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Aims of the Lectures
• To give you a feel for the 

exciting work that has 
been and is being done in 
the intersection of 
planning & learning over 
last 20 years

• This will not be a 
comprehensive survey 
but a (possibly biased) 
selection of topics

• For comprehensive 
survey see:
– Zimmerman & 

Kambhampati, AI 
Magazine 2003

– Also see 
http://rakaposhi.eas.asu.ed
u/ml-summer.html for 
additional resources 

• Including final updated 
slides + voice recording 

Two ways to view these lectures
• As an application area for  

Machine Learning: learning 
techniques  in planning
– To improve planning 

performance
– To learn domain dynamics
– To learn strategies

• To do that, you will need to 
know a bit about  what is 
planning and its current state 
of the art
– I will focus more on 

deterministic planning (since 
that is where most work to-
date has been done)

• As an opportunity to 
motivate/learn about 
interesting learning techniques

• Specifically, most learning 
techniques used in planning 
are:
– Unabashedly “Knowledge-

based”
• In contrast most techniques 

you heard in MLSS start 
tabula rasa

• ..or smuggle background 
knowledge through the kernel
backdoors ☺

– Often relational
• In contrast to several of the 

MLSS lectures that talk about 
attribute-oriented learning
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My Background

• I do a lot of work on plan synthesis..
– Most recently in scaling up plan synthesis algorithms using 

reachability heuristics
• Have—in the past—done a lot of work on learning in the 

context of planning
– When that was the best method to scale-up planner performance

• Search control rule learning; case-based planning
• Have co-authored a survey of the work in planning and 

learning  (AI Mag, 2003)
• Am currently freshly interested in learning to do planning 

in domains with partially complete domain knowledge 
– Especially, when examples of successful plans are available

Primary interest:  Automated Planning

Subbarao Kambhampati

What’s all this Learning in aid of?
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History of 
Learning in Planning

� Pre-1995 planning 
algorithms could 
synthesize about 6 – 10 
action plans in minutes

Î Massive dependence on 
speedup learning 
techniques
Î Golden age for Speedup 

Learning in Planning ☺

Realistic encodings 
of Munich airport!

But KBPlanners (customized by humans) did even better
opening up renewed interest in learning the kinds of knowledge humans are are

able to put in
..as well as interest in learning domain models and strategies

Now that we have fast planners, the domain modeling comes to the foreground

� Significant scale-up in the last 6-7 years mostly 
through powerful reachability heuristics
� Now, we can synthesize 100 action plans in 

seconds.
� Reduced interest in learning as a crutch
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Learn Domain Models
--action models
--transition probabilities etc.

Learn Search Control
--control rules
--cases/macros
--heuristics
--invariants

Learning Strategies
--Methods; task reduction knowledge
--cases and case usage rules

Improve correctness
Improve quality
Improve speed 
Improve everything together

Spectrum of Approaches..

PLANNING ASPECTS LEARNING ASPECTS

Learning Phase
Problem Type

.

.

.

Type of Learning

analogical

Planning-Learning 
Goal

Planning Approach

Learn or 
improve 
domain 
theory

bayesian learning

Compilation 
Approaches

Plan Space search

State Space search
[Conjunctive / Disjunctive ]

CSP

L P

SAT
During plan execution

Before planning starts

During planning process

Inductive
decision tree

Neural Network

‘other’ induction
Reinforcement Learning

Inductive Logic Programming

Analytical

EBL

Static analysis/ 
Abstractions

Case Based Reasoning
(derivational / transformational 

analogy)

Multi-strategy

EBL &                      
Inductive Logic 
Programming

analytical & induction

EBL &              
Reinforcement Learning

Classical Planning
9 static world
9 deterministic
9 fully observable
9 instantaneous 
actions
9 propositional

‘Full Scope’
Planning

9 dynamic world
9 stochastic 
9 partially observable
9 durative actions
9 asynchronous goals
9 metric/continuous

Speed up 
planning

Improve 
plan 

quality

Spectrum of Approaches Tried
[AI Mag, 2003]
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Overview

Learn Domain Models
--action models
--transition probabilities etc.

Learn Search Control
--control rules
--cases/macros
--heuristics
--invariants

Learning Strategies
--Methods; task reduction knowledge
--cases and case usage rules

Improve correctness
Improve quality
Improve speed 
Improve everything together

CSE 574: Planning & Learning Subbarao Kambhampati

Transition System Models
A transition system is a two tuple <S, A> 
Where 

S is a set of “states”
A is a set of “transitions”

each transition a is a subset of SXS
--If a is a (partial) function then deterministic transition
--otherwise, it is a “non-deterministic” transition

--It is a stochastic transition 
If there are probabilities associated with each state a takes s to

--Finding plans becomes is equivalent to finding “paths” in the transition system

Transition system models are 
called “Explicit state-space”
models

In general, we would like 
to represent the transition 
systems more compactly

e.g. State variable 
representation of states. 

