
Answering Imprecise Queries over Web Databases

Ullas Nambiar & Subbarao Kambhampati

Dept of Computer Science & Engineering
Arizona State University

Arizona, USA
{ubnambiar,rao}@asu.edu

1 Introduction

The rapid expansion of the World Wide Web has made
a large number of databases like bibliographies, scien-
tific databases etc. to become accessible to lay users
demanding “instant gratification”. Often, these users
may not know how to precisely express their needs
and may formulate queries that lead to unsatisfactory
results.

For example, suppose a user wishes to search for
sedans priced around 10000 in a used car database,
CarDB(Make, Model, Year, Price, Location). Based
on the database schema the user may issue the follow-
ing query:

Q:- CarDB(Model = Camry, Price < 10000)
On receiving the query, CarDB will provide a list of
Camrys that are priced below 10000. However, given
that “Accord” is a similar car, the user may also be
interested in viewing all Accords priced around 10000.
The user may also be interested in a Camry priced
10500. This leads the user into a tedious cycle of it-
eratively issuing queries for all “similar” models and
prices before she can obtain a satisfactory answer.
Therefore, database query processing models must em-
brace the IR systems’ notion that user only has vague
ideas of what she wants and is unable to formulate
queries capturing her needs precisely. This shift in par-
adigm would necessitate supporting imprecise queries
- a direction given much importance in the Lowell re-
port [2].

While the problem of supporting imprecise database
queries has received some attention [8, 10, 6] over the
years, most proposed approaches require users and/or
database designers to provide domain specific dis-
tance metrics and importance measures for attributes
of interest. Unfortunately, such information is hard
to elicit from the users. In this demo, we present

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 31st VLDB Conference,
Trondheim, Norway, 2005

the AIMQ system [9] - a domain and user indepen-
dent solution for supporting imprecise queries over au-
tonomous Web databases.

The Problem: Given a conjunctive query Q over
an autonomous Web database projecting relation R,
find all tuples of R that show similarity to Q above a
threshold Tsim ∈ (0, 1):

Ans(Q) = {x|x ∈ R, Similarity(Q,x)> Tsim}
Constraints: (1) R supports the boolean query
processing model (i.e. a tuple either satisfies or does
not satisfy a query). (2) The answers to Q must be de-
termined without altering the data model or requiring
additional guidance from users. 2

The AIMQ Approach: Continuing with the exam-
ple given above, let the user’s intended query be:

Q:- CarDB(Model like Camry, Price like 10000)
Given such a query, we begin by assuming that the
tuples satisfying some specialization of Q – called the
base query Qpr, are indicative of the answers of in-
terest to the user. We derive1 Qpr by tightening the
constraints from “likeliness” to “equality”:

Qpr:- CarDB(Model = Camry, Price = 10000)

Starting with the answer tuples for Qpr – called the
base set, AIMQ (1) finds other tuples similar to tuples
in the base set and (2) ranks them in terms of simi-
larity to Q. Our idea is to consider each tuple in the
base set as a (fully bound) selection query, and issue
relaxations of these selection queries to the database
to find additional similar tuples.
Challenges: The first challenge in realizing the
AIMQ approach is: Which relaxations will produce
more similar tuples? Once we handle this we can get
additional tuples that are similar to the tuples in the
base set by issuing the relaxed queries. However, these
tuples may have varying levels of relevance to the user.
They thus need to be ranked before being presented to
the user. This leads to our second challenge: How
to compute the similarity between the query and the
answer tuple? Our problem is complicated by our in-
terest in making this similarity judgement not be de-
pendent on user-supplied distance metrics.

1We assume a non-null resultset for Qpr or some generaliza-
tion of Qpr. This generalization (relaxation) can also be guided
by the heuristic we developed as part of AIMQ.

