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Most traditional approaches to plan generation, developed over the last 
twenty years work by searching in the space of partial plans, extending 
them incrementally until they become a solution, and backtracking 
when a plan can no longer be fruitfully extended. 

More recently, several algorithms -- Graphplan, SATPLAn and 
Descartes -- have developed competing approaches that cast planning 
as a constraint satisfaction problem. 

At the  first glance, there appears to be  huge gulf  between the 
traditional refinement planning algorithms and these new breed of 
planners based on CSP/SAT  techniques. 

In our previous work, we have unified the traditional planning 
algorithms under the rubric of refinement planning paradigm. 

In this paper, we generalize the  this framework to subsume both 
traditional refinement planners and the CSP based planners. We wil see 
that the  major tradeoffs between the two types of planners is how 
much work is done in “how much work is done refining and 
backtracking through individual partial plans” vs. “extracting a 
solution from a set of  partial plans”. Traditional planners emphasize 
the former while the CSP approaches emphasize the latter. 

Our generalized approach will also bring to fore a continuum of 
approaches between these two classes of planning algorithms.

Motivation

Traditional AI 
Planning methods
SIPE, NONLIN, UCPOP,
SNLP, PRODIGY etc.

Planning as 
CSP/SAT 
GRAPHPLAN, 
SATPLAN etc.

Bridge the chasm between...

...by generalizing refinement 
   planning  framework

Emphasize
Search

Emphasize
Solution
Extraction



Here is the outline of the talk. We will start with a view of refinement 
planning that generalizes on the framework we presented in KR-94 and is 
capable of subsuming both the traditional and newer approaches to plan 
generation. We will show that the newer approaches refine sets of plans and 
keep the resulting sets together without splitting. We will then argue that 
disjunctive representations and constraint propagation help in handling sets of 
plans together. Finally, we will show how this generalized framework 
advances both our understanding and the state of the art by considering 
several new planners within our framework -- inclduing Graphplan, 
SATPLAN, and a variant of UCPOP called UCPOP-D. We will end with a 
discussion of future research directions.

Overview
✧ Generalized Refinement Planning Framework

– Role of search vs. solution extraction
✧ Utility of disjunctive representations

– Refining disjunctive plans
– Constraint propagation to focus refinements

✧ Putting the framework to work...
– Graphplan
– Planning as Satisfiability
– UCPOP-D(*)

✧ Future directions and Conclusion



Let us start by recalling that the classical planning problem  involves finding a sequence 
of actions which when executed will take the agent from a given initial state to a desired 
goal state.  In this example, we are interested in transporting two packets from earth to 
Moon, using a single (and somewhat out-of-shape) rocket. 

States of the world are modeled in terms of a bunch of binary state-variables. 

Actions are modeled as state-transformation functions,  with pre-conditions and effects. 

We have three actions in our rocket domain -- load which makes a package to be IN the 
rocket, unload, which gets it out, and Fly, which takes everything in the rocket over to 
the moon..

Modeling Classical Planning
✧ States are modeled in terms of (binary)
    state-variables
      -- Complete initial state, partial goal state
✧ Actions are modeled as state
    transformation functions
     -- Syntax: ADL language (Pednault)
      -- Apply(A,S) = (S \ eff(A)) + eff(A)
                      (If Precond(A) hold in S)

Load(o1)

In(o1)

At(o1,l1), At(R,l1) At(R,E)

Fly()

At(R,M), ¬At(R,E)
∀ xIn ( x ) ⇒ At ( x, M)

& ¬At(x, E)Unload(o1)

In(o1)

¬In(o1)

EarthEarth

At(A,E), At(B,E),At(R,E)

At(A,M),At(B,M)
¬In(A), ¬In(B)

Effects
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Refinement planning can be thought of as a process of gradually 
narrowing down the set of all actions sequences so as to progress 
towards the set of all solutions.  

Sets of action sequences are represented as partial plans. Narrowing is 
done by refinement operations which add “constraints” to partial 
plans. Finally, progress is measured by the ability to eliminate the 
sequences that cannot be solutions to the problem. (if no solutions are 
eliminated in this process, we will gradually get closer to the set of all 
solutions). Termination can occur any time an action sequence capable 
of solving the problem can be picked up from among the sequences 
currently under consideration. 