These latter are called 
“Factored” models

Each action in this model can be
Represented by incidence matrices 
(e.g. below)

The set of all possible transitions 
Will then simply be the SUM of the
Individual incidence matrices
Transitions entailed by a sequence of 

actions will be given by the (matrix)
multiplication of the incidence matrices

These were discussed orally but were not shown in the class
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State Variable (Factored) Models

• Planning systems tend to use factored models 
(rather than direct transition models)
– World is made up of states which are defined in terms 

of state variables
• Can be boolean (or multi-ary or continuous)

– States are complete assignments over state variables
• So, k boolean state variables can represent how many 

states?

– Actions change the values of the state variables
• Applicability conditions of actions are also specified in terms 

of partial assignments over state variables

Blocks world

State variables:
Ontable(x) On(x,y)  Clear(x)  hand-empty  holding(x)

Stack(x,y)
Prec:  holding(x), clear(y)
eff:   on(x,y), ~cl(y), ~holding(x), hand-empty

Unstack(x,y)
Prec:  on(x,y),hand-empty,cl(x)
eff:    holding(x),~clear(x),clear(y),~hand-empty

Pickup(x)
Prec:  hand-empty,clear(x),ontable(x)
eff:   holding(x),~ontable(x),~hand-empty,~Clear(x)

Putdown(x)
Prec:  holding(x)
eff: Ontable(x), hand-empty,clear(x),~holding(x)

Initial state:
Complete specification of T/F values to state variables

--By convention, variables with F values are omitted

Goal state:
A partial specification of the desired state variable/value combinations

--desired values can be both positive and negative 

Init: 
Ontable(A),Ontable(B),
Clear(A), Clear(B), hand-empty

Goal:
~clear(B), hand-empty

All the actions here have only positive preconditions; but this is not necessary
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PDDL Standard

PDDL standard under continual 
extension 
(02) Support for time/durative actions
(04) Support for stochastic outcomes
(06) Support for soft constraints 
/preferences

Progression:

An action A can be applied to state S iff the preconditions 
are satisfied in the current state

The resulting state  S’ is computed as follows:
--every variable that occurs in the actions effects

gets the value that the action said it should have
--every other variable gets the value it had in the 

state S where the action is applied

Ontable(A)

Ontable(B),

Clear(A)

Clear(B)

hand-empty

holding(A)

~Clear(A)

~Ontable(A)

Ontable(B),

Clear(B)

~handempty

Pickup(A)

Pickup(B)

holding(B)

~Clear(B)

~Ontable(B)

Ontable(A),

Clear(A)

~handempty
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Regression:

A state S can be regressed over an action A
(or A is applied in the backward direction to S)

Iff:
--There is no variable v such that v is given different 

values by the effects of A and the state S
--There is at least one variable v’ such that v’ is given

the same value by the effects of A as well as state S
The resulting state S’ is computed as follows:
-- every variable that occurs in S, and does not occur in

the effects of A will be copied over to S’ with its 
value as in S

-- every variable that occurs in the precondition list of
A will be copied over to S’ with the value it has in
in the precondition list

~clear(B)
hand-empty

Putdown(A)

Stack(A,B)

~clear(B)
holding(A)

holding(A)
clear(B) Putdown(B)??

Termination test:
Stop when the state

s’ is  entailed by the
initial state sI

*Same entailment dir
as before..

POP Algorithm

1. Plan Selection: Select a plan P from 
the search queue

2. Flaw Selection: Choose a flaw f 
(open cond or unsafe link)

3. Flaw resolution:
If  f is an open condition, 

choose an action S that achieves f
If f is an unsafe link, 

choose promotion or demotion
Update P
Return NULL if no resolution exist

4. If there is no flaw left, return P

S0

S1

S2

S3

Sinf

p

~p

g1

g2g2oc1
oc2

q1

Choice points
• Flaw selection (open condition? unsafe link? Non-backtrack choice)
• Flaw resolution/Plan Selection (how to select (rank) partial plan?)

S0

Sinf

g1
g2

1. Initial plan:

2. Plan refinement (flaw selection and resolution):
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Search & Control

Which branch should we expand?
..depends on which branch is 

leading (closer) to the goal
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Planning Graph Basics
– Envelope of Progression 

Tree (Relaxed Progression)
• Linear vs. Exponential 

Growth
– Reachable states correspond 

to subsets of proposition lists
– BUT not all subsets 

are states

• Can be used for 
estimating non-
reachability

– If a state S is not a 
subset of kth level 
prop list, then it is 
definitely not 
reachable in k steps

p
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Heuristics for Classical Planning
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Learn Domain Models
--action models
--transition probabilities etc.

Learn Search Control
--control rules
--cases/macros
--heuristics
--invariants

Learning Strategies
--Methods; task reduction knowledge
--cases and case usage rules

Improve correctness
Improve quality
Improve speed 
Improve everything together

History of 
Learning in Planning

� Pre-1995 planning 
algorithms could 
synthesize about 6 – 10 
action plans in minutes

Î Massive dependence on 
speedup learning 
techniques
Î Golden age for Speedup 

Learning in Planning ☺

Realistic encodings 
of Munich airport!

