On the relations between Intelligent Backtracking and
Failure-driven Explanation Based L earning in Constraint
Satisfaction and Planning

ASU CSE TR 97-018

Subbarao Kambhampati *

Department of Computer Science and Engineering, Arizona Sate University, Tempe, AZ
85287.

Running Title: Relations between IB & EBL in Planning and CSP

Abstract

Theideas of intelligent backtracking (1B) and explanation based learning (EBL) have de-
veloped independently in the constraint satisfaction, planning, machine learning and prob-
lem solving communities. The variety of approaches developed for IB and EBL in the
various communities have hither-to been incomparable. In this paper, | formalize and unify
these ideas under the task-independent framework of refinement search, which can model
the search strategies used in both planning and constraint satisfaction problems (CSPs).
| show that both IB and EBL depend upon the common theory of explanation analysis-
which involves explaining search failures, and regressing them to higher levels of the search
tree. My comprehensive analysis shows that most of the differences between the CSP and
planning approaches to EBL and IB revolve around different solutions to: (a) How the
failure explanations are computed (b) How they are contextualized (Contextualization in-
volves deciding whether or not to keep the flaw description and the description of the vio-
lated problem constraints) and (¢) How the storage of explanationsis managed. The differ-
ences themselves can be understood in terms of the differences between planning and CSP
problems as instantiations of refinement search. This unified understanding is expected to
support a greater cross-fertilization of ideas among CSP, Planning and EBL communities.

Keywords: Explanation-based learning, Dependency directed backtracking, Constraint
satisfaction, Planning, Regression, Propagation, Flaw resolution, Nogood learning,
Dynamic backtracking.

1 Corresponding author’s Fax: (602) 965-2751, E-mail: rao@asu.edu.,
WWW: http://rakaposhi.eas.asu.edu/yochan.html

Preprint submitted to Elsevier Science 18 August 1998

1 Introduction

One of the main-stays of Al literature is the idea of “intelligent backtracking”
as an antidote for the inefficiencies of chronological backtracking [54]. However,
there is a considerable confusion and variation regarding the various implemen-
tations of intelligent backtracking. Many apparently different ideas, such as back
jumping, nogood-based learning and dynamic backtracking are all concerned with
the general notion of intelligent backtracking. Complicating the picture further
is the fact that many “speedup learning” algorithms that learn from failure (c.f.
[42,5,30,9,51]), do analyses that are quite close to the type of analysis donein the
intelligent backtracking algorithms. Although this similarity has sometimes been
noted in earlier literature (c.f. [9]), a thorough analysis has been impeded by the
many superficial differences between the existing approachesin CSP and Planning.

My motivation in this paper is to put the different ideas and approaches related to
IB and EBL in planning and CSP in a common perspective, and thereby delineate
the underlying commonalities between research efforts that have so far been seen
as distinct or at best losely connected. To thisend, | consider all backtracking and
learning a gorithmswithin the context of general refinement search [31,28]. Refine-
ment search involves starting with the set of all potential solutionsfor the problem,
and repeatedly narrowing and splitting the set until a solution for the problem can
be extracted from one of the sets. The common algorithms used in both planning
and CSP can be modeled in terms of refinement search.

| show that within refinement search, both IB and EBL depend upon a common
theory of explaining search failures, and regressing them to higher levels of the
search tree to compute explanations of failures of the interior nodes. | argue that
intelligent backtracking is best understood as “explanation directed backtracking”
(EDB) 2 which occurs any time the explanation of failure regresses unchanged over
arefinement decision. At that point, we can ignore all siblings of that decision, and
continue backtracking to the next higher level. Most of the existing backtracking
algorithms can be understood as specializations or extensions of thisidea (see Sec-
tion 5). EBL involvesremembering theinterior node failure explanationsand using
them in future to prune unpromising branches.

Within thisframework, a multitude of variations are possi ble depending on how the
failures are represented, contextualized, and how many of them are stored for future
use. | will show how approaches for CSP and planning differ in these aspects, and
justify these differences in terms of the characteristics of CSP and Planning prob-
lems, when seen as instantiations of refinement search. In addition, | will discuss
how ideas such as “constraint propagation” [56] and “dynamic backtracking” [19]
are related to theideas of IB and EBL.

2| use the term EDB rather than the more common “dependency directed backtracking”
since the latter has been used by some authorsto refer to both intelligent backtracking and
learning from failures. We shall see that these ideas are best studied separately.

The main contribution of this paper is thus pedagogical in nature—it uses arational
reconstruction of the ideas behind IB and EBL to relate and unify the hither-to
disparate bodies of work in planning, CSP, and EBL. As van Harmalen and Bundy
[57] point out, such rational reconstructions of apparently unrelated algorithms and
approaches in terms of each other is a useful activity, not only because it prevents
reinventing the wheel, but al so because often such rational reconstructions generate
new insightsin and additionsto both areas. | will demonstrate that the unified task-
independent understanding of 1B and EBL helpsto provide a crisp statement of the
tradeoffs offered by the different algorithms and can support cross-fertilization of
ideas among the CSP, planning and EBL communities.

The insights gained from this paper may in fact be quite timely. Although work
on intelligent backtracking and EBL have been dormant in recent years, there are
several reasons to expect a resurgence of interest in these topics. Much of the early
work in CSP has been on systematic search algorithms, withinwhich EDB and EBL
play arole. A variety of empirical studies(c.f. [49,16,15]) have consistently shown
that EDB and EBL techniques are often part of the winning constraint satisfaction
search algorithms. Although the emphasis shifted to non-systematic search strate-
gies such as GSAT [52] in the recent past, there is now new evidence (c.f. [3,4])
that systematic search agorithms, armed with EDB and EBL mechanisms® can
outperform non-systematic searchers such as GSAT and WALKSAT [52] on sev-
eral hard real and artificial satisfiability instances. Similarly, within the planning
and problem-solving communities, EBL approaches are finding continued uses in
learning search control [30], case-based planning [23,44], and plan quality con-
trol [12]. Moreover, recent work in planning has amply emphasized the role of
constraint satisfaction in plan synthesis [35,34,25]. The unifying framework and
the accompanying insights presented in this paper are expected to be of use to re-
searchers working in all these directions.

The rest of this paper is organized as follows. In Section 2, | review refinement
search and show how planning and constraint satisfaction can be modeled in terms
of refinement search. In Section 3, | provide a method for doing explanation di-
rected backtracking and explanation based learning in refinement search. In Sec-
tion 4, | discuss several variations of the basic EDB/EBL techniques produced for
the most part by the differing characteristics and requirements of planning and CSP
problems, and characterize their tradeoffs. Section 5 show how existing intelligent
backtracking and speedup learning algorithms can be seen as the specializations of
the EDB/EBL framework. This section also relates failure-driven EBL approaches
to pre-processing approaches such as constraint propagation. Section 6 summarizes
the contributions of the paper, and speculates on how the improved understanding
of EDB/EBL can suggest potentially fruitful avenues of research. Appendix A dis-
cusses ways of extending the basic framework to support more flexible backtrack-

3 Specifically, they use conflict-directed back-jumping, which is equivalent to the
explanation-directed backtracking approach we formalize in this paper (see Section 5), and
relevance-based learning which provides a syntactic solution to the EBL utility problem
(see Section 4)

ing regimes such as dynamic backtracking [18].

2 Refinement Search Preliminaries

The refinement search (also called split-and-prune search [47]) paradigm is use-
ful for modeling search problemsin which it is possible to enumerate all potential
solutions (called candidates) and verify if one of them is a solution for the prob-
lem. Refinement search can be visualized as a process of starting with the set of all
potential solutions for the problem, and splitting and narrowing the set repeatedly
until a solution can be picked up from one of the setsin bounded time. Each search
node A in the refinement search thus corresponds to a set of candidates. Syntacti-
cally, each search node is represented as a collection of constraints corresponding
to the commitments that have been made until that point in the search. The can-
didate set of the node isimplicitly defined as the set of candidates that satisfy the
constraints on the node. It is important to note that the node does not include all
the task and problem specific background knowledge; if it did then there would be
no difference between the candidate set of a node and the set of actua solutions
derived from that node.

Figure 1 providesageneralized template for refinement search. A refinement search
is specified by providing aset of refinement operators (strategies) R, and a solution
constructor function sol. The search process starts with the initial node Ay, which
correspondsto the set of all candidates. The search processinvolves splitting the set
of of potential solutionsuntil we are able to pick up asolution for the problem. The
splitting processisformalized in terms of refinement strategies. A refinement strat-
egy R takes a search node V', and returns a set of search nodes {N;,Ns, - - N, },
called refinements of \V, such that the candidate set of each of the refinementsisa
subset of the candidate set of V. R is said to be completeif the set of solutionsin
the candidate sets of Nj, N> - - - N, isequal to the set of solutionsin the candidate
set of V. Each complete refinement strategy can be thought of as corresponding to
aset of decisions ds, d, - - -, d,, such that d;(N') = ;. Each of these decisions can
be seen as an operator which derives a new search node by adding some additional
constraints to the current search node.

While refinements split the candidate set of a node, a closely related notion called
“constraint propagation” narrows the candidate set of the node without splitting
it.* Sometimes, the presence of certain constraintsin the search node, together with

4 Although in this paper we concentrate on the splitting aspect of the refinement strategies,
our definition also allows refinements to narrow the candidate set —i.e., the union of the can-
didate sets of the children nodes generated by arefinement strategy may be a proper subset
of the candidate set of the node being refined. In the terminology of [28], refinements with
such a property are called “progressive,” while refinements that do pure splitting without
any narrowing are called “tractability refinements.” This distinction is however not impor-
tant for the purposes of the current paper.

Algorithm Refine-Node(/\V)
Parameters: (i) sol: Solution constructor function.
(71) R: Refinement strategies.

