
Learning & Planning

Subbarao Kambhampati

http://rakaposhi.eas.asu.edu/ml-summer.html

Lectures at Machine Learning Summer School,
Canberra, 2006

Acknowledgements
• Suresh Katukam, Yong Qu,

Laurie Ihrig—whose graduate
theses got me into learning &
planning

• Terry Lyle Zimmerman, who
kept my interest in learning &
planning alive through the AI
Magazine Article
– And who is not a little miffed

that he is not here in Sunny
DownUnder giving these
lectures

• The GILA group for
resurrecting my interest in
Learning & Planning

• Current group members,
including Will Cushing, for
comments on these slides

• Manuela Veloso & Daniel
Borrajo for access to their
Learning & Planning tutorial

• Alan Fern, Sunwook Yoon and
Robert Givan for
clarifications/discussions

• National Science Foundation,
NASA, DARPA, AFOSR, ONR
and IBM for support over the
years

Aims of the Lectures
• To give you a feel for the

exciting work that has
been and is being done in
the intersection of
planning & learning over
last 20 years

• This will not be a
comprehensive survey
but a (possibly biased)
selection of topics

• For comprehensive
survey see:
– Zimmerman &

Kambhampati, AI
Magazine 2003

– Also see
http://rakaposhi.eas.asu.ed
u/ml-summer.html for
additional resources

• Including final updated
slides + voice recording

Two ways to view these lectures
• As an application area for

Machine Learning: learning
techniques in planning
– To improve planning

performance
– To learn domain dynamics
– To learn strategies

• To do that, you will need to
know a bit about what is
planning and its current state
of the art
– I will focus more on

deterministic planning (since
that is where most work to-
date has been done)

• As an opportunity to
motivate/learn about
interesting learning techniques

• Specifically, most learning
techniques used in planning
are:
– Unabashedly “Knowledge-

based”
• In contrast most techniques

you heard in MLSS start
tabula rasa

• ..or smuggle background
knowledge through the kernel
backdoors ☺

– Often relational
• In contrast to several of the

MLSS lectures that talk about
attribute-oriented learning

My Background

• I do a lot of work on plan synthesis..
– Most recently in scaling up plan synthesis algorithms using

reachability heuristics
• Have—in the past—done a lot of work on learning in the

context of planning
– When that was the best method to scale-up planner performance

• Search control rule learning; case-based planning
• Have co-authored a survey of the work in planning and

learning (AI Mag, 2003)
• Am currently freshly interested in learning to do planning

in domains with partially complete domain knowledge
– Especially, when examples of successful plans are available

Primary interest: Automated Planning

Subbarao Kambhampati

What’s all this Learning in aid of?

Environment

ac
tio

npe
rc

ep
tio

n

Goals

(Static vs. Dynamic)

(Observable vs.
Partially Observable)

(perfect vs.
Imperfect)

(Deterministic vs.
Stochastic)

What action next?

(Instantaneous vs.
Durative)

(Full vs.
Partial satisfaction)

The
 $$$

$$$
 Ques

tion

Subbarao Kambhampati

Static Deterministic Observable Instantaneous Propositional

“Classical Planning”

Dynamic
Re

pla
nn

ing
/

Si
tu

a t
ed

 P
lan

s
Durative

Te
mp

or
a l

Re
as

on
ing

Continuous

Nu
me

ric
 C

on
str

a in
t

re
as

on
ing

(L

P/
ILP

)

Stochastic

M
DP

 P
oli

c ie
s

PO
M

DP
 P

oli
cie

s

Partially
Observable

Co
nt

ing
en

t/C
on

fo
rm

an
t

Pl
an

s,
Int

er
lea

v e
d

ex
ec

ut
ion

Se
mi

-M
DP

Po

lic
ies

History of
Learning in Planning

� Pre-1995 planning
algorithms could
synthesize about 6 – 10
action plans in minutes

Î Massive dependence on
speedup learning
techniques
Î Golden age for Speedup

Learning in Planning ☺

Realistic encodings
of Munich airport!

But KBPlanners (customized by humans) did even better
opening up renewed interest in learning the kinds of knowledge humans are are
able to put in

..as well as interest in learning domain models and strategies
Now that we have fast planners, the domain modeling comes to the foreground

� Significant scale-up in the last 6-7 years mostly
through powerful reachability heuristics
� Now, we can synthesize 100 action plans in

seconds.
� Reduced interest in learning as a crutch

Learn Domain Models
--action models
--transition probabilities etc.

Learn Search Control
--control rules
--cases/macros
--heuristics
--invariants

Learning Strategies
--Methods; task reduction knowledge
--cases and case usage rules

Improve correctness
Improve quality
Improve speed
Improve everything together

Spectrum of Approaches..

PLANNING ASPECTS LEARNING ASPECTS

Learning Phase
Problem Type

.

.

.

Type of Learning

analogical

Planning-Learning
Goal

Planning Approach

Learn or
improve
domain
theory

bayesian learning

Compilation
Approaches

Plan Space search

State Space search
[Conjunctive / Disjunctive]

CSP

L P

SAT
During plan execution

Before planning starts

During planning process

Inductive
decision tree

Neural Network

‘other’ induction
Reinforcement Learning

Inductive Logic Programming

Analytical

EBL

Static analysis/
Abstractions

Case Based Reasoning
(derivational / transformational

analogy)

Multi-strategy

EBL &
Inductive Logic
Programming

analytical & induction

EBL &
Reinforcement Learning

Classical Planning
9 static world
9 deterministic
9 fully observable
9 instantaneous

actions
9 propositional

‘Full Scope’
Planning

9 dynamic world
9 stochastic
9 partially observable
9 durative actions
9 asynchronous goals
9 metric/continuous

Speed up
planning

Improve
plan

quality

Spectrum of Approaches Tried
[AI Mag, 2003]

Overview

Learn Domain Models
--action models
--transition probabilities etc.

