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Abstract

Most existing planners intertwine the refinement
of a partial plan with search by pushing the indi-
vidual refinements of a plan into different search
branches. Although this approach reduces the cost
of handling partial plans, it also often leads to
search space explosion. In this paper, we con-
sider the possibility of handling the refinements
of a partial plan together (without splitting them
into search space). This is facilitated by disjunc-
tive partial plan representations that can compactly
represent large sets of partial plans. Disjunctive
representations have hitherto been shunned since
they may increase the plan handling costs. We
argue that performance improvements can be ob-
tained despite these costs by the use of (a) con-
straint propagation techniques to simplify the dis-
junctive plans and (b) CSP/SAT techniques to ex-
tract solutions from them. We will support this
view by showing that some recent promising re-
finement planners, such as the GRAPHPLAN al-
gorithm [2], can be seen as deriving their power
from disjunctive plan representations. We will
also present a new planning algorithm, UCPOP-
D, which uses disjunctive representations over
UCPOP [19] to improve performance. Finally, we
will discuss the issues and tradeoffs involved in
planning with disjunctive representations.

1 Introduction

A large part of the work on plan synthesis in artificial intel-
ligence falls under the rubric of refinement planning. Re-
finement planning [12] involves manipulating sets of partial
plans, each of which are shorthand notations for a set of po-
tential solutions for the planning problem (called the candi-
date set of the plan). The planning process starts with the
null plan, corresponding to the set of all action sequences,
and consists of two repeated steps. First, called the solution-
extraction phase, involves examining current set of partial

plans to see if they contain a solution. If this step fails, then
a “refinement strategy” is applied to the current set of plans
to get a new plan set. Informally, refinement strategies can
be understood as operations that narrow the candidate set by
eliminating those sequences that cannot be solutions to the
problem.

As described above, refinement planning does not need
any explicit search. However, most refinement planners
described in the literature, including the popular ones like
UCPOP [19] and PRODIGY [4] introduce explicit search
into the refinement process by considering each of the re-
finements of a plan in a different search branch. The moti-
vation behind introducing search into refinement planning is
to restrict the solution extraction and refinement operations
to single plans, thereby making them cheaper. The expense
that all these planners pay for this reduction in “per-plan”
cost is the increase in search space size. Indeed, it is well
known that planners such as UCPOP and PRODIGY gener-
ate very large search spaces even for simple problems [7, 2].
The usual solution to this problem is to control the plan-
ner’s search with the help of search control knowledge ac-
quired from domain experts (e.g. task reduction schemas) or
through learning techniques (e.g. explanation-based learn-
ing [15], case-based planning [6]).

In this paper, we will consider a more direct solution to
the search space explosion problem – that of handling sets
of plans without splitting them into the search space. At first
glance, this seems to involve a mere exchange of complexity
from search space size to solution extraction cost. In partic-
ular, handling sets of plans together might lead to unwieldy
data structures, as well as a costly solution-extraction pro-
cess. We will argue that we can nevertheless derive perfor-
mance improvements by the use of disjunctive partial plan
representations, which support compact representation of
large sets of partial plans, constraint propagation techniques
which simplify the partial plan constraints, and the use of
efficient CSP/SAT solvers to help in solution extraction.

The paper is organized as follows. Section 2 provides
the background on the planning problem, and syntax and
semantics of partial plans, which can be skipped by read-



ers familiar with candidate set semantics for partial plans
(c.f. [12]). The next two sections provide a novel view of
the notions of refinement strategies and refinement planning
which shows the secondary nature of search in refinement
planning. Section 5 discusses how disjunctive representa-
tions and constraint propagation can be used to efficiently
handle sets of plans together, without splitting them into
the search space. It also explains the success of GRAPH-
PLAN algorithm in terms of these ideas. Section 6 shows
how these ideas can be used to improve the performance of
traditional refinement planners by presenting UCPOP-D al-
gorithm which uses disjunctive representations to improve
the performance of UCPOP. This section also describes em-
pirical results demonstrating the potential of UCPOP-D, and
the ways in which it can be extended. Section 7 discusses
the tradeoffs in planning with disjunctive representations and
Section 8 discusses the relations with other recent efforts to
scale up AI planning techniques. Section 9 summarizes the
contributions of this paper.

2 Preliminaries

A planning problem is defined in terms of the initial and goal
states of the world, and a set of actions. The world states
are represented in terms of some binary state variables, and
the actions transform a given state into another. Actions are
described in terms of preconditions (i.e., the specific state
variable/value configuration that must hold in the world state
for them to be applicable) and effects (i.e., the changes that
the action would make to state variable values to give rise to
the new world state). A solution to the planning problem is a
sequence of actions that when executed from the initial state,
results in a state where the state variables mentioned in the
goal state have the specified values.

As an example, consider the simple one-way rocket do-
main, consisting of a single rocket, and two packages, A
and B, all of which are initially on earth. The objective is
to send both the packages to moon. There are three actions,
Load(x) which puts the package x in the rocket, Unload(x)
which takes the package out of the rocket (and on to earth or
moon, whereever the rocket may be at that time). Finally,
there is the F ly() action which transports the rocket, along
with its contents, from earth to moon. The preconditions and
effects of F ly() action are specified as follows:

Fly()
Preconditions: At(R;E)
Effects: At(R;M)

8xIn(x)) [At(x;M);:At(x;E)]

The initial state is specified as At(A;E) ^ At(B;E) ^
At(R;E) and the goal state is specified by At(A;M) ^
At(B;M) ^ :In(A) ^ :In(B).

Refinement planners [12] attempt to solve a planning
problem by navigating the space of sets of potential solu-
tions (action sequences). The potential solution sets are rep-
resented and manipulated in the form of “(partial) plans.”

