
On the role of Disjunctive Representations
and Constraint Propagation

in Refinement Planning

Subbarao Kambhampati & Xiuping Yang
Arizona State University

http://rakaposhi.eas.asu.edu

Presented by Amol Mali

KRR-96; Boston. Nov, 96.

Most traditional approaches to plan generation, developed over the last
twenty years work by searching in the space of partial plans, extending
them incrementally until they become a solution, and backtracking
when a plan can no longer be fruitfully extended.

More recently, several algorithms -- Graphplan, SATPLAn and
Descartes -- have developed competing approaches that cast planning
as a constraint satisfaction problem.

At the first glance, there appears to be huge gulf between the
traditional refinement planning algorithms and these new breed of
planners based on CSP/SAT techniques.

In our previous work, we have unified the traditional planning
algorithms under the rubric of refinement planning paradigm.

In this paper, we generalize the this framework to subsume both
traditional refinement planners and the CSP based planners. We wil see
that the major tradeoffs between the two types of planners is how
much work is done in “how much work is done refining and
backtracking through individual partial plans” vs. “extracting a
solution from a set of partial plans”. Traditional planners emphasize
the former while the CSP approaches emphasize the latter.

Our generalized approach will also bring to fore a continuum of
approaches between these two classes of planning algorithms.

Motivation

Traditional AI
Planning methods
SIPE, NONLIN, UCPOP,
SNLP, PRODIGY etc.

Planning as
CSP/SAT
GRAPHPLAN,
SATPLAN etc.

Bridge the chasm between...

...by generalizing refinement
 planning framework

Emphasize
Search

Emphasize
Solution
Extraction

Here is the outline of the talk. We will start with a view of refinement
planning that generalizes on the framework we presented in KR-94 and is
capable of subsuming both the traditional and newer approaches to plan
generation. We will show that the newer approaches refine sets of plans and
keep the resulting sets together without splitting. We will then argue that
disjunctive representations and constraint propagation help in handling sets of
plans together. Finally, we will show how this generalized framework
advances both our understanding and the state of the art by considering
several new planners within our framework -- inclduing Graphplan,
SATPLAN, and a variant of UCPOP called UCPOP-D. We will end with a
discussion of future research directions.

Overview
✧ Generalized Refinement Planning Framework

– Role of search vs. solution extraction
✧ Utility of disjunctive representations

– Refining disjunctive plans
– Constraint propagation to focus refinements

✧ Putting the framework to work...
– Graphplan
– Planning as Satisfiability
– UCPOP-D(*)

✧ Future directions and Conclusion

Let us start by recalling that the classical planning problem involves finding a sequence
of actions which when executed will take the agent from a given initial state to a desired
goal state. In this example, we are interested in transporting two packets from earth to
Moon, using a single (and somewhat out-of-shape) rocket.

States of the world are modeled in terms of a bunch of binary state-variables.

Actions are modeled as state-transformation functions, with pre-conditions and effects.

We have three actions in our rocket domain -- load which makes a package to be IN the
rocket, unload, which gets it out, and Fly, which takes everything in the rocket over to
the moon..

Modeling Classical Planning
✧ States are modeled in terms of (binary)
 state-variables
 -- Complete initial state, partial goal state
✧ Actions are modeled as state
 transformation functions
 -- Syntax: ADL language (Pednault)
 -- Apply(A,S) = (S \ eff(A)) + eff(A)
 (If Precond(A) hold in S)

Load(o1)

In(o1)

At(o1,l1), At(R,l1) At(R,E)

Fly()

At(R,M), ¬At(R,E)
∀ xIn (x) ⇒ At (x, M)

& ¬At(x, E)Unload(o1)

In(o1)

¬In(o1)

EarthEarth

At(A,E), At(B,E),At(R,E)

At(A,M),At(B,M)
¬In(A), ¬In(B)

Effects

A
p

p
o

lo
 1

3

Refinement planning can be thought of as a process of gradually
narrowing down the set of all actions sequences so as to progress
towards the set of all solutions.