Learn Search Control
--control rules
--cases/macros
--heuristics
--invariants

Learning Strategies
--Methods; task reduction knowledge
--cases and case usage rules

Improve correctness
Improve quality
Improve speed
Improve everything together

CSE 574: Planning & Learning Subbarao Kambhampati

Transition System Models
A transition system is a two tuple <S, A>
Where

S is a set of “states”
A is a set of “transitions”
each transition a is a subset of SXS
--If a is a (partial) function then deterministic transition
--otherwise, it is a “non-deterministic” transition

--It is a stochastic transition
If there are probabilities associated with each state a takes s to

--Finding plans becomes is equivalent to finding “paths” in the transition system

Transition system models are
called “Explicit state-space”
models
In general, we would like

to represent the transition
systems more compactly

e.g. State variable
representation of states.
These latter are called

“Factored” models

Each action in this model can be
Represented by incidence matrices
(e.g. below)

The set of all possible transitions
Will then simply be the SUM of the
Individual incidence matrices
Transitions entailed by a sequence of
actions will be given by the (matrix)
multiplication of the incidence matrices

These were discussed orally but were not shown in the class

State Variable (Factored) Models

• Planning systems tend to use factored models
(rather than direct transition models)
– World is made up of states which are defined in terms

of state variables
• Can be boolean (or multi-ary or continuous)

– States are complete assignments over state variables
• So, k boolean state variables can represent how many

states?

– Actions change the values of the state variables
• Applicability conditions of actions are also specified in terms

of partial assignments over state variables

Blocks world

State variables:
Ontable(x) On(x,y) Clear(x) hand-empty holding(x)

Stack(x,y)
Prec: holding(x), clear(y)
eff: on(x,y), ~cl(y), ~holding(x), hand-empty

Unstack(x,y)
Prec: on(x,y),hand-empty,cl(x)
eff: holding(x),~clear(x),clear(y),~hand-empty

Pickup(x)
Prec: hand-empty,clear(x),ontable(x)
eff: holding(x),~ontable(x),~hand-empty,~Clear(x)

Putdown(x)
Prec: holding(x)
eff: Ontable(x), hand-empty,clear(x),~holding(x)

Initial state:
Complete specification of T/F values to state variables

--By convention, variables with F values are omitted

Goal state:
A partial specification of the desired state variable/value combinations

--desired values can be both positive and negative

Init:
Ontable(A),Ontable(B),
Clear(A), Clear(B), hand-empty

Goal:
~clear(B), hand-empty

All the actions here have only positive preconditions; but this is not necessary

Subbarao Kambhampati

PDDL Standard

PDDL standard under continual
extension
(02) Support for time/durative actions
(04) Support for stochastic outcomes
(06) Support for soft constraints
/preferences

Progression:

An action A can be applied to state S iff the preconditions
are satisfied in the current state

The resulting state S’ is computed as follows:
--every variable that occurs in the actions effects

gets the value that the action said it should have
--every other variable gets the value it had in the

state S where the action is applied

Ontable(A)

Ontable(B),

Clear(A)

Clear(B)

hand-empty

holding(A)

~Clear(A)

~Ontable(A)

Ontable(B),

Clear(B)

~handempty

Pickup(A)

Pickup(B)

holding(B)

~Clear(B)

~Ontable(B)

Ontable(A),

Clear(A)

~handempty

Regression:

A state S can be regressed over an action A
(or A is applied in the backward direction to S)

Iff:
--There is no variable v such that v is given different

values by the effects of A and the state S
--There is at least one variable v’ such that v’ is given

the same value by the effects of A as well as state S
The resulting state S’ is computed as follows:

-- every variable that occurs in S, and does not occur in
the effects of A will be copied over to S’ with its
value as in S

-- every variable that occurs in the precondition list of
A will be copied over to S’ with the value it has in
in the precondition list

~clear(B)
hand-empty

Putdown(A)

Stack(A,B)

~clear(B)
holding(A)

holding(A)
clear(B) Putdown(B)??

Termination test:
Stop when the state
s’ is entailed by the
initial state sI

*Same entailment dir
as before..

POP Algorithm

1. Plan Selection: Select a plan P from
the search queue

2. Flaw Selection: Choose a flaw f
(open cond or unsafe link)

3. Flaw resolution:
If f is an open condition,

choose an action S that achieves f
If f is an unsafe link,

choose promotion or demotion
Update P
Return NULL if no resolution exist

4. If there is no flaw left, return P

S0

S1

S2

S3

Sinf

p

~p

g1

g2g2oc1
oc2

q1

Choice points
• Flaw selection (open condition? unsafe link? Non-backtrack choice)
• Flaw resolution/Plan Selection (how to select (rank) partial plan?)