1: Load(A)

3:Fly()

5:Unload(A)0 ∞

In(B)

2: Load(B)

4:Unload(B)In(A)

At(R,E)

At(B,E)
At(A,E)

At(A,M)
At(B,M)
In(A)
¬In(B)

Figure 1: This figure depicts the partial plan from the rocket
domain. The ordering constraints between steps are shown
by arrows. The interval preservation constraints are shown
by arcs. Contiguous steps are shown immediately next to
each other. States of the world after the prefix and before the
suffix of the partial plan are shown in the ovals beside them.

Syntactically, a partial plan P can be seen as a set of con-
straints. Semantically, a partial plan is a shorthand notation
for the set of action sequences that are consistent with its
constraints. The set of such action sequences is called the
set of candidates (or the candidate set) of the partial plan
P and is denoted as hhPii. Informally, refinements narrow
the candidate sets of partial plans by gradually eliminating
action sequences that cannot be solutions to the problem. To
make this more precise, we need to talk about the syntax and
semantics of the partial plans.

2.1 Partial Plans: Syntax

The following representation of partial plans is a generaliza-
tion of representations used in several existing planning al-
gorithms, and shows the types of constraints normally used.1

A partial plan consists of a set of steps, a set of ordering
constraints that restrict the order in which steps are to be
executed, and a set of auxiliary constraints that restrict the
value of state variables (describing the states of the world)
over particular points or intervals of time. Each step is as-
sociated with an action. To distinguish between multiple in-
stances of the same action appearing in a plan, we assign to
each step a unique step number i and represent the ith step
as the pair i : Ai where Ai is the action associated with the
ith step. The step 0 corresponds to a dummy action symbol-
izing the beginning of the plan, and the step 1 corresponds
to the dummy action symbolizing the end of the plan. The
conditions true in the initial state are considered the effects
of 0 and the conditions needed in the goal state are consid-
ered the preconditions of 1. Figure 1 shows a partial plan
Peg consisting of seven steps (including 0 and1). The plan
Peg is represented as follows:

1For a very different partial plan representation, that still has
candidate set based semantics, see Ginsberg’s paper in these pro-
ceedings [5].



........Minimal Candidate 1 Minimal Candidate m

+

from Minimal. Candidate. m

Candidates derived
From Minimal. Candidate. 1

Candidates derived

+

Union of these sets is the candidate set of the partial plan

......

Ground linearizations that satisfy auxiliary constraints

Ground Linearization 1                Ground Linearization 2         .....           Ground Linearization n

Corresponds to the ground operator sequence 

Partial Plan (a set of ordering, binding, step and auxiliary constraints)

Safe Ground Linearization  1 Safe ground Linearization m

Topological sorts on steps of the partial plan

Syntactic View

 Semantic View

Figure 2: Relations between a partial plan and its candidate
set.

* f(1 : Load(A)); (2 : Load(B)); (3 : F ly());
(4 : Unload(B)); (5 : Unload(A)); g;
f(0 � 1); (1 � 2); (1 � 4); (2 � 3);

(3 � 5); (4 � 5); (5 �1)g;

f(2
In(B)
� 3)g

+

An ordering constraint of the form (i � j) indicates that
Step i precedes Step j. An ordering constraint of the form
(i � j) indicates that Step i is contiguous with Step j, that is
Step i precedes Step j and no other steps intervene. When
steps are contiguous to 0, we can completely predict the state
of the world after those steps. In the example plan, the state
of the world after step 1 is shown in the oval below the plan.
Similarly, we can predict the minimal requirements on the
state of the world before a step that is contiguous to 1.

An auxiliary constraint of the form (i
P
� j) is called an in-

terval preservation constraint and indicates that P is to be
preserved in the range between Steps i and j (and there-
fore no operator with postcondition :P should occur be-
tween Steps i and j). In particular, according to the con-

straint (2
In(B)
� 3), Step 4 should not occur between Steps 2

and 3. An auxiliary constraint of the form P@s is called the
point truth constraint (PTC), and requires that the condition
P be true in the state in which s is executed. A partial plan
containing a step s : A will have PTCs corresponding to all
the preconditions of A. In addition, there may be PTCs cor-
responding to secondary preconditions of A posted to make
A either preserve or cause some required condition.

2.2 Partial Plans: Semantics

The semantic status of a partial plan constraint is clari-
fied by specifying when a given action sequence is said
to satisfy the constraint. In particular, an action sequence
is a candidate of a partial plan if it contains actions cor-
responding to all the steps of the plan, in an order con-

sistent with the precedence and contiguity constraints, and
it satisfies all the interval preservation constraints [12].
Figure 2 shows the schematic relations between a par-
tial plan and its candidate set [12], and we will illustrate
these relations with respect to the example plan in Fig-
ure 1. Each partial plan corresponds to a set of topolog-
ical sorts (e.g. h1; 2; 3; 4; 5i and h1; 2; 4; 3; 5i). The sub-
set of these that satisfy the auxiliary constraints of the plan
(e.g. h1; 2; 3; 4; 5i) are said to be the safe-ground lineariza-
tions of the plan. (h1; 2; 4; 3; 5i is not a safe linearization
since 4 : Unload(B) violates the interval preservation con-

straint (2
In(B)
� 3)). Each safe ground linearization of the

plan corresponds to an action sequence which is a mini-
mal candidate of the partial plan (e.g. hLoad(A); Load(B);
F ly(); Unload(B); Unload(A)i). An infinite number of
additional candidates can be derived from each minimal can-
didate of the plan by augmenting (padding) it with addi-
tional actions without violating the auxiliary constraints (e.g.
Load(A); Unload(A);Load(A); Load(B); F ly();Unload(B);
Unload(A)).

Thus, the candidate set of a partial plan is infinite, but the
set of its minimal candidates is finite. The solution extrac-
tion involves searching the minimal candidates of the plan
to see if any of them are solutions to the planning problem.
The process of refinement can be understood as incremen-
tally increasing the size of these minimal candidates so that
action sequences of increasing lengths are examined to see
if they are solutions to the problem.