To make these ideas precise, we shall now look at the syntax and 
semantics of partial plans and refinement operations. 

Refinement Planning:Overview

Narrowing sets of action sequences
  to progress towards solutions      

Partial plansRefinements

Remove non-solutions

All action 
sequences

All Solutions

 P

P’

All Sol

P
P’

All Seq.

Refine



A partial plan can be seen as any set of constraints that together 
delineate which action sequences belong to the plan’s candidate set and 
which do not.

 One representation that is sufficient for our purposes models partial 
plans as a set of steps, ordering constraints between the steps, and 
auxiliary constraints. Each plan step corresponds to an action. There are 
two types of ordering constraints -- precedence and contiguity 
constraints. The latter require that two steps come immediately next to 
each other. 

Auxiliary constraints involve statements about truth of certain 
conditions over time intervals. These come in two important types -- 
interval preservation constraints  which require preservation of a 
condition over an interval, and point truth constraints  that require the 
truth of a condition at a particular time point.

Here is an example plan from our rocket domain in this representation. 
The steps 0 and 1 are contiguous, 2 precedes 4, and the condition 
At(R,E) must be preserved between 0 and 3. 

Finally, the condition In(A) must hold in the state preceding the 
execution of step 2. (This is in addition to the constraint that all 
preconditions  of an action must hold in the state preceding the action. )

Partial Plans:  Syntax

Auxiliary Constraints:
  Interval preservation constraint (IPC)  ‹ s1 ,  p , s2 ›
      p must  be preserved between s1 and s2

  Point truth Constraint  (PTC)            p@s
       p must hold in the state before s

Steps, Orderings, Aux. ConstraintsPartial plan   =

1: Load(A) 2:Fly() 4:Unload(A)0 ∞
In(A)@2

3: Load(B)

contiguity
precedenceAt(R,E)

IPC
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p
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o
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The semantics of  the partial plans are given in terms of candidate sets. An 
action sequence belongs to the candidate set of a partial plan if it contains the 
actions corresponding to all the steps of the partial plan, in an order consistent 
with the ordering constraints on the plan, and  it also satisfies  all auxiliary 
constraints.

For the example plan shown here, the sequences on the left are candidates 
while those on the right are non-candidates. Notice that the candidates may 
contain more actions than are present in the partial plan. 

Candidates that only contain the actions in the plan are called “minimal 
candidates”. These correspond to the syntactic notion of safe linearizations. 

Safe linearizations are linearizations (or topological sorts) of the plan steps 
that also satisfy the auxiliary constraints. The linearization 0-1-3-2-4-infty is a 
safe one while the linearization 0-1-2-3-4-infty is not (since step 2 will violate 
the IPC on At(R,E). 

The sequences on the right are non-candidates because both of them fail to 
satisfy the auxiliary constraints

Partial Plans: Semantics

P: 1: Load(A) 2:Fly() 4:Unload(A)0 ∞
In(A)@2

3: Load(B)
At(R,E)

Candidates (∈ «P») 

 [Load(A),Load(B),Fly(),Unload(A)]  

 [Load(A),Load(B),Fly(),
Unload(B),Unload(A)]

Non-Candidates (∉ «P»)  

 [Load(A),Fly(),Load(B),Unload(B)]  

[Load(A),Fly(),Load(B),
Fly(),Unload(A)]

Minimal candidate. Corresponds to the
safe linearization [ 01324∞ ]

Corresponds to unsafe
 linearization [ 01234∞ ]

Candidate is any action sequence that 
    -- contains actions corresponding to all the steps, 
    -- satisfies all the ordering and auxiliary constraints



Here then is the connection between the syntax and semantics of a 
partial plan. Each partial plan has at most exponential number of 
linearizations, some of which are safe with respect to the auxiliary 
constraints. 

Each safe linearization corresponds to a minimal candidate of the plan. 
Thus, there are at most exponential number of minimal candidates. A 
potentially infinite number of additional candidates can be derived 
from each minimal candidate by padding it with new actions without 
violating auxiliary constraints. 