S0

Sinf

g1
g2

1. Initial plan:

2. Plan refinement (flaw selection and resolution):

Search & Control

Which branch should we expand?
..depends on which branch is

leading (closer) to the goal

p

pq

pr

ps

pqr

pq

pqs

psq

ps

pst

A1
A2

A3

A2
A1
A3

A1
A3
A4

p

pq

pr

ps

pqr

pq

pqs

psq

ps

pst

A1
A2

A3

A2
A1
A3

A1
A3
A4

Progression Search Regression Search

p

pq

pr

ps

pqr

pq

pqs

psq

ps

pst

A1
A2

A3

A2
A1
A3

A1
A3
A4

p

pq

pr

ps

pqr

pq

pqs

psq

ps

pst

A1
A2

A3

A2
A1
A3

A1
A3
A4

Planning Graph Basics
– Envelope of Progression

Tree (Relaxed Progression)
• Linear vs. Exponential

Growth
– Reachable states correspond

to subsets of proposition lists
– BUT not all subsets

are states

• Can be used for
estimating non-
reachability

– If a state S is not a
subset of kth level
prop list, then it is
definitely not
reachable in k steps

p

pq

pr

ps

pqr

pq

pqs

p

psq

ps

pst

p
q
r
s

p
q
r
s
t

A1
A2

A3

A2
A1
A3

A1
A3
A4

A1
A2
A3

A1
A2
A3
A4 [ECP, 1997]

Heuristics for Classical Planning
P
M

Q
M

R
M

P

Q

R

M

A1

A2

A3

Q

R

M

K

L
A4

GA5

P
A1

A2

A3

Q

R

M

K

L

P

G

A4
K

A1
P

M

Heuristic
Estimate = 2

Relaxed plans are solutions for a relaxed problem

G
S

h(S)?

Planning Graphs for heuristics

� Construct planning graph(s) at each search
node
� Extract relaxed plan to achieve goal for

heuristic

p5

q5

r5

p6

opq
opr

o56

p

5

p
q
r
5
6

opq

opr

o56

p
q
r
s
t
5
6
7

ops

oqt

o67

q

5

q
t
r
5
6

oqt

oqr

o56

q
t
r
s
p
5
6
7

oqs

otp

o67r

5

r
q
p
5
6

orq

orp

o56

r
q
p
s
t
5
6
7

ors

oqt

o67
p

6

p
q
r
6
7

opq

opr

o67

p
q
r
s
t
6
7
8

ops

oqt

o78

1

3

4

1

3

o12

o34

2

1

3

4

5

o12

o34

o23

o45

2

3

4

5

3

5

o34

o56

3

4

5

o34

o45

o56

6 6

7

o67

1

5

1

5

o12

o56

2

1

3

5

o12

o23

o56

2

6 6

7

o67

G
oG

G
oG

G
oG

G
oG

G
oG

1

3

3

5

1

5

h()=5

Learn Domain Models
--action models
--transition probabilities etc.

Learn Search Control
--control rules
--cases/macros
--heuristics
--invariants

Learning Strategies
--Methods; task reduction knowledge
--cases and case usage rules

Improve correctness
Improve quality
Improve speed
Improve everything together

History of
Learning in Planning

� Pre-1995 planning
algorithms could
synthesize about 6 – 10
action plans in minutes

Î Massive dependence on
speedup learning
techniques
Î Golden age for Speedup

Learning in Planning ☺

Realistic encodings
of Munich airport!

But KBPlanners (customized by humans) did even better
opening up renewed interest in learning the kinds of knowledge humans are are
able to put in

..as well as interest in learning domain models and strategies
Now that we have fast planners, the domain modeling comes to the foreground

� Significant scale-up in the last 6-7 years mostly
through powerful reachability heuristics
� Now, we can synthesize 100 action plans in

seconds.
� Reduced interest in learning as a crutch

Subbarao Kambhampati

Planner Customization
(using domain-specific Knowledge)

Domain independent planners tend to miss the
regularities in the domain
Domain specific planners have to be built from scratch for
every domain

An “Any-Expertise” Solution: Try adding domain specific
control knowledge to the domain-independent planners

ACM
E

all p
urpose

planner

Ron
co

Block
s w

orld

Plan
ner

Ron
co

logi
stic

s

Plan
ner

Ron
co

job
sho

p

Plan
ner

AC-R
O

Custo
mizable

planner
Domain
Specific
Knowledge

Learned

Human Given

Subbarao Kambhampati

How is the Customization Done?

Given by humans (often, they are quite
willing!)[IPC KBPlanning Track]

– As declarative rules (HTN Schemas,
Tlplan rules)

» Don’t need to know how the
planner works..

» Tend to be hard rules rather than
soft preferences…

» Whether or not a specific form of
knowledge can be exploited by a
planner depends on the type of
knowledge and the type of planner

– As procedures (SHOP)
» Direct the planner’s search

alternative by alternative..

Through Machine Learning
– Learning Search Control rules

UCPOP+EBL,
PRODIGY+EBL,
(Graphplan+EBL)

– Case-based planning (plan reuse)
DerSNLP,
Prodigy/Analogy

– Learning/Adjusting heuristics
– Domain pre-processing

» Invariant detection; Relevance
detection;
Choice elimination, Type

analysis
STAN/TIM, DISCOPLAN
etc.
RIFO; ONLP

– Abstraction
ALPINE; ABSTRIPS,
STAN/TIM etc.

ho
w ea

sy
 is

 it
 to

 w
rit

e

co
nt

ro
l in

for
mati

on
?

We will start with KB-Planning track to get a feel for what control knowledge
has been found to be most useful; and see how to get it..

Given by humans (often, they are
quite willing!)[IPC KBPlanning Track]

– As declarative rules (HTN
Schemas, Tlplan rules)

» Don’t need to know how the
planner works..

» Tend to be hard rules rather
than soft preferences…

» Whether or not a specific form
of knowledge can be exploited
by a planner depends on the
type of knowledge and the type
of planner

– As procedures (SHOP)
» Direct the planner’s search

alternative by alternative..

Subbarao Kambhampati

Types of Guidance
Declarative knowledge about desirable or
undesirable solutions and partial solutions
(SATPLAN+DOM; Cutting Planes)
Declarative knowledge about desirable/undesirable
search paths (TLPlan & TALPlan)
A declarative grammar of desirable solutions (HTN)

Procedural knowledge about how the search for the
solution should be organized (SHOP)
Search control rules for guiding choice points in the
planner’s search (NASA RAX; UCPOP+EBL; PRODIGY)
Cases and rules about their applicability

Planner specific. Expert needs to understand the
specific details of the planner’s search space

(largely) independent of the details of the specific planner
[affinities do exist between specific types of guidance and planners)

Subbarao Kambhampati

With right domain knowledge any level
of performance can be achieved...