3 Refinement Strategies

Refinement strategies narrow the candidate sets of partial
plans by adding constraints to eliminate action sequences
that cannot be solutions. They differ based on the types of
constraints they add (and thus the type of action sequences
they eliminate). They are best seen as mapping a set of par-
tial plans to another set of partial plans. Since partial plans
represent sets of action sequences, all set theoretic opera-
tions – union, intersection etc. – are well defined for them.
In particular we will define a planset bP to be a set of one
or more partial plans fP1;P2 : : :Png. The Pi are called the
components of bP. The candidate set of bP is defined as the
union of the candidate sets of the partial plans in that plan
set (a single plan can be seen as a singleton planset). Thus

hh bPii �
= hhP1ii [ hhP2ii [ : : : [ hhPnii

A planset is said to be irredundant if the candidate sets of
component plans are all disjoint.2 We will also denote the set
of all action sequences that can be executed from the initial

2The differentiation between plans and plansets is an artificial
one made for convenience. A planset in one plan language may be
a single plan in another plan language. In fact, we shall see below
that a set of partial plans can be represented compactly as a single
plan containing disjunctive step, ordering and binding constraints.



state I and satisfy the goals G as L(I;G). The objective
of a planning algorithm is to be able to return some desired
element of L(I;G).

A refinement strategy R is an operation which takes a
planset bP and returns a new planset bPnew such that hh bPnewii
is a subset of hh bPii. R is said to be a progressive refinement
if hh bPnewii is a proper subset of hh bPii. R is said to be a com-
plete refinement if all solutions of bP are also solutions ofbPnew (i.e., hh bPii \ L(I;G) � hh bPnewii \L(I;G)). R is said
to be systematic if given an irredundant planset, it produces
another irredundant planset.

Intuitively, a complete and progressive refinement strategy
narrows down the candidate set of a planset by winnowing
out action sequences that cannot be solutions to the problem.
Thus, when we refine the null plan P; repeatedly, we get a
sequence of plan sets bPi which satisfy:3

U � hhP;ii � hh bP2ii � hh bP2ii : : : hh bPnii : : : � L(I;G)

Examples of Refinement Strategies: As shown in [13],
existing planners use three types of complete and progres-
sive refinement strategies – forward state space refinement
(FSR), backward state space refinement (BSR) and plan
space refinement (PSR). Informally, FSR can be understood
as eliminating action sequences that have unexecutable pre-
fixes, and BSR can be understood as eliminating action se-
quences that have infeasible suffixes (in that not all goals
can hold at the end of the suffix). Finally, PSR can be under-
stood as eliminating action sequences that do not contain rel-
evant actions. All of them introduce new action constraints
onto the plansets and thus increase the length of their min-
imal candidates. In addition, FSR and BSR add contiguity
constraints between actions – thus fixing their relative posi-
tions, and giving state information, while PSR adds prece-
dence constraints, fixing only the relative ordering between
steps.

In the rocket domain, The FSR refinement takes the sin-
gleton planset containing the null plan P; : h0 � 1i and
gives the planset:8<:

h0 � load(A) � 1i;
h0 � load(B) �1i;
h0 � F ly() � 1i

9=;
since only the actions load(A), load(B) and F ly() are ap-
plicable in the initial state. It is easy to see that FSR refine-
ment strategy is complete, since every solution to the prob-
lem must start with one of the applicable actions. The refine-
ment is progressive since all action sequences belonging to

3Thus, complete and progressive refinements can be seen as
computing increasingly finer upper bounds on L(I;G). In [5],
Ginsberg presents an novel refinement strategy that simultaneously
computes increasingly finer lower bounds on L(I;G). In such
cases, as soon as the lower bound is non-empty, we can terminate
with any of its minimal candidates.

the candidate set ofP; which start with unexecutable actions
are eliminated after the refinement. Finally, the refinement is
systematic since the candidates of the different plansets start
with different initial actions. BSR is similar to FSR, except
that it extends the suffix of the plan by considering all actions
that are applicable in the backward direction.

Finally, PSR refines a planset by “establishing” precondi-
tions of steps in the component plans. Specifically, it picks
a precondition C of some step s of a component plan Pi in
the given planset bP . It then returns a new planset bPnew in
which Pi is replaced by a set of plans each corresponding
to a different way of “establishing” the condition C. In the
rocket domain, if we apply PSR refinement to the null plan
P;, to support the top level goal At(A;M), we generate the
singleton planset:8><>:

* 0 � 1 : F ly() � 1;

In(A)@1;

(1
At(A;M)
� 1); (1

:At(A;M)
� 1);

+9>=>;
The point truth constraint In(A)@1 is added to force the

F ly() action to give the effect At(A;M). The two optional
interval preservation constraints are added to ensure that this
establishment will not be violated, or repeated, by the actions
introduced by later refinements. Once again, it is easy to see
that PSR refinement is progressive in that we have eliminated
all action sequences that do not contain F ly() action, and
complete in that every solution to the problem must satisfy
the constraints of the plan shown here.

4 Refinement Planning

The operation of a refinement planner can be understood,
broadly, as starting with the null plan P; and repeatedly nar-
rowing down the candidate set by the application of refine-
ment strategies. Figure 3 shows a general refinement plan-
ning procedure, Refine(P). We will now discuss the devel-
opment of this procedure.

The simplest case of refinement planning algorithm con-
sists of the procedure in Figure 3, sans the optional steps.
This algorithm first checks to see if the current planset is
consistent. The second step checks for termination by ex-
amining the minimal candidates of the planset to see if any
of them correspond to solutions to the problem. Since there
are at most exponential number of minimal candidates (cor-
responding to the safe ground linearizations) for each com-
ponent of the planset, and since we can check if an action
sequence is a solution in linear time, the solution extraction
process can be cast as a combinatoric search problem, such
as CSP or SAT [9]. The length of the minimal candidates of
a plan increase as refinements are applied to it, thus allowing
for an incremental exploration of the candidates.