0. Termination Check:
If sol(A) returns asolution, return it, and terminate.
If it returns x failx, fail.
Otherwise, select aflaw F inthe node V.
1. Refinements:
Pick arefinement strategy R € R that can resolve F'.
(Not a backtrack point.).

Let R correspond to the n refinement decisions dy, ds, - - -, d,,.
For each refinement decision d; € dy,dy -+ - d,, do
N’ — CL(N)
If A7 isinconsistent
Then, fail.

Else, Refine-Node(N”).

Fig. 1. General template for Refinement search.

the background knowledge (constraints) of task, domain or problem, may imply
certain implicit constraints. Constraint propagation essentially derives these con-
straints and adds them to the node description, thus narrowing its candidate set. An
important point to note hereis that the explicated constraints are not in the deduc-
tive closure of the constraints on the node (if they were, then constraint propagation
does not change the candidate set!), but can only be derived in conjunction with the
background knowledge that is not normally made part of the node.

To give agoal-directed flavor to the refinement search, we typically use the notion
of “flaws’ in a search node that have and think of individual refinements as resolv-
ing the flaws. Specifically, any node A" from which we cannot extract a solution
directly, is said to have a set of flaws. Flaws can be seen as the absence of certain
congtraints in the node A/. The search process involves picking a flaw, and using
an appropriate refinement that will “resolve’ that flaw by adding the missing con-
straints. Figure 2 shows how planning and CSP problems can be modeled in terms
of refinement search. The next two subsections elaborate this formulation.

2.1 Constraint Satisfaction as Refinement Search

A constraint satisfaction problem (CSP) [56] is specified by a set of » variables,
x1, Ty - - T,, their respectivevaluedomains, D1, D- - - - D,, and aset of constraints.
A congtraint Cj(z;, - - -, z;,) isasubset of the cartesian production D;, x --- x D;,
consisting of all tuplesof valuesfor asubset (z;,, - - - ;;) of the variableswhich are
compatiblewith each other. A solutionisan assignment of valuesto all thevariables

Problem Nodes Candidate Set || Refinements Flaws Soln.
Constructor
CSP, Dy- || Partia assign- || Complete Assigning val- || Variables Checking if dl
namic CSP || ment .A assignments ues to || need- variables need-
consistent with || variables ing assignment || ing assignment
A in A are assigned
and none of the
constraints are
violated
Planning Partial plan P | Ground opera- || Establishment, || Open condi- || Checking if P
tor sequences || Conflict tions, Conflicts || contains
consistent with || resolution inP no open con-
P ditions, and no
conflicts.

Fig. 2. CSP and Planning Problems as instances of Refinement Search

Assign X « A

prec: needsAssignment(x)
eff: Node « Node + (x = A)

X A f
N,: {x=A}

y«B

|N2: {x:A&y:B}|

veD

|N3: {x:A&y':B&v:D}|

u«C

x,y,u,v: {A,B,C,D,E}

w: {D,E} I : {A,B}
x=A = wzE

y=B = w=#D
u=C = I#A
v=D = |#B

|N4: {x:A&y:B&v:D&u:C}|

N;: {x=A&y=B&v=D&u=C&w=E}

we D

|N6: {x:A&y:B&v:D&u:C&W:D}|

Fig. 3. lllustrating CSP as refinement search

such that all the constraints are satisfied. A binary CSP problemisonewhereal the
constraints are between exactly two variables. Binary CSPs are interesting because
many of the backtracking and learning techniques within CSP are developed with
them in mind.

Seen as arefinement search problem each search node in CSP contains constraints
of theform z; = V;;, which together provide a partial assignment of valuesto vari-
ables. The candidate set of each such node can be seen as representing al complete
assignments consistent with that partial assignment. A solution is a complete as-
signment that is consistent with all the variable/value constraints of the CSP prob-
lem. Notice that the variable/value constraints of the CSP problem are treated as

background knowledge and are not made part of the node constraints. If they were,
then there would be no difference between the candidate set of the node and the set
of actual solutions derivable from that node!

Each unassigned variable in the current partial assignment is seen as a “flaw” to
be resolved. There is a refinement strategy R.., corresponding to each variable z;,
which generates refinements of a node A (that does not assign a value to z;) by
assigning a value from D; to z,. R, thus corresponds to an “OR” branch in the
search space corresponding to decisions dj, ds, - - -, dip, . Each decision d’ corre-
spondsto adding the constraint z; = D,[7] to the current partial assignment (where
D;[;] is the j*" value in the domain of the variable z;). We can encode this as an
operator with preconditions and effects as follows:

assign(A, z;,v}")
Preconditions: needsAssignment(z;)
Effects: A« A+ (z; < v))

Constraint propagation involves deriving consequences of the node assignment
constraints, given the background of problem constraints.

Example: Figure 3 illustrates the refinement search process in an example
CSP problem. The problem contains five variables, [, z,y, u,v and w. The do-
mains of the variables and the constraints on the variable values are shown
in the figure. The search starts by resolving the flav needsAssignment(z),
and then needsAssignment(y), needsAssignment(v) and needsAssignment(«) and
needsAssignment(w) in succession. At the end of the last refinement, two deadend
nodes, N; and Ny are produced (a deadend node is one whose partial assignment
violates one of the given constraints).

We can use constraint propagation on node V3 to derivethat [= A (sincethisisa
consequence of constraint v = D on the node, coupled with the problem constraint
v =D =1 # B, andtheconstraintthat l = AV [= B). This new constraint
can be added to N3, effectively narrowing its candidate set. Specifically, whereas
a complete assignment that gives [thevalue B (suchasz = AAy = BAv =
D Aw =7 Al = B)isinthe candidate set of N3 before the constraint propagation,
it is no longer part of the candidate set after the constraint [= A is derived and
added.

2.1.1 Dynamic CSP asrefinement search

There is ageneralization of CSP problems called Dynamic CSPs [43] that we will
find useful in comparing CSP and Planning problems® . Just like CSPs, Dynamic

5 Some authors (c.f. [10,58] seem to use the term Dynamic CSP to refer to CSP problems
where the constraints dynamically evolve. In this paper, we shall refer to these later as

Action Precond Add Dele
Roll(ob) - Cylindrical(ob) | Polished(ob) A Cool(ob)
L athe(ab) - Cylindrical (ob) Polished(ob)
Polish(ob) | Cool(ob) | Polished(ob) -

Fig. 4. Description of a simple job-shop scheduling domain

CSPs contain variables, their domains, and constraints on legal compound labels.
In addition, they also contain anew type of constraints called “ activity constraints.”
Activity constraints are of the following form:

Tz =vi ANz =vp A Ay, = v, = NeedsAssignment(z;)

This congtraint states thet if «;, zy, - - - z,,, have the listed values, then the variable
x; Will need an assignment.

The initial problem is specified by stating that certain subset of variables require
assignments. These are called the active variables. (Contrast this to CSP where all
the variables need assignments). The objectiveisto assign valuesto all thevariables
that need assignments, without violating any relevant constraint. Because of the
presence of the activity constraints, assigning the original variables may make other
currently inactive variables active, adding “ needsAssignment” flaws corresponding
to those variables to the current node. Assignment decisions will thus have the
following generic precondition/effect structure:

assign(A, z;,v}")
Preconditions: needsAssignment(z;).
Effects: A= A+ (2 < vj")
Ifzp, = v Ao Az = Ui,y

Then, needsAssignment(z,,)

In other words, new flaws may result from a refinement decision. Dynamic CSPs
were originally proposed to model “configuration” tasks [43]. In [32,29], we show
that the solution extraction (backward search) processin Graphplan, arecent highly
efficient planner, can be seen as a dynamic constraint satisfaction problem.

2.2 Planning as Refinement Search

This section is somewhat more complex than the preceding two sections; readers
unfamiliar with planning literature might to scan it quickly on first read, and come
back to it as needed. A planning problem is specified by an initial state descrip-
tion /, agoal state description G, and a set of actions A. The actions are described

“incremental” or “evolving” CSPs.

in terms of preconditions and effects, and remain constant for all the problemsin
a given domain. Both the initial and goal state specifications, and the precondi-
tion/effect formulas of actions are described as sentences in some language (usu-
ally, functionless first-order predicate logic). The solution is any sequence of ac-
tions such that executing those actions from the initial state, in that sequence, will
lead usto the goal state.

Figure 4 shows the actions describing a simple jobshop domain. The shop consists
of several machines, including alathe and aroller that are used to reshape objects,
and a polisher whichis used to polish the surface of afinished object. Given a set of
objects to be polished, shaped, etc., the planner’s task is to schedul e the objects on
the machines so as to meet these requirements. A planning problem in this domain
might involve polishing an object A and makeits surface cylindrical, giventhat A’s
temperature is cool in the initial state. Thus, initial state is specified as C'ool(A)
and the goal state is specified as Polished(A) A Cylindrical(A).

Search nodesin planning can be represented (see [31]) as 6-tuples

(S,0,B,L,E,C),

where S isthe set of steps, O isthe set of orderings between the steps, £ isthe set
of effects of the stepsin S, C isthe set of preconditions of the stepsin .S, B isthe
set of bindings among the objects taking part in the step effects and preconditions,
and finally £ isthe set of auxiliary constraints about the truth of conditions over
intervals of time. Each step in the plan corresponds to an action in the domain;
multiple steps may correspond to the same action. The effects and preconditions
of the step are the same as the effects and preconditions of the respective action.
The ordering constraints come in two varieties. precedence constraints of the type
“s1 < 89", which demand that s; precede s, in the final solution, but admit any
number of actions in between s; and s,; and contiguity constraints of the form
“s1 % s2,” which demand that s; come immediately before s, in the final solution.
The specia step s, is always mapped to the dummy operator start, and similarly
S+ ISa@ways mapped to £ inish. The effects of start and the preconditions of
finish correspond, respectively, to the initial state and the desired goals of the
planning problem.