Refinements add new constraints to a partial plan. They thus simultaneously 
shrink the candidate set of the plan, and increase the length of its minimal 
candidates. 

Thus, one incremental way of exploring the candidate set of a plan for 
solutions is to check through its minimal candidates  after refinements. 

Reduce candidate set size
Increase length of minimal candidates

Linearization 1 Linearization 2 Linearization n 

Safe linearization 1 Safe linearization 2 Safe Linearization m

Linearization 3 

Minimal Cand. 1 Minimal Cand. 2 Minimal Cand. m
+

derived
candidates

+
derived

candidates

+
derived

candidates

Partial Plan

Linking Syntax and Semantics

Refinements



We will now  formally define a refinement strategy. Refinement strategies operate on 
sets of partial plans. We thus define a plan-set as a set of partial plans, with the 
understanding that the candidate set of the planset is the union of the candidate sets 
of its component plans.

A refinement strategy R maps a plan set P to another plan set P’ such that the 
candidate set of P’ is a subset of the candidate set of P. R is said to be complete if P’ 
contains all the solutions of P. It  is said to be progressive if the candidate set of P’ is a 
strict subset of the candidate set of P.  It is said to be systematic if no action sequence 
falls in the candidate set of more than one component of P’. 

Completeness ensures that we don’t lose solutions by the application of refinements. 
Progressiveness ensures that refinement narrows the candidate set. Systematicity 
ensures that we never consider the same candidate more than once. 

At the bottom is an example refinement, for our rocket problem, which takes the null 
plan, corresponding to all action sequences and maps it  to a plan set containing 3 
components. (In this case, the refinement is complete since no solution can start with 
any other action, progressive since it eliminated action sequences beginning with 
unload(A) etc, and systematic since all the candidates of the three components will 
have different prefixes.)

Refinement Strategies

§ A plan set  P   is a set of partial plans {P1,P2 ... Pm}

 R
1: Load(A)0 ∞

1: Load(B)0 ∞

1: Fly()0 ∞

0 ∞

✧ A refinement strategy R : P ➸  P’  ( «P’  » a subset of «P » )
–R  is complete if «P’   » contains all the solutions of «P  »
–R  is progressive if «P’   » is a proper subset of   «P  »
–R  is systematic if  components of P’  don’t share candidates



We are now in a position to present the general refinement planning 
template. It has three main steps.

 If the current plan-set has an extractable solution -- which is found by 
inspecting its minimal candidates, we terminate. 

If not, we select a refinement strategy R and apply it to the current plan 
set to get a new plan set. 

As long as the selected refinement strategy is complete, we will never 
lose a solution. As long as the refinements are progressive, for solvable 
problems, we will eventually reach a planset one of whose minimal 
candidates will be a solution (the figure on the top right illustrates this).

The solution extraction process involves checking an exponential 
number of minimal candidates (corresponding to safe linearizations). 
This can be cast as a model-finding or satisfaction process. 

 Some recent planners like Graphplan and Satplan can be seen as 
instantiations of this general refinement planning template. However, 
most earlier planners use a specialization of this template that we shall 
discuss next. 

Refinement Planning Template

Refine ( P : Plan set)

  0*.  If «P » is empty, Fail.
  1.   If a minimal candidate of P  is a solution,
         return it. End
  2.   Select a refinement strategy R 
                 Apply R to P   to get a new plan set P’
  3.   Call Refine(P’ )

--Termination ensured if R  is complete and progressive

-- Solution extraction (step 2) involves checking exponentially 
    many minimal candidates
    -- Can be cast as propositional model-finding (satisfaction)

State-space, 
Plan-space,
HTN,
Tractability
   



Let us briefly describe the various known refinement strategies.

The forward state space refinement refines a partial plan by extending 
its prefix with each of the actions that can be applied in the state of the 
world following the prefix. The backward state space refinement works 
analogously by extending the suffix of the partial plan.

THe plan space refinement adds steps into a partial plan without 
constraining their absolute position. For example, here, the step unload 
is added to  the plan  to achieve At(A,M) without specifying when 
exactly it will take place.

Finally, the task reduction (or HTN) refinements replace an abstract 
action by its (user-specified) reductions. 