The third step involves refining the planset to generate a
new planset. As long as the refinements are complete and
progressive, termination is ensured for any solvable problem



Refine( bP:Planset)

0. Consistency Check: If bP has no minimal candidates
(i.e., safe linearizations), fail.

1. Solution Extraction:
If an action sequence hA1; A2; : : : ; Ani is a minimal
candidate of bP and also solves the planning problem,
terminate and return the action sequence. (Can be cast
as a CSP/SAT problem).

2. Refinement: Select refinement R and apply it to bP to
get a refined planset bPnew.

3. Planset splitting (search): (optional) Select a number
k � 1 such that k is less than or equal to the number
of components in bPnew. Split bPnew into k plansetsbP1; bP2 : : : bPk. Nondeterministically select a plansetbPi and set it to bPnew.

4. Planset simplification (constraint propagation)
(optional) Simplify bPnew by enforcing local consis-
tency among constraints. If the simplification shows
an inconsistency, then eliminate the plan from further
consideration.

5. Recursive invocation: Call Refine(bPnew).
Figure 3: General Template for Refinement Planning. With
k set to the number of components in the planset, we have re-
finement planning with complete search, as done in most ex-
isting planners. With k set to 1, we have refinement planning
without search, as is done in GRAPHPLAN, SATPLAN etc.
UCPOP-D described in this paper corresponds to a value of
k between 1 and the number of planset components.

(in that we will ultimately produce a planset one of whose
minimal candidates correspond to solutions).

Introducing search into refinement planning: Most re-
finement planners augment the pure refinement planning
procedure by introducing explicit search into the process.
This is done by splitting the components of the plansets into
the search space, so that individual components can be re-
fined one by one. In general, splitting the planset compo-
nents into the search space trades off the search space size
increase against the reduction in the solution extraction pro-
cess. This splitting operation is so prevalent in refinement
planners that many previous accounts of refinement plan-
ning (including our own [12]) considered the splitting to be
a requirement of the refinement planning. As the foregoing
discussion shows, this is not necessary.

Controlled search through controlled splitting: Although
introducing search in refinement planning reduces the cost
of solution extraction function, it does so at the expense of
increased search space size. In a way, splitting all the com-
ponents of a planset into different search branches is an ex-

treme approach for taming the cost of solution extraction. A
better solution is to be more deliberate about the splitting.

The algorithm template in Figure 3 supports this by allow-
ing any arbitrary amount of splitting. Specifically, the plan
set after refinement, bPnew, can be split such that some sub-
set of its components are considered together in each search
branch.

Handling plansets without splitting: In the foregoing, we
have seen that search is introduced into refinement planning
by splitting the plansets, and it can be eliminated by handling
plansets together. Keeping plansets together and searching
for solutions among their minimal candidates also supports
a clean separation of planning and scheduling – with refine-
ment strategies doing the bulk of action selection and the
CSP/SAT techniques doing the bulk of action sequencing.

There are of course several concerns regarding handling
plansets without splitting. The first is that this can lead to
very unwieldy data structures. This concern can be allevi-
ated by the use of disjunctive plan representations, which
allow us to represent a planset containing multiple compo-
nents by a single partial plan with disjunctive step, order-
ing, and auxiliary constraints. This representational transfor-
mation is best understood as converting external disjunction
(among the components of a planset) into internal disjunc-
tion (among the constraints of a plan).

The second concern is that avoiding splitting of plansets
may just transfer complexity from search space size to plan-
handling cost, and thus may not lead to overall improve-
ments in performance in the worst case. We may still hope
to win on average for two reasons. First, the CSP and
SAT algorithms, which can be used to extract solutions from
plansets, seem to scale up much better in practice than gen-
eral state space search [18, 3], thus encouraging the idea of
pushing the complexity into solution extraction phase. Sec-
ond, and perhaps more important, we can reduce the plan
handling costs in disjunctive plan representations by the use
of constraint propagation techniques that enforce local con-
sistency among the disjunctive plan constraints. This in turn
reduces the number of component plans generated by later
refinement strategies.

Thus, although we cannot expect a real performance im-
provement just by handling plansets without splitting (in that
this merely exchanges complexity from search space size
to solution extraction cost), disjunctive representations, con-
straint propagation, and SAT algorithms can in practice tilt
the balance in its favor. In the next section, we elaborate the
use of disjunctive representations and constraint propagation
techniques.

5 Refining Disjunctive Plans and Constraint
propagation

The general idea of disjunctive representations is to allow
disjunctive step, ordering, and auxiliary constraints into the
partial plan representation. Figure 4 shows two examples of



1: Load(A)0 ∞

1: Load(B)0 ∞

1: Fly()0 ∞

1: Load(A)

2 : Load(B)0 ∞

3 : Fly()

In(A)

In(B)

At(R,M)

or

or

1: Load(A)0 ∞

1: Load(B)0 ∞

In(x)@∞

In(x)@∞

In(B)

In(A)

1: Load(A)
0 ∞

2 : Load(B)

< 1,In(A),∞ > V < 2 ,In(B),∞ >

At(A,E)@1 V At(B,E)@2

or

Figure 4: Converting plansets into disjunctive plans. On the top right, there are three plans that may be generated by a forward
state space refinement, and on the top left is a single disjunctive plan that is equivalent to the three plans Similarly, on the
bottom left we have two partial plans that may be generated by a plan-space refinement. On the top right is a single disjunctive
plan that is equivalent to these two plans. .

converting sets of plans into single disjunctive plans. The
three plans on the top left can be converted into a single plan
on the right, with the disjunctive step and contiguity con-
straints. Similarly, the two plans on the bottom left can be
converted into a single plan on the bottom right with disjunc-
tive step, ordering and auxiliary constraints.

Candidate set semantics for disjunctive plans develop
from the simple observation that the set of action sequences
that satisfy the disjunctive constraint c1_ c2 is just the union
of the set of action sequences that satisfy c1 and c2 respec-
tively. In particular, the disjunctive plan on top left in Fig-
ure 4 admits into its candidate set any action sequence which
starts with Load(A), Load(B) or F ly() actions.