HTN-SAT, SATPLAN+DOM beat
SATPLAN…
– Expect reduction schemas, declarative

knowledge about inoptimal plans
TLPLAN beats SATPLAN,
GRAPHPLAN
– But expects quite detailed domain

knowledge on expected state
sequences

SHOP beats TLPLAN…(but not
TALPlan)
– Expects user to write a “program” for

the domain in its language
» Explicit instructions on the order in

which schemas are considered and
concatenated

Wh
o

ge
ts

the
 cr

ed
it?

-Th
e p

rov
ide

r o
f d

om
ain

 kn
ow

led
ge

?

-Th
e p

lan
ne

r t
ha

t is
 ca

pa
ble

 o
f u

sin
g i

t?

Subbarao Kambhampati

Ways of using the Domain Knowledge
As search control
– HTN schemas, TLPlan rules, SHOP procedures
– Issues of Efficient Matching

To prune unpromising partial solutions
– HTN schemas, TLPlan rules, SHOP procedures
– Issues of maintaining multiple parses

As declartative axioms that are used along with other
knowledge
– SATPlan+Domain specific knowledge
– Cutting Planes (for ILP encodings)
– Issues of domain-knowledge driven simplification

Folded into the domain-independent algorithm to generate
a new domain-customized planner
– CLAY
– Issues of Program synthesis

Subbarao Kambhampati

Task Decomposition (HTN) Planning
The OLDEST approach for providing domain-specific
knowledge
– Most of the fielded applications use HTN planning

Domain model contains non-primitive actions, and
schemas for reducing them
Reduction schemas are given by the designer
– Can be seen as encoding user-intent

» Popularity of HTN approaches a testament of ease with
which these schemas are available?

Two notions of completeness:
– Schema completeness

» (Partial Hierarchicalization)
– Planner completeness

Travel(S,D)

GobyBus(S,D) GobyTrain(S,D)

Getin(B,S)

BuyTickt(B)
Getout(B,D)

BuyTickt(T)

Getin(T,S)
Getout(T,D)

Hitchhike(S,D)

Subbarao Kambhampati

Modeling Action Reduction

GobyBus(Phx,Msn)Get(Money) Buy(WiscCheese)

At(Msn)

Hv-Money

t1: Getin(B,Phx)

t2: BuyTickt(B)

t3: Getout(B,Msn)

In(B)
Hv-Tkt

Hv-Money
At(D)

Get(Money)

Buy(WiscCheese)

GobyBus(S,D)

t1: Getin(B,S)

t2: BuyTickt(B)

t3: Getout(B,D)

In(B)
Hv-Tkt

Hv-Money At(D)

Affi
ni

ty
 b

et
wee

n
re

du
ct

io
n

sc
he

m
as

 an
d

pl
an

-s
pa

ce
 p

lan
ni

ng

Subbarao Kambhampati

Dual views of HTN planning
Capturing hierarchical
structure of the domain

– Motivates top-down planning
» Start with abstract plans,

and reduce them
Many technical headaches

– Respecting user-intent,
maintaining systematicity
and minimality
[Kambhampati et. al. AAAI-98]
» Phantomization, filters,

promiscuity, downward-
unlinearizability..

Capturing expert advice
about desirable solutions

– Motivates bottom-up
planning

» Ensure that each partial
plan being considered is
“legal” with respect to
the reduction schemas

» Directly usable with
disjunctive planning
approaches

[Mali & Kambhampati, 98]
Connection to efficiency is
not obvious

Relative advantages are still unclear...
[Barrett, 97]

Subbarao Kambhampati

Full procedural control: The SHOP way

Travel by bus only if going by taxi doesn’t work out

Shop provides a
“high-level” programming
language in which the
user can code his/her
domain specific planner

-- Similarities to HTN
planning

-- Not declarative (?)

The SHOP engine can be
seen as an interpreter
for this language

[Nau et. al., 99]

Blurs the domain-specific/domain-independent divide
How often does one have this level of knowledge about a domain?

Subbarao Kambhampati

Non-HTN Declarative Guidance

Invariants: A truck is at only one location
at(truck, loc1, I) & loc1 != loc2 => ~at(truck, loc2, I)

Optimality: Do not return a package to the same location
at(pkg, loc, I) & ~at(pkg,loc,I+1) & I<J => ~at(pkg,loc,j)

Simplifying: Once a truck is loaded, it should immediately move
~in(pkg,truck,I) & in(pkg,truck,I+1) & at(truck, loc, I+1) =>

~at(truck, loc, I+2)

Once again, additional clauses first increase the encoding size
but make them easier to solve after simplification
(unit-propagation etc).

[Kautz & Selman, AIPS-98]

Subbarao Kambhampati

Rules on desirable State
Sequences: TLPlan approach

TLPlan [Bacchus & Kabanza, 95/98] controls a
forward state-space planner

Rules are written on state sequences
using the linear temporal logic (LTL)

LTL is an extension of prop logic with temporal modalities
U until [] always
O next <> eventually

Example:

If you achieve on(B,A), then preserve it until On(C,B) is achieved:

[] (on(B,A) => on(B,A) U on(C,B))

Subbarao Kambhampati

Keep growing “good” towers, and avoid “bad” towers

Good towers are those that do not violate any goal conditions

TLPLAN Rules can get quite baroque

How “Obvious”

are these rules?

Can these be

learned?

The heart of TLPlan is the ability to incrementally
and effectively evaluate the truth of LTL formulas.