But KBPlanners (customized by humans) did even better
opening up renewed interest in learning the kinds of knowledge humans are are

able to put in
..as well as interest in learning domain models and strategies

Now that we have fast planners, the domain modeling comes to the foreground

� Significant scale-up in the last 6-7 years mostly 
through powerful reachability heuristics
� Now, we can synthesize 100 action plans in 

seconds.
� Reduced interest in learning as a crutch
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Subbarao Kambhampati

Planner Customization
(using domain-specific Knowledge)

Domain independent planners tend to miss the 
regularities in the domain
Domain specific planners have to be built from scratch for 
every domain

An “Any-Expertise” Solution: Try adding domain specific 
control knowledge to the domain-independent planners
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Domain 
Specific
Knowledge

Learned

Human Given

Subbarao Kambhampati

How is the Customization Done?

Given by humans (often, they are quite 
willing!)[IPC KBPlanning Track]

– As declarative rules (HTN Schemas, 
Tlplan rules)

» Don’t need to know how the 
planner works..

» Tend to be hard rules rather than 
soft preferences…

» Whether or not a specific form of 
knowledge can be exploited by a 
planner depends on the type of 
knowledge and the type of planner

– As procedures (SHOP)
» Direct the planner’s search 

alternative by alternative..

Through Machine Learning
– Learning Search Control rules

UCPOP+EBL, 
PRODIGY+EBL, 
(Graphplan+EBL)

– Case-based planning (plan reuse)
DerSNLP, 
Prodigy/Analogy 

– Learning/Adjusting heuristics
– Domain pre-processing

» Invariant detection; Relevance 
detection; 
Choice elimination, Type 

analysis 
STAN/TIM, DISCOPLAN 
etc. 
RIFO; ONLP

– Abstraction
ALPINE; ABSTRIPS, 
STAN/TIM etc.
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We will start with KB-Planning track to get a feel for what control knowledge 
has been found to be most useful; and see how to get it.. 

Given by humans (often, they are 
quite willing!)[IPC KBPlanning Track]

– As declarative rules (HTN 
Schemas, Tlplan rules)

» Don’t need to know how the 
planner works..

» Tend to be hard rules rather 
than soft preferences…

» Whether or not a specific form 
of knowledge can be exploited 
by a planner depends on the 
type of knowledge and the type 
of planner

– As procedures (SHOP)
» Direct the planner’s search 

alternative by alternative..
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Subbarao Kambhampati

Types of Guidance
Declarative knowledge about desirable or 
undesirable solutions and partial solutions  
(SATPLAN+DOM; Cutting Planes)
Declarative knowledge about desirable/undesirable 
search paths  (TLPlan & TALPlan)
A declarative grammar of desirable solutions  (HTN)

Procedural knowledge about how the search for the 
solution should be organized   (SHOP)
Search control rules for guiding choice points in the 
planner’s search (NASA RAX; UCPOP+EBL; PRODIGY)
Cases and rules about their applicability

Planner specific. Expert needs to understand the 
specific details of the planner’s search space

(largely) independent of the details of the specific planner
[affinities do exist between specific types of guidance and planners)

Subbarao Kambhampati

With right domain knowledge any level 
of performance can be achieved...

HTN-SAT, SATPLAN+DOM beat 
SATPLAN…
– Expect reduction schemas, declarative 

knowledge about inoptimal plans
TLPLAN beats SATPLAN, 
GRAPHPLAN
– But expects quite detailed domain 

knowledge on expected state 
sequences

SHOP beats TLPLAN…(but not 
TALPlan)
– Expects user to write a “program” for 

the domain in its language 
» Explicit instructions on the order in 

which schemas are considered and 
concatenated
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Subbarao Kambhampati

Ways of using the Domain Knowledge 
As search control
– HTN schemas, TLPlan rules, SHOP procedures
– Issues of Efficient Matching

To prune unpromising partial solutions
– HTN schemas, TLPlan rules, SHOP procedures
– Issues of maintaining multiple parses

As declartative axioms that are used along with other 
knowledge
– SATPlan+Domain specific knowledge
– Cutting Planes (for ILP encodings) 
– Issues of domain-knowledge driven simplification

Folded into the domain-independent algorithm to generate 
a new domain-customized planner
– CLAY 
– Issues of Program synthesis

Subbarao Kambhampati

Task Decomposition (HTN) Planning
The OLDEST approach for providing domain-specific 
knowledge
– Most of the fielded applications use HTN planning 

Domain model contains non-primitive actions, and 
schemas for reducing them 
Reduction schemas are given by the designer
– Can be seen as encoding user-intent

» Popularity of HTN approaches a testament of ease with 
which these schemas are available?

Two notions of completeness:
– Schema completeness

» (Partial Hierarchicalization)
– Planner completeness

Travel(S,D)

GobyBus(S,D) GobyTrain(S,D)

Getin(B,S)

BuyTickt(B)
Getout(B,D)

BuyTickt(T)

Getin(T,S)
Getout(T,D)

Hitchhike(S,D)
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Subbarao Kambhampati

Modeling Action Reduction

GobyBus(Phx,Msn)Get(Money) Buy(WiscCheese)

At(Msn)

Hv-Money

t1: Getin(B,Phx)

t2: BuyTickt(B)

t3: Getout(B,Msn)

In(B)
Hv-Tkt

Hv-Money
At(D)

Get(Money)

Buy(WiscCheese)

GobyBus(S,D)

t1: Getin(B,S)

t2: BuyTickt(B)

t3: Getout(B,D)

In(B)
Hv-Tkt

Hv-Money At(D)
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Subbarao Kambhampati

Dual views of HTN planning
Capturing hierarchical 
structure of the domain

– Motivates top-down planning
» Start with abstract plans, 

and reduce them
Many technical headaches 

– Respecting user-intent, 
maintaining systematicity
and minimality
[Kambhampati et. al. AAAI-98]
» Phantomization, filters, 

promiscuity, downward-
unlinearizability..