All these refinements are complete and progressive. They can all be 
made systematic. 

Existing Refinement Strategies

0 ∞

0 ∞2: Unload(B)

2: Unload(A)1: Fly()

1: Fly()

At(A,M)
At(B,M)
¬In(A)
¬In(B)

0 1: Fly() ∞

0 1: Unload(A) ∞

2: Load(A)0 ∞

2: Load(B)0 ∞

2: Fly()0 ∞1: Unload(A)

1: Unload(A)

1: Unload(A)

At(A,E)
At(B,E)
At(R,E)

PSR

0 1:Unload(A) ∞

At(A,M)@∞

2:Fly() 3:Unload(A)0 ∞
In(A)@2

At(A,M)

At(A,M)@∞

¬At(A,M)

FSR

BSR

1: Transport(A)0 ∞

At(A,E) At(A,M)

1: Load(A)0 ∞

At(A,E) At(A,M)

2: Fly() 3: Unload(A)

HTN



The algorithm template in the previous slide does not have any search 
in the foreground All the search is pushed into the solution extraction 
function.

It  is possible to add “search” to the refinement process in a 
straightforward way.  The algorithm template shown here introduces 
search into refinement planning. It does this by partitioning a plan set 
into k smaller plan sets, and handling each of these in a diferent search 
branch. As k increase,  the cost of handling plansets is reduced by 
pushing complexity into the search space size. 

(This can be said wrt the next slide) All traditional refinement planners, 
such as UCPOP, Prodigy, SNLP, etc. correspond to complete 
partitioning -- ie. k= # component sof the plan. We shall see that 
planners such as GRAPHPLAN can be seen as doing no partition -- ie.e 
k=1. It sis also possible to do medium levels f partitioning as we shall 
see when discussing UCPOP-D. 

Combining Refinement with Search

Refine ( P : Plan)

  0*.   If «P » is empty, Fail. 
  1.    If a minimal candidate of P  
               is a solution, terminate.
  2.   Select a refinement strategy R .
           Appply R   to  P  to get a new plan set P’
  3.   Split P’  into k  plansets 
  4.   Simplify plansets by introducing disjunction and    
          constraint propagation.
  5.   Non-deterministically select  one of the plansets P’ i
        Call Refine(P’ i)

 P1

P2

R1

R2

Pk
Rk

Null Plan set

 P1

P2

R1

R2

Pk
Rk

Null Plan set



(This slide is a continuation of the previous one.)

The algorithm in the previous slide can cover both traditional 
refinement planners and the recent planners such as Graphlan based on 
the value of splitting factor k, and the type of refinement strategy 
selected.

For example, UCPOP and SNLP correspond to the choice of plan-space 
refinement with full splitting (k = # components of the plan)

TOPI corresponds to selection of BSR refinement with full splitting. 

Graphplan and SATPLAN can be seen as selecting FSR with no 
splitting 

There are also planners such as UCPOP-D which we shall describe that 
can allow “medium” level of splitting 

A Spectrum of Refinement 
Planners

Planner Refinement Splitting (k)

UCPOP, SNLP PSR k = #Comp

TOPI BSR k = #Comp

Graphplan FSR k = 1

SATPLAN FSR, PSR k = 1

UCPOP-D
 Descartes PSR 1 < k < #comp

Refine ( P : Plan)

  0*.   If «P » is empty, Fail. 
  1.    If a minimal candidate of P  
               is a solution, terminate.
  2.   Select a refinement strategy R .
           Appply R   to  P  to get a new plan set P’
  3.   Split P’  into k  plansets 
  4.   Simplify plansets by introducing disjunction and    
          constraint propagation.
  5.   Non-deterministically select  one of the plansets P’ i
        Call Refine(P’ i)



Although  the framework  we presented allows handling plan set components 
separately or together, most existing planners handle them separately.  We shall now 
explicitly consider the issues involves in handling plan sets together without splitting. 

So, let us look at what happens if we don’t split plan sets. Of course, we reduce the 
search space explosion  and avoid the premature commitment to specific plans. We 
also separate the action selection and action sequencing phases, so that we can apply 
scheduling techniques for the latter. 