ICAPS workshop on the Competition Subbarao Kambhampati

What are the lessons of KB Track?
If TLPlan did better than SHOP
in ICP, then how are we
supposed to interpret it?

– That TLPlan is a superior
planning technology over
SHOP?

– That the naturally available
domain knowledge in the
competition domains is easier to
encode as linear temporal logic
statements on state sequences
than as procedures in the SHOP
language?

– That Fahiem Bacchus and Jonas
Kvarnstrom are way better at
coming up with domain
knowledge for blocks world (and
other competition domains) than
Dana Nau?

May be we should “learn” this guidance

ICAPS workshop on the Competition Subbarao Kambhampati

Are we comparing Dana & Fahiem or
SHOP and TLPlan?

(A Critique of Knowledge-based
Planning Track at ICP)

Subbarao Kambhampati
Dept. of Computer Science & Engg.

Arizona State University
Tempe AZ 85287-5406

Click here to download
TLPlan
– Click here to download a

Fahiem

Click here to download
SHOP
– Click here to download a

Dana

Subbarao Kambhampati

How is the Customization Done?

Through Machine Learning
– Learning Search Control rules

UCPOP+EBL,
PRODIGY+EBL,
(Graphplan+EBL)

– Case-based planning (plan reuse)
DerSNLP,
Prodigy/Analogy

– Learning/Adjusting heuristics
– Domain pre-processing

» Invariant detection; Relevance
detection;
Choice elimination, Type

analysis
STAN/TIM, DISCOPLAN
etc.
RIFO; ONLP

– Abstraction
ALPINE; ABSTRIPS,
STAN/TIM etc.

We will start with KB-Planning track to get a feel for what control knowledge
has been found to be most useful; and see how to get it..

Given by humans (often, they are
quite willing!)[IPC KBPlanning Track]

– As declarative rules (HTN
Schemas, Tlplan rules)

» Don’t need to know how the
planner works..

» Tend to be hard rules rather
than soft preferences…

» Whether or not a specific form
of knowledge can be exploited
by a planner depends on the
type of knowledge and the type
of planner

– As procedures (SHOP)
» Direct the planner’s search

alternative by alternative..

Subbarao Kambhampati

Approaches for Learning Search Control

Improve an existing planner Learn “from scratch” how to plan

--Learn “reactive policies”
State x GoalÆaction

[Work by Khadron, 99;
Givan, Fern, Yoon, 2003Æ]

“speedup
learning”

Learn rules
to guide choice points

Learn plans
to reuse

Learn adjustments to
heuristics

--Macros
--Annotated cases

No “from-scratch” learner ever placed well in the Intl. Planning Competition.
Macro-FF, an extension of a successful planner called FF, placed 1st in 3 domains
in IPC-2004 (..but there was no Knowledge-based Planning track in 2004)

Learn Domain Models
--action models
--transition probabilities etc.

Learn Search Control
--control rules
--cases/macros
--heuristics
--invariants

Learning Strategies
--Methods; task reduction knowledge
--cases and case usage rules

Improve correctness
Improve quality
Improve speed
Improve everything together

Subbarao Kambhampati

Inductive Learning of Search Control

Convert to “classification” learning
– +ve examples: Search nodes on the success path
– -ve examples: Search nodes one step away from the

success path
– Learn a classifier

Classifier may depend on the features of the problem
(Init, Goal), as well as the current state.

Several systems:
– Grasshopper (Leckie & Zuckerman; 1998)
– Inductive Logic Programming; (Estlin & Mooney; 1993)

Learning & Planning

Subbarao Kambhampati

http://rakaposhi.eas.asu.edu/ml-summer.html

Lectures at Machine Learning Summer School,
Canberra, 2006

Overview

Learn Domain Models
--action models
--transition probabilities etc.

Learn Search Control
--control rules
--cases/macros
--heuristics
--invariants

Learning Strategies
--Methods; task reduction knowledge
--cases and case usage rules

Improve correctness
Improve quality
Improve speed
Improve everything together

Subbarao Kambhampati

If Polished(x)@S &
~Initially-True(Polished(x))
Then

REJECT
Stepadd(Roll(x),Cylindrical(x)@s)

Subbarao Kambhampati

Explanation-based Learning

Start with a labelled example, and some background
domain theory
Explain, using the background theory, why the
example deserves the label
– Think of explanation as a way of picking class-relevant

features with the help of the background knowledge
Use the explanation to generalize the example (so
you have a general rule to predict the label)
Used extensively in planning
– Given a correct plan for an initial and goal state pair, learn a

general plan
– Given a search tree with failing subtrees, learn rules that

can predict failures
– Given a stored plan and the situations where it could not be

extended, learn rules to predict applicability of the plan

Subbarao Kambhampati

Learning Search Control Rules with EBL

Explain leaf level failures

Regress the explanations
to compute interior node
failure explanations

Use failure explanations to
set up control rules

Problems:
-- Most branches end in

depth-limits
>No analytical explanation
>Use preference rules?

-- The utility problem
>Learn general rules
>Keep usage statistics &

prune useless rules

(Kambhampati, Katukam, Qu, 95)

Regress

Subbarao Kambhampati

Issues in EBL for Search Control Rules

Effectiveness of learning
depends on the
explanation
– Primitive explanations of

failure may involve
constraints that are
directly inconsistent

– But it would be better if we
can unearth hidden
inconsistencies

..an open issue is to
learn with probably
incorrect explanations
– UCPOP+CFEBL

Subbarao Kambhampati

We can also explain (& generalize)
Success

Success explanations tend
to involve more components
of the plan than failure explanations

CSE 574: Planning & Learning Subbarao Kambhampati

Checking correctness of a plan:
The Causal Approach

Causal Proof: Check if each of the goals and preconditions of the
action are

» “established” : There is a preceding step that gives it
» “unclobbered”: No possibly intervening step deletes it

Or for every preceding step that deletes it, there exists another step
that precedes the conditions and follows the deleter adds it back.