Capturing expert advice 
about desirable solutions

– Motivates bottom-up 
planning

» Ensure that each partial 
plan being considered is 
“legal” with respect to 
the reduction schemas

» Directly usable with 
disjunctive planning 
approaches

[Mali & Kambhampati, 98]
Connection to efficiency is 
not obvious

Relative advantages are still unclear...
[Barrett, 97]
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Full  procedural control: The SHOP way

Travel by bus only if going by taxi doesn’t work out

Shop provides a 
“high-level” programming
language in which the 
user can code his/her
domain specific planner

-- Similarities to HTN 
planning

-- Not declarative (?)

The SHOP engine can be
seen as an interpreter
for this language

[Nau et. al., 99]

Blurs the domain-specific/domain-independent divide
How often does one have this level of knowledge about a domain? 

Subbarao Kambhampati

Non-HTN Declarative Guidance 

Invariants: A truck is at only one location
at(truck, loc1, I) & loc1 != loc2 => ~at(truck, loc2, I)

Optimality: Do not return a package to the same location
at(pkg, loc, I) & ~at(pkg,loc,I+1) & I<J => ~at(pkg,loc,j)

Simplifying: Once a truck is loaded, it should immediately move
~in(pkg,truck,I) & in(pkg,truck,I+1) & at(truck, loc, I+1) =>

~at(truck, loc, I+2) 

Once again, additional clauses first increase the encoding size
but  make them easier to solve after simplification
(unit-propagation etc). 

[Kautz & Selman, AIPS-98]
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Subbarao Kambhampati

Rules on desirable State 
Sequences: TLPlan approach

TLPlan [Bacchus & Kabanza, 95/98] controls a
forward state-space planner

Rules are written on state sequences
using the linear temporal logic (LTL)

LTL is an extension of prop logic with temporal modalities
U    until                      []     always
O    next                      <>    eventually

Example:

If you achieve on(B,A), then preserve it until On(C,B) is achieved:

[] ( on(B,A) => on(B,A) U on(C,B) )

Subbarao Kambhampati

Keep growing “good” towers, and avoid “bad” towers

Good towers are those that do not violate any goal conditions

TLPLAN Rules can get quite baroque

How “Obvious”

are these rules?

Can these be 

learned?

The heart of TLPlan is the ability to incrementally
and effectively evaluate the truth of LTL formulas. 
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ICAPS workshop on the Competition Subbarao Kambhampati

What are the lessons of KB Track?
If TLPlan did better than SHOP 
in ICP, then how are we 
supposed to interpret it?

– That TLPlan is a superior 
planning technology over 
SHOP? 

– That the  naturally available 
domain knowledge in the 
competition domains is easier to 
encode as linear temporal logic 
statements on state sequences 
than as procedures in the SHOP 
language?

– That Fahiem Bacchus and Jonas 
Kvarnstrom are way better at 
coming up with domain 
knowledge for blocks world (and 
other competition domains) than 
Dana Nau?

May be we should “learn” this guidance

ICAPS workshop on the Competition Subbarao Kambhampati

Are we comparing Dana & Fahiem or 
SHOP and TLPlan?

(A Critique of Knowledge-based 
Planning Track at ICP)

Subbarao Kambhampati
Dept. of Computer Science & Engg. 

Arizona State University
Tempe AZ 85287-5406

Click here to download 
TLPlan
– Click here to download a 

Fahiem

Click here to download 
SHOP
– Click here to download a 

Dana

Subbarao Kambhampati

How is the Customization Done?

Through Machine Learning
– Learning Search Control rules

UCPOP+EBL, 
PRODIGY+EBL, 
(Graphplan+EBL)

– Case-based planning (plan reuse)
DerSNLP, 
Prodigy/Analogy 

– Learning/Adjusting heuristics
– Domain pre-processing

» Invariant detection; Relevance 
detection; 
Choice elimination, Type 

analysis 
STAN/TIM, DISCOPLAN 
etc. 
RIFO; ONLP

– Abstraction
ALPINE; ABSTRIPS, 
STAN/TIM etc.

We will start with KB-Planning track to get a feel for what control knowledge 
has been found to be most useful; and see how to get it.. 

Given by humans (often, they are 
quite willing!)[IPC KBPlanning Track]

– As declarative rules (HTN 
Schemas, Tlplan rules)

» Don’t need to know how the 
planner works..