There can be two potential problems however. First off, keeping plan sets together 
may lead to very unwieldy data structures. The way to get around this is to 
“internalize” the disjunction in the plan sets so that we can represent them more 
compactly. The second potential problem  is that we may just be transfering the 
complexity from one place to another -- from search space size to solution extraction. 
This may be true. However, there are two reasons to believe that we may still win. 

First, as we mentioned earlier,  solution extraction can be cast as a model-finding 
activity, and there have been a slew of very efficient search strategies for  
propositional model finding.  Second, we may be able to do even better by using 
constraint propagation techniques  that simplify plans and reduce refinement 
possibilities. 

Let me illustrate these ideas.

Issues in handling plansets 
without splitting

✙ Reduced commitment
✙ Separation of action selection and action 

sequencing
– Unwieldy plan sets

» Use disjunctive representations
● Refining disjunctive plans

– Transfer of complexity to solution-extraction
» Use efficient SAT solvers
» Use incremental constraint propagation



The general idea of disjunctive representations is to allow disjunctive 
step, ordering, and auxiliary constraints into the plan. Here are two 
examples that illustrate the compaction we can get through them. 

The two plans on the top left corner can be compacted by using a single 
disjunctive step constraint, a disjunctive precedence constraint, a 
disjunctive IPC and a disjunctive PTC. 

Similarly, the three plans in the bottom right can be compacted into a 
single disjunctive step, with disjunctive contiguity constraints. 

Candidate set semantics  can be given naturally from the interpretation of 
disjunctive constraints.

Disjunctive Representations
Allow disjunctive step, ordering and auxiliary constraints

1: Load(A)0 ∞

1: Load(B)0 ∞

1: Fly(R)0 ∞

1: Load(A)

2 : Load(B)0 ∞

3 : Fly(R)

In(A)

In(B)

At(R,M)

1: Load(A)0 ∞

1: Load(B)0 ∞

In(x)@∞

In(x)@∞

In(B)

In(A)

or

or

1: Load(A)
0 ∞

or
2 : Load(B)

< 1,In(A),∞ > V < 2 ,In(B),∞ >

At(A,E)@1 V At(B,E)@2



Disjunctive representations necessitate some generalizations to the specifics of 
refinement strategies.  Notice that the syntactic specifics of refinement strategies are 
described clearly only for partial plans without disjunction, and thus cannot be applied 
in a straightforward way to non-disjunctive ones. For example, in the left  plan, we 
don’t know whether steps 1 or 2 or both will be present in the eventual plan. Thus a 
PSR refinement  won’t know whether we should work on At(A,E) precondition or the 
At(B,E) precondition or both. Similarly, in the right hand side we don’t know which of 
the steps will be coming next to 0 and thus we don’t quite know what the state of the 
world will be after the disjunctive step. Thus, the FSR refinement will not know which 
actions are should be applied to the plan prefix next. 

One way of refining such plans is to handle the uncertainity in a conservative fashion. 
For example, in the plan on the right, although we do not know the exact state after the 
first (disjunctive) step, we know that it can only be a subset of the union of literals in 
the effects of the three steps. We can thus consider a variant of FSR that adds only those 
actions whose preconditions are subsumed by the union of the effects of the three 
steps. it is of course possible that even though the  preconditions of an action are  in the  union 
of effects, there is no real way fo r that action to take place. For example, although the 
preconditions of  “unload at moon” action may seem satisfied, it is actually  never going occur 
as the second step in any solution because  load and fly cannot be done at the same time. This  
brings up an important issue-- disjunctive plans can be refined at the expese of some of 
the “progressivity” of the refinement.  