Figure 1: AIMQ system architecture

Solutions: One way of handling the first challenge
above is to arbitrarily pick attributes for relaxation.
However, this could generate a large number of tuples
of possibly low relevance. In theory, the tuples clos-
est to a tuple in the base set will have differences in
the attribute that least affects the binding values of
other attributes. Such relationships are captured by
approximate functional dependencies (AFDs). There-
fore, AIMQ makes use of AFDs between attributes to
determine the degree to which a change in the value
of an attribute affects other attributes. Using the
mined attribute dependency information AIMQ ob-
tains a heuristic to guide the query relaxation process.
To the best of our knowledge, there is no prior work
that automatically learns attribute importance mea-
sures (required for efficient query relaxation). Hence,
the first contribution of AIMQ is a domain and user in-
dependent approach for learning attribute importance.
AIMQ makes use of approximate functional dependen-
cies (AFDs) between attributes to derive a heuristic to
guide the query relaxation process.

The tuples obtained after relaxation are not equally
relevant to the query and this leads to our second chal-
lenge. To estimate the query-tuple similarities we will
need distance functions for both numerical and cate-
gorical attributes. We can safely use Euclidean dis-
tance to capture numeric value similarity. But, while
some effort at estimating categorical value similarity
[3, 7, 4, 5] has been done, the solutions suggested
were inefficient, assumed attribute independence or re-
quired the users to provide attribute importance mea-
sures. Therefore, the second contribution of the AIMQ
system is an association based domain and user in-
dependent approach for estimating similarity between
values binding categorical attributes.

2 The AIMQ System

The AIMQ system as illustrated in Figure 1 consists of
four subsystems: Data Collector, Dependency Miner,
Similarity Miner and the Query Engine. The Data
Collector probes the databases to extract sample sub-
sets of the databases. AIMQ also contains wrappers to
access the Web databases. However, we do not focus
on challenges involved in generating and maintaining
the wrappers. We hand coded the wrappers for our

demo system. Dependency Miner mines AFDs and ap-
proximate keys from the probed data and uses them
to determine a dependence based importance order-
ing among the attributes. This ordering is used by
the Query Engine in query relaxation. The Similar-
ity Miner uses an association based similarity mining
approach to estimate similarities between categorical
values.

2.1 Generating the Relaxation Order

As described above, our solution for answering an im-
precise query requires us to generate new selection
queries by relaxing the constraints of the tuples in
the base set. The underlying motivation there is to
identify tuples that are closest to some tuple in the
base set. Randomly relaxing constraints and execut-
ing queries will produce tuples in arbitrary order of
similarity thereby increasing the cost of answering the
query. In theory, the tuples most similar to a given
tuple will have differences only in the least important
attribute. Therefore the first attribute to be relaxed
must be the least important attribute. We define the
least important attribute as the attribute whose bind-
ing value, when changed, has minimal effect on values
binding other attributes.

Identifying the least important attribute necessi-
tates an ordering of the attributes in terms of their
dependence on each other. A simple solution is to
make a dependence graph between attributes and per-
form a topological sort over the graph. Functional de-
pendencies can be used to derive the attribute depen-
dence graph that we need. But, full functional depen-
dencies (i.e. with 100% support) between all pairs of
attributes (or sets encompassing all attributes) are of-
ten not available. Therefore we use approximate func-
tional dependencies (AFDs) between attributes to de-
velop the attribute dependence graph with attributes
as nodes and the relations between them as weighted
directed edges. However, the graph so developed is
often strongly connected and hence contains cycles
thereby making it impossible to do a topological sort
over it. Constructing a DAG by removing all edges
forming a cycle will result in much loss of information.