» Tend to be hard rules rather 
than soft preferences…

» Whether or not a specific form 
of knowledge can be exploited 
by a planner depends on the 
type of knowledge and the type 
of planner

– As procedures (SHOP)
» Direct the planner’s search 

alternative by alternative..
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Approaches for Learning Search Control

Improve an existing planner Learn “from scratch” how to plan

--Learn “reactive policies”
State x GoalÆaction

[Work by Khadron, 99; 
Givan, Fern, Yoon, 2003Æ ]

“speedup 
learning”

Learn rules 
to guide choice points

Learn plans 
to reuse

Learn adjustments to
heuristics

--Macros
--Annotated cases

No “from-scratch” learner ever placed well in the Intl. Planning Competition. 
Macro-FF, an extension of a successful planner called FF, placed 1st in 3 domains
in IPC-2004 (..but there was no Knowledge-based Planning track in 2004)

Learn Domain Models
--action models
--transition probabilities etc.

Learn Search Control
--control rules
--cases/macros
--heuristics
--invariants

Learning Strategies
--Methods; task reduction knowledge
--cases and case usage rules

Improve correctness
Improve quality
Improve speed 
Improve everything together

Subbarao Kambhampati

Inductive Learning of Search Control

Convert to “classification” learning
– +ve examples: Search nodes on the success path
– -ve examples: Search nodes one step away from the 

success path
– Learn a classifier

Classifier may depend on the features of the problem 
(Init, Goal), as well as the current state.

Several systems: 
– Grasshopper (Leckie & Zuckerman; 1998)
– Inductive Logic Programming; (Estlin & Mooney; 1993)
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Learning & Planning

Subbarao Kambhampati

http://rakaposhi.eas.asu.edu/ml-summer.html

Lectures at Machine Learning Summer School, 
Canberra, 2006

Overview

Learn Domain Models
--action models
--transition probabilities etc.

Learn Search Control
--control rules
--cases/macros
--heuristics
--invariants

Learning Strategies
--Methods; task reduction knowledge
--cases and case usage rules

Improve correctness
Improve quality
Improve speed 
Improve everything together
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If Polished(x)@S &
~Initially-True(Polished(x))
Then 

REJECT
Stepadd(Roll(x),Cylindrical(x)@s)

Subbarao Kambhampati

Explanation-based Learning

Start with a labelled example, and some background 
domain theory
Explain, using the background theory, why the 
example deserves the label
– Think of explanation as a way of picking class-relevant 

features with the help of the background knowledge
Use the explanation to generalize the example (so 
you have a general rule to predict the label)
Used extensively in planning
– Given a correct plan for an initial and goal state pair, learn a

general plan
– Given a search tree with failing subtrees, learn rules that 

can predict failures
– Given a stored plan and the situations where it could not be 

extended, learn rules to predict applicability of the plan
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Learning Search Control Rules with EBL

Explain leaf level failures

Regress the explanations
to compute interior node
failure explanations

Use failure explanations to
set up control rules

Problems: 
-- Most branches end in

depth-limits
>No analytical explanation
>Use preference rules?

-- The utility problem
>Learn general rules
>Keep usage statistics &

prune useless rules

(Kambhampati, Katukam, Qu, 95)

Regress

Subbarao Kambhampati

Issues in EBL for Search Control Rules

Effectiveness of learning 
depends on the 
explanation
– Primitive explanations of 

failure may involve 
constraints that are 
directly inconsistent

– But it would be better if we 
can unearth hidden 
inconsistencies

..an open issue is to 
learn with probably 
incorrect explanations
– UCPOP+CFEBL
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We can also explain (& generalize) 
Success 

Success explanations tend
to involve more components
of the plan than failure explanations

CSE 574: Planning & Learning Subbarao Kambhampati

Checking correctness of a plan:
The Causal Approach

Causal Proof: Check if each of the goals and preconditions of the 
action are 

» “established” : There is a preceding step that gives it
» “unclobbered”:  No possibly intervening step deletes it 

Or for every preceding step that deletes it,  there exists another step 
that precedes the conditions and follows the deleter adds it back.

Causal proof is
– “local” (checks correctness one condition at a time)
– “state-less” (does not need to know the states preceding actions)

» Easy to extend to durative actions
– “incremental” with respect to action insertion

» Great for replanning

Contd..

Load(B)Load(A)

In(A)

In(B)
At(B,E)
At(R,E)

At(A,E)
At(R,E)

At(A,E)

At(B,E)

At(R,E)

In(A)
~At(A,E)

In(B)
~At(B,E)
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Status of EBL learning in Planning

Explanation-based learning from 
failures has been ported to modern 
planners

– GP-EBL [Kambhampati, 2000] ports 
EBL to Graphplan

» “Mutual exclusion relations”
are learned

(exploits the connection 
between EBL and  
“nogood” learning in CSP)

» Impressive speed 
improvements

EBL is considered 
standard part of Graphplan
implementation now..