Here is an example partia plan for our problem of making A cylindrical and pol-
ished in the jobshop domain:

S : {so: start,s; : Roll(A), sy : Polish(A), s : end},

O : {(sg*351),(s1 < 82),(52 < $0)}

Cool(A) Cylindrical(A)
L:{sy = s2,8 — S0}

< & : {effect(sy, Cool(A)), effect(s,, Cylindrical(A)),
effect(sq, Polished(A)), effect(sy, 7 Polished(A)), effect(sy, Cool(A))}
C : {precondition(s.,, Cylindrical(A)), precondition(s,, Polished(A)),
precondition(ss, Cool(A))}

Notice that initial state and goal state specifications are encoded as the effects and
preconditions of s, and s, respectively.

The candidates of a partial plan consist of all ground action sequences that are
consistent with the constraints of the partial plan. A ground action sequence G is
consistent withapartial plan P if G containsall the stepsof P (but may also contain
other steps), satisfiesall the ordering constraints (if s; < s, isaconstraintin P, and
if s; isthe:*" element and s, is the j** element in G, then ¢ must be less than),
and all the auxiliary constraints (if s; = s, isaconstraint on P, and s; and s, are
the:" and j** elementsin &, then none of theactions G[i + 1], G[i +2], - - - G[j —1]
must have an effect —p).

There are several types of complete refinement strategies in planning [28,33], in-
cluding plan space, state-space, and task reduction refinements. As an example,
plan-space refinement proceeds by picking a goal condition and considering dif-
ferent ways of making that condition true in different branches. As in the case of
CSP, each refinement strategy can again be seen as consisting of a set of decisions,
such that each decision produces a single refinement of the parent plan (by adding
constraints). As an example, the establishment refinement or plan-space refinement
corresponds to picking an unsatisfied goal/subgoal condition p that needsto be true
at astep s in apartial plan P (thisis referred to as an open condition flaw ¢@s in
P), and making a set of children plans P; - - - P, such that in each plan P;, there
exists a step s’ which precedes s and adds the condition p. P; also contains, (op-
tionally) an auxiliary (“causal link”) constraint s' 2 s to protect p between s’ and
s. Establishment refinement consists of step addition decisions, which add a new
step to establish the condition, and simpl e establishment decisionswhich use an ex-
isting step to establish the condition. Once again, we can represent these decisions
as operatorswith preconditions and effects. For example, the step addition decision
can be written as follows:

6 Things are actually slightly more complicated than this since two steps in P may be
instances of the same action. To handlethis, we need to think in terms of a mapping between
steps of P and elements of G, and check the constraints under that mapping [31]

10

StepAddition(effect(s,,, p”), precondition(p’, sq4))
Use the effect effect(s,,, p”) of to support the precondition precondition(p’, sq)

Preconditions. precondition(p', sq) € C
s Bos,d L
p" € effectsof s,
Effects. S <+ S + s,

Lo Lts, sy

O+ O+ (s, < sq)+(0=<s,)

B + B + most-general -unifier(p’, p") + Interna bindings of s,
C + C + {precondition(p, s,)|p € preconditions of s,}

E + & + {effect(s,, e)|e € ef fects of s,}

Its preconditions say that in order to do step addition involving a new step s,,, it
must be the case that there is a step s, which requires a precondition p’, s,, has an
effect p” and p’ unifies with p”. Once taken, this decision adds the new step s,, to
the set of stepsin the current plan, makes s,, come after the initial step, and before
sq. Furthermore, bindings are added to make the effect of s,, necessarily unify with
the precondition being established. Finally, since s,, is a new step with its own
preconditions and effects, the C and £ fields of the plan are appropriately updated.

A second type of flaw, called an unsafe link flaw, exists whenever the current plan
P contains an auxiliary constraint s; % s, and astep s, such that s, is not ordered
to precede s; or follow s,, and s; deletes p (s; is said to threaten the constraint
s1 & s5). The resolution possibilities for this flaw involve promoting s, to come
before s; (by adding the ordering relation s; < s;) or demoting s, to come after s,
(by adding the ordering relation s, < s;).

It isinteresting to note that while the unsafe link flaws are like “ needsA sssignment”
flaws in static CSP, the open condition flaws are like “needsAssignment” flaws in
dynamic CSP. Thisis because resolving an open condition may introduce new steps
into the plan whose preconditions become new open condition flaws.

Example: We shal now illustrate the refinement search process in planning
(specifically, partial order causal-link planning, of the type used in SNLP [40]).
Figure 5 shows the complete search tree for “polishing and making cylindri-
cal” problem in jobshop domain, discussed earlier. The planner starts with the
null plan, and picks up the open condition flaw Cylindrical(A)QG. This flaw
is resolved by adding the step 1:Ro11(A) which has an effect C'ylindrical(A).
The planner then resolves the other open condition flaw Polished(A)QG
with the step 2:Polish(A). Since the step 1:Roll(A), deletes Polished(A),
it is now an unsafe-link flaw involving this step and the auxiliary constraint

o A G This flaw is resolved by demoting step 1:Ro11(A) to come be-

11

Node A

INITIAL STATE: GOAL STATE:
((CYLINDRICAL A) G)
(0 (coon &) ((POLISH A) G)

step-addition (ROLL (CYLINDRICAL A) G)

step-addition (POLISH

ode B

step-addition (LATHE

(POLISH A&) G)

(CYLIND A)

(CYLIND A)

Q)

(CYLINDRICAL A)

G)

ode D

(CYLIND 2) N
’4‘ S s
o0 EO) 3O
o/ g
~ e (cooL AN~ _ -~
L A e
(oo (POLISH A) (POLISH &)
demotion((2 (POLISH A) G) 1)
promothen ((2 (POLISH a) G) 1) demot#on((2 (POLISH a) G) 1)
ode E
(CYLIND &)
LTI < FAIL (CYLIND &)
() > @f ’(:)\ %:) C @,/ """"" s
(cooL m)N, A _i@_j\@)
i (CooL A), /
(POLISH A) N
(POLISH &)
establishment (0 (COOL A) G)
ode G establishment (0 (COOL A) G) l
(CYLIND 2)
‘\ . - ,,(:)\\ \; @ . ./" ”” @ ------) \‘§®
NS - (POUTEH) i AN A
(cool, A) S (POLTEH A)
(COOL A)

promotion((0 (COOL A) 2) 1)

demotion((0 (COOL V \

Node H Fail Node I Fail

SUCCESS

Legend:
solid-line : precedence
dashed-line : causal-link
< : precedence

: ROLL(A), 1
: POLISH(R)

: start

: LATHE

: fin

: codesignates

: any-condition

: any step

cylind : cylindrical

ngllQoN

Fig. 5. Search Tree illustrating SNLP planning process. The figure uses a Lisp-like nota-
tion for the plan constraints. Causal link constraints are shown as three element lists, and
open conditions and preconditions are shown as two element lists.

fore 2: Polish(A). The step 2: Polish(A) aso introduces a new open condition
flaw precondition(Cool(A),2). The planner establishesit using the effects of the
initial step 0. Since Ro11(A) also deletes C'ool(A), it threatens this last establish-
ment. When the planner tries to resolve this threat by demoting step 1 to come
before step 0, it fails, since 0 already precedes 1. The planner backtracks until the
point where it has unexplored aternatives — node A in this example — and explores
other possible aternative. It achieves precondition(Cool(A), G) using Lathe(A)
and then achieves Polished(A) using the operator Polish(A). It succeedsin this
path and returns a solution.

2.3 Contrasting planning and CSP

When seen as instances of refinement search, planning and CSP differ in severa
interesting ways, and these differences shed important light on the applicability of
various forms backtracking and learning strategies to these problems.

The most obvious differences are that compared to CSP, in planning the node rep-

12

resentations and decisions are more complex. CSP search nodes contain just one
type of constraints—assignmentsto variables. Partial plans contain avariety of con-
straints, including orderings, bindings and auxiliary constraints. Each refinement
decision may lead to several constraints on the partial plan, while in CSP there is
an almost one-to-one correspondence between a decision and the assignment con-
straint that it adds.

CSP problems have a static flaw structure in that refinement search starts with a
certain set of flaws (“ needsAssignment” flaws), and refinement decisions monoton-
icaly reduce the number of flaws. This is not the case in planning. We start with
a set of open (pre)condition flaws, but in the process of resolving an open condi-
tion flaw, we may introduce a new step and al of its preconditions become new
open condition flaws. Thus, the number of flaws can both increase and decrease
in response to refinement decisions. Furthermore, the set of flaws in a partia plan
depends upon the specific set of refinement decisions taken to reach it.

Dynamic CSP problems share the simplicity of node and decision representa-
tion with CSPs but have the dynamic flaw structure similar to planning prob-
lems (assigning a variable a value may make more variables active, introducing
needsAssignment() flaws with respect to them).

In comparing planning and DCSP problems, we notice that while action descrip-
tions implicitly specify how new flaws come into existence in resolving existing
flaws, and are thus similar to “activity” constraints, there is no direct analogue in
planning for the normal constraintsin DCSP. This is because, as formulated, plan-
ning problems do not contain any global problem and domain constraints apart
from those indirectly imposed by the actions and their precondition/effect descrip-
tion. As we shall see in Section 4.4, this often makes it harder to do an effective
failure-based search control in planning, asthe only types of detectable failuresin-
volve inconsistencies between the constraints of the plan itself. It also reduces the
effectiveness of constraint propagation techniquesin planning.