Although the loss of progressivity cannot be avoided, it can be reduced to a significant 
extent by doing constraint propagation along with refinements. For example, by 
marking the pair-wise exclusivity of the actions load/Fly in the first step, we can 
realize that the effects they give cannot both be true at the next level, and thus remove 
actions such as unload from consideration. {BTW, the fact that Graphplan’s efficiency 
depends on mutex propagation means that the ease of solution extraction depends on the 
progressivity of the refinement!}

Refining Disjunctive Plans

Disjuntive plans can be refined at the expense
  of some “progressivity”
   -- Loss of progressivity can be kept in check through
         constraint propagation

1: Load(A)

2 : Load(B)0 ∞

3 : Fly(R)

In(A)

In(B)

At(R,M)

or

or

1: Load(A)
0 ∞

or
2 : Load(B)

< 1,In(A),∞ > V < 2 ,In(B),∞ >

At(A,E)@1 V At(B,E)@2

Propagation of ordering &
   binding constraints     
 e.g. 
   (s1< s2) & ((s2 < s1) V (s3 < s4))
                    => (s3 < s4)

  Propagation of mutual 
     exclusion constraints    

       e.g.
           Actions whose preconditions
           are mutually exclusive will not
           be applicable
      



We noted earlier that Graphplan can be seen as using FSR refinements 
without splitting. We elaborate this relation now in light of our  
discussion of disjunctive representations. 

On the left is a state tree generated by a forward state space planner 
that employs full splitting. On the right is the “plan graph” structure 
generated by Graphplan for the same problem(*) Note that plan graph 
can be seen roughly as a “disjunction” of the branches of the tree on the 
left. 

Specifically, the ovals representing the “plan graph” proposition lists at 
a particular level can be seen as approximate union of the states in the 
state space tree at that level. Similarly, the actions at a given level in the 
plan graph canbe seen as the union of actions on the various transitions 
at that level in the state tree.

It is important to note that the relation is only approximate--for 
example the action and the proposition high ligted in brown at the 
third level do not have any correspondence with the search tree. This is 
part of the price we pay for doing refinements over disjunctive 
representations. However, the propagation of of mutual exclusion 
constraints allows Graphplan to keep as close a correspondence to the 
state-space search tree as possible. 

Case Study: Graphplan

Plan graph                                     = Disjunctive plan set
Plan graph growing                      = Refinement 
Backward search of plan graph  = Finding min. cand.
                                                          corresponding to solutions

P

Q

R

Q

R

W

M

Q

P

M

Q

W

P

S

a1

a2

a3

a4

a5

a6

P

Q

R

Q

P

S

R

W

M

P

Q

a1

a2

a3

a4

a9

a5

a6

T

~ Union of states
   at third level

~ union of 
   actions at 
   3rd level



Recently, Kautz and Selman have advocated solving planning 
problems by encoding them first as SAT problems and then using 
efficient SAT solvers like GSAT to solve them. Their approach involves 
generating a a SAT encoding all models of which will correspond to k-
length solutions to the problem (for some fixed k). Model-finding is 
done by the SAT solvers. They start with some arbitrary value of k, and 
increase it if they do not find solutions of that length. They have 
considered a variety of ways of generating the encodings--some 
described in their AAAI-96 paper, and some to be described in their 
paper here. 

In the context of the general refinement planning framework, we can 
offer a rational basis on which the encodings can be generated.  
Specifically, the natural place where SAT solvers can be used is in the 
“solution extraction phase”-- specifically, after doing k “complete”  and 
“progressive” refinements on a null plan, we get a plan set whose 
minimal candidates contain all k-length solutions to the problem. So, 
picking a solution boils down to searching through the minimal 
candidates-- which can be cast as a SAT problem. 

This account naturally relates the character of the encodings to the type 
of refinements used in coming with the k-length plan-set and how the 
plansets themselves are represented (recall that disjunctive 
representations can reduce the progressivity of refinements).

Relation to Planning as Satisfiability

If  R1, R2,...,Rk are all complete
   ( and progressive)
    Then, 
      Minimal candidates of Pk    will
        contain all k-length solutions

Shape of the encoding depends on
   -- Refinements Ri

   -- Representations for plansets
         -- Disjunctive/non-disjunctive

Is there a  minimal candidate of Pk    
that is a solution to the problem? 

Can be encoded as a 
SAT/CSP instance

 P1

P2

R1

R2

Pk
Rk

Null Plan set



Indeed, we can make rough comparisons between the different 
encodings explored by Kautz et. al., and the refinement strategies and 
representations of plan sets that could give rise to them. For example, 
linear and parallel encodings correspond to the use of forward state-
space refinements, with the latter corresponding to disjunctive plan-set 
representations. Similarly, the SNLP encodings correspond to the use of 
plan-space refinements. 