» …but much of the learning was 
intra problem

Subbarao Kambhampati

Some misconceptions about EBL

Misconception 1: EBL needs complete and correct 
background knowledge

» (Confounds “Inductive vs. Analytical” with “Knowledge rich 
vs. Knowledge poor”)

– If you have complete and correct knowledge then the learned 
knowledge will be in the deductive closure of the original 
knowledge; 

– If not, then the learned knowledge will be tentative (just as in
inductive learning)

Misconception 2: EBL is competing with inductive learning
– In cases where we have weak domain theories, EBL can be 

seen as a “feature selection” phase for  the inductive learner 
Misconception 3: Utility problem is endemic to EBL
– Search control learning of any sort can suffer from utility 

problem
» E.g. Using inductive learning techniques to learn search 

control
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Useful Directions for EBL

Often we may have background knowledge that is 
“complete” and “correct” in certain local regions, 
but not across the board
– E.g. My knowledge of AI is incomplete/incorrect; but my 

knowledge of planning is complete and possibly correct, 
while my knowledge of Machine Learning is incomplete but 
largely correct

– Characterizing the limitations of the background knowledge 
will help in estimating the expected accuracy of the learned 
knowledge

Handling partial explanations of failure in search 
control rule learning
– UCPOP+CFEBL

Subbarao Kambhampati

Approaches for Learning Search Control

Improve an existing planner Learn “from scratch” how to plan

--Learn “reactive policies”
State x GoalÆaction

[Work by Khadron, 99; 
Givan, Fern, Yoon, 2003Æ ]

“speedup 
learning”

Learn rules 
to guide choice points

Learn plans 
to reuse

Learn adjustments to
heuristics

--Macros
--Annotated cases

Learn Domain Models
--action models
--transition probabilities etc.

Learn Search Control
--control rules
--cases/macros
--heuristics
--invariants

Learning Strategies
--Methods; task reduction knowledge
--cases and case usage rules

Improve correctness
Improve quality
Improve speed 
Improve everything together
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Case-based Planning 
Macrops, Reuse, Replay

Structures being reused
– Opaque vs. Modifiable
– Solution vs. Solving process (derivation/search trace)

Acquisition of structures to be reused
– Human given vs. Automatically acquired

» Adapting human-given cases is a way of handling 
partial domain models

Mechanics of reuse
– Phased vs. simultaneous 

Costs
– Storage & Retrieval costs; Solution quality

Subbarao Kambhampati

Case-study: DerSNLP

Modifiable derivational traces are reused
Traces are automatically acquired during problem solving

– Analyze the interactions among the parts of a plan, and store plans for 
non-interacting subgoals separately 

» Reduces retrieval cost
– Use of EBL failure analysis to detect interactions

All relevant trace fragments are retrieved and replayed before the 
control is given to from-scratch planner

– Extension failures are traced to individual replayed traces, and their 
storage indices are modified appropriately

» Improves retrieval accuracy

( Ihrig & Kambhampati,  JAIR 97)

Old
cases

EBL
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Reuse/Macrops Current Status

Since ~1996 there has been little work on reuse and macrop
based improvement of base-planners
– People sort of assumed that the planners are already so fast, they 

can’t probably be improved further
Macro-FF, a system that learns 2-step macros in the context of 
FF, posted a respectable performance at IPC 2004 (but NOT in 
the KB-track)

» Uses a sophisticated method assessing utility of the learned 
macrops (& also benefits from the FF enforced hill-climbing 
search)

Macrops are retained only if they improve performance 
significantly on a suite of problems

– Given that there are several theoretical advantages to reuse and
replay compared to Macrops, it would certainly be worth seeing 
how they fare at IPC [Open]

Subbarao Kambhampati

Approaches for Learning Search Control

Improve an existing planner Learn “from scratch” how to plan

--Learn “reactive policies”
State x GoalÆaction

[Work by Khadron, 99; 
Givan, Fern, Yoon, 2003Æ ]

“speedup 
learning”

Learn rules 
to guide choice points

Learn plans 
to reuse

Learn adjustments to
heuristics

--Macros
--Annotated cases

Learn Domain Models
--action models
--transition probabilities etc.

Learn Search Control
--control rules
--cases/macros
--heuristics
--invariants

Learning Strategies
--Methods; task reduction knowledge
--cases and case usage rules

Improve correctness
Improve quality
Improve speed 
Improve everything together
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Heuristics for Classical Planning
P
M

Q
M

R
M

P

Q

R

M

A1

A2

A3

Q

R

M

K

L
A4

GA5

P
A1

A2

A3

Q

R

M

K

L

P

G

A4
K

A1
P

M

Heuristic 
Estimate = 2

Relaxed plans are solutions for a relaxed problem

G
S

h(S)?

Cost of a Set of Literals

• lev(p) : index of the first level at which p comes into the planning graph
• lev(S): index of the first level where all props in S appear non-

mutexed. 

Sum Set-Level

Partition-k Adjusted Sum Combo Set-Level
with memos

h(S) = ∑p∈S lev({p}) h(S) = lev(S)

Admissible

At(0,0)

Key(0,1)

Prop list
Level 0

At(0,0)

Key(0,1)

Prop list
Level 0

At(0,1)

At(1,0)

noop

noop

Action list
Level 0

Move(0,0,0,1)

Move(0,0,1,0)

x

At(0,0)

key(0,1)

Prop list
Level 1

x

At(0,1)

At(1,0)

noop

noop

Action list
Level 0

Move(0,0,0,1)

Move(0,0,1,0)

x
At(0,1)

At(1,0)

noop

noop

Action list
Level 0

Move(0,0,0,1)

Move(0,0,1,0)

x

At(0,0)

key(0,1)

Prop list
Level 1

x

At(0,0)

Key(0,1)

noop

noop

x

Action list
Level 1

x

Prop list
Level 2

Move(0,1,1,1)
At(1,1)

At(1,0)

At(0,1)

Move(1,0,1,1)

noop

noop

x

x

x
x

x
x

…...

x

…...