Thisishowever just an artifact of the simplistic nature of the traditional formulation
of the classical planning problem. In realistic planning situations, the specification
of the domain contains not only the actions, but also a variety of resource and
capacity constraints (c.f. [45]). Similarly, the problem itself may impose stronger
resource and capacity constraints. Thus, a more realistic formulation of planning
problem will have global constraints on the plan too.

3 Basicformulation of EDB and EBL

The refinement search template provided in Figure 1 implements chronological
backtracking by default. There are two independent problems with chronological
backtracking. Thefirst problem isthat once afailureisencountered, the chronolog-

13

Algorithm Refine-Node(/\V)

Parameters:

(?) sol: Solution constructor function.

(77) R: Refinement strategies.

0. Termination Check:

If sol(A) returns asolution, return it, and terminate.
If it returns x failx, fail.
Otherwise, select aflaw £ inthe node V.

1. Refinements:
Pick arefinement strategy R € R that can resolve F'.

(Not a backtrack point.).

Let R correspond to the n refinement decisions dy, ds, - - -, d,,.
For each refinement decision d; € dy,dy -+ - d,, do
N’ — CL(N)
If A7 isinconsistent
Then, fail.

Set E(N") <—an explanation of failure of N/
Call Propagate(N")
Else, Refine-Node(N”).

Fig. 6. Refinement search augmented with 1B and EBL capabilities. The main augmentation
involves computing the explanation of failure of the deadend node and, and analyzing it
(using “propagate’ routine).

ical approach backtracks to the immediate parent and tries its unexplored children
—evenif it isthe case that the actual error was made much higher up in the search
tree. The second is that the search process does not learn from its failures, and can
thus repeat the same failures in other branches or within other problems. EDB (ex-
planation directed backtracking) is seen as away of doing intelligent backtracking,
while EBL is seen as away of learning from failures. As we shall see below, both
of them can be formalized in terms of failure explanations.

We can incorporate EDB and EBL within our general refinement search template
by (a) computing the explanation of failure at deadend nodes and (b) passing this
information over to the “ propagate” procedure that effectively computes failure ex-
planations of interior nodes given the explanations at the leaf nodes. The modified
refinement search templateis shown in Figure 6. The procedure Propagate (which
works as a co-routine to refinement search) is shown in Figure 7. An approximate
flow chart of the procedure is shown in Figure 8. In the following we explain the
theory behind the propagate procedure.

Suppose a search node A is found to be failing by the refinement search template
in Figure 1. To avoid pursuing refinements that are doomed to fail, we would like to
backtrack not to the immediate parent of the failing node, but rather to an ancestor
node N’ of A/ such that the decision taken under A/ has had some consequence on
the detected failure. To implement this approach, we need to sort out the relation

14

Procedure Propagate(/\;)

parent(N;): The node that was refined to get ;.
d(N): decision leading to \V; from its parent;
E(N): explanation of failure at \V;.

F(N;): The flaw that was resolved at this node.

1. E' «+ Regress(E(N;), d(N))
2.1f E' = E(N;), then (explanation directed backtracking)
E(parent(N;)) + E'; Propagate(parent(N}))
3.1f E' # E(N;), then
3.1. If there are unexplored siblings of A;
3.1.1 Make arejection rule R rejecting the decision d(\;),
with E’ as the rule antecedent. Store R in rule set.
3.1.2. E(parent(N;)) + E(parent(N;)) A E’
3.1.3. Let V41 bethefirst unexplored sibling of node ;.
Refine-node(N; 1)
3.2. If there are no unexplored siblings of A;,
3.2.1. Set E(parent(N;)) to
E(parent(N;)) A E' A F(parent(N;))
3.2.3. Propagate(parent(N;))

Fig. 7. The complete procedure for propagating failure explanations and doing explanation
directed backtracking

start with
leaf node failures

Explain children node
failures

Regress failure explanations
over decisions leading to them

Store failure
Exps
\ No

Y
Node exp « Conjunction of Node exp « unchanged child
child exp. + Flaw exp

Explanation
regressed
unchanged?

Yes

Fig. 8. An approximate flow chart of propagation procedure. See Figure 7 for the complete
procedure.

15

No: {Xx=A&Yy=B&Vv=D&Uu=C&W=E}

[X=A & W =E & x=A =>w=zE] = False

Fig. 9. Computing explanation of failure of aleaf hode

between the failure at A/ and the refinement decisions leading to it. We can do this
by declaratively characterizing the failure at V.

3.1 Explaining Failures

From the refinement search point of view, a search node \V is said to be failing if
its candidate set provably does not contain any solution. Syntactically, this means
that the constraints of A/ together with the global background constraints of the
problem or domain, and the requirements of the solution (i.e., flaw resolution), are
inconsistent. For example, in CSP, a partial assignment .4 may be failing because
the values that A assigns to its variables are inconsistent with the some of the
specified constraints, or because some needsAssignment(z) flaw cannot be resolved
given the assignments in A. Similarly, in the case of planning, a partial plan P
may be inconsistent because of inconsistent causal commitments (a causal link

s S s isinconsistent if the plan contains an action s” that deletes C' and s’ <
s" < s), ordering cycles or binding inconsistencies, or because the plan violates
a background constraint (such as resource or capacity constraints), or because the
plan contains some open condition or unsafe link flaw that cannot be resolved.

In either case, we can associate the failure at A/ with a subset of constraints and
flawsin NV, say E, which possibly together with the background (domain or prob-
lem) constraints A, lead to an inconsistency (i.e, A A E = False). E is then
considered the explanation of failure of A/. The semantic interpretation of afailure
explanation F is that the candidate set of any node containing the constraints and
flaws mentioned in £ will provably not contain any solution (and thus the node
does not have to be refined further).

For the CSP example problem shown in Figure 3, the search fails first at node Vs.
Figure 9 showsthefull explanation of failure of node Ns. Itisz = AAw = E (since
this winds up violating the first constraint). Similarly, an explanation of failure for
the node Ny isz = A Ay = B A needsAssignment(w), since both the possible
values of the variable w are precluded if : = A andy = B.

Aswediscussin Section 3.3, the failure explanations of interior nodes can be com-

puted recursively in terms of the failure explanations of their children. Thus, we
need only identify the failure explanations for the leaf nodes (see Figure 6).

16

E. x=A&w=E
N (x=A&y=B&v=D&u=C&w=D}

Ecy=B&w=D

Fig. 10. Regressing afailure explanation over a decision

3.2 Regression

In order to backtrack intelligently from a failing node A/, we need to figure out
the role played by N’s parent, AV, in its failure. Specifically, we want to know the
footprint of the failure explanation £ of A\ in its parent V,,. If d is the refinement
decision taken to reach A/ from A/, formally, the footprint of £ in A, isasubset E’
of the constraintsin AV, such that (1) £’ A effects(d) = E and (2) thereis no proper
subset E" of E' such that E” A effects(d) = E. (The second part of the definition
ensures that the footprint is “ minimal”—without this restriction, the conjunction of
all the constraints of V,, can itself be seen as the footprint.)

Since the refinement decisions are represented declaratively, we can compute the
footprint by individually “regressing” the constraints of £ over d. Regression of a
constraint ¢ over adecision d, denoted by d~'(c), is Trueif ¢ € effects(d) and isc
ifself otherwise.

In normal refinement search without constraint propagation, it can be easily seen
that d~'(E) gives us the footprint of £ in A, In particular, since every constraint
of A iseither inherited from AV, or added by d, the set of constraints resulting from
the regression of £ over d (call them E') are present in V. Moreover, it is easy to
see that no proper subset of £’ will entail £ in conjunction with the effects of d. *

Figure 10 illustrates regression of the failure explanationof Ny, y = BAw = E
over the decision “w < E” that leadsto N5, resultinginy = B (Sincew = E is
the only constraint that is added by the decision). It iseasy to seethat y = B isthe
footprint of N5's explanation of failurein N,.

Things are a bit more complicated when we are also doing constraint propagation
along with refinements. The problem isthat even though aconstraint ¢ may not have
been added by the decision d, it may have been derived by a constraint propagation
procedure Z from the constraints of A/ and the background knowledge A. In such a
case, regressing c over d using the procedure above will give us ¢ back, and ¢ may

" Here we asumme that the effects of a refinement decision d are non-redundant. Specifi-
caly, if c; A- - - Ac,, arethe effects of d, then none of the constraints ; arelogically entailed
by the other constraints.

17

Explanation: ' A dl_l(El) A dg_l(EQ) A A d;I(En)

Failure Exp: F Failure Exp: Fo Failure Exp: F),

Fig. 11. Computing Failure Explanations of Interior Nodes

Es: x=A &Yy =B & needsAssignment(w)
Ny (x=A&y=B&v=D&u=C}

Fig. 12. Example of interior node explanation computation

not have been part of \,, to begin with (thus violating thefirst clause of the footprint
definition.) What we need to do here is to regress the subset C' of the constraints
of A which formed the basis for the inference of ¢ by the constraint propagation
procedure Z. We can think of C' as an “inference footprint” of ¢ with respect to the
propagation procedure Z and define it formally as follows: C' isaminimal subset

s
of N suchthat C' A A F c.

The regression process described above is similar to the notion of weakest pre-
condition computation studied in planning [46] and program verification [22]. The
main difference is that here we are only interested in computing the minimal set
of constraints in the parent node in the current search episode that lead to the con-
straint ¢ after the decision d. We can think of this specialized version as “example
guided regression” [55].