We therefore propose an alternate approach to
break the cycle. We partition the attribute set into

dependent and deciding sets, with the criteria being
each member of a given group either depends or de-
cides at least one member of the other group. A topo-
logical sort of members in each subset can be done
by estimating how dependent/deciding they are with
respect to other attributes. Then by relaxing all mem-
bers in the dependent group ahead of those in the de-
ciding group we can ensure that the least important
attribute is relaxed first. We use the approximate
key with highest support to partition the attribute
set. All attributes forming the approximate key are
assigned to the deciding set and the remaining to the
dependent set. Given the attribute order, we com-
pute the weight to be assigned to each attribute k ∈ R

as Wimp(k)= RelaxOrder(k)
|Attributes(R)| , where RelaxOrder returns

the position at which k will be relaxed. For a proto-
type implementation of the database CarDB, we found
the relaxation order to be Year → Price → Model →
Make → Location.

Ford

Chevrolet

Toyota

Honda

Dodge
Nissan

B M W

0.25

0.16

0.11
0.15

0.12

0.22

Ford

Chevrolet

Toyota

Honda

Dodge
Nissan

B M W

0.25

0.16

0.11
0.15

0.12

0.22

Figure 2: Value Similarity Graph for Make=“Ford”

2.2 Query-Tuple Similarity Estimation

AIMQ estimates the similarity between an imprecise
query Q and tuple t as

Sim(Q, t) =

n
∑

i=1

Wimp(Ai)×

V Sim(Q.Ai, t.Ai)
if Domain(Ai)= Categorical

|Q.Ai − t.Ai|
if Domain(Ai) = Numerical

where n=Count(boundattributes(Q)), Wimp (
∑n

i=1
Wimp = 1) is the importance weight of each attribute,
and VSim measures the similarity between categorical
values as explained below.

The similarity between two values binding a cate-
gorical attribute, VSim, is measured as the percent-
age of distinct Attribute-Value pairs (AV-pair) com-
mon to both. An AV-pair can be visualized as a se-
lection query that binds only a single attribute. By
issuing such a query over the extracted database we
can identify a set of tuples all containing the AV-pair.
We represent the answerset containing each AV-pair
as a structure called the supertuple. The supertuple
contains a bag of keywords for each attribute in the
relation not bound by the AV-pair. The similarity be-
tween two attribute values (AV-pairs) is measured as
the similarity shown by the supertuples. The super-
tuples contain bags of keywords for each attribute in

the relation. Hence we use Jaccard Coefficient with
bag semantics to determine the similarity between two
supertuples. Figure 2 displays the graph showing the
values that show similarity above a predefined thresh-
old to Make=“Ford”.

3 Demonstration

In this demo we will showcase AIMQ’s domain and
user independent approach for (1) automatically learn-
ing the importance of an attribute and (2) measuring
the similarity between values binding a categorical at-
tribute. We will give an end-to-end demonstration of
imprecise query answering approach of AIMQ using
the Yahoo Autos database [1]. Specifically, our demon-
stration will focus on the following aspects:

Learning Attribute Importance & Value Simi-
larities: AIMQ estimates the similarity of a tuple to a
query as the weighted sum of the similarity over the in-
dividual attributes. Hence, AIMQ requires attribute
importance weights and similarity measures between
values binding the attributes. Users are often unable
to provide these measures. We will show how the Data
Miner learns the attribute importance from AFDs and
approximate keys it mines from a probed sample of
the database. Also we will demonstrate the ability of
the Similarity Miner to automatically build similarity
graphs for values binding categorical attributes in a re-
lation. In the context of Yahoo Autos database we will
show how we learn value similarities for the attributes
Make, Model, Year and Location.

Figure 3: Robustness of mined attribute ordering

Robustness of Estimated Statistics: AIMQ learns
attribute importance and value similarities by mining
over a probed sample of the database. We will show
that the attribute importance and values similarities
obtained by sampling do capture the distributions oc-
curring in the database. Specifically, the loss of ac-
curacy incurred due to sampling may not be a critical
issue for us as it is the relative rather than the absolute
values of the attribute importance and value similari-
ties that are more important in ranking the answers.
Figure 3 shows the robustness of estimated attribute
dependencies over Yahoo Autos database for different
sample datasets.