Pick_key(0,1) Have_key

~Key(0,1)x
x

x

x
x

Mutexes 

At(0,0)

Key(0,1)

noop

noop

x

Action list
Level 1

x

Prop list
Level 2

Move(0,1,1,1)
At(1,1)

At(1,0)

At(0,1)

Move(1,0,1,1)

noop

noop

x

x

x
x

x
x

…...

x

…...

Pick_key(0,1) Have_key

~Key(0,1)x
x

x

x
x

Mutexes 

Degree of –ve interaction

Relaxed plan + Degree of –ve int
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Learning to Improve Heuristics
Most modern planners use reachability heuristics
– These approximate the reachability by ignoring some types of 

interactions (usually, negative interactions between subgoals)
– While effective in general, ignoring such negative interactions can 

worsen the heuristic guidance and lead the planners astray
» A way out is to “adjust” the reachability information with the 

information about interactions that were ignored
1. (Static) Adjusted Sum heuristics as popularized in AltAlt

– Increases the heuristic cost (as we need to propagate 
negative interactions)

– Could be bad for progression planners which grow the 
planning graph once for each node..

2. (Learn dynamically) Learn to predict the difference between the 
heuristic estimate by the relaxed plan and the “true” distance

Soongwook et. Al. show that this is feasible—and 
manage to improve the performance of FF

[Soongwook et a, ICAPS 2006]

Subbarao Kambhampati

Learning Adjustments to Heuristics

Start with a set of training examples [Problem, Plan]
– Use a standard planner, such as FF to generate these

For each example [(I,G), Plan]
– For each state S on the plan

» Compute the relaxed plan heuristic SR

» Measure the actual distance of S from goal  S* (easy since we 
have the current plan—assuming it is optimal)

– Inductive learning problem
» Training examples:   Features of the relaxed plan of S

Yoon et al use a taxonomic feature representation Class 
labels:  S*-SR (adjustment)

» Learn the classifier
Finite linear combination of features of the relaxed plan

[Yoon et al, ICAPS 2006]
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What types of control knowledge used by 
KBplanners can be learned currently?
Learnable (now)
– Invariants
– Simple search control rules
– Adjustment rules for 

heuristics

Open problems
– Complex state sequence 

rules used by TLPlan
» Invariants, a special 

case, is learnable
– HTN schemas  (or SHOP 

programs)
» Most current work still 

starts with human-given 
methods, and learns 
conditions under which 
they can be applied

Subbarao Kambhampati

Approaches for Learning Search Control

Improve an existing planner Learn “from scratch” how to plan

--Learn “reactive policies”
State x GoalÆaction

[Work by Khadron, 99;
Winner & Veloso, 2002; 

Givan, Fern, Yoon, 2003Æ
Gretton & Thiebaux, 2004]

“speedup 
learning”

Learn rules 
to guide choice points

Learn plans 
to reuse

Learn adjustments to
heuristics

--Macros
--Annotated cases

Learn Domain Models
--action models
--transition probabilities etc.

Learn Search Control
--control rules
--cases/macros
--heuristics
--invariants

Learning Strategies
--Methods; task reduction knowledge
--cases and case usage rules

Improve correctness
Improve quality
Improve speed 
Improve everything together
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Learning From Scratch:
Learning Reactive Policies

We are not interested in speeding up an existing 
planner, but rather directly learn how to find plans 
for a large distribution of problems
Specifically, we want to learn a policy of the form 
[state, goals]Æaction
– Notice that this is a policy predicated both on states and 

goals (so it is supposed to work for all problems)
Examples:
– Winner & Veloso, 2002 (EBL/Induction)
– Khadron, 99 (Also, Martin/Geffner; 2002) (Induction)
– Givan, Fern, Yoon, 2003 (also Gretton & Thiebaux, 2004) 

(Induction; Reinforcement Learning)

Subbarao Kambhampati

Learning Domain Specific Planners

Explanation-based Generalization!
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Subbarao Kambhampati

Learning Policies

A policy can be seen as a classifier, we can learn it…
If we have access to n traces (trajectories) of the optimal policy, 
we can use standard inductive learning techniques to learn the 
full policy 
– Khadron, 99  learns decision lists

Even if we don’t have access to traces from an optimal policy, 
we can use reinforcement learning techniques to improve an 
existing policy iteratively [Fern, Yoon, Givan]
– Start with an initial policy
– [Policy Iteration:] Use policy rollout to compute n trajectories of 

the improved policy
– [Policy Learning:] Learn the representation of the new policy using 

the trajectories
– Repeat

» A planner using this idea came 3nd in the IPC probabilistic 
planning competion (it was beaten by FF-replan…)
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30 years of research
into programming 
languages,

..and C++ is the result?

20 years of research
into decision theoretic
planning,

..and FF-Replan is the result?

ICML 2004 Workshop on RRL

Approximate Policy Iteration

trajectories of 
improved policy π’

π’ Learn approximation 
of π’Control Policy

??

? ?

current policy π

Planning Domain
(problem distribution)

?
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ICML 2004 Workshop on RRL

Computing π’ Trajectories from π

s …

…

…

…

…

Trajectories under π

a1

a2

Given: current policy π and problem ?