18

3.3 Computing Explanations of failuresfor the Interior Nodes

Consider the situation illustrated in Figure 11, where a node \V,, has aflaw F, and
therefinement strategy for resolving theflaw generated » childrennodes\; - - - V.
Suppose further that al the children nodes are failing with failure explanations
Ey--- E, respectively. It is clear that N, itself is failing. But, what is the failure
explanation of \V,,? We can explain the failure of AV, in terms of the presence of the
flaw F' that needed to be resolved, and the presence of the footprints of the failure
explanationsof the childrennodesd; ' (E,) - - - d;;*(E,). Thefailure explanation £,
of AV, isthus:

FAdiYED)A---ANd N E,)

n

It is easy to see that £, is a sound explanation of failure aslong as £ - - - E,, are
sound, and the refinement strategy used to resolve F' is complete. Specifically, com-
pleteness of the refinement strategy used to resolve F' implies that every solution
in the candidate set of V, must be present in the candidate set of at least one of
the nodes V; - - - V,,. But the failure explanations E; - - - E,, are proofs that none
of these nodes contain a solution, and this shows that .\, also does not contain a
solution. This proof of absence of solutionsin A, holdsas long as F' isaflaw in
N,, and the footprints d;*(E;) - - - d;;}(E) are present in A, and thus E, which
conjoins all these is a sound explanation of failure of \,,.

In the Propagate procedure shown in Figure 7, the interior node explanations are
computed incrementally by accumulating the regressed failure explanations from
each of the branches under it (line 3.1.2). Once the last branch has been explored,
the accumulated regressions are conjoined with the flaw description and propagated
upwards (line 3.2) to facilitate further backtracking. (An exception occurs if the
failure explanations of any of the branches regress unchanged causing EDB; see
Section 3.4)

Figure 12 illustrates how the explanation of failure of interior nodes is computed
in our running example. Ng is aso a failing node, and its explanation of failure
ISy = BAw = D.When this explanation is regressed over the corresponding
decision, we get y = B. Thisis then conjoined with the regressed explanation
from N5, and the flaw description at V, to give the explanation of failure of N, as
E(Ny): 2z = ANy = B A needsAssignment(w).

3.4 Explanation Directed Backtracking

Consider the situation where the explanation of failure £ of a node N regresses
unchanged over the decision d that lead to A/. This means that the footprint of ¥
in the parent node V,, of A" is E itself. In such a case, we can see that the decision

19

N,: {x=A}

y«B \

Search resumed
22— =3 4

ve—D
Ng: Xx=A&y=B&v=D}

u«—C y
N, (x~A&y-B&V-D&U=C}

E,, x=A &y =B & needsAssignment(w)

Fig. 13. lllustration of explanation directed backtracking in CSP.

d did not play any rolein the failure, and that \V,, itself is failing. Thus, thereis no
point in backtracking and trying another alternative at \V,,. Instead we can backtrack
over N, to its parent. Specifically, in such cases, we can consider A, as failing,
setting F as its explanation of failure (in the process trashing any accumulated
information about the failure explanation of A/,),and continue backtracking. This
reasoning forms the basis of explanation directed backtracking. This is what the
propagate procedure doesin line 2 (see Figure 7).

The correctness of the EDB strategy can be established easily. Since E regressed
unchanged over d, it means that the constraints comprising the failure explanation
E are present in V,, also. We note that by definition every failure explanation E,
when conjoined with the constant background knowledge A, must be inconsistent.
That is, E A A = False. In other words, the candidate set of A, contains no solu-
tions. Thereisthus no point in refining \V,.. So, EDB preserves compl eteness when
it skips.\V,, and goes to its parent.

Figure 13 illustrates explanation directed backtracking in our running example.
Having computed the explanation of failure of node N4, we continue the prop-
agation process upwards. Now, the decision v < D does not affect the failure
explanation N,, and thus we backtrack over node /N3, without refining it further.
Similarly, we also backtrack over N,. E(N,) does change when regressed over
y < B and thus we restart search under N;.

To support EDB, we just need to keep track of the partial failure explanations at
each of the ancestor nodes on the current search branch. If d isthe maximum depth
of the search tree, we will store O(d) partial explanations. The size of each partial
explanationisat most the size of the search node (since explanations must be subset
of nodes). If the size of the largest node (partial plan, partial assignment etc.) is S,,,
the total space used by EDB is O(dS,,). For the case of CSP, d and S,, are both
O(n), where n isthe number of variables, leading to O(n?*) space overhead.

20

3.5 Explanation Based Learning

Until now, we talked about the idea of using failure explanationsto assist inintelli-
gent backtracking. The same mechanism can however aso be used to facilitate what
has traditionally been called EBL. Specifically, suppose we compute the explana-
tion of failure some (leaf or interior) node " as E. EBL involves remembering £
as a“learned failure explanation” with the hope that if we encounter another node
N in another search branch or another problem, where E holds, we could consider
N as failing too (with E, as its failure explanation), and prune it from search. A
variation of the node-pruning approach involves learning search control rules [42]
which recommend rejection of individual decisions of a refinement strategy if they
lead to a failing node. When the child V; of the search node N, failed with fail-
ure explanation £, and E' = d~'(E;), we can learn a rule which recommends
rejection of the decision d whenever £’ is present in the current node. In other
words, search control rules are nothing but failure explanations re-expressed in a
syntactically different way.

In our CSP example, after computing the explanation of failure of N, to bez =
A ANy = B A needsAssignment(w), we can remember this as a learned failure
explanation (akanogood [54]), and useit to prune nodes in other parts of the search
tree.

Unlike EDB, whose overheads are generally negligible compared to chronological
backtracking, learning failure explanations through EBL entails two types of hid-
den costs. Firgt, there is the storage cost. If we were to remember every learned
failure explanation, the storage requirements can be exponential because each | eaf
node in the search tree may potentialy be failing. Next, there is the cost of using
the learned failure explanations. Since in general, using failure explanations will
involve matching the failure explanations (or the antecedents of the search control
rules) to the current node, the match cost increases as the number of stored expla-
nations increase. Collectively, these problems have been referred to as the “EBL
Utility Problem” in the Machine learning community ® [41,20]. We shall review
various approachesto it later.

3.6 Examplesillustrating EDB and EBL in Planning

In this section, we illustrate the EDB and EBL ideas with a series of planning
examples. These will complement the CSP examples we used until now, and
will reinforce the generality of our treatment of EBL and EDB. Let us consider
again the example planning search tree shown in Figure 5. Figure 14 shows the

81n some ways, this is misleading as it seems to suggest that only explanation based
learning can suffer from utility problem. Any approach for learning control information,
whether it isexplanation based or inductive (c.f. [12]), could suffer from the utility problem.

21

Rule:

Node A
Reject stepaddition(ROLL(?X) P G) INITIAL STATE: GOAL STATE:
If open-cond((POLISH ?X) G) ((CYLINDRICAL A) G)
not-intially-true (POLISH ?X) (0 (cooL 2)) ((POLISH A) G)
(?X = A)

step-addition (ROLL (CYLINDRICAL A) G) step-addition (LATHE (CYLINDRICAL A) G)
Node B

Reason:
Generalized Rule: (CYLIND A) (0 < 1) (1 < @) SUCCESS
Reject stepaddition (ROLL(?X) P S) LeeTTTTTS Q open-cond ((POLISH ?X) G)
if open-cond((POLISH ?X) S) @ @) @ has-effect (1 ! (COOL ?X))
not-initially-true (POLTSH ?X) ~/ (poLsH aNY | has-effect (1 | (POLISH 2X))
not-initially-true (POLISH ?X)
step-addition (POLISH (POLISH A) G) l (?X = A)
Node D Reason:
(CYLIND &) (0 <1)(1 <0
e SN establishes (2 (POLISH ?X) G)
0 @ @ open-cond ((COOL ?X) 2)
P has-effect (1 ! (COOL ?X))
. has-effect (1 ! (POLISH ?2X))
(COOL A Seeo_- -7 (?X = A)
(POLISH A)
demotion((2 (POLISH A) G) 1) promotion((2 (POLISH A) G) 1)
Node E
(CYLIND A)
T RN Node F FAIL
@ @ @ liG) Reason: (1 < G) (G < 1)
(COOL A)‘\ . Reason:
g (0 < 1) (1 <2)
L d:
(POLISH 2) open-cond ((COOL ?X) 2)) e??z 13 a
) has-effect (1 ! (COOL ?X)) solid-line : precedence
establishment (0 (COOL &) G) (2% = a) dashed-line : causal-link
Node G T < : precedence
D A a . 1 : ROLL(A)
- N Reason:
(Y M D 2 : POLISH(a)
0 1 2 (0 < 1) (1 < 2)
\ g AN A . 0 : start
. L’ Nel - establishes (0 (COOL ?X) 2) X
Tl - (POLISH) has-effect (1 ! (COOL ?X)) ¢ tin
(COOL, A) <is f)ec : ¢ = : codesignates
?X = A ! : Negation
. . S : any step
demotion((0 (COOL A) 2) 1) promotion((0 (COOL A) 2) 1) 2x : any object
cylind : cylindrical
Node H Fail Node I Fail
Reason: (0 < 1) (1 < 0) Reason: (1 < 2) (2 < 1)
(initial explanation) (initial explanation)

Fig. 14. A complete analysis of failures in the Job-shop Scheduling example

complete trace of the propagation of explanations in this example.® When the
planner failed at node H and I in the Figure 14, the failures are explained in
terms of ordering inconsistencies as shown in the figure. Specificaly, the ex-
planation of failure a node # is (0 < 1) A (1 < 0), and that at node / is
(1 < 1) A (2 < 1). When we regress the explanation of node H over the de-
motion decision that was used to resolve the unsafe causal link flaw involving

0“4 9 and the effects of step 1 (demotion(effect(1, ~Coool(A)), 0 “"AY 2)),
it results in the ordering constraint (0 < 1) (since the demotion only adds or-
dering constraints). Similarly when we regress the explanation of node / over the

promotion(effect(1, ~Cool(A)),0 "2 2), it results in the ordering constraint
(1 < 2). Now, at node GG, we have the explanations for the failure of the branches
H and I. Thus, the explanation at node G (also shown in Figure 14) is:
E(G) = Constraints describing the Unsafelink flaw A (0 < 1) A (1 < 2)

= (0“4 9) A effect(1, ~Cool(A)) A (1 L0)A(2 A1) A(0< 1) A (1 <2)

9 See [30] for a more comprehensive treatment of EBL/EDB in partial order planning.

22

P1 P1
Step-Add(01 —= G) Step-Add(02 —= G)
Node: B Node: C

P P
© , R/ '_,,_, \
o (1) (p@@ e (2) (pC;)G)
(Q2,01)
Q1

Q1
Step-Add(03 ——= 01) Step-Add(04 ——= 01)
Node: D Node: E

Q1 P1

(P2,G)

Q1 P1

O—E—e—¢
(Q&‘gl)

(P2,G)

Fail!! Explanation E1: Q2@01 & Fail!! Explanation E2: Q2@01 &
not-initially-true(Q2) not-initially-true(Q2)

Fig. 15. An example for explanation directed backtracking. The top level goalsare A and
P». The operator O1 gives P; but requires @Q; and Q)». The operator O, aso gives P; and
requires Ry. O3 and O, give Q1. No operator gives Q-.