Sets of action sequences are represented as partial plans. Narrowing is
done by refinement operations which add “constraints” to partial
plans. Finally, progress is measured by the ability to eliminate the
sequences that cannot be solutions to the problem. (if no solutions are
eliminated in this process, we will gradually get closer to the set of all
solutions). Termination can occur any time an action sequence capable
of solving the problem can be picked up from among the sequences
currently under consideration.

To make these ideas precise, we shall now look at the syntax and
semantics of partial plans and refinement operations.

Refinement Planning:Overview

Narrowing sets of action sequences
 to progress towards solutions

Partial plansRefinements

Remove non-solutions

All action
sequences

All Solutions

 P

P’

All Sol

P
P’

All Seq.

Refine

A partial plan can be seen as any set of constraints that together
delineate which action sequences belong to the plan’s candidate set and
which do not.

 One representation that is sufficient for our purposes models partial
plans as a set of steps, ordering constraints between the steps, and
auxiliary constraints. Each plan step corresponds to an action. There are
two types of ordering constraints -- precedence and contiguity
constraints. The latter require that two steps come immediately next to
each other.

Auxiliary constraints involve statements about truth of certain
conditions over time intervals. These come in two important types --
interval preservation constraints which require preservation of a
condition over an interval, and point truth constraints that require the
truth of a condition at a particular time point.

Here is an example plan from our rocket domain in this representation.
The steps 0 and 1 are contiguous, 2 precedes 4, and the condition
At(R,E) must be preserved between 0 and 3.

Finally, the condition In(A) must hold in the state preceding the
execution of step 2. (This is in addition to the constraint that all
preconditions of an action must hold in the state preceding the action.)

Partial Plans: Syntax

Auxiliary Constraints:
 Interval preservation constraint (IPC) ‹ s1 , p , s2 ›
 p must be preserved between s1 and s2

 Point truth Constraint (PTC) p@s
 p must hold in the state before s

Steps, Orderings, Aux. ConstraintsPartial plan =

1: Load(A) 2:Fly() 4:Unload(A)0 ∞
In(A)@2

3: Load(B)

contiguity
precedenceAt(R,E)

IPC

Earth A
p

p
o

lo
 1

3

The semantics of the partial plans are given in terms of candidate sets. An
action sequence belongs to the candidate set of a partial plan if it contains the
actions corresponding to all the steps of the partial plan, in an order consistent
with the ordering constraints on the plan, and it also satisfies all auxiliary
constraints.

For the example plan shown here, the sequences on the left are candidates
while those on the right are non-candidates. Notice that the candidates may
contain more actions than are present in the partial plan.

Candidates that only contain the actions in the plan are called “minimal
candidates”. These correspond to the syntactic notion of safe linearizations.

Safe linearizations are linearizations (or topological sorts) of the plan steps
that also satisfy the auxiliary constraints. The linearization 0-1-3-2-4-infty is a
safe one while the linearization 0-1-2-3-4-infty is not (since step 2 will violate
the IPC on At(R,E).

The sequences on the right are non-candidates because both of them fail to
satisfy the auxiliary constraints

Partial Plans: Semantics

P: 1: Load(A) 2:Fly() 4:Unload(A)0 ∞
In(A)@2

3: Load(B)
At(R,E)

Candidates (∈ «P»)

 [Load(A),Load(B),Fly(),Unload(A)]

 [Load(A),Load(B),Fly(),
Unload(B),Unload(A)]

Non-Candidates (∉ «P»)

 [Load(A),Fly(),Load(B),Unload(B)]

[Load(A),Fly(),Load(B),
Fly(),Unload(A)]

Minimal candidate. Corresponds to the
safe linearization [01324∞]

Corresponds to unsafe
 linearization [01234∞]

Candidate is any action sequence that
 -- contains actions corresponding to all the steps,
 -- satisfies all the ordering and auxiliary constraints

Here then is the connection between the syntax and semantics of a
partial plan. Each partial plan has at most exponential number of
linearizations, some of which are safe with respect to the auxiliary
constraints.

Each safe linearization corresponds to a minimal candidate of the plan.
Thus, there are at most exponential number of minimal candidates. A
potentially infinite number of additional candidates can be derived
from each minimal candidate by padding it with new actions without
violating auxiliary constraints.

Refinements add new constraints to a partial plan. They thus simultaneously
shrink the candidate set of the plan, and increase the length of its minimal
candidates.

Thus, one incremental way of exploring the candidate set of a plan for
solutions is to check through its minimal candidates after refinements.

Reduce candidate set size
Increase length of minimal candidates

Linearization 1 Linearization 2 Linearization n

Safe linearization 1 Safe linearization 2 Safe Linearization m

Linearization 3

Minimal Cand. 1 Minimal Cand. 2 Minimal Cand. m
+

derived
candidates

+
derived

candidates

+
derived

candidates

Partial Plan

Linking Syntax and Semantics

Refinements

We will now formally define a refinement strategy. Refinement strategies operate on
sets of partial plans. We thus define a plan-set as a set of partial plans, with the
understanding that the candidate set of the planset is the union of the candidate sets
of its component plans.

A refinement strategy R maps a plan set P to another plan set P’ such that the
candidate set of P’ is a subset of the candidate set of P. R is said to be complete if P’
contains all the solutions of P. It is said to be progressive if the candidate set of P’ is a
strict subset of the candidate set of P. It is said to be systematic if no action sequence
falls in the candidate set of more than one component of P’.

Completeness ensures that we don’t lose solutions by the application of refinements.
Progressiveness ensures that refinement narrows the candidate set. Systematicity
ensures that we never consider the same candidate more than once.

At the bottom is an example refinement, for our rocket problem, which takes the null
plan, corresponding to all action sequences and maps it to a plan set containing 3
components. (In this case, the refinement is complete since no solution can start with
any other action, progressive since it eliminated action sequences beginning with
unload(A) etc, and systematic since all the candidates of the three components will
have different prefixes.)

Refinement Strategies

§ A plan set P is a set of partial plans {P1,P2 ... Pm}

 R
1: Load(A)0 ∞

1: Load(B)0 ∞

1: Fly()0 ∞

0 ∞

✧ A refinement strategy R : P ➸ P’ («P’ » a subset of «P »)
–R is complete if «P’ » contains all the solutions of «P »
–R is progressive if «P’ » is a proper subset of «P »
–R is systematic if components of P’ don’t share candidates

We are now in a position to present the general refinement planning
template. It has three main steps.

 If the current plan-set has an extractable solution -- which is found by
inspecting its minimal candidates, we terminate.

If not, we select a refinement strategy R and apply it to the current plan
set to get a new plan set.

As long as the selected refinement strategy is complete, we will never
lose a solution. As long as the refinements are progressive, for solvable
problems, we will eventually reach a planset one of whose minimal
candidates will be a solution (the figure on the top right illustrates this).

The solution extraction process involves checking an exponential
number of minimal candidates (corresponding to safe linearizations).
This can be cast as a model-finding or satisfaction process.

 Some recent planners like Graphplan and Satplan can be seen as
instantiations of this general refinement planning template. However,
most earlier planners use a specialization of this template that we shall
discuss next.

Refinement Planning Template

Refine (P : Plan set)

 0*. If «P » is empty, Fail.
 1. If a minimal candidate of P is a solution,
 return it. End
 2. Select a refinement strategy R
 Apply R to P to get a new plan set P’
 3. Call Refine(P’)

--Termination ensured if R is complete and progressive

-- Solution extraction (step 2) involves checking exponentially
 many minimal candidates
 -- Can be cast as propositional model-finding (satisfaction)

State-space,
Plan-space,
HTN,
Tractability

Let us briefly describe the various known refinement strategies.

The forward state space refinement refines a partial plan by extending
its prefix with each of the actions that can be applied in the state of the
world following the prefix. The backward state space refinement works
analogously by extending the suffix of the partial plan.

THe plan space refinement adds steps into a partial plan without
constraining their absolute position. For example, here, the step unload
is added to the plan to achieve At(A,M) without specifying when
exactly it will take place.

Finally, the task reduction (or HTN) refinements replace an abstract
action by its (user-specified) reductions.

All these refinements are complete and progressive. They can all be
made systematic.

Existing Refinement Strategies

0 ∞

0 ∞2: Unload(B)

2: Unload(A)1: Fly()

1: Fly()

At(A,M)
At(B,M)
¬In(A)
¬In(B)

0 1: Fly() ∞

0 1: Unload(A) ∞

2: Load(A)0 ∞

2: Load(B)0 ∞

2: Fly()0 ∞1: Unload(A)

1: Unload(A)

1: Unload(A)

At(A,E)
At(B,E)
At(R,E)

PSR

0 1:Unload(A) ∞

At(A,M)@∞

2:Fly() 3:Unload(A)0 ∞
In(A)@2

At(A,M)

At(A,M)@∞

¬At(A,M)

FSR

BSR

1: Transport(A)0 ∞

At(A,E) At(A,M)

1: Load(A)0 ∞

At(A,E) At(A,M)

2: Fly() 3: Unload(A)

HTN

The algorithm template in the previous slide does not have any search
in the foreground All the search is pushed into the solution extraction
function.

It is possible to add “search” to the refinement process in a
straightforward way. The algorithm template shown here introduces
search into refinement planning. It does this by partitioning a plan set
into k smaller plan sets, and handling each of these in a diferent search
branch. As k increase, the cost of handling plansets is reduced by
pushing complexity into the search space size.

(This can be said wrt the next slide) All traditional refinement planners,
such as UCPOP, Prodigy, SNLP, etc. correspond to complete
partitioning -- ie. k= # component sof the plan. We shall see that
planners such as GRAPHPLAN can be seen as doing no partition -- ie.e
k=1. It sis also possible to do medium levels f partitioning as we shall
see when discussing UCPOP-D.

Combining Refinement with Search

Refine (P : Plan)

 0*. If «P » is empty, Fail.
 1. If a minimal candidate of P
 is a solution, terminate.
 2. Select a refinement strategy R .
 Appply R to P to get a new plan set P’
 3. Split P’ into k plansets
 4. Simplify plansets by introducing disjunction and
 constraint propagation.
 5. Non-deterministically select one of the plansets P’ i
 Call Refine(P’ i)

 P1

P2

R1

R2

Pk
Rk

Null Plan set

 P1

P2

R1

R2

Pk
Rk

Null Plan set

(This slide is a continuation of the previous one.)

The algorithm in the previous slide can cover both traditional
refinement planners and the recent planners such as Graphlan based on
the value of splitting factor k, and the type of refinement strategy
selected.

For example, UCPOP and SNLP correspond to the choice of plan-space
refinement with full splitting (k = # components of the plan)

TOPI corresponds to selection of BSR refinement with full splitting.

Graphplan and SATPLAN can be seen as selecting FSR with no
splitting

There are also planners such as UCPOP-D which we shall describe that
can allow “medium” level of splitting

A Spectrum of Refinement
Planners

Planner Refinement Splitting (k)

UCPOP, SNLP PSR k = #Comp

TOPI BSR k = #Comp

Graphplan FSR k = 1

SATPLAN FSR, PSR k = 1

UCPOP-D
 Descartes PSR 1 < k < #comp

Refine (P : Plan)

 0*. If «P » is empty, Fail.
 1. If a minimal candidate of P
 is a solution, terminate.
 2. Select a refinement strategy R .
 Appply R to P to get a new plan set P’
 3. Split P’ into k plansets
 4. Simplify plansets by introducing disjunction and
 constraint propagation.
 5. Non-deterministically select one of the plansets P’ i
 Call Refine(P’ i)

Although the framework we presented allows handling plan set components
separately or together, most existing planners handle them separately. We shall now
explicitly consider the issues involves in handling plan sets together without splitting.

So, let us look at what happens if we don’t split plan sets. Of course, we reduce the
search space explosion and avoid the premature commitment to specific plans. We
also separate the action selection and action sequencing phases, so that we can apply
scheduling techniques for the latter.

There can be two potential problems however. First off, keeping plan sets together
may lead to very unwieldy data structures. The way to get around this is to
“internalize” the disjunction in the plan sets so that we can represent them more
compactly. The second potential problem is that we may just be transfering the
complexity from one place to another -- from search space size to solution extraction.
This may be true. However, there are two reasons to believe that we may still win.