… …

Output: a trajectory under improved policy π’

?

s

Use FF heuristic
at these states

Learn Domain Models
--action models
--transition probabilities etc.

Learn Search Control
--control rules
--cases/macros
--heuristics
--invariants

Learning Strategies
--Methods; task reduction knowledge
--cases and case usage rules

Improve correctness
Improve quality
Improve speed 
Improve everything together
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Learning Domain Knowledge

Learning from scratch

ÆOperator Learning

Operationalizing existing
knowledge

ÆEBL-based operationalization
[Levine/DeJong; 2006]

ÆRL for focusing on “interesting
parts” of the model

…lots of people including 
[Aberdeen et. Al. 06]

Learning Domain Knowledge
(From observation)

• Learning Operators (Action Models)
– Given a set of [Problem; Plan: (operator sequence) ] examples; 

and the space of domain predicates (fluents)
– Induce operator descriptions 

• Operators will have more parameters in expressive domains
– Durations and time points; probabilities of outcomes etc. 

• Dimensions of variation
– Availability of intermediate states (Complete or Partial)

• Makes the problem easy—since we can learn each action 
separately. Unrealistic (especially “complete” states)

– Availability of partial action models
• Makes the problem easier by biasing the hypotheses (we can 

partially explain the correctness of the plans). Reasonably realistic.
– Interactive learning in the presence of humans

• Makes it easy for the human in the loop to quickly steer the system 
from patently wrong models
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OBSERVE: Assumes full 
knowledge of intermediate states

• When we have full 
knowledge of 
intermediate states, 
the action effects 
are easy to learn!
– Preconditions need 

to be learned by 
inducing over a 
sample of states 
where the action is 
applicable

– Zettlemeyer et al do 
this for stochastic 
case [2005]

[Wang, 1994]

ARMS 
(Doesn’t assume intermediate states; but requires 

action parameters)
• Idea: See the example plans 

as “constraining” the 
hypothesis space of action 
models
– The constraints can be 

modeled as SAT constraints 
(with variable weights)

– Best hypotheses can be 
generated by solving the 
MAX-SAT instances

• Performance judged in terms 
of whether the learned action 
model can explain the 
correctness of the observed 
plans (in the test set)
– Notice that if my theory is 

incomplete I might be able to 
explain both correct and 
incorrect plans to be correct…

• Constraints
– Actions’ preconditions and 

effects must share action 
parameters

– Actions must have non-empty 
preconditions and effects; 
Actions cannot add back what 
they require; Actions cannot 
delete what they didn’t ask for

– For every pair of frequently co-
occurring actions ai-aj, there 
must be some causal reason

• E.g. ai must be giving 
something to aj OR ai is 
deleting something that aj
gives

[Yang et. al. 2005]
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Learn Domain Models
--action models
--transition probabilities etc.

Learn Search Control
--control rules
--cases/macros
--heuristics
--invariants

Learning Strategies
--Methods; task reduction knowledge
--cases and case usage rules

Improve correctness
Improve quality
Improve speed 
Improve everything together

HTN Learning (Open)

• Learning hierarchical knowledge (e.g. HTN 
reductions) given plan examples is 
significantly harder
– Often only the ground actions can be 

observed; the non-primitive actions cannot be
• Very little work on learning hierarchical 

knowledge
– CAMEL system learns applicability conditions 

for specific methods assuming that non-
primitive actions are given
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Integrated Strategy Learning
(Open)

• Learning strategic information in domains with 
partial domain knowledge
– Work until now focused on either learning search 

control assuming full domain model OR learning 
domain model without much regard to search

– A lot of important problems fall in the middle
• Consider the problem of learning how to assemble a book-

shelf by seeing it being made once
– You clearly have at least partial knowledge about the domain 

(even if you, like me, are mechanically challenged)
» Even though you are unlikely to know all the tricky details

– What you want to learn is general strategic knowledge about 
how to put together similar entities

Challenges and Solutions

• Domain Knowledge in multiple 
modalities
ÆUse multiple ILRs customized to 

different types of knowledge
• Learning in multiple time-scales
ÆCombine eager (e.g. EBL-style) 

and lazy (e.g. CBR-style) 
learning techniques

• Handling partially correct domain
models and explanation 
ÆUse local closed world 

assumptions
• Avoiding balkanization of learned 

knowledge
ÆUse structured explanations as 

a unifying “glue”
• Meeting explicit learning goals
ÆUse Goal-driven meta-learning 

techniques

• Goal-driven, explanation-based learning 
approach of GILA gleans and exploits 
knowledge in multiple natural formats

— Single example analyzed under the lenses 
of multiple “ILRs” to learn/improve 

– Planning operators
– Task networks
– Planning cases
– Domain uncertainty
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Summary
• Learning methods have been used in planning 

for both improving search and for learning 
domain physics 
– Most early work concentrated on search
– Most recent work is concentrating on learning domain 

physics
• Largely because we seem to have a very good handle on 

search
• Most effective learning methods for planning seem to be:

– Knowledge based
• Variants of Explanation-based learning have been very popular

– Relational
• Many neat open problems...