- (O C’oo_léA) 9

) A effect(1, ~Cool(A)) A (0 < 1) A (1 < 2)

The last step follows from the simplification (s; £ s2) A (s2 < s1) = (82 < s1)
(since (s; < sp) implies (s; £ s2) in any consistent plan). This explanation can
be interpreted as follows: if there are three steps sy, s; and so such that (sy <

s1) A (s1 < s2) and if acausal link s Cooli4) s1 isthreatened by the step s, prune

the node from search space. This type of propagation is continued all the way up
the tree, learning the failure explanation of node B as shown to theright of B in
Figure 14. This can be converted into a“ pruning rule” of the following form:

If (s0<s1)A(s1<G)A
precondition(Polished(A), G)A
effect(sy, "Cool(A))A
effect(sy, 7 Polished(A))A
—initially-true(Polished(A))
then Reject the plan

Since we reached node B by using a step addition decision, we can also regress this
explanation over the step addition decision leading to 5, and write the result as the
premise of a search control rule prohibiting the step addition decision:

If precondition(Polished(A), G)A
—initially-true(Polished(A))
then Reject stepaddition(Roll(A), precondition(cylindrical(A), G))

There is no instance of EDB skipping over intermediate decisions in the exam-
ple shown in Figure 14. To illustrate it, we give another simple planning example,
shown in Figure 15. Here, the first plan contains two open condition flaws P1@QG
and P2QG respectively. The first refinement involves resolving the flaw P1QG,
and this is done in the left branch by the step addition decision that adds the step

23

Initial State

. On(A, B)
Establishment(SO —= G)

On(a. B)
7z \‘

Oon(B, C

Oon(B, C
Step-Add(PUTON(B, C) (—; G)

On(A, B)

Crosses Depth Limit

Fig. 16. An example showing a branch of a search tree whose failure can only be explained
in terms of violation of domain constraints.

O1 whichrequires @1 and 2 conditions. Next, theflaw Q1QO1 isresolved to give
riseto the plan at node D. At this point, the flaw Q2@QO1 is chosen and the planner
finds that there are no steps giving 2, and Q2 is not initially true. The explanation
of failure of node D isthus computed as Q2@01 A —initially-true(Q2).*
Since this explanation of failure does not change after regression over the step addi-
tion decision, the planner can prune the other sibling of thenode D, i.e. node E, and
continue the propagation of explanation above node B with the failure explanation
of B set to the same asthat of D.

Finally, all the failures we saw in these examples above are with respect to search
node constraints. Sometimes the failure may be explainable only with respect to
domain constraints. To illustrate this type of failure, consider the example in Fig-
ure 16, where the bottom-most plan in the search tree has no ordering or binding
inconsistencies. However, we can use the domain constraint of the blocks world,
that a block can’t both be clear and have another block on top of it, to detect an
implicit failure in this plan. Specifically, inthis plan, in the state preceding the step
S1, we must have both Clear(B), whichis aprecondition of S1, and the condition
On(A, B) which is being protected over the length of the plan, true. Clearly, this

10See Section 4.1 for more discussion on the presence of initially-true()
constraints.

24

isimpossible. Thus, we can have as failure explanation for this node (the violated
domain axiom is not included as it is part of the background knowledge):

0 9"4P) G A (0 < 1) A (1 < G) A precondition(Clear(B),1) A (B % Table)

4 Tradeoffs and Variationson the basic EDB and EBL Theme

The basic approach to EDB and EBL that we described in the previous section
admits many variations based on how the explanations are represented, selected
and remembered. | discuss these variations bel ow.

4.1 Contextualizing Explanations of Failure

Logically, the explanation of failure is aformula ¢ such that ¢ = False. However,
often, it is useful to separate ¢ into search node specific and search node indepen-
dent (but problem or domain dependent) parts, and consider only the former as the
explanation of failure. For example, suppose A is the background knowledge of
the problem, task or domain that is independent of the particular node, where the
failure occurred. We may then remove from ¢ those parts that are present in A,
thereby getting ¢'. We now have ¢’ A A |= False. In asmuch as A remains constant
between the current node and the context where we want to use the explanation, we
are safein considering only ¢’ as the explanation of failure.

Let me give examples to illustrate problem, task and domain knowledge. In plan-
ning, the problem knowledge may involve the actions, as well as any problem-
specific resource constraints (e.g., a particular goal needs to be achieved before
time t;). The task knowledge is knowledge about planning tasks in general, and
will include axioms such as “no step can precede as well as follow another step”,
“no variable can have two values,” “every step of the plan must follow the initia
step and precede the final (goal) step” etc, as well as theories of looping [26]. The
domain knowledge is domain level resource and capacity constraints, such as “no
block can have more than one block on top of it”. In the case of CSP, problem and
domain knowledge consists of sets of legal compound labels. The domain knowl-
edge may refer to thedomain level constraints, and will not changefrom problem to
problem within that domain. Task knowledge includes axioms such as “no variable
can have more than one assigned value.”

Broadly speaking, if we know the range of situations where we hope to use the
set of failure explanationswe learn from the current problem, we can then use that
knowledge to “contextualize” and shorten the explanations, by stripping off the
aspects of the explanations that are guaranteed to hold constant over the range of
those situations. Thisis the reason we use (z = A A w = E) as the explanation

25

of failure for the node N5 in Figure 9, and do not explicitly mention the constraint
(r = A= w # E) thatisviolated (since the nogood is used only in other branches
of the same search tree, and the constraint will be active in those branches too).

Such a contextualization of explanations can aso be done for interior nodes. For
example, Figure 11 shows that in general the explanation of failure of an interior
node ., is computed by conjoining the regressed explanations of failures of the
children nodes with the description of the flaw that was resolved at A,. However,
in CSP problems, learned explanations are often used only in other branches of
the same problem. Since in standard CSP, the search attempts to assign the same
variables in all the branches, the flaw structure remains constant, and thus we can
remove it from the description of the interior node explanation. Accordingly, in
most CSP |earning approaches, the flaw description needsAssignment(w) isomitted
explanation of failure of the node V.

This argument does not hold if we are dealing with any of the following variations
of the standard constraint satisfaction problem:

(i) Dynamic constraint satisfaction problems[43] (see Section 2.1.1) where flaw
structure evolves as refinements take place.
(i1) Incremental or evolving CSPs, where the constraints are dynamically added
or removed as the problem evolves[10,51,58]
(iii) Realistic CSPs where a subset of problem constraints are constant from one
problem to another (see Section 6)

In thefirst case, theinterior node failure explanationsmust contain the flaw descrip-
tion in order that they can be used in other search branches of the same problem, as
the flaw structure evolveswith refinement decisionsand can be different in different
branches (see Section 2.1.1). In the second case, the failure explanations must con-
tain the specific problem constraintsthat are being violated, since they may become
invalid later when the constraints are relaxed. !

In thethird case, inter-problem transfer is possible. However, both the flaw descrip-
tion and the violated constraints must be part of the failure explanations since the
new problem may require assignment for a different (but overlapping) set of vari-
ables, and may involve different (but overlapping) set of constraints. To illustrate
this, consider the explanation of failure of the interior node V4 in Figure 12. The
complete explanation of failureis:

r = ANy = B AneedsAssignment(w) A (z = A = w # E) A

11 Schiex and Verfaillie [51,58] call explanations of failure that name violated constraints
“justified explanations of failure”, and argue that these are required for supporting back-
tracking and learning in CSPs where constraints evolve dynamically. Our discussion is
more general asit points out that sometimes even the flaw description needs to be added to
the failure explanation.

26

(y=B=w#D)AN(w=EVw=D)

Since w must be assigned in any solution for this problem, for intra-problem learn-
ing, the flaw description istypically stripped from the explanation. However, if we
were to use this explanation in a different problem, thefactthat « = AAy = B
leads to inconsistency only if w needs to be assigned, and only when (z = A =
w # E)and (y = B = w # D) are valid constraints in the problem, is very
crucia to make the failure explanation sound.

In the case of planning, the nogoods/rules learned in one problem are commonly
expected to be used in other problem situations. This means that any aspect of
the constraints resulting in failure that may change from problem to problem must
be kept as part of the node explanation. For example, when the node D fails in
Figure 15 because the flaw)2 cannot be resolved, the compl ete reason for failure
can be written as the conjunction of three clauses:

(i) Thereisaflaw Q2@QO1 inthe plan.
(if) Thecondition 2 is not present in theinitial state of the problem.
(iii) There are no operatorsin the domain which can give Q2.

Which of these clauses should be part of the failure explanation depends upon
whether we expect to use the failure explanations (and rules learned) in

(a) thisbranch aone

(b) other branches of this problem
(c) other problems of this domain
(d) other domains of thistype

Clearly, aswego fromatod, wearetrying to increase the coverage of our analysis,
and thus the explanation needs to be qualified more carefully.