Disjunctive representations clearly lead to a significant in-
crease in the cost of plan handling. For example, in the dis-
junctive plan on top right side, we do not know which of the
steps will be coming next to step 0 and thus we do not quite
know what the state of the world will be after the disjunctive
step. So, how are we going to apply the FSS refinement?
Similarly, in the disjunctive plan on the top right corner in
Figure 4, we do not know whether steps 1 or 2 or both will be
present in the eventual plan. Thus we do not know whether
we should work on At(A;E) precondition or the AT (B;E)
precondition.

At first glance, this might look hopeless as the only rea-
sonable way of refining the disjunctive plans will be to split
disjunction into the search space again, and refine the com-

ponents separately. . However, it turns out that we are un-
derestimating the power of what we do know, and how that
knowledge can be used to constrain further refinements.

For example, in the plan on top right in Figure 4, knowing
that only Load(A), Load(B) or F ly() could have occurred
in the first time step lets us realize that any eventual state
of the world after the first step will contain only some sub-
set of the conditions In(A), In(B) and At(R;M), plus the
conditions true in the initial state. This list of “feasible con-
ditions” is best seen as the “union” of the states after the first
time step. It is clear that any action whose preconditions are
not a subset of this set cannot be executed in the second time
step, no matter which action we execute in the first time step.
This allows us to do a version of FSR that considers only
those actions whose preconditions hold in the current list of
feasible propositions at the current time step.

We can do even better in tightening the possible refine-
ments. The knowledge that bothLoad(A) and F ly() actions
cannot occur together in the first time step (since their pre-
conditions and effects interfere), tells us that the second state
may either have In(A) or At(R;M) but not both. So, any
action whose preconditions include these conditions can also
be ignored. This is an instance of propagation of mutual ex-
clusion constraints and can be used to reduce the number of
actions considered in the next step by the forward state space
refinement. Specifically, the actions that require both In(A)
andAT (R;M) can be ignored. This type of constraint prop-
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Figure 5: Interpreting GRAPHPLAN in terms of disjunctive representations. To the left is the search space generated by a
forward state space refinement. To the right is the partial plan representation, called plan-graph, used in GRAPHPLAN Each
candidate plan of the plan graph must have some subset of the actions in ith level coming immediately before some subset of
actions in the i+1th level (for all i). The minimal candidates corresponding to all plans generated by the forward state space
planner are compactly represented by a single partial plan (plan graph) in GRAPHPLAN.

agation forms the backbone of the GRAPHPLAN algorithm
[2] planning algorithm, that we shall discuss in more detail
below. Of course, unless the propagation is very strong, we
will not be able to weed out all infeasible actions from being
considered. In summary, we can do refinements on the dis-
junctive representations directly, if we do not mind admitting
some action sequences that would not have been the candi-
dates of a planset produced by the same refinement operating
on non-disjunctive plans. Soundness can still be maintained
since the solution extraction process checks to make sure that
a minimal candidate is a solution, before terminating.

Similar ideas apply to the disjunctive plan on the bottom
right in Figure 4. For example, knowing that either 1 or 2
must precede the last step and give the condition tells us that
if 1 does not, then 2 must. This is an instance of constraint
propagation on orderings and reduces the number of estab-
lishment possibilities that plan-space refinement has to con-
sider at the next iteration. We will see an example of this in
UCPOP-D system described in Section 6. It is worth noting
that the advantages of constraint propagation depend criti-
cally on the disjunctive representations. If we represented
the plansets in terms of their components, the constraints on
the different plan components would have been in terms of
different step names and would thus not have interacted.

5.1 Case Study: GRAPHPLAN

GRAPHPLAN [2] is a recent planning system, that can be
understood as using a partial plan representation that cor-
responds to the disjunction of the refinements produced by
a forward state space planner (see Figure 5)4. Specifically,

4There are some minor further differences between the search
space of normal forward state space refinements and the plan-graph
representation of GRAPHPLAN. Specifically, plan-graph construc-
tion is better understood in terms of a forward state space planner
which allows “noop” actions, and projects sets of independent op-
erators simultaneously from the current state See [16] for a full

GRAPHPLAN’s planning process involves two phases that
are alternated until a plan is found. In the first phase, a com-
pact structure called “plan-graph” is constructed. A plan-
graph corresponds to the disjunction of all the refinements
produced by a forward state space planner [16]. Thus the
GRAPHPLAN refinement process does not introduce any
branching into the search space. All the complexity is trans-
ferred to the solution extraction process which has to search
the plan graph structure for minimal candidates that are so-
lutions. A plan-graph specifies sets of operators at differ-
ent time steps, such that each candidate solution must con-
tain a subset of the actions at each time step contiguous to
each other. As illustrated in Figure 5, the plan-graph can
be seen as a disjunctive representation of the plansets gen-
erated by forward state space refinements. Empirical results
show that GRAPHPLAN scales-up significantly better than
non-disjunctive planners on a large number of benchmark
domains.

GRAPHPLAN depends crucially on constraint propaga-
tion routines both in the plan-graph construction and solu-
tion extraction phases. Constraint propagation is done in
terms of mutual exclusion relations between actions, stating
that the presence of one action might necessitate the absence
of another action, or vice versa. Two actions are mutually
exclusive if their preconditions and effects are mutually con-
flicting. The mutual exclusion of actions at one time step
can be propagated to make otherwise independent actions
at a latter time step mutually exclusive. Extension of k-level
plan-graph to a (k+1)-level plan-graph roughly corresponds
to doing forward state-space refinement on all the compo-
nents of the kth level planset.5 Empirical results demon-

reconstruction of GRAPHPLAN from forward projection.
5Strictly speaking, the candidate set of the k-level plangraph is a

superset of the candidate set of the corresponding kth level planset
[16]. This is because GRAPHPLAN may introduce actions into
level k + 1 which may not be applicable in any physical state af-



strate that shifting the complexity entirely from search space
size to solution extraction this way does lead to significant
improvements in performance. Kautz and Selman [9] show
that GRAPHPLAN’s performance can be further improved
by casting its solution extraction process as a SAT problem
and solving it using local search methods.