Causal proof is
– “local” (checks correctness one condition at a time)
– “state-less” (does not need to know the states preceding actions)

» Easy to extend to durative actions
– “incremental” with respect to action insertion

» Great for replanning

Contd..

Load(B)Load(A)

In(A)

In(B)
At(B,E)
At(R,E)

At(A,E)
At(R,E)

At(A,E)

At(B,E)

At(R,E)

In(A)
~At(A,E)

In(B)
~At(B,E)

Subbarao Kambhampati

Status of EBL learning in Planning

Explanation-based learning from
failures has been ported to modern
planners

– GP-EBL [Kambhampati, 2000] ports
EBL to Graphplan

» “Mutual exclusion relations”
are learned

(exploits the connection
between EBL and
“nogood” learning in CSP)

» Impressive speed
improvements

EBL is considered
standard part of Graphplan
implementation now..

» …but much of the learning was
intra problem

Subbarao Kambhampati

Some misconceptions about EBL

Misconception 1: EBL needs complete and correct
background knowledge

» (Confounds “Inductive vs. Analytical” with “Knowledge rich
vs. Knowledge poor”)

– If you have complete and correct knowledge then the learned
knowledge will be in the deductive closure of the original
knowledge;

– If not, then the learned knowledge will be tentative (just as in
inductive learning)

Misconception 2: EBL is competing with inductive learning
– In cases where we have weak domain theories, EBL can be

seen as a “feature selection” phase for the inductive learner
Misconception 3: Utility problem is endemic to EBL
– Search control learning of any sort can suffer from utility

problem
» E.g. Using inductive learning techniques to learn search

control

Subbarao Kambhampati

Useful Directions for EBL

Often we may have background knowledge that is
“complete” and “correct” in certain local regions,
but not across the board
– E.g. My knowledge of AI is incomplete/incorrect; but my

knowledge of planning is complete and possibly correct,
while my knowledge of Machine Learning is incomplete but
largely correct

– Characterizing the limitations of the background knowledge
will help in estimating the expected accuracy of the learned
knowledge

Handling partial explanations of failure in search
control rule learning
– UCPOP+CFEBL

Subbarao Kambhampati

Approaches for Learning Search Control

Improve an existing planner Learn “from scratch” how to plan

--Learn “reactive policies”
State x GoalÆaction

[Work by Khadron, 99;
Givan, Fern, Yoon, 2003Æ]

“speedup
learning”

Learn rules
to guide choice points

Learn plans
to reuse

Learn adjustments to
heuristics

--Macros
--Annotated cases

Learn Domain Models
--action models
--transition probabilities etc.

Learn Search Control
--control rules
--cases/macros
--heuristics
--invariants

Learning Strategies
--Methods; task reduction knowledge
--cases and case usage rules

Improve correctness
Improve quality
Improve speed
Improve everything together

Subbarao Kambhampati

Case-based Planning
Macrops, Reuse, Replay

Structures being reused
– Opaque vs. Modifiable
– Solution vs. Solving process (derivation/search trace)

Acquisition of structures to be reused
– Human given vs. Automatically acquired

» Adapting human-given cases is a way of handling
partial domain models

Mechanics of reuse
– Phased vs. simultaneous

Costs
– Storage & Retrieval costs; Solution quality

Subbarao Kambhampati

Case-study: DerSNLP

Modifiable derivational traces are reused
Traces are automatically acquired during problem solving

– Analyze the interactions among the parts of a plan, and store plans for
non-interacting subgoals separately

» Reduces retrieval cost
– Use of EBL failure analysis to detect interactions

All relevant trace fragments are retrieved and replayed before the
control is given to from-scratch planner

– Extension failures are traced to individual replayed traces, and their
storage indices are modified appropriately

» Improves retrieval accuracy

(Ihrig & Kambhampati, JAIR 97)

Old
cases

EBL

Subbarao Kambhampati

Reuse/Macrops Current Status

Since ~1996 there has been little work on reuse and macrop
based improvement of base-planners
– People sort of assumed that the planners are already so fast, they

can’t probably be improved further
Macro-FF, a system that learns 2-step macros in the context of
FF, posted a respectable performance at IPC 2004 (but NOT in
the KB-track)

» Uses a sophisticated method assessing utility of the learned
macrops (& also benefits from the FF enforced hill-climbing
search)

Macrops are retained only if they improve performance
significantly on a suite of problems

– Given that there are several theoretical advantages to reuse and
replay compared to Macrops, it would certainly be worth seeing
how they fare at IPC [Open]

Subbarao Kambhampati

Approaches for Learning Search Control

Improve an existing planner Learn “from scratch” how to plan

--Learn “reactive policies”
State x GoalÆaction

[Work by Khadron, 99;
Givan, Fern, Yoon, 2003Æ]

“speedup
learning”

Learn rules
to guide choice points

Learn plans
to reuse

Learn adjustments to
heuristics

--Macros
--Annotated cases

Learn Domain Models
--action models
--transition probabilities etc.

Learn Search Control
--control rules
--cases/macros
--heuristics
--invariants

Learning Strategies
--Methods; task reduction knowledge
--cases and case usage rules

Improve correctness
Improve quality
Improve speed
Improve everything together

Heuristics for Classical Planning
P
M

Q
M

R
M

P

Q

R

M

A1

A2

A3

Q

R

M

K

L
A4

GA5

P
A1

A2

A3

Q

R

M

K

L

P

G

A4
K

A1
P

M

Heuristic
Estimate = 2

Relaxed plans are solutions for a relaxed problem

G
S

h(S)?