Of the three clauses causing the failure, the first clause must be part of the fail-
ure explanation if we want to use the learned nogoods in scenarios b,c,d. Thisis
because, the flaw Q2@O1 is specific to this particular search branch and may not
occur in another branch (where presumably P1 may be established by the use of an
operator that doesn’t need @?2) or another problem (where the goal P1 itself may
not be present). In the latter two cases, the fact that)2 is unestablishable may not
lead to afailure.

The second clause can be skipped as long as the intended usage of learned rules
is in scenarios (@) and (b) (intra-problem learning). But, if we allow the use of
the rule in different problems, then since the initial state changes from problem
to problem, we must add a clause to the effect that initial state does not give the
condition)2 (aternately, we must do counter-factual search to see if the failure
would have occurred even if the initial state gave the condition @2 [30]). Thisis
illustrated by theuseof —initially-true() clausesin thefailure explanations

27

in the examplesin Figure 14 and Figure 15.

Finally, the third clause, that none of the operators give ()2, can be skipped unless
theintended usage isthe scenario d, since operators are assumed to remain the same
aslong aswe stick to the same domain. Normally, in planning and problem solving,
the learned rules are expected to be used in other problems in the same domain.
Thus, normally, we make the clauses 1 and 2 part of the failure explanation, while
skipping the third clause.

4.2 Explanation Generalization

Anissue closely related to explanation contextualization is the “ explanation gener-
alization”. When we expect to use a failure explanation in problems other than the
one in which it was produced, it is often worth trying to see if the failure explana-
tion is specific to the “objects’ (steps, constants) involved in the current problem,
or whether it remains the same even if the objects change. In the job-shop schedul-
ing example shown in Figure 14, the normal EBL/EDB analysis at node A tells us
that we can reject the RO L L. operator (see the rule to the right of node A in the
figure) to make the part A cylindrical as long as we have to keep A polished at the
end (Polish(A)QG). However, it isclear that the failure has nothing to do with the
exact identity of the part A. Evenif we aretrying to make another part C' cylindrical
and polished, we still should be ableto usethisruletorejct RO L L operation. What
ismore, the failure also has nothing to do with the specific identity of the step G. It
would have occured even if Polished(A) and Cylindrical(A) were preconditions
of some intermediate step s; (instead of being toplevel goals). In other words, we
can substitute variables for step names and object namesin the failure explanations.
The boxed rulein Figure 14 shows such a generalized rule.

In general, variablizing every constant may not lead to sound explanations of fail-
ure. The correctness of the generalization needs to be checked by a verifying that
the proof of faillure of a particular node will still be valid after generalization.
In practice, this verification proof can be avoided by pre-processing the domain
knowledge. For example, it has been shown [30,11] that variablizing all objects
in the failure explanation (taking care to have the same variable substitute for a
specific constant everywhere in the explanation) is a sound strategy when the do-
main theory (actions, domain constraints etc.) is “ name-insensitive”, in that it does
not refer to specific objects by name. For example, a precondition On(z, T'able) is
name-sensitive whilethe preconditionsOn(z, t) AT able(t) is name-insensitive. Us-
ing similar arguments, in the case of steps, the only step that is referred to directly
by name by the planning decisions (such as promotion, demotion, step-addition)
isthe initial step. For example, step-addition decision adds an ordering constraint
between the newly introduced step and the initial step. So, al step-names other
thaninitial step name can be generalized without worrying about |0sing soundness.
(Even initial step can be generalized if an ordering involving it is never regressed

28

x,y,u,v: {A,B,C,D,E}

w: {D,E}|: {A,B}
X=A = wzE
y=B = wzD
X <A f u=C = IzA
@ v=D = |£B
u=C = w=zE

y«—B

[N {x=A&y=B1}|
ve—D
[\e CA&Yy-B&v-D] |

ueC
[N, CA&Y-B&V-D&U=-C]|

weE
[Ns: {x=A&y=§&v=5&u=5&w=ﬁ we-D

Esh: x=A & w =E [No (x“A&y-B&v-D&u-C&w=-D} |
Es2 u=C&w =E

Es: u=C & v=D

Fig. 17. Example of Multiple failure explanations

over a step-addition decision that added it, see [30]).

Traditionally, the treatments of EBL in machine learning focused heavily on the
generaization phase [42]. This tends to mask the essential similarities between
them and the learning approaches in CSP (e.g. [9,15]). Our treatment here shows
that the “object generalization” is only a small variation on the basic EBL/EDB
theme. In particular, the CSP approaches justifiably ignore generalization aspects
since the nogoods learned in CSP are expected to be used mostly in the intra-
problem scenarios, and the CSP constraints are given in a completely instantiated
form. When we consider CSP problems where domain constraints are described
in “constraint schemas’, each of whose instantiations correspond to specific con-
straints, thereisascope for generalization. Examples of such CSP problemsinclude
CSP instances corresponding to finding 4-length solutions to a planning problem
[36] (see also Section 5.3).

4.3 Sdecting a Failure Explanation

In our discussion of EDB and EBL in the previous section, we did not go into the
details of how a failure explanation is selected for a dead-end leaf node. Often,
there are multiple explanations of failure for a dead-end node, and the explanation
that is selected can have an impact on the extent of EDB, and the utility of the EBL
rules learned. The most obvious explanation of failure of adead-end node V is the
set of constraints comprising \ itself. In the examplein Figure 9, E(Ns) can thus
bex =AANy=BAu=CAv=DAw= E.Itisnot hard to see that using
N as the explanation of its own failure makes EDB degenerate into chronological

29

backtracking (since the node A" must have been affected by every decisionthat lead
toit'?). Furthermore, given theway the explanationsof failure of theinterior nodes
are computed (see Figure 11), no ancestor A of A can ever have an explanation
of failure simpler than A" itself. Thus, no useful learning can take place.

A better approach isthusto select asmaller subset of the constraints comprising the
node, which by themselves are inconsistent. In particular, we will call an explana-
tion of failure “bloated” if there exists a subset of the explanation that violates the
same problem constraintsthat the original explanationisviolating. Theideathenis
to compute unbloated explanations. For example, in CSP, if a constraint is violated
by a part of the current assignment, then that part of the assignment can be taken as
an explanation of failure. Similarly, the set of ordering constraints that constitute a
cycle or the set of binding constraints that bind the same planning variable to two
objects, can be used as starting failure explanationsin planning.

Often, there may be multiple possible explanations of failure for a given node. For
example, consider the modified version of the CSP problem shown in Figure 17.
Here, we have a new constraint saying that « = C = w # FE. In such a case,
the node N5 would have violated two different constraints, and would have had
two failure explanations— F; : © = AAw = Fand Fy : u = CAw = E.
This brings up the question of deciding between the explanations. There are two
important heuristics here:

(i) Prefer explanationsthat are smaller in size.
(i) Prefer explanationsthat refer to constraints that have been introduced into the
node by earlier refinements.

The first heuristic is best understood in terms of EBL — smaller explanations are
more likely to be applicable and useful in other situations, including other branches
of the current search tree, and will also entail smaller match cost. The second
heuristic is motivated from the EDB point of view—favoring explanations of failure
that blame decisions taken earlier in the search can alow us to jump back to higher
levels of the search tree.

By these heuristics, E; is preferable to £, asthe explanation of failure of N5, since
E> would have made us backtrack only to N,, while E; allows us to backtrack up
to V;. It isimportant to note that these are however only heuristics. It is possibleto
come up with scenarios where picking an explanation involving constraints intro-
duced at lower levels could have helped more, since they combine better with the
explanationsregressed from other branches (about which we don’t know at thetime
we pick the current explanation). To see this, consider a situation where we have
two explanationsfor afaillurenode F; : 1 = AAzs = Cor Ey : 2o = BAzs = C.
Now, assuming x; was given value before z, was, the first explanation would have
been preferred by the heuristic compared to the second one. Suppose x5 can only

12 We are assuming that none of the refinement decisions are degenerate; each of them add
at least one new constraint to the node.

30

have C or D as its values, and when trying to give z5; = F', we find that we fail
again, but thistime because 5 : o = B A x5 = D isafailure explanation. Now,
had we selected F, at the earlier node, then £, and E3 would have simplified to
give (zo = B) as the combined failure explanation. By selecting E4, we only get
the explanation: z; = A A z; = B, which isanon-minimal explanation. 3 .

Another approach is to generalize the EDB/EBL algorithm by allowing multiple
explanations of failure for each of the leaf nodes. For example, we could consider
E1V E, asthe explanation of failure of N5. Althoughthereisno theoretical problem
in doing this, in practice, handling the digunctive explanations and simplifying
them appropriately is thought to be computationally expensive. It is possible that
the overhead of this eager learning is not adequately offset by its benefits.

In particular, if node N has two children N; and N, and N; has failure explana-
tionsE{, £}, E, and N, hasfailure explanations £7, E3, E2, and d; and d, are the
decisionsleading from N to V; and N, respectively, then the failure explanation at
N7 will be adigunction of six conjunctive explanations:

(At (By) A dy ()] V [dy (By) Ady (B V - [d7H(E3) A d™H ()]

While some of these can be removed based on subsumption relation (if an expla-
nation is asubset of another explanation, the second one can be removed), we may
till be left with many explanations at multiple nodes. It is not clear whether the
added expense of keeping multiple explanations of failure will be offset by the
savings of higher level backtracking, or smaller stored failure explanations. '

4.4 Cost of computing explanations

Although it is easy to recognize dead-end nodes and provide them an explanation
(if not a minimal explanation) of failure in CSP, even this can be computation-
ally expensive in tasks such as planning. Refinement planners can often go into
“looping” making several locally seemingly useful but globally usel ess refinements
[26,53]. Typical solutionsfor controlling such looping involve the use of depth lim-
ited search strategies, which initiate backtracking when a depth limit is crossed.
Since there is no detectable inconsistency in the search node or(partial plan) at the
depth limit, it is hard to recognize or explain dead-ends in such situations, which
severely inhibits the effectiveness of EDB and EBL.