6 UCPOP-D: Disjunction over Plan-space
refinements

In the foregoing, we have argued in favor of disjunctive
refinements and constraint propagation, and suggested that
GRAPHPLAN algorithm can be understood in these terms.
The success of GRAPHPLAN shows that there is a lot to
be gained by considering other disjunctive partial plan rep-
resentations. Since GRAPHPLAN concentrates on disjunc-
tive representations of a forward state space planner, one in-
teresting direction is to explore disjunctive representations
over other refinements. In this section, we will describe our
experience with disjunctive representations over plan-space
refinements in the context of UCPOP [19], a popular partial-
order planner.

This section has multiple aims. We want to demonstrate
that the ideas of disjunctive representations can be folded
naturally into existing refinement planners. We also want
to explore the middle-ground in terms of splitting plansets.
UCPOP splits every component of the planset resulting from
a refinement into the search space. GRAPHPLAN keeps all
components together with disjunctive representations. The
UCPOP-D algorithm we discuss here disjoins some of the
components of the planset produced by a refinement into a
single plan, while keeping the other components separately.

Since plan-space refinements concern themselves with
different ways of establishing a specific condition in the
plan, disjunction here will deal with multiple establishment
possibilities together. Let us motivate the utility of such a
disjunction with an example. Consider the plan shown to the
left in Figure 6, which contains a step s that requires a pre-
condition p. There are two steps s1 and s2 in the plan such
that both of them are capable of providing the condition p

to s. When planners using plan-space refinement consider
the precondition p@s for establishment, they typically make
several refinements, two of them corresponding to simple es-
tablishment with s1 and s2 respectively. The resulting refine-

ments will contain IPCs (s1
p

� s) and (s2
p

� s) respectively.
One way of cutting down the branching in this process is to
combine these two plans into a single refinement, and en-
sure that either s1 or s2 will give p to s.6 The search space

ter the components of the kth level planset. Some, but not all, of
these inapplicable actions are weeded out by the fact that GRAPH-
PLAN propagates mutual exclusion relations among state literals
and avoids introducing actions whose preconditions are mutually
exclusive. This is the price we pay for the simplicity of disjunctive
representation.

6The idea of maintaining multiple causal contributors has been

schematic on the right of Figure 6 illustrates how the branch-
ing factor is reduced by such disjunctive causal commitment
constraints. Specifically, the simple establishment options
are all bundled into a single plan.

To support such disjunctive causal commitments, we have
to ensure that (a) either s1 or s2 will precede s and (b) for
every step st that deletes p, either either st comes after s or it
comes before either s1 or s2, with s1 or s2 preceding s at the
same time. More generally, if we want to use any of n steps
s1; s2 � � � sn to support some condition at step s, we need to
impose the following disjunctive ordering constraints:

(s1 � s) _ : : : _ (sn � s):

For every step st that can threaten the establishment, we
need:

(s � st)_[(st � s1)^(s1 � s)]_: : :_[(st � sn)^(sn � s)]:

6.1 Handling Disjunctive Orderings via constraint
propagation

In the above, we noticed that maintaining disjunctive causal
structures ultimately boils down to handling disjunctive or-
derings (in the case of propositional planning). This can be
done efficiently with the help of constraint propagation tech-
niques [20]. The basic idea is that whenever an atomic or-
dering constraint is added to the plan, it can be propagated
through the disjunctive constraints, simplifying them. The
simplification may give rise to more atomic orderings, which
in turn cause further simplifications. In our implementa-
tion, we do two types of direct simplifications or local con-
sistency enforcement: (1) A disjunctive ordering constraint
O1 _O2 : : :_On (where Oi are atomic orderin constraints)
simplifies to O1_O2_ : : : Oi�1_Oi+1 : : :_On if an order-
ingO�1i (where the inverse of an ordering relation s1 � s2 is
s2 � s1) is propagated through it. It also simplifies to True
when an ordering Oi is propagated through it.7 This type of
propagation often simplifies the disjunctions completely. If
disjunctive orderings remain in the plan by the time all other
open conditions are established, we can solve the CSP corre-
sponding to the ordering constraints to check if there exists
a ground linearization of the plan that is consistent. Rather
than use a separate CSP, in our current implementation, we
simply split the disjunction into the UCPOP search space.
Since we only do this splitting for those disjunctive order-
ings that remain unsimplified, the search space size is likely
to be much smaller than that for normal UCPOP.

around, and our previous work provides a formalization of them
[11], and uses them to revoke prior causal commitments. However,
this is the first time that disjunctive causal commitments are used in
their full generality, involving disjunctive ordering constraints and
constraint propagation, to control search space explosion

7It is of course possible to enforce stronger constraint propaga-
tion – for example, resolving two disjunctive ordering constraints
O1 _ O2 and O0

1 _ O0

2 to O1 _ O0

2 when O2 = :O0

1. But, our
current experience is that such stronger propagation strategies do
not improve performance [20].
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Figure 6: Combining establishment branches in plan-space refinement using disjunction

6.2 Implementation and Empirical Evaluation

We implemented these ideas about disjunctive causal con-
straints on top of the standard UCPOP system from Univer-
sity of Washington [19]. Our initial implementation made
minimal changes to UCPOP – for example, we depend on
the standard termination criterion of UCPOP, rather than the
minimal candidate based termination. For convenience, we
will call this variant of UCPOP, UCPOP-D. Since UCPOP is
already optimized to handle consistency with atomic order-
ing constraints, the easiest way to make it handle disjunc-
tive orderings was to keep a separate field in the plan struc-
ture for disjunctive orderings. Whenever propagation tech-
niques derive new atomic orderings from the existing dis-
junctive orderings, they are added to the normal orderings
list of UCPOP. As described above, the changes to the algo-
rithm come in two places – first is in establishing new con-
ditions through existing steps, and the second is in handling
of conflicts to causal commitments. In both cases, additional
disjunctive orderings are added to the plan representation.

