case.

SandCastle-67: SandCastle-67 is another well known
probabilistic planning problem, presented by Majercik and
Littman [1998]. The task is to build a sand castle with
high probability by using two actions: erect-castle and dig-
moat. Having a moat improves the probability of success-
fully erecting a castle, but erecting a castle may destroy the
moat. Again, scaling behavior is only interesting for high
values of τ .

In the two right-most plots for run time and plan length in
Figure 7, we see that the run time for CPplan has an expo-
nential growth with τ , whereas our methods scale roughly
linearly. As τ increases, we are eventually able to outper-
form CPplan. In terms of plan quality, we usually find plans
with 1-3 extra actions.
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Figure 7: Run times (s), and Plan lengths vs. τ for Slippery Gripper (left) and SandCastle-67 (right).

Discussion
In comparison with CPplan, the major difference with our
heuristic approach is the way that plan suffixes are evalu-
ated. CPplan must exactly compute plan suffixes to prune
solutions, whereas we estimate plan suffixes. It turns out
that our estimates require us to evaluate very few possible
plans (as evidenced by expanded nodes). As plans become
longer, it is more difficult for CPplan to exactly evaluate plan
suffixes because there are so many and they are large.

By adjusting the number of particles within our plan-
ner we have a couple of general observations. As can be
expected, when belief states or distributions over possible
worlds are fairly non-peaked distributions, using more par-
ticles guides search better. However, without understand-
ing the domain, it is difficult to pick the right number of
particles. Fortunately, the number of particles is an easily
tunable parameter that cleanly adjusts the all-too-common
cost/effectiveness tradeoff in heuristics. It would be inter-
esting to use techniques from particle filter research to au-
tomatically determine the right number of particles during
search.

Overall, our method is very effective in the CPP problems
we evaluated, with the only drawback being longer plans in
some cases. To compensate, we believe it should be reason-
ably straight-forward to post-process our plans to cut cost by
removing actions. Nevertheless, it is a valuable lesson to see
the size of problems that we can solve by relaxing our grip
on finding optimal plans.

Related Work
Buridan [Kushmerick et al., 1994] was one of the first plan-
ning algorithms to solve CPP. Buridan is a partial order
casual link (POCL) planner that allows multiple support-
ers for an open condition, much like our relaxed plans in
the McLUG. Unfortunately, Buridan does not scale very
well because it lacks effective heuristics. Probapop [On-
der et al., 2004], which is built on top of Vhpop [Younes
and Simmons, 2003], attempts to enhance Buridan by us-
ing heuristics. Probapop uses the classical planning graph
heuristics implemented by Vhpop by translating every out-
come of probabilistic actions to a deterministic action. In
theory, POCL planners are a nice framework for probabilis-
tic planning because it is easy to add actions to support a
low probability condition without backtracking (as may be
necessary in state based search). In reality, POCL can be
hard to work with because it is often difficult to assess the
probability of a partially ordered plan.

Partially observable Markov decision process (POMDP)
algorithms, such as [Cassandra et al., 1997] to name one,
are also able to solve CPP. The work on CPplan [Hyafil and
Bacchus, 2003, 2004] makes extensive comparisons with the
mentioned POMDP algorithm and shows it is inferior for
solving CPP problems with large state spaces (like logistics
and grid). This disparity may be partly due to the fact that
the POMDP algorithms solve a slightly different problem
by finding plans for all possible initial belief states. CPplan
also compares with MaxPlan [Majercik and Littman, 1998],
showing it too is inferior for several problems. MaxPlan is
similar to CPplan, in that it encodes CPP as a bounded length
planning problem using a variant of satisfiability. The main
difference is in the way they cache plan suffixes.

More closely related to our approach is the work on the
CFF planner [Hoffmann and Brafman, 2004] and the work
by Bryce et al. [2004] on the LUG. In both works the focus
is to use planning graphs to derive relaxed plan heuristics
for non-deterministic conformant planning. CFF encodes a
relaxed planning graph as a tractable satisfiability instance
and tries to prove a relaxed plan exists for every model of
a belief state. The work on the LUG directly propagates
constraints about possible worlds on a planning graph and
extracts a relaxed plan.

The Prottle planner [Little et al., 2005] uses a variation of
temporal planning graphs for fully-observable probabilistic
temporal planning. In their planning graph they explicitly
reason about actions with probabilistic actions by adding an
outcome layer and defining a cost propagation procedure.
The authors do not extract relaxed plans, nor reason about
possible worlds.

PGraphPlan [Blum and Langford, 1999] and CGP [Smith
and Weld, 1998] are two planners that use generalizations
of GraphPlan [Blum and Furst, 1995] for planning under
uncertainty. PGraphPlan and its sister algorithm TGraph-
Plan, are used for fully-observable probabilistic planning
(similar to Markov decision processes). The key idea in
PGraphPlan is to forward chain in the planning graph, us-
ing dynamic programming, to find an optimal probabilistic
plan for a given finite horizon. Alternatively, TGraphPlan
greedily back-chains in the planning graph to find a solu-
tion that satisfies the goal, without guaranteeing optimality.
CGP solves non-observable (conformant) non-deterministic
planning problems.

RTDP [Barto et al., 1995] is a popular search algorithm,
used in many recent works [Mausam and Weld, 2005; Little
et al., 2005; Bonet and Geffner, 2003], that also uses Monte
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Carlo techniques. RTDP samples a plan suffix to evaluate,
whereas we estimate the plan suffix with a relaxed plan. Be-
cause we are reasoning about non-observable problems we
sample several plan suffixes and aggregate them to reflect
that we are planning in belief space.

Conclusion & Future Work
We have presented an approach called McLUG to inte-
grate sequential Monte Carlo approaches into heuristic com-
putation on planning graphs. The McLUG enables us to
quickly compute effective heuristics for conformant prob-
abilistic planning. By using the heuristics, our planner is
able to far out-scale the current best approach to conformant
probabilistic planning. At a broader level, our work shows
one fruitful way of exploiting the recent success in determin-
istic planning to scale stochastic planners.

Because our heuristics are inadmissible, we can return
plans that are slightly longer than optimal. We intend to in-
vestigate methods, similar to [Do and Kambhampati, 2003],
for post-processing our plans to improve quality. We believe
that by equipping a local search planner, like LPG [Gerevini
et al., 2003], with McLUG reachability heuristics and prob-
abilistic plan specific repairs we could be very successful in
improving seed plans generated by our planner.

We also intend to understand how we can more fully inte-
grate SMC into heuristic computation, as there are numerous
possibilities for relaxation through randomization. One pos-
sibility is to sample the actions to place in the planning graph
to simulate splitting the planning graph [Zemali and Fabi-
ani, 2003]. More importantly, we would like to use knowl-
edge gained through search to refine our sampling distribu-
tions. For instance, we may be able to bias sampling of mu-
texes by learning the actions that are critical to the planning
task. Overall, randomization has played an important role
in search [Barto et al., 1995; Gerevini et al., 2003], and we
have presented only a glimpse of what it can do to heuristic
computation.
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