Cost of a Set of Literals

• lev(p) : index of the first level at which p comes into the planning graph
• lev(S): index of the first level where all props in S appear non-

mutexed.

Sum Set-Level

Partition-k Adjusted Sum Combo Set-Level
with memos

h(S) = ∑p∈S lev({p}) h(S) = lev(S)

Admissible

At(0,0)

Key(0,1)

Prop list
Level 0

At(0,0)

Key(0,1)

Prop list
Level 0

At(0,1)

At(1,0)

noop

noop

Action list
Level 0

Move(0,0,0,1)

Move(0,0,1,0)

x

At(0,0)

key(0,1)

Prop list
Level 1

x

At(0,1)

At(1,0)

noop

noop

Action list
Level 0

Move(0,0,0,1)

Move(0,0,1,0)

x
At(0,1)

At(1,0)

noop

noop

Action list
Level 0

Move(0,0,0,1)

Move(0,0,1,0)

x

At(0,0)

key(0,1)

Prop list
Level 1

x

At(0,0)

Key(0,1)

noop

noop

x

Action list
Level 1

x

Prop list
Level 2

Move(0,1,1,1)
At(1,1)

At(1,0)

At(0,1)

Move(1,0,1,1)

noop

noop

x

x

x
x

x
x

…...

x

…...

Pick_key(0,1) Have_key

~Key(0,1)x
x

x

x
x

Mutexes

At(0,0)

Key(0,1)

noop

noop

x

Action list
Level 1

x

Prop list
Level 2

Move(0,1,1,1)
At(1,1)

At(1,0)

At(0,1)

Move(1,0,1,1)

noop

noop

x

x

x
x

x
x

…...

x

…...

Pick_key(0,1) Have_key

~Key(0,1)x
x

x

x
x

Mutexes

Degree of –ve interaction

Relaxed plan + Degree of –ve int

Subbarao Kambhampati

Learning to Improve Heuristics
Most modern planners use reachability heuristics
– These approximate the reachability by ignoring some types of

interactions (usually, negative interactions between subgoals)
– While effective in general, ignoring such negative interactions can

worsen the heuristic guidance and lead the planners astray
» A way out is to “adjust” the reachability information with the

information about interactions that were ignored
1. (Static) Adjusted Sum heuristics as popularized in AltAlt

– Increases the heuristic cost (as we need to propagate
negative interactions)

– Could be bad for progression planners which grow the
planning graph once for each node..

2. (Learn dynamically) Learn to predict the difference between the
heuristic estimate by the relaxed plan and the “true” distance

Soongwook et. Al. show that this is feasible—and
manage to improve the performance of FF

[Soongwook et a, ICAPS 2006]

Subbarao Kambhampati

Learning Adjustments to Heuristics

Start with a set of training examples [Problem, Plan]
– Use a standard planner, such as FF to generate these

For each example [(I,G), Plan]
– For each state S on the plan

» Compute the relaxed plan heuristic SR

» Measure the actual distance of S from goal S* (easy since we
have the current plan—assuming it is optimal)

– Inductive learning problem
» Training examples: Features of the relaxed plan of S

Yoon et al use a taxonomic feature representation Class
labels: S*-SR (adjustment)

» Learn the classifier
Finite linear combination of features of the relaxed plan

[Yoon et al, ICAPS 2006]

Subbarao Kambhampati

What types of control knowledge used by
KBplanners can be learned currently?
Learnable (now)
– Invariants
– Simple search control rules
– Adjustment rules for

heuristics

Open problems
– Complex state sequence

rules used by TLPlan
» Invariants, a special

case, is learnable
– HTN schemas (or SHOP

programs)
» Most current work still

starts with human-given
methods, and learns
conditions under which
they can be applied

Subbarao Kambhampati

Approaches for Learning Search Control

Improve an existing planner Learn “from scratch” how to plan

--Learn “reactive policies”
State x GoalÆaction

[Work by Khadron, 99;
Winner & Veloso, 2002;
Givan, Fern, Yoon, 2003Æ
Gretton & Thiebaux, 2004]

“speedup
learning”

Learn rules
to guide choice points

Learn plans
to reuse

Learn adjustments to
heuristics

--Macros
--Annotated cases

Learn Domain Models
--action models
--transition probabilities etc.

Learn Search Control
--control rules
--cases/macros
--heuristics
--invariants

Learning Strategies
--Methods; task reduction knowledge
--cases and case usage rules

Improve correctness
Improve quality
Improve speed
Improve everything together

Subbarao Kambhampati

Learning From Scratch:
Learning Reactive Policies

We are not interested in speeding up an existing
planner, but rather directly learn how to find plans
for a large distribution of problems
Specifically, we want to learn a policy of the form
[state, goals]Æaction
– Notice that this is a policy predicated both on states and

goals (so it is supposed to work for all problems)
Examples:
– Winner & Veloso, 2002 (EBL/Induction)
– Khadron, 99 (Also, Martin/Geffner; 2002) (Induction)
– Givan, Fern, Yoon, 2003 (also Gretton & Thiebaux, 2004)

(Induction; Reinforcement Learning)

Subbarao Kambhampati

Learning Domain Specific Planners

Explanation-based Generalization!

Subbarao Kambhampati

Subbarao Kambhampati

Learning Policies

A policy can be seen as a classifier, we can learn it…
If we have access to n traces (trajectories) of the optimal policy,
we can use standard inductive learning techniques to learn the
full policy
– Khadron, 99 learns decision lists

Even if we don’t have access to traces from an optimal policy,
we can use reinforcement learning techniques to improve an
existing policy iteratively [Fern, Yoon, Givan]
– Start with an initial policy
– [Policy Iteration:] Use policy rollout to compute n trajectories of

the improved policy
– [Policy Learning:] Learn the representation of the new policy using

the trajectories
– Repeat

» A planner using this idea came 3nd in the IPC probabilistic
planning competion (it was beaten by FF-replan…)

30 years of research
into programming
languages,
..and C++ is the result?