The disjunctive orderings are simplified whenever the
planner adds non-disjunctive orderings to the plan. The lat-
ter are added by the planner either as part of handling unsafe
links when only one contributor or one type of conflict reso-
lution is possible. In either case, the ordering is propagated
through the disjunctive orderings of the plan.

In most cases, propagation simplifies disjunctive order-
ings of the plan so that by the time all open conditions and
unsafe links are handled, the plan will not have any disjunc-
tive orderings left. If disjunctive orderings are left unsim-
plified however, the normal termination criteria of UCPOP
will not apply and unsound plans can be returned. In the
current implementation, we avoid this by explicitly splitting
the disjunction into the search tree in such cases.

6.3 Results

To see whether or not the use of disjunctive constraints and
propagation helps improve the planner efficiency, we con-
ducted empirical studies in a variety of domains. To pro-
vide a baseline for comparison, we used three different ver-
sions of UCPOP - one with simple causal constraints, but
with constraint propagation used to handle conflict resolu-
tion (CP+NMCL), the second with disjunctive causal com-
mitments and constraint propagation over disjunctive order-
ings (CP+MCL) and finally the standard UCPOP imple-

mentation, which uses single contributor causal links and
non-disjunctive representations. The plots in Figure 7 show
the results of these experiments. The first set of plots
show the comparative performance in ART-MD-RD domain,
which was used in [11] to illustrate the utility of multi-
contributor causal links. The second set of plots show the
results in Link-Chain domain, which was used by Veloso
et. al [21] to highlight the inadequacies of the single-
contributor causal structures. Finally, the third set of plots
show the results in the prodigy blocks world domain (with
pickup; putdown; stack and unstack actions). The plots
show that in all cases, disjunctive representations and con-
straint propagation outperform standard UCPOP. In partic-
ular, the disjunctive causal commitments improve perfor-
mance significantly.

6.4 Extending UCPOP-D

UCPOP-D can be extended in several ways. The first obvi-
ous step would be to extend it to non-propositional cases, and
this can be done by applying constraint propagation to vari-
able codesignation and non-codesignation constraints. Al-
lowing disjunction over step-addition establishments, and/or
handling actions with conditional effects will lead us to dis-
junctive open conditions and will necessitate more exten-
sive changes to partial-order planning algorithms. The main
changes come in the form of generalizing plan-space refine-
ment to handle fully disjunctive partial plans. For example,
suppose we are considering two contributors s1 and s2 as
possible contributors of the condition p to the step s. Sup-
pose s1 has a conditional effect r ) p and s2 has the con-
ditional effect q ) p. Since r@s1 will be a secondary pre-
condition if s1 gives p and q@s2 will be a precondition if
s2 gives p, the disjunctive causal commitment thus leads to
disjunctive open condition r@s1 _ q@s2, only one of which
need to be achieved. Even here, it is possible to handle them
in terms of steps currently existing in the plan. Suppose the
steps s3 and s4 are currently in the plan and they give condi-
tions r and q respectively, we can take care of the disjunctive
open condition r@s1 _ q@s2, with the help of the disjunc-

tive causal constraint (s3
r
� s2) _ (s4

q

� s3), and handling
it in the usual way. The problem comes when we are trying
to make the disjunctive open condition true by adding new
steps. From least commitment point of view, it is best to in-
troduce all the new steps capable of establishing any of the
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Figure 7: Plots showing the utility of disjunctive causal link representations in multiple domains

disjuncts of the disjunctive open condition simultaneously,
and consider the steps to be “tentative” in that only one of
those steps need be present in the final plan. The tentative
steps will then give rise to tentative open conditions which
need to be handled. While applying establishment refine-
ment to all tentative conditions is one possibility – and this
is essentially what is done in the causal “SNLP” encodings
used in [10] – we are hopeful that there may be ways of more
tightly constraining the refinements (as is done in GRAPH-
PLAN using mutual exclusion constraints, see Section 5).

7 Discussion

In this section, we shall discuss several broad issues raised
by planning with disjunctive representations:

Amount of splitting: Research in the constraint satisfac-
tion literature shows that propagation and splitting can have
synergistic interactions in improving planner performance.
Specifically, splitting leads to commitment, which in turns
supports local consistency enforcement. As an example, in
the 8-queens problem, committing the position of one of
the queens leads to improved local consistency enforcement
through arc-consistency algorithms. This leads to the pos-
sibility that the best way to do planning may involve being
deliberate about splitting the plansets into the search space.
Complete splitting leads to search space explosions as typ-
ified in UCPOP type planners, while avoiding splitting all
together may inhibit constraint propagation.

Table 1 describes a variety of planners and the amount
of splitting/search they employ. The question of how much
splitting is to be done is a hard one. We believe that to a
large extent this depends on common substructure between
the components of the planset. In general, it may be best
to combine components with shared structure into a single
disjunctive plan so that propagation is facilitated among its
constraints. UCPOP-D provides a preliminary example of
this strategy.

Relative support provided by different refinements: An-
other important open issue is which refinements should we
be using to get the maximum mileage out of disjunctive rep-
resentations. Clearly, all refinements can support planning
with disjunctive representations. We have already seen that
GRAPHPLAN can be understood in terms of disjunction
over state space refinements, while UCPOP-D and Descartes
[8] can be understood in terms of disjunction over plan-space
refinements. An important issue is the relative tradeoffs of-
fered by disjunction over different types of refinements. The
previous analyses of relative tradeoffs concentrated on the
level of commitment enforced by a refinement strategy in
its planset components and on the subgoal interactions that
arise due to this. This analyses is of little use in planners us-
ing disjunctive representations since they do not uniformly
split planset components into the search space. Instead, we
need to concentrate on issues such as: (a) the efficiency of
extraction of solutions from the plansets and (b) the support
for constraint propagation provided by the plansets. As an
example of such a tradeoff, recent work by Kautz et. al. [10]
indicates that SAT “encodings” based on disjunctive state-
space refinements are larger than the encodings based on
plan-space refinements, but that the latter do not seem to be
as easy to handle during solution extraction process.