Efficiency & Accuracy of AIMQ: AIMQ provides
similar answers to an imprecise query by identifying

Figure 4: Work/RelevantTuple using GuidedRelax

Figure 5: Work/RelevantTuple using RandomRelax

and executing a number of relevant precise queries.
Since executing additional queries incurs cost in terms
of time and memory one could wonder about the ef-
ficiency of AIMQ in answering an imprecise query.
Hence, in this demonstration we will use two query
relaxation algorithms GuidedRelax and RandomRelax
used by AIMQ system for creating selection queries
by relaxing the tuples in the base set. GuidedRelax
makes use of the attribute order determined by AIMQ
and decides a relaxation scheme. The RandomRe-
lax algorithm was designed to somewhat mimic the
random process by which users would relax queries.
We measure the relaxation efficiency using the metric
Work/RelevantTuple defined as the average number of
tuples that an user would have to look at before find-
ing a relevant tuple i.e. a tuple showing similarity
above threshold Tsim. Intuitively the larger the ex-
pected similarity, the more the work required to iden-
tify a relevant tuple. While both algorithms do follow

Figure 6: Average MRR over test queries

this intuition, we note that for higher thresholds Ran-
domRelax (Figure 5) ends up extracting hundreds of
tuples before finding a relevant tuple. GuidedRelax
(Figure 4) is much more resilient to the variations in
threshold and generally needs to extract about 4 tuples
to identify a relevant tuple.

We conducted a user study and measured the MRR
(mean reciprocal rank) [11] - the metric for relevance
estimation used in TREC QA evaluations, to compare
the relevance of the answers provided by RandomRe-
lax and GuidedRelax. Figure 6 shows that Guide-
dRelax has higher average MRR for most of the sample
queries.

4 Summary

In this demonstration, we presented AIMQ - a domain
and user independent system for providing ranked an-
swers to imprecise queries. AIMQ’s contributions in-
clude - (1)an approach for automatically estimating
attribute importance and (2)an association based ef-
ficient approach for estimating categorical value simi-
larities.

Acknowledgements: We thank Gautam Das and
Kevin Chang for their valuable suggestions during the
development of this work. This work is supported by
ECR A601, the ASU Prop301 grant to the ETI3 ini-
tiative.

References

[1] Yahoo! Autos. Available at http://autos.yahoo.com/.

[2] The Lowell Database Research Self Assessment. June
2003.

[3] G. Das, H. Mannila, and P. Ronkainen. Similarity
of Attributes by External Probes. In Proceedings of
KDD, 1998.

[4] V. Ganti, J. Gehrke, and R. Ramakrishnan.
CACTUS-Clustering Categorical Data Using Sum-
maries. In Proceedings of KDD, 1999.

[5] D. Gibson, J. Kleinberg, and P. Raghavan. Clustering
Categorical Data: An Approach Based on Dynamical
Systems. In Proceedings of VLDB, 1998.

[6] R. Goldman, N .Shivakumar, S. Venkatasubramanian,
and H. Garcia-Molina. Proximity search in databases.
VLDB, 1998.

[7] S. Guha, R. Rastogi, and K. Shim. ROCK: A Robust
Clustering Algorithm for Categorical Attributes. In
Proceedings of ICDE, 1999.

[8] A. Motro. Vague: A user interface to relational data-
bases that permits vague queries. ACM Transactions
on Office Information Systems, 6(3):187–214, 1998.

[9] U. Nambiar and S. Kambhampati. Mining Approxi-
mate Funcitonal Dependencies and Concept Similari-
ties to Answer Imprecise Queries. WebDB, June 17-18,
2004.

[10] Micheal Ortega-Binderberger. Integrating Similarity
Based Retrieval and Query Refinement in Databases.
PhD thesis, UIUC, 2003.

[11] E. Voorhees. The TREC-8 Question Answering Track
Report. TREC 8, November 17-19, 1999.