20 years of research
into decision theoretic
planning,
..and FF-Replan is the result?

ICML 2004 Workshop on RRL

Approximate Policy Iteration

trajectories of
improved policy π’

π’ Learn approximation
of π’Control Policy

??

? ?

current policy π

Planning Domain
(problem distribution)

?

ICML 2004 Workshop on RRL

Computing π’ Trajectories from π

s …
…

…

…
…

Trajectories under π

a1

a2

Given: current policy π and problem ?

… …

Output: a trajectory under improved policy π’

?

s

Use FF heuristic
at these states

Learn Domain Models
--action models
--transition probabilities etc.

Learn Search Control
--control rules
--cases/macros
--heuristics
--invariants

Learning Strategies
--Methods; task reduction knowledge
--cases and case usage rules

Improve correctness
Improve quality
Improve speed
Improve everything together

Learning Domain Knowledge

Learning from scratch

ÆOperator Learning

Operationalizing existing
knowledge

ÆEBL-based operationalization
[Levine/DeJong; 2006]

ÆRL for focusing on “interesting
parts” of the model
…lots of people including

[Aberdeen et. Al. 06]

Learning Domain Knowledge
(From observation)

• Learning Operators (Action Models)
– Given a set of [Problem; Plan: (operator sequence)] examples;

and the space of domain predicates (fluents)
– Induce operator descriptions

• Operators will have more parameters in expressive domains
– Durations and time points; probabilities of outcomes etc.

• Dimensions of variation
– Availability of intermediate states (Complete or Partial)

• Makes the problem easy—since we can learn each action
separately. Unrealistic (especially “complete” states)

– Availability of partial action models
• Makes the problem easier by biasing the hypotheses (we can

partially explain the correctness of the plans). Reasonably realistic.
– Interactive learning in the presence of humans

• Makes it easy for the human in the loop to quickly steer the system
from patently wrong models

OBSERVE: Assumes full
knowledge of intermediate states

• When we have full
knowledge of
intermediate states,
the action effects
are easy to learn!
– Preconditions need

to be learned by
inducing over a
sample of states
where the action is
applicable

– Zettlemeyer et al do
this for stochastic
case [2005]

[Wang, 1994]

ARMS
(Doesn’t assume intermediate states; but requires

action parameters)
• Idea: See the example plans

as “constraining” the
hypothesis space of action
models
– The constraints can be

modeled as SAT constraints
(with variable weights)

– Best hypotheses can be
generated by solving the
MAX-SAT instances

• Performance judged in terms
of whether the learned action
model can explain the
correctness of the observed
plans (in the test set)
– Notice that if my theory is

incomplete I might be able to
explain both correct and
incorrect plans to be correct…

• Constraints
– Actions’ preconditions and

effects must share action
parameters

– Actions must have non-empty
preconditions and effects;
Actions cannot add back what
they require; Actions cannot
delete what they didn’t ask for

– For every pair of frequently co-
occurring actions ai-aj, there
must be some causal reason

• E.g. ai must be giving
something to aj OR ai is
deleting something that aj
gives

[Yang et. al. 2005]

Learn Domain Models
--action models
--transition probabilities etc.

Learn Search Control
--control rules
--cases/macros
--heuristics
--invariants

Learning Strategies
--Methods; task reduction knowledge
--cases and case usage rules

Improve correctness
Improve quality
Improve speed
Improve everything together

HTN Learning (Open)

• Learning hierarchical knowledge (e.g. HTN
reductions) given plan examples is
significantly harder
– Often only the ground actions can be

observed; the non-primitive actions cannot be
• Very little work on learning hierarchical

knowledge
– CAMEL system learns applicability conditions

for specific methods assuming that non-
primitive actions are given

Integrated Strategy Learning
(Open)

• Learning strategic information in domains with
partial domain knowledge
– Work until now focused on either learning search

control assuming full domain model OR learning
domain model without much regard to search

– A lot of important problems fall in the middle
• Consider the problem of learning how to assemble a book-

shelf by seeing it being made once
– You clearly have at least partial knowledge about the domain

(even if you, like me, are mechanically challenged)
» Even though you are unlikely to know all the tricky details

– What you want to learn is general strategic knowledge about
how to put together similar entities

Challenges and Solutions

• Domain Knowledge in multiple
modalities
ÆUse multiple ILRs customized to

different types of knowledge
• Learning in multiple time-scales
ÆCombine eager (e.g. EBL-style)

and lazy (e.g. CBR-style)
learning techniques

• Handling partially correct domain
models and explanation
ÆUse local closed world

assumptions
• Avoiding balkanization of learned

knowledge
ÆUse structured explanations as

a unifying “glue”
• Meeting explicit learning goals
ÆUse Goal-driven meta-learning

techniques

• Goal-driven, explanation-based learning
approach of GILA gleans and exploits
knowledge in multiple natural formats

— Single example analyzed under the lenses
of multiple “ILRs” to learn/improve

– Planning operators
– Task networks
– Planning cases
– Domain uncertainty

Summary
• Learning methods have been used in planning

for both improving search and for learning
domain physics
– Most early work concentrated on search
– Most recent work is concentrating on learning domain

physics
• Largely because we seem to have a very good handle on

search
• Most effective learning methods for planning seem to be:

– Knowledge based
• Variants of Explanation-based learning have been very popular

– Relational
• Many neat open problems...