8 Related Work

As we mentioned, our description of refinement planning is
general enough to include both traditional refinement plan-
ners and some new planning algorithms. Table 1 charac-
terizes several of these planners in terms of our framework.
We believe that the understanding of the role of disjunc-
tive refinements and constraint propagation that we devel-
oped in this paper facilitate a clearer appreciation of the
connections between the many CSP-based planning algo-
rithms and traditional refinement planning. We have already
shown how GRAPHPLAN can be understood in terms of re-



Planner Level of splitting Type of refinement
UCPOP [19], SNLP [17] Full PSR

TOPI [1] Full BSR
GRAPHPLAN [2] No FSR

SATPLAN [9] No FSR/PSR
Descartes [8] Some PSR

UCPOP-D Some PSR

Table 1: Different planners as instantiations of Refine algorithm template

finement planning with disjunctive representations and con-
straint propagation. Another successful strand of work in
plan generation is related to SATPLAN, which considers
planning as a satisfiability problem [9, 10]. SATPLAN starts
with a SAT encoding such that all k-step solutions to the
planning problem correspond to the satisfying assignments
of the encoding. The idea is to produce SAT encodings cor-
responding to different solution lengths, and solve them un-
til a satisfying assignment is found to one of the instances.
Much of the work here is aimed at generating “compact” en-
codings that are easy to solve using existing systematic or
local satisfiability checking algorithms.

Described this way, there seems to be little connection
between this strand of work and the traditional refinement
planning algorithms. However, general refinement planning
framework presented in this paper does clarify some of the
tradeoffs in posing planning as satisfiability. For example,
there is a straightforward connection between the SAT en-
codings for k-step solutions, and the plansets produced by
refinement planners. In particular, consider a planset bP pro-
duced by any refinement planner using a series of complete
and progressive refinements, such that all components of bP
have exactly k steps. It can be shown that each k-step solu-
tion for the planning problem must correspond to one of the
minimal candidates of bP.8 The problem of finding a min-
imal candidate of bP that corresponds to a solution can be
posed as a SAT problem.

This relationship brings up several points to the fore: The
exact representation of the planset bP, and consequently the
size of its SAT encoding, depend on the types of refinements
used (recall that we can use any sequence of state space
or plan space refinements since they are all progressive and
complete). This relates the syntactic notion of the SAT en-
coding size to the well-established idea of refinement strate-
gies. Different sequences of refinements will correspond to
different encodings. There may thus be a strong connection
between the theories of refinement selection and the theories
of encoding generation.

The current implementation of SATPLAN does not ex-
plicitly consider refinements, but rather attempts to come
up with a necessary and sufficient set of propositional con-
straints that must be satisfied by all k-step solutions. It
would be interesting to consider generating the encodings

8Not all minimal candidates may be k-step solutions, however.

using refinements on disjunctive plans. Kautz and Selman
[9] do this implicitly when they convert GRAPHPLAN’s
plan-graph into a SAT instance. This raises the possibility
that the research on refinement selection, such as “goal or-
der heuristics” in partial order planning [7], or planning by
interleaving multiple refinements [13] may have an impact
on generating efficient SAT encodings.

It is also worth understanding the relation between least
commitment, task reduction ideas in traditional refinement
planning, and the idea of planning with disjunctive represen-
tations. Most existing refinement planners use plan represen-
tations that comprise of conjunctions of atomic constraints:
steps, orderings between steps etc. The usual way of increas-
ing the candidate set size of partial plans (and thus reduced
commitment), is to use weaker atomic constraints (e.g., par-
tial ordering instead of contiguity ordering relations between
steps). Disjunctive representations provide an alternate way
of achieving least commitment and search space reduction.
HTN planning [14] can be seen as an idea closely related to
disjunctive refinements. In particular, HTN planners intro-
duce non-primitive actions into the partial plans, and gradu-
ally reduce them with the help of user-supplied task reduc-
tion schemas into primitive actions. Thus, the presence of
non-primitive action in a partial plan can be interpreted as the
presence of disjunction of all the plan fragments that the ac-
tion can be eventually reduced to. One important difference
is that HTN planners never explicitly deal with this disjunc-
tion, but push it gradually into the search space (by consider-
ing each reduction of the action in a different search branch).
Thus, they miss out on the advantages of handling plansets
together, such as constraint propagation. In a way, both tradi-
tional least commitment and task reduction ideas can be seen
as instances of the general heuristic of converting the search
space to have lower branching at the top levels. Disjunctive
representations give this ability, but they also support han-
dling plansets together without ever pushing them back into
the search space.

9 Conclusion

By teasing apart the hitherto closely intertwined notions of
“refinement” and “search”, we were able present a model
of refinement planning that not only includes the traditional
planners, but also supports a large variety of planners that
transfer search to solution extraction phase by handling sets



of partial plans together. We have argued that efficient han-
dling of large plansets requires the use of disjunctive plan
representations and constraint propagation techniques.

We have used our model of refinement planning to explain
the operation of several newer planning approaches such as
GRAPHPLAN and SATPLAN. We have also shown how the
ideas of disjunctive representations and constraint propaga-
tion can be incorporated into traditional planners by present-
ing the UCPOP-D algorithm that supports disjunctive han-
dling of plans differing only in their causal structures, and
demonstrating that UCPOP-D outperforms UCPOP in sev-
eral domains. Finally, we discussed several broad issues
raised by this “inclusive” picture of refinement planning.
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