Although it is possible to provide a theory of loop-detection and pruning [26], and

13 Similar points are raised by Minton and Etzioni [14]. This phenomenon is also similar
to the “bridging effect” that Prosser talks about [49]

14 Dechter [9] considers multiple explanations of the leaf nodes. However, she does not
do any regression or propagation (see Section 5.2), and thus doesn’t incur the explanation
handling costs described here.

31

use it to explain why it is sound to prune the plan, the explanations constructed in
this way tend to be rather long, and are thus of limited utility in EDB and EBL. In
fact, some approachesfor handling EBL utility problem (see Section 4.5) explicitly
prohibit learning from looping failures for thisvery reason [13]. Ultimately, if there
is a significant amount of looping, failure based approaches do not help enough in
controlling the search of a planner (c.f. [30]).

Oneideaisto find other types of failures that have smaller explanations. Part of the
reason for the lack of detectable failures in planning, as contrasted to CSP prob-
lems, isalack of global problem/domain constraints. Because of this we are stuck
with looking for explicit inconsi stencies among the constraints of the plan and the
task level knowledge (such as ordering, binding and link inconsistencies). In CSP
terms, it is like looking for inconsistencies of type “the current node gives two
values to the same variable” A much richer source of failures will be violation
of domain/problem constraints. As mentioned in Section 2.3, the lack of domain
constraints is really an artifact of simplistic problem formulation. The situation
is likely to improve when global resource and capacity constraints are made part
of the problem specification, since plans suffering from looping and other unde-
tectable failures may aso violate the global constraints.

Another approach for dealing with unexplainable deadend nodesis using “ partially
sound” explanations of failure. This latter is motivated by the fact that although
proving that a partial plan isinconsistent is hard, often we may know that the pres-
ence of a set of features is losely “indicative” of the unpromising nature of then
partial plan. For example, FAILSAFE system [5] constructs explanations that ex-
plicate why the current node is not the goal node, inspite of many refinements.

Relaxing the soundness requirement on failure explanationswill allow EBL tolearn
with incompl ete explanations, thusimproving the number of learning opportunities.
We are currently experimenting with a variant of this approach, where such partial
explanations of failure are associated with numerical certainty factors between 0
and 1 (to signify their level of soundness) [60]. The explanation of failure of an
interior node will have a certainty factor that depends on the certainty factors of
the explanations of failure of its children nodes. Similarly, the search control rules
learned from these failure explanations will also inherit the certainty factors of the
explanations.

Of course, learning with unsound explanations of failure will lead EBL to learn
unsound search control rules, which, if used as pruning rules, can affect the plan-
ner’s completeness. We can handle this by considering such search control rulesto
black-list (i.e., push the corresponding nodes to the end of the search queue) rather
than prune plan refinements.

Although sacrificing soundness seems like a rather drastic step, it should be noted
that “correctness’ and “utility” of a search control rule are not necessarily related.
Utility is a function of the problem distribution that is actually encountered by the
planner, and thus, it is possible for arule with lower certainty factor to have higher

32

positive impact on the efficiency than onethat is correct. *°

4.5 Remembering (and using) Learned Failure Explanations

Another issue that is left open by our EDB/EBL agorithm is how many learned
failures should be stored. Early formalizations of EDB (e.g. [54]) have made the
rather strong assumption that all failure explanations would be stored. Since there
can be an exponential number of failure explanations in the worst case, the whole
idea of intelligent backtracking got a bad name in some circles. ' Specifically,
there is atradeoff in storage and matching costs on one hand and search reductions
on the other. Storing the failure explanations and/or search control rules learned at
all interior nodes could be very expensive from the storage and matching cost points
of view. A better solution to this tradeoff isto store “some” (rather than all) failure
explanations. The CSP and machine learning researchers took different approaches
in deciding which nogoodsto store. The differences in the approachesareto alarge
extent motivated by the differences in CSP and planning/problem solving tasks.
The nogoods learned in CSP problems have traditionally only been used in intra-
problem learning ! , to cut down search in the other branches of the same problem.
In contrast, work in machinelearning concentrated more on inter-problem learning.
It isalsointeresting to note that CSP community concentrated mostly on the storage
cost, while machine learning community concentrated mostly on the match cost
(which becomes important given that explanations are generalized before being
stored, and can thus look relevant in many situations).

Researchers in CSP (e.g. [9,56,2]) concentrated on the syntactic characteristics of
the nogoods, such as their size, minimality or relevance, to decide whether or not
they should be stored. Specifically, Dechter and her co-workers suggested storing
faillure explanations that are “minimal” in that no subset of that failure explana-
tion will entail inconsistency (with either the explicit or derived constraints). Since
checking for minimality can be costly, another related idea is to store failure ex-
planations that are below a certain size. k-th order size based learning stores only
those nogoods that involve at most £ variables. Keeping £ small will presumably
reduce match and storage cost, while also increasing the chance that they will be
useful in other search branches.

15 As an analogy, consider a physician who has two diagnostic rules, onethat is completely
certain, but is about arelatively rare disease (e.g. ebolavirus syndrome), and another which
has low certainty, but is about a frequently occurring disease (e.g. common cold). Clearly,
the latter rule may be much more useful for the physician practising in a US city, than the
latter.

16 The only use of storing all nogoodsis that EDB with full learning ensures composition-
ality [39] —i.e., mixture of independent subproblems can be solved in time additive in the
origina subproblems. However this seems like aterrible price to pay for compositionality.
17 A minor exception is the work of Verfaillie and Schiex [58], who consider using the
nogoods when the CSP problem is modified by adding and deleting constraints

33

The two schemes above are static in that once a nogood is remembered, it will
never be forgotten. Another class of approaches forget some of the stored nogoods
as the search progresses. Jiang et. a. [24] propose forgetting previously stored no-
goodsthat are subsumed by (i.e., are less general than) the newly learned nogoods.
Another ideais to use some syntactic notion of the short-term relevance of the no-
good for the current search node, to decide whether to purge some of the nogoods
(which may eventually be re-learned again'®). Bayardo and Miranker [2] discussa
family of relevance based learning schemes. A k**-order relevance based learning
scheme keeps anogood as long as it differs in at most . variable-value pairs from
the current partial assignment. When backtracking occurs, any nogoods that differ
from the new partial assignment in more than % variable-value pairs are deleted.
Bayardo and Miranker present empirical studies that show that relevance-based
learning schemes typically work better than sized-based |earning schemes.

Researchers in machine learning concentrated instead on utility analyses that keep
usage statistics on the remembered nogoods (rules) [41,20,21]. These statisticsin-
clude (@) the number of times the rule was used (b) the cost of matching the rule
and (c) the search reduction provided by the rule. Based on these statistics, rules
deemed to be less useful are “forgotten” or pruned. Since these statistics depend
upon the problems actually encountered by the problemsolver, analysis based on
them can be more distribution sensitive than pure syntactic approaches for nogood
storage. There do exist some machine-learning approaches that concentrate on syn-
tactic criteria. For example, many learning systems proscribe learning and storing
“recursive explanations’ [13,38], as these will typically necessitate costly match-
ing phases. Techniques such as “forgetting subsumed (less general) explanations’,
while applicable, tend to be too costly to implement in planning and problemsolv-
ing scenarios as these will require matching the newly learned rule against all pre-
viously learned rules.

5 Relationsto existing work

Figure 18 provides arough conceptual flow chart of the existing approachesto EDB
and EBL in the context of our formalization. In this section, we briefly describe the
relations between these approaches and our formalization.

5.1 Relation to existing backtracking algorithms

We start by noting that there is a lot of terminological confusion about the word
“dependency directed backtracking” in CSP literature, with generic terms getting

18 Thisis sort of like the * purge the least recently used page” strategy used in page-caching
schemes in operating systems.

Use explanation based analysis
-EDB implemented in UCPOP+EBL

(Kambhampati et. al., 1096]

Conflict-directed backjumping
[Prosser , 1993)

Chronological BT

Want to jump back
to a cause of the failure

Back Jumpin
ping Use explicit decision dependencies

(Jump to a nearest ancestor (decision graphs (Daniel, 1977)
dems.on that played apart in Constraint graphs (Dechter, 1990)
thefailure).

Saveintermediate

Work Sticking values

Would also liketo r
(Frost & Decther, 1994)

and avoid the failure
Backjumping +
Remember failurereasons Flexibleretraction of
culprit decisions Maintain eliminating explanations
for the failed values of intermediate variables

(Dynamic Backtracking, (Ginsberg & McAllester, 1994)

How many What failure
Failure Reasons? reasons?
ALL ME

Which "some"? Remember contextualized

WAnalys‘s Fallurszxe;ljanztlons
at eacl len
i Maintaining usage statistics
(Minton, 1988) /
Using stetistical information on

(exponential
space)

Minimality based problem distribution Lazy Approach
(Dechter, 1990) (Gratch & Dejong, 1992) Compute interior Eager approach
Sized based node failure explanations process the failing node to find
(Frost & Dechter, 1990) from the leaf node all/some subsets of its constraints that
Relevance based explnations via are mutually inconsistent (and thus are
(Bayardo & Schrag, 1990) regression and failure exps). The "rationale” isthat
Structure based (non-recursive) propagation “smaller" explanations of failure will be
(Etzioni, 1990) more likely to be useful in other branches.

Fig. 18. A schematic flow chart tracing the connections between implemented approaches
to EDB and EBL