
Recent Progress in the Design and Analysis
of Admissible Heuristic Functions

Richard E. Korf
Computer Science Department

University of California, Los Angeles
Los Angeles, CA 90095

korf@cs.ucla.edu

Abstract

In the past several years, significant progress has been made
in finding optimal solutions to combinatorial problems. In
particular, random instances of both Rubik’s Cube, with over
10

19 states, and the5�5 sliding-tile puzzle, with almost1025

states, have been solved optimally. This progress is not the
result of better search algorithms, but more effective heuris-
tic evaluation functions. In addition, we have learned how
to accurately predict the running time of admissible heuristic
search algorithms, as a function of the solution depth and the
heuristic evaluation function. One corollary of this analysis
is that an admissible heuristic function reduces the effective
depth of search, rather than the effective branching factor.

Introduction
The Fifteen Puzzle consists of fifteen numbered square tiles
in a4�4 square grid, with one position empty or blank. Any
tile horizontally or vertically adjacent to the blank can be
moved into the blank position. The task is to rearrange the
tiles from some random initial configuration into a desired
goal configuration, ideally or optimally using the fewest
moves possible.

The Fifteen Puzzle was invented by Sam Loyd in the
1870s (Loyd, 1959), and appeared in the scientific literature
shortly thereafter (Johnson and Story, 1879). The editor of
the journal added the following comment to the paper: “The
‘15’ puzzle for the last few weeks has been prominently be-
fore the American public, and may safely be said to have en-
gaged the attention of nine out of ten persons of both sexes
and of all ages and conditions of the community.”

One reason for the world-wide Fifteen Puzzle craze was
that Loyd offered a $1000 cash prize to transform a particu-
lar initial state to a particular goal state. Johnson and Story
proved that it wasn’t possible, that the entire state space was
divided into even and odd permutations, and that there is no
way to transform one into the other by legal moves.

Copyright c 2000, American Association for Artificial Intelligence
(www.aaai.org). All rights reserved.

Rubik’s Cube was invented in 1974 by Erno Rubik of
Hungary, and like the Fifteen Puzzle a hundred years ear-
lier, became a world-wide sensation. More than 100 million
Rubik’s Cubes have been sold, and it is the best-known com-
binatorial puzzle of all time.

In the remainder of this paper, we’ll use these example
problems to illustrate recent progress in heuristic search. In
particular, the design of more accurate heuristic evaluation
functions has allowed us to find optimal solutions to random
instances of both the5�5 Twenty-Four puzzle, and Rubik’s
Cube for the first time. In addition, we’ll present a theory
that allows us to accurately predict the running time of ad-
missible heuristic search algorithms from the solution depth
and the heuristic evaluation function. One consequence of
this theory is that an admissible heuristic function decreases
the effective depth of search, relative to a brute-force search,
rather than the effective branching factor.

Search Algorithms
The 3 � 3 Eight puzzle contains only 181,440 reachable
states, and hence can be solved optimally by a brute-force
breadth-first search in a fraction of a second.

To solve the4 � 4 Fifteen Puzzle however, with about
1013 states, we need a heuristic search algorithm, such as
A* (Hart, Nilsson, and Raphael 1968). A* is a best-first
search in which the cost of a noden is computed asf(n) =
g(n) + h(n), whereg(n) is the length of the current path
from the start to noden, andh(n) is a heuristic estimate of
the length of a shortest path from noden to a goal. Ifh(n)
is admissible, meaning it never overestimates the distance to
a goal, A* is guaranteed to find a shortest solution, if one
exists.

The classic heuristic function for the sliding-tile puzzles
is Manhattan distance. It is computed by taking each tile,
counting the number of grid units between its current loca-
tion and its goal location, and summing these values for all
tiles. Manhattan distance is a lower bound on actual solution
length, because every tile must move at least its Manhattan
distance, and each move only moves one tile.

Unfortunately, A* can’t solve the Fifteen Puzzle, be-

cause it stores every node it generates, and exhausts the
available memory on most problems before finding a so-
lution. Iterative-Deepening-A* (IDA*) (Korf, 1985) is a
linear-space version of A*. It performs a series of depth-
first searches, pruning a path and backtracking when the cost
f(n) = g(n) + h(n) of a noden on the path exceeds a cut-
off threshold for that iteration. The initial threshold is set
to the heuristic estimate of the initial state, and increases in
each iteration to the lowest cost all the nodes pruned on the
last iteration, until a goal node is expanded. Like A*, IDA*
guarantees an optimal solution if the heuristic function is ad-
missible. Unlike A*, however, IDA* only requires memory
that is linear in the maximum search depth. IDA*, using the
Manhattan distance heuristic, was the first algorithm to find
optimal solutions to random instances of the Fifteen Puzzle
(Korf, 1985). An average of about 400 million nodes are
generated per problem instance, requiring about 6 hours of
running time in 1985.

Design of Heuristic Functions
Classical Explanation
The standard explanation for the origin of heuristic functions
is that they compute the cost of exact solutions to a simpli-
fied version of the original problem (Pearl, 1984). For ex-
ample, in the sliding-tile puzzles, if we ignore the constraint
that we can only move a tile into the empty position, we get
a new problem where any tile can be moved to any adjacent
position, and multiple tiles can occupy the same position. In
this simplified problem, we can solve any instance by taking
each tile one at a time, and moving it along a shortest path
to its goal position, counting the number of moves made.
The cost of an optimal solution to this simplified problem is
just the Manhattan distance of the original problem. Since
we simplified the problem by removing a constraint on the
moves, any solution to the original problem is also a solution
to the simplified problem, and hence the cost of an optimal
solution to the simplified problem is a lower bound on the
cost of an optimal solution to the original problem. Thus,
any heuristic derived in this way is admissible.

What makes it possible to efficiently compute the Man-
hattan distance is that in the simplified problem, the indi-
vidual tiles can move independently of each another. The
reason the original problem is difficult, and why the Man-
hattan distance is only a lower bound on actual cost, is that
the tiles interact. By taking into account some of these inter-
actions, we can compute more accurate admissible heuristic
functions.

Pattern Databases
Pattern databases(Culberson and Schaeffer, 1998) are one
way to do this. Consider any subset of tiles, such as the
seven tiles in the right column and bottom row of the Fif-
teen Puzzle, which they called thefringe pattern. The mini-

mum number of moves required to get the fringe tiles from
their initial positions to their goal positions, including any
required moves of other tiles as well, is obviously a lower
bound on the minimum number of moves needed to solve
the entire problem.

It would be too expensive to calculate the moves needed to
solve the fringe tiles for each state in the search. This num-
ber, however, depends only on the positions of the fringe
tiles and the blank position, but not on the positions of the
other tiles. Since there are only a limited number of such
configurations, we can precompute all of these values, store
them in memory in a table, and look them up as needed dur-
ing the search. Since there are seven fringe tiles and one
blank, and sixteen different locations, the total number of
possible configurations of these tiles is16!=(16 � 8)! =
518; 918; 400. For each table entry, we can store the num-
ber of moves needed to solve the fringe tiles from their
corresponding locations, which takes only a byte of stor-
age. Thus, we can store the whole table in less than 500
megabytes of memory.

We can compute this table by a single breadth-first search
backward from the goal state. In this search, the non-pattern
tiles are all considered equivalent, and a state is uniquely
determined by the positions of the pattern tiles and the blank.
As each configuration of these tiles is encountered for the
first time, the number of moves made to reach it is stored in
the corresponding entry of the pattern database. The search
continues until all entries of the table are filled. Note that this
table is only computed once for a given goal state, and its
cost can be amortized over the solution of multiple problem
instances with the same goal state.

Once the table is built, we use IDA* to search for an op-
timal solution to a problem instance. As each state is gener-
ated, the positions of the pattern tiles and the blank are used
to compute an index into the pattern database, and the cor-
responding entry, which is the number of moves needed to
solve the pattern tiles, is used as the heuristic value for that
state.

Using the fringe pattern database, (Culberson and Scha-
effer, 1998) reduced the number of nodes generated to solve
the Fifteen Puzzle by a factor of 346, and reduced the run-
ning time by a factor of 6. Combining this with another pat-
tern database, and taking the maximum of the two database
values as the heuristic value, reduced the nodes generated
by about a thousand, and the running time by a factor of 12,
compared to Manhattan distance.

Rubik’s Cube Pattern databases have also been used to
find optimal solutions to Rubik’s Cube (Korf, 1997). The
standard3�3�3Rubik’s Cube contains about4:3252�1019

different reachable states. Of the 27 subcubes, orcubies, 20
of them move. These can be divided into eightcorner cu-
bies, with three faces each, and twelveedge cubies, with
two faces each. There are only88; 179; 840 different con-

figurations of the corner cubies, and the number of moves
to solve just the corner cubies ranges from zero to eleven
moves. At four bits per entry, a pattern database for the cor-
ner cubies requires about 42 megabytes of memory. Six of
the twelve edge cubies generate42; 577; 920 different possi-
bilities, and a corresponding pattern database requires about
20 megabytes of memory. Similarly, the remaining six edge
cubies generate another pattern database of the same size.

Given multiple pattern databases, the best way to com-
bine them without overestimating the actual solution cost,
is to take the maximum of their values, even if the cubies
in the different databases don’t overlap. The reason for this
is that every twist of the cube moves eight different cubies,
and hence moves that contribute to the solution of the cu-
bies in one pattern may also contribute to the solution of the
others. Taking the maximum of the values in all three pat-
tern databases described allowed IDA* to find the first op-
timal solutions to random instances of Rubik’s Cube (Korf,
1997). The median optimal solution length is 18 moves. At
least one problem instance generated a trillion nodes, and
required a couple weeks to run. With further improvements
by Michael Reid, Herbert Kociemba, and others, most states
can now be solved optimally in a day.

Disjoint Pattern Databases
The main limitation of Culberson and Schaeffer’s pattern
databases is that the only way to combine the values from
different databases without overestimating actual cost is to
take their maximum value. Returning to the Fifteen Puzzle,
even if we compute a separate pattern database for the re-
maining eight tiles not in the fringe pattern, the best admis-
sible combination of these two heuristic values is their max-
imum. The reason is that Culberson and Schaeffer counted
all moves required to solve the pattern tiles, including moves
of tiles not in the pattern. As a result, moves used to solve
tiles in one pattern may also be used to solve tiles in another
pattern.

One way to improve on this is when computing the heuris-
tic value for a pattern of tiles, only count the moves of the
tiles in the pattern. Then, given two or more patterns that
have no tiles in common, we can add together the heuristic
values from the different databases, and still get an admis-
sible heuristic. This is because in the sliding-tile puzzle,
each operator only moves a single tile. We call such a set of
databases adisjoint pattern database, or a disjoint database
for short. Summing the values of different heuristics results
in a much larger value than taking their maximum, and thus
greatly reduces the amount of search that is necessary.

A trivial example of a disjoint pattern database is Manhat-
tan distance. Manhattan distance can be viewed as the sum
of a set of individual pattern database values, each represent-
ing only a single tile. It could be “discovered” by running a
pattern search for each tile, recording the number of moves
required to get that tile to each location from its goal loca-

tion.
A non-trivial example of a disjoint database divides the

Fifteen Puzzle in half horizontally, into a group of seven tiles
on top, and eight tiles on the bottom, assuming the goal po-
sition of the blank is the upper-left corner. We precompute
the number of moves required to solve the tiles in each of
these two patterns, from all possible combinations of posi-
tions, but only counting moves of the tiles in the given pat-
tern. Instead of explicitly representing the blank position
in the database, we store the minimum value for all possi-
ble positions of the blank. The eight-tile pattern contains
16!=(16 � 8)! = 518; 918; 400 entries, each of which re-
quires a byte, or 495 megabytes of memory. The 7-tile pat-
tern contains only16!=(16� 7)! = 57; 657; 600 entries, or
55 megabytes of storage.

The memory requirement can be reduced by only stor-
ing in the database the number of moves needed in addition
to the sum of the Manhattan distances of the pattern tiles,
which only takes four bits. Then, during the search, we com-
pute the Manhattan distances of the pattern tiles, and add the
database value to the Manhattan distance to get the overall
heuristic.

Once these pattern databases are computed and stored, we
get another set of heuristic values by reflecting all the tiles
and their positions about the main diagonal of the puzzle.
This gives us a 7-tile database on the left side of the puz-
zle, and an 8-tile pattern database on the right. The values
from these two different sets of databases can only be com-
bined by taking their maximum, since their individual tiles
overlap.

This heuristic can be used to optimally solve random Fif-
teen Puzzle instances, generating an average of about 37,700
nodes, and taking about 43 milliseconds per problem in-
stance on a 440 Megahertz Sun Ultra 10 workstation with
640 megabytes of memory. This is in comparison to 400
million nodes and about 75 seconds per problem on the same
machine for simple Manhattan distance. This is a factor of
over 10,000 in nodes generated, and over 1700 in actual run-
ning time.

Pairwise Distances
The original pattern database idea allows the most general
combination rule, since the maximum of any set of admissi-
ble heuristics is always an admissible heuristic. Conversely,
disjoint pattern databases admit the most powerful combi-
nation rule, by allowing the values from different heuristics
to be added together, but are not very general, since they re-
quire each operator to effect only subgoals within a given
pattern. Disjoint databases cannot be used on Rubik’s Cube,
for example, since each twist moves eight different cubies.
Between these two extremes lies a technique that combines
the two ideas.

Consider a database that contains the number of moves
required to correctly position every pair of tiles, from every

possible pair of positions they could be in. In most cases,
this will be the sum of their Manhattan distances. In some
cases, however, thispairwise distancewill exceed the sum
of the Manhattan distances. For example, if two tiles are in
the same row, which is also their goal row, but they are re-
versed with respect to each other, one tile will have to move
vertically out of the row, to allow the other to pass by, and
then move back into the row. This adds two moves to the
sum of their Manhattan distances, which only reflects the
moves within their goal row. This is the idea behind the “lin-
ear conflict” heuristic function (Hansson, Mayer, and Yung,
1992), the first significant improvement to Manhattan dis-
tance. There are also other situations where the pairwise
distance of two tiles from their goal location exceeds the
sum of their Manhattan distances (Korf and Taylor, 1996).

The difficulty with the pairwise distance heuristic comes
in applying it to a given state. We can’t simply sum the
pairwise distances of all pairs of tiles, because moves of the
same tile will be counted repeatedly. Rather, we must par-
tition the tiles into non-overlapping groups of two, and then
sum the pairwise distances of each of the disjoint groups.
Ideally, we want to choose a grouping for each state that
maximizes the heuristic value. This is known as a maxi-
mal matching problem, and must be solved for each state in
the search. Thus, heuristics based on pairwise distances are
relatively expensive to compute. The idea of pairwise dis-
tances can obviously be generalized to distances of triples
or quadruples of tiles as well.

Twenty-Four Puzzle An admissible heuristic based on
linear conflicts and other pairwise distances lead to the first
optimal solutions to random instance of the5 � 5 Twenty-
Four Puzzle (Korf and Taylor, 1996), containing almost1025

states. Some of these problems generated trillions of nodes,
and required weeks to run. Currently, we are applying dis-
joint databases to this problem, using patterns of six tiles,
with significant reductions in nodes generated and running
times.

Time Complexity of Heuristic Search
We now turn our attention to the time complexity of heuristic
search algorithms. The central difficulty is that the running
time depends on the quality of the heuristic function, which
has to be characterized in some way. We begin with com-
puting the brute-force branching factor, and then consider
heuristic search.

Brute-Force Branching Factor
The running time of a brute-force search isO(bd), whereb is
the branching factor of the search space, andd is the solution
depth of the problem instance. In the sliding-tile puzzles,
the branching factor of a node depends on the position of
the blank. If the blank is in a corner, there are two places it
can go, if it’s on a side it can go to three places, and from a

center position it can to to four places. If we assume that all
possible positions of the blank are equally likely, we get a
branching factor of4 �2+8 �3+4 �4=16 = 3 for the Fifteen
Puzzle. Subtracting one to eliminate the move back to the
parent node yields a branching factor of 2.

Unfortunately, the blank is not equally likely to be in any
position in a deep search. In particular, the more central
location of the middle positions causes those positions to
be over-represented in the search space. To compute the
asymptotic branching factor, we need to compute the equi-
librium fraction of nodes with the blank in the different types
of positions at a given depth of the search tree, in the limit
of large depth. When this is done correctly (Edelkamp and
Korf, 1998), we get an asymptotic branching factor of about
2.13 for the Fifteen Puzzle.

A similar situation occurs in Rubik’s Cube, even though
all operators are always applicable. In this case, we restrict
the operators applied to avoid redundant states. For example,
if we allow any twist of a single face as a primitive operator,
we don’t want to twist the same face twice in a row, since the
same effect can be achieved by a single twist. Furthermore,
since twists of opposite faces are independent, these opera-
tors commute, and we only allow two consecutive twists of
opposite faces to occur in one particular order. These con-
siderations result in a branching factor of about 13.34847 for
Rubik’s Cube, compared to6 � 3 = 18 for the naive problem
space.

Conditions for Node Expansion
We now turn our attention to heuristic search. The running
time of a heuristic search is proportional to the number of
nodes expanded. Both A* and IDA* expand all nodesn
whose total cost is less than the optimal solution cost, i.e.
f(n) = g(n) + h(n) < c�, wherec� is the optimal solution
cost (Pearl, 1984). An easy way to understand this node
expansion condition is that any admissible search algorithm
must continue to expand every partial solution path, until its
cost equals or exceeds the cost of an optimal solution, lest it
lead to a better solution.

Characterization of the Heuristic
As mentioned above, the central difficulty in analyzing the
time complexity of heuristic search lies in characterizing the
heuristic. Previous work on this problem (Pearl, 1984) char-
acterized the heuristic by its accuracy as an estimator of op-
timal solution cost, and relied on an abstract analytic model
of the search space. There are several problems with this
approach. The first is that to determine the accuracy of a
heuristic function on even a single problem instance, we
have to determine the optimal solution cost, which is compu-
tationally very expensive on large problems. Secondly, most
real problems don’t fit the restrictive assumptions of the ab-
stract model, namely that the problem space contain only a
single solution path to the goal. Finally, the results obtained

are only asymptotic results in the limit of large depth. As
a result, this previous work cannot predict the actual per-
formance of heuristic search on real problems such as the
sliding-tile puzzles or Rubik’s cube.

In our analysis (Korf and Reid, 1998), we characterize the
heuristic function by the distribution of heuristic values over
the problem space. In other words, we only need to know the
fraction of states with each different heuristic value. Equiv-
alently, letP (x) be the fraction of total states in the problem
space with heuristic value less than or equal tox. In other
words,P (x) is the probability that a randomly chosen state
in the problem space has heuristic value less than or equal
to x. More precisely, we need the distribution of heuristic
values at a given depth of the brute-force search tree, in the
limit of large depth, but we ignore this detail here. Note
that the heuristic distribution says nothing directly about the
accuracy of the heuristic function, except that distributions
shifted toward larger values are more accurate, since we as-
sume that our heuristics are admissible.

For heuristics based on a pattern database, we can com-
pute the heuristic distribution exactly, simply by scanning
the database. If the heuristic is based on several different
pattern databases, we assume that the different heuristic val-
ues are independent. For heuristics based on functions, such
as Manhattan distance, we can randomly sample states from
the problem space, and use the heuristic values of the sam-
ples to approximate the heuristic distribution. Note that in
either case, we don’t have to solve any problem instances to
get the heuristic distribution.

Main Theoretical Result

Here’s the main result of our analysis (Korf and Reid, 1998).
Let Ni be the number of nodes at depthi in the brute-force
search tree. For example,Ni might bebi, whereb is the
brute-force branching factor. In a heuristic search to depth
d, the number of nodes expanded by A* or IDA* at depthi
is simplyNi �P (d� i). At one level, the argument for this is
simple. The nodesn at depthi haveg(n) = i, andP (d� i)
is the fraction of nodesn for whichh(n) � d� i. Thus, for
these nodes,f(n) = g(n) + h(n) � i+ d� i = d, which is
the condition for node expansion in a search to depthd.

The key property that makes this work is consistency of
the heuristic function. We say thath is consistent if for all
nodesn and their neighborsn0, h(n) � c(n; n0) + h(n0),
wherec(n; n0) is the cost from noden to its neighborn0.
This is akin to the triangle inequality of metrics, and almost
all admissible heuristics are consistent. If our heuristic is
consistent, then the pruning that occurs in the tree doesn’t ef-
fect the heuristic distribution of the nodes that are expanded.
Given the number of nodes expanded at a given depth, we
sum these values for all depths up to the optimal solution
depth to determine the total number of nodes expanded, and
hence the running time of the algorithm.

Experimental Results

We have experimentally verified this analysis on Rubik’s
Cube, the Eight Puzzle, and the Fifteen Puzzle. In each
case, forNi we used the actual numbers of nodes in the
brute-force tree at each depth. For Rubik’s cube, we deter-
mined the heuristic distribution from the pattern databases,
assuming the values from different databases are indepen-
dent. For the Eight Puzzle, we computed the heuristic distri-
bution of Manhattan distance exactly by exhaustively gener-
ating the space, and for the Fifteen Puzzle, we approximated
the Manhattan distance distribution by a random sample of
ten billion states. We then compared the number of node ex-
pansions predicted by our theory to the average number of
nodes expanded by IDA* on different random initial states.
For Rubik’s cube, we got agreement to within one percent,
and for Fifteen puzzle we got agreement to within 2.5 per-
cent at typical solution depths. For the Eight Puzzle, our
theoretical predictions agreed exactly with our experimental
results, since we could average the experimental results over
all states in the problem space. This indicates that our theory
accounts for all the relevant factors of the problem.

The “Heuristic Branching Factor”

From previous analyses, it was thought that the effect of
an admissible heuristic function is to reduce the effective
branching factor of a heuristic search relative to a brute-force
search. The effective branching factor of a search is the limit
at large depth of the ratio of the number of nodes generated
at one level to the number generated at the next shallower
level. One immediate consequence of our analysis, however,
is that the effective branching factor of a heuristic search is
the same as the brute-force branching factor of the problem
space. The effect of the heuristic is merely to decrease the
effective depth of search, by a constant based on the heuristic
function. This prediction is also verified by our experimental
results.

Conclusions
Pattern databases (Culberson and Schaeffer, 1998) automate
the design of more effective lower-bound heuristics. We
have used them to find optimal solutions to Rubik’s cube.
We have also extended the original idea to disjoint databases,
which allow the values from different pattern databases to be
added together, rather than just taking their maximum. Dis-
joint databases reduce the time to find optimal solutions to
the Fifteen Puzzle by over three orders of magnitude, rela-
tive to the Manhattan distance heuristic. In addition, pair-
wise and higher order distances can also be used to compute
more effective heuristics, but at greater cost per node eval-
uation. We have used both disjoint databases and pairwise
distances to find optimal solutions to the5� 5 Twenty-Four
puzzle.

We have also developed a new theory that allows us
to predict the running time of heuristic search algorithms.
The heuristic is characterized simply by the distribution of
heuristic values over the problem space. Our theory accu-
rately predicts our experimental results on the sliding-tile
puzzles and Rubik’s Cube. One consequence of our theory
is that the effect of a heuristic is to reduce the effective depth
of search, rather than the effective branching factor.

Acknowledgements
I would like to thank my collaborators in this work, includ-
ing Stefan Edelkamp, Ariel Felner, Michael Reid, and Larry
Taylor. This research was sponsored by NSF grant No. IRI-
9619447.

References
Culberson, J., and J. Schaeffer. Pattern Databases,Compu-
tational Intelligence, Vol. 14, No. 4, 1998, pp. 318-334.

Edelkamp, S. and R.E. Korf, The branching factor of reg-
ular search spaces,Proceedings of AAAI-98, Madison, WI,
July, 1998, pp. 299-304.

Hansson, O., A. Mayer, and M. Yung, Criticizing solu-
tions to relaxed models yields powerful admissible heuris-
tics, Information Sciences, Vol. 63, No. 3, 1992, pp. 207-
227.

Hart, P.E., N.J. Nilsson, and B. Raphael, A formal ba-
sis for the heuristic determination of minimum cost paths,
IEEE Transactions on Systems Science and Cybernetics,
Vol. SSC-4, No. 2, July 1968, pp. 100-107.

Johnson, W.W. and W.E. Storey, Notes on the 15 puzzle,
American Journal of Mathematics, Vol. 2, 1879, pp. 397-
404.

Korf, R.E., Depth-first iterative-deepening: An optimal
admissible tree search,Artificial Intelligence, Vol. 27, No.
1, 1985, pp. 97-109.

Korf, R.E., and L.A. Taylor, Finding optimal solutions to
the twenty-four puzzle,Proceedings of AAAI-96, Portland,
OR, Aug. 1996, pp. 1202-1207.

Korf, R.E., Finding optimal solutions to Rubik’s Cube us-
ing pattern databases,Proceedings of AAAI-97, Providence,
RI, July, 1997, pp. 700-705.

Korf, R.E., and M. Reid, Complexity analysis of admis-
sible heuristic search,Proceedings AAAI-98, Madison, WI,
July, 1998, pp. 305-310.

Loyd, S., Mathematical Puzzles of Sam Loyd, Selected
and Edited by Martin Gardner, Dover, New York, 1959.

Pearl, J. Heuristics, Addison-Wesley, Reading, MA,
1984.