Given that interleaving refinement strategies has been shown to be a 
good idea in improving the cost of refinement planning, we can explore 
the utility of encodings based on interleaved refinements. 

Refinement Strategies and SAT
Encodings

Encodings:

Linear Parallel Lifted SNLP

Refinement Strategies:

Forward State
Space

Forward State Space
with disjunctive rep.

Plan Space



One question that needs to be answered is whether the relation between k-length 
encodings and the minimal candidates of k-level plan sets is just a matter of 
theoretical curiosity, or whether it has any practicial significance. 

We believe that basing encodings on k-level plan sets, derived by the application 
of k complete refinements,  leads to SAT instances that are “smaller” on the 
whole. Specifically, both the number of variables in the SAT as well as the size of 
the individual clauses sizes can reduce by starting from k-level plansets. 

We illustrate this point with an example involving forward state space 
refinements. Here we have three different ways of generating encodings based on 
FSR. On the left, we do FSR refinements on individual componenets of the plan 
sets, generating all legal k-length prefixes (which can be searched to see if any of 
them correspond to a solution). On the right handside, we avoid refinements and 
generated the encoding directly using the methods used by Kautz et. al. The 
middle picture corresponds to doing FSR on the disjunctive plan representations 
(specifically, the structure here is similar to the k-level  plan graph-- which can be 
seen as the disjunctive representation  of k-level planset). It is interesting to note 
that as we go from left to right, the amount of uncertainity increases. For 
example, if we ask the question--what can be the actions at level 2, the left most 
encoding will say they can only be one of 5. The right most one says they can be 
one of any available actions, while the middle one says that they can be one of six.

Clearly, the encodings sizes will be largest for the left and smallest for the right. 
At the same time, the cost of generating the encoding is lowest on right and 
highest on left. Thus, a happy medium is likely to be reached in the middle--ie. 
encodings based on disjunctive refined plans.  

Impact of Refinements on Encoding Size

-- Encodings based on refined plans can be more compact
        -- Smaller clauses, fewer variables ... 
-- Refining disjunctive plans is most cost effective
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In addition to explining the relation between Graphplan, SATPLAn 
approaches and the traditional planning approaches, our treatment 
brings into high relief the tradeoffs involved in handling plansets 
without partitioning. 

For example, until now, the planners we saw do either no partitioning 
or full partitioning.  research in constraint satisfaction literature shows 
that propagation and refinement can have synergistic interactions. (A 
case in point is  8-queens problem. .) This raises the possibility that best 
planners may be doing controlled splitting of plan sets (rather than no 
splitting at all) to facilitate further constraint propagation. (Extent of 
propagation  could  depend on the amount of shared sub-structure between the 
disjoined plans.)

Another issue is the  relative support provided by various types of 
refinements for planning with disjunctive representations . The old 
analyses based on least commitment etc. are mostly inadequate when 
we don’t split plan set components. 

Next, we will discuss a variant of UCPOP called UCPOP-D that 
provides a reference point for planning with limited partitioning. 
UCPOP-D uses the ideas of disjunctive representations and constraint 
propagation. 

Tradeoffs
✧ The right level of plan set splitting

– Traditional planners do full splitting
– Graphplan/SATPLAN do no splitting
– Is there a “better” middle ground?

» Keep components having shared substructure 
together 

● Allows better constraint propagation.

✧ The fit between refinement strategy and 
disjunctive representations



We will now discuss a variant of UCPOP planner which uses the ideas 
of disjunctive representation and constraint propagation to improve its 
performance. 

Unlike UCPOP which does full splitting, UCPOP-D keeps the plans 
that differ only in simple establishment possibilities together. 
Specifically, consider the plan on left. In establishing p@S, UCPOP will 
consider two different plans corresponding to simple establishments 
with s1 or s2. UCPOP-D keeps these plans together by maintaining 
disjunctive IPCs (causal links). {This can be seen as a generalization of the 
multi-contributor causal links idea}.

Thus, instead of several simple establishment branches, of UCPOP (as 
shown on top right) UCPOP-D will have only one simple establishment 
branch (as shown on bottom right)

Case Study: UCPOP-D
✧ Keep partial plans with 

alternate simple 
establishment 
structures together

Establishment

Se1
Se2 Se3 Sa1 Sa2 Sa3

Establishment

Se1 V Se2 V Se3 Sa1 Sa2 Sa3

UCPOP-D

UCPOP

s0

s1

sGs

s2

+p

+p
(p)

  s1,p,s ∨ s2,p,s

“s1 or s2  will give p to s”
  s1<s ∨ s2<s



Supporting plan-space refinement on plans containing disjunctive IPCs 
involves maintaining and propagating disjunctive ordering constraints. 

Specifically, the precense of the disjunctive IPC saying that C is given 
by either S1 or S2 implies that (a) s1 or s2 must precede s and (b) for 
every step t that can delete p, either we must have t precede s or, t 
precede s1 and s1 precede s or t precede s2 and s2 precede s. 

Although it is hard to exploit disjunctive orderings to reduce control 
plan-space refinement, we can improve the situation by simplifying 
them through constraint propagation whenever a new ordering is 
added to the plan. 

[The slide describing the comparison between UCPOP and UCPOP-D 
and emonstrating the superiority of the latter goes here. See the paper]

 

Plan-space refinements in the presence of 
disjunctive causal commitments

  s1,p,s ∨ s2,p,s

Implies for every step t that can delete p
  (t<s)∨
[(t<s1)∧ (s1<s)]∨
[(t<s2)∧ (s2<s)]

s0

s1

sGs

s2

+p

+p
(p)

Maintaining consistency of disjunctive orderings is NP-complete
 
    -- Constraint propagation can help

  (s1<s2)∧ (s2<s1)∨ (s3<s4) ⇒ (s3<s4)

Involves maintaining and propagating
 disjunctive orderings.



By teasing apart the hitherto closely intertwined notions of 
“refinement” and “search” we were able to present a model of 
refinement planning that not only includes the traiditional planners, 
but also supports a large variety of planners that transfer seach to 
solution extraction phase by handling sets of partial plans together.

Disjunctive representations and constraint propagation techniques 
facilitate efficient management of large plansets.

Through this, we explicated the rich relations between the traditional 
refinement planners and the newer planners such as Graphplan and 
Satplan. 

Although the existing planners fall at the extremes of the search vs. 
solution extraction cost tradeoff, our framework suggests that planners 
in the middle might also provide better computational tradeoffs. As an 
example, we discussed a variant of UCPOP called UCPOP-D that 
reduces search by handling plans with differing “simple establishment 
structures” together.

Summary

✧ A general refinement planning framework that 
teases apart the notions of “refinement” and 
“search”
– Explicates the relations between traditional planners 

and Graphplah/SATPLAN approaches
– Foregrounds the issues involved in managing search 

and solution-extraction processes
» Disjunctive representations and constraint 

propagation help in managing large plansets.
» Existence of planners like UCPOP-D that combine 

refinement search and CSP methods



Our work also opens up a variety of avenues for further research. 
Given the rich relations between refinements and encodings, it is worth 
investigating encodings based on other refinements such as task 
reduction refinements, which have enjoyed significant popularity in 
refinement planning. [While we are at it, the work to be presented by 
Ginsberg can for example be seen as using a differnt partial plan 
representation and refinement strategy.]

Similarly, some of our recent work shows that interleaving refinement 
strategies, rather than using a single refinement strategy all the time, 
could lead to better performance in traditional refinement planners. It is 
worth investigating encodings based on interleaving of multiple 
refinements.

Another importnat area of research will be understanding the tradeoffs 
involved in trading off search and solution extraction or vice versal. 
Specifically, it is worth understanding the utility of planners which 
employ a controlled partitioning to keep plan set components with 
shared sub-structure togehter. 

Future Directions
✧ Empirical and analytical exploration of encodings 

based on various refinements
– Task Reduction Refinements
– Plan sets generated by interleaving multiple 

refinements 
✧ Exploring the tradeoffs between search and 

solution extraction
– Keep plan set components with shared 

structure together