First, as we mentioned earlier, solution extraction can be cast as a model-finding
activity, and there have been a slew of very efficient search strategies for
propositional model finding. Second, we may be able to do even better by using
constraint propagation techniques that simplify plans and reduce refinement
possibilities.

Let me illustrate these ideas.

Issues in handling plansets
without splitting

✙ Reduced commitment
✙ Separation of action selection and action

sequencing
– Unwieldy plan sets

» Use disjunctive representations
● Refining disjunctive plans

– Transfer of complexity to solution-extraction
» Use efficient SAT solvers
» Use incremental constraint propagation

The general idea of disjunctive representations is to allow disjunctive
step, ordering, and auxiliary constraints into the plan. Here are two
examples that illustrate the compaction we can get through them.

The two plans on the top left corner can be compacted by using a single
disjunctive step constraint, a disjunctive precedence constraint, a
disjunctive IPC and a disjunctive PTC.

Similarly, the three plans in the bottom right can be compacted into a
single disjunctive step, with disjunctive contiguity constraints.

Candidate set semantics can be given naturally from the interpretation of
disjunctive constraints.

Disjunctive Representations
Allow disjunctive step, ordering and auxiliary constraints

1: Load(A)0 ∞

1: Load(B)0 ∞

1: Fly(R)0 ∞

1: Load(A)

2 : Load(B)0 ∞

3 : Fly(R)

In(A)

In(B)

At(R,M)

1: Load(A)0 ∞

1: Load(B)0 ∞

In(x)@∞

In(x)@∞

In(B)

In(A)

or

or

1: Load(A)
0 ∞

or
2 : Load(B)

< 1,In(A),∞ > V < 2 ,In(B),∞ >

At(A,E)@1 V At(B,E)@2

Disjunctive representations necessitate some generalizations to the specifics of
refinement strategies. Notice that the syntactic specifics of refinement strategies are
described clearly only for partial plans without disjunction, and thus cannot be applied
in a straightforward way to non-disjunctive ones. For example, in the left plan, we
don’t know whether steps 1 or 2 or both will be present in the eventual plan. Thus a
PSR refinement won’t know whether we should work on At(A,E) precondition or the
At(B,E) precondition or both. Similarly, in the right hand side we don’t know which of
the steps will be coming next to 0 and thus we don’t quite know what the state of the
world will be after the disjunctive step. Thus, the FSR refinement will not know which
actions are should be applied to the plan prefix next.

One way of refining such plans is to handle the uncertainity in a conservative fashion.
For example, in the plan on the right, although we do not know the exact state after the
first (disjunctive) step, we know that it can only be a subset of the union of literals in
the effects of the three steps. We can thus consider a variant of FSR that adds only those
actions whose preconditions are subsumed by the union of the effects of the three
steps. it is of course possible that even though the preconditions of an action are in the union
of effects, there is no real way fo r that action to take place. For example, although the
preconditions of “unload at moon” action may seem satisfied, it is actually never going occur
as the second step in any solution because load and fly cannot be done at the same time. This
brings up an important issue-- disjunctive plans can be refined at the expese of some of
the “progressivity” of the refinement.

Although the loss of progressivity cannot be avoided, it can be reduced to a significant
extent by doing constraint propagation along with refinements. For example, by
marking the pair-wise exclusivity of the actions load/Fly in the first step, we can
realize that the effects they give cannot both be true at the next level, and thus remove
actions such as unload from consideration. {BTW, the fact that Graphplan’s efficiency
depends on mutex propagation means that the ease of solution extraction depends on the
progressivity of the refinement!}

Refining Disjunctive Plans

Disjuntive plans can be refined at the expense
 of some “progressivity”
 -- Loss of progressivity can be kept in check through
 constraint propagation

1: Load(A)

2 : Load(B)0 ∞

3 : Fly(R)

In(A)

In(B)

At(R,M)

or

or

1: Load(A)
0 ∞

or
2 : Load(B)

< 1,In(A),∞ > V < 2 ,In(B),∞ >

At(A,E)@1 V At(B,E)@2

Propagation of ordering &
 binding constraints
 e.g.
 (s1< s2) & ((s2 < s1) V (s3 < s4))
 => (s3 < s4)

 Propagation of mutual
 exclusion constraints

 e.g.
 Actions whose preconditions
 are mutually exclusive will not
 be applicable

We noted earlier that Graphplan can be seen as using FSR refinements
without splitting. We elaborate this relation now in light of our
discussion of disjunctive representations.

On the left is a state tree generated by a forward state space planner
that employs full splitting. On the right is the “plan graph” structure
generated by Graphplan for the same problem(*) Note that plan graph
can be seen roughly as a “disjunction” of the branches of the tree on the
left.

Specifically, the ovals representing the “plan graph” proposition lists at
a particular level can be seen as approximate union of the states in the
state space tree at that level. Similarly, the actions at a given level in the
plan graph canbe seen as the union of actions on the various transitions
at that level in the state tree.

It is important to note that the relation is only approximate--for
example the action and the proposition high ligted in brown at the
third level do not have any correspondence with the search tree. This is
part of the price we pay for doing refinements over disjunctive
representations. However, the propagation of of mutual exclusion
constraints allows Graphplan to keep as close a correspondence to the
state-space search tree as possible.

Case Study: Graphplan

Plan graph = Disjunctive plan set
Plan graph growing = Refinement
Backward search of plan graph = Finding min. cand.
 corresponding to solutions

P

Q

R

Q

R

W

M

Q

P

M

Q

W

P

S

a1

a2

a3

a4

a5

a6

P

Q

R

Q

P

S

R

W

M

P

Q

a1

a2

a3

a4

a9

a5

a6

T

~ Union of states
 at third level

~ union of
 actions at
 3rd level

Recently, Kautz and Selman have advocated solving planning
problems by encoding them first as SAT problems and then using
efficient SAT solvers like GSAT to solve them. Their approach involves
generating a a SAT encoding all models of which will correspond to k-
length solutions to the problem (for some fixed k). Model-finding is
done by the SAT solvers. They start with some arbitrary value of k, and
increase it if they do not find solutions of that length. They have
considered a variety of ways of generating the encodings--some
described in their AAAI-96 paper, and some to be described in their
paper here.

In the context of the general refinement planning framework, we can
offer a rational basis on which the encodings can be generated.
Specifically, the natural place where SAT solvers can be used is in the
“solution extraction phase”-- specifically, after doing k “complete” and
“progressive” refinements on a null plan, we get a plan set whose
minimal candidates contain all k-length solutions to the problem. So,
picking a solution boils down to searching through the minimal
candidates-- which can be cast as a SAT problem.

This account naturally relates the character of the encodings to the type
of refinements used in coming with the k-length plan-set and how the
plansets themselves are represented (recall that disjunctive
representations can reduce the progressivity of refinements).

Relation to Planning as Satisfiability

If R1, R2,...,Rk are all complete
 (and progressive)
 Then,
 Minimal candidates of Pk will
 contain all k-length solutions

Shape of the encoding depends on
 -- Refinements Ri

 -- Representations for plansets
 -- Disjunctive/non-disjunctive

Is there a minimal candidate of Pk
that is a solution to the problem?

Can be encoded as a
SAT/CSP instance

 P1

P2

R1

R2

Pk
Rk

Null Plan set

Indeed, we can make rough comparisons between the different
encodings explored by Kautz et. al., and the refinement strategies and
representations of plan sets that could give rise to them. For example,
linear and parallel encodings correspond to the use of forward state-
space refinements, with the latter corresponding to disjunctive plan-set
representations. Similarly, the SNLP encodings correspond to the use of
plan-space refinements.

Given that interleaving refinement strategies has been shown to be a
good idea in improving the cost of refinement planning, we can explore
the utility of encodings based on interleaved refinements.

Refinement Strategies and SAT
Encodings

Encodings:

Linear Parallel Lifted SNLP

Refinement Strategies:

Forward State
Space

Forward State Space
with disjunctive rep.

Plan Space

One question that needs to be answered is whether the relation between k-length
encodings and the minimal candidates of k-level plan sets is just a matter of
theoretical curiosity, or whether it has any practicial significance.

We believe that basing encodings on k-level plan sets, derived by the application
of k complete refinements, leads to SAT instances that are “smaller” on the
whole. Specifically, both the number of variables in the SAT as well as the size of
the individual clauses sizes can reduce by starting from k-level plansets.

We illustrate this point with an example involving forward state space
refinements. Here we have three different ways of generating encodings based on
FSR. On the left, we do FSR refinements on individual componenets of the plan
sets, generating all legal k-length prefixes (which can be searched to see if any of
them correspond to a solution). On the right handside, we avoid refinements and
generated the encoding directly using the methods used by Kautz et. al. The
middle picture corresponds to doing FSR on the disjunctive plan representations
(specifically, the structure here is similar to the k-level plan graph-- which can be
seen as the disjunctive representation of k-level planset). It is interesting to note
that as we go from left to right, the amount of uncertainity increases. For
example, if we ask the question--what can be the actions at level 2, the left most
encoding will say they can only be one of 5. The right most one says they can be
one of any available actions, while the middle one says that they can be one of six.

Clearly, the encodings sizes will be largest for the left and smallest for the right.
At the same time, the cost of generating the encoding is lowest on right and
highest on left. Thus, a happy medium is likely to be reached in the middle--ie.
encodings based on disjunctive refined plans.

Impact of Refinements on Encoding Size

-- Encodings based on refined plans can be more compact
 -- Smaller clauses, fewer variables ...
-- Refining disjunctive plans is most cost effective

P

Q

R

Q

R

W

M

Q

P

M

Q

W

P

S

a1

a2

a3

a4

a5

a6

P

Q

R

Q

P

S

R

W

M

P
Q

a1

a2

a3

a4

a9

a5

a6

T

~ Union of states
 at third level

~ union of
 actions at
 3rd level

P

Q

P

Q

R

S
...

a1

..

a2

a3

a100

..

..

..

..

a99

a1

..

a2

a3

a100

..

..

..

..

a99

P

Q

R

S
...

Encoding size increases & Cost of generating encoding reduces

Encodings based on “refined” plans Direct SAT En

R
ef

in
ed

 p
la

n
 s

et
s

D
is

j.
 p

la
n

s
+

C
o

n
st

ra
in

t
P

ro
p

.

In addition to explining the relation between Graphplan, SATPLAn
approaches and the traditional planning approaches, our treatment
brings into high relief the tradeoffs involved in handling plansets
without partitioning.

For example, until now, the planners we saw do either no partitioning
or full partitioning. research in constraint satisfaction literature shows
that propagation and refinement can have synergistic interactions. (A
case in point is 8-queens problem. .) This raises the possibility that best
planners may be doing controlled splitting of plan sets (rather than no
splitting at all) to facilitate further constraint propagation. (Extent of
propagation could depend on the amount of shared sub-structure between the
disjoined plans.)

Another issue is the relative support provided by various types of
refinements for planning with disjunctive representations . The old
analyses based on least commitment etc. are mostly inadequate when
we don’t split plan set components.

Next, we will discuss a variant of UCPOP called UCPOP-D that
provides a reference point for planning with limited partitioning.
UCPOP-D uses the ideas of disjunctive representations and constraint
propagation.

Tradeoffs
✧ The right level of plan set splitting

– Traditional planners do full splitting
– Graphplan/SATPLAN do no splitting
– Is there a “better” middle ground?

» Keep components having shared substructure
together

● Allows better constraint propagation.

✧ The fit between refinement strategy and
disjunctive representations

We will now discuss a variant of UCPOP planner which uses the ideas
of disjunctive representation and constraint propagation to improve its
performance.

Unlike UCPOP which does full splitting, UCPOP-D keeps the plans
that differ only in simple establishment possibilities together.
Specifically, consider the plan on left. In establishing p@S, UCPOP will
consider two different plans corresponding to simple establishments
with s1 or s2. UCPOP-D keeps these plans together by maintaining
disjunctive IPCs (causal links). {This can be seen as a generalization of the
multi-contributor causal links idea}.

Thus, instead of several simple establishment branches, of UCPOP (as
shown on top right) UCPOP-D will have only one simple establishment
branch (as shown on bottom right)

Case Study: UCPOP-D
✧ Keep partial plans with

alternate simple
establishment
structures together

Establishment

Se1
Se2 Se3 Sa1 Sa2 Sa3

Establishment

Se1 V Se2 V Se3 Sa1 Sa2 Sa3

UCPOP-D

UCPOP

s0

s1

sGs

s2

+p

+p
(p)

 s1,p,s ∨ s2,p,s

“s1 or s2 will give p to s”
 s1<s ∨ s2<s

Supporting plan-space refinement on plans containing disjunctive IPCs
involves maintaining and propagating disjunctive ordering constraints.

Specifically, the precense of the disjunctive IPC saying that C is given
by either S1 or S2 implies that (a) s1 or s2 must precede s and (b) for
every step t that can delete p, either we must have t precede s or, t
precede s1 and s1 precede s or t precede s2 and s2 precede s.

Although it is hard to exploit disjunctive orderings to reduce control
plan-space refinement, we can improve the situation by simplifying
them through constraint propagation whenever a new ordering is
added to the plan.

[The slide describing the comparison between UCPOP and UCPOP-D
and emonstrating the superiority of the latter goes here. See the paper]

Plan-space refinements in the presence of
disjunctive causal commitments

 s1,p,s ∨ s2,p,s

Implies for every step t that can delete p
 (t<s)∨
[(t<s1)∧ (s1<s)]∨
[(t<s2)∧ (s2<s)]

s0

s1

sGs

s2

+p

+p
(p)

Maintaining consistency of disjunctive orderings is NP-complete

 -- Constraint propagation can help

 (s1<s2)∧ (s2<s1)∨ (s3<s4) ⇒ (s3<s4)

Involves maintaining and propagating
 disjunctive orderings.

By teasing apart the hitherto closely intertwined notions of
“refinement” and “search” we were able to present a model of
refinement planning that not only includes the traiditional planners,
but also supports a large variety of planners that transfer seach to
solution extraction phase by handling sets of partial plans together.

Disjunctive representations and constraint propagation techniques
facilitate efficient management of large plansets.

Through this, we explicated the rich relations between the traditional
refinement planners and the newer planners such as Graphplan and
Satplan.

Although the existing planners fall at the extremes of the search vs.
solution extraction cost tradeoff, our framework suggests that planners
in the middle might also provide better computational tradeoffs. As an
example, we discussed a variant of UCPOP called UCPOP-D that
reduces search by handling plans with differing “simple establishment
structures” together.

Summary

✧ A general refinement planning framework that
teases apart the notions of “refinement” and
“search”
– Explicates the relations between traditional planners

and Graphplah/SATPLAN approaches
– Foregrounds the issues involved in managing search

and solution-extraction processes
» Disjunctive representations and constraint

propagation help in managing large plansets.
» Existence of planners like UCPOP-D that combine

refinement search and CSP methods

Our work also opens up a variety of avenues for further research.
Given the rich relations between refinements and encodings, it is worth
investigating encodings based on other refinements such as task
reduction refinements, which have enjoyed significant popularity in
refinement planning. [While we are at it, the work to be presented by
Ginsberg can for example be seen as using a differnt partial plan
representation and refinement strategy.]

Similarly, some of our recent work shows that interleaving refinement
strategies, rather than using a single refinement strategy all the time,
could lead to better performance in traditional refinement planners. It is
worth investigating encodings based on interleaving of multiple
refinements.

Another importnat area of research will be understanding the tradeoffs
involved in trading off search and solution extraction or vice versal.
Specifically, it is worth understanding the utility of planners which
employ a controlled partitioning to keep plan set components with
shared sub-structure togehter.

Future Directions
✧ Empirical and analytical exploration of encodings

based on various refinements
– Task Reduction Refinements
– Plan sets generated by interleaving multiple

refinements
✧ Exploring the tradeoffs between search and

solution extraction
– Keep plan set components with shared

structure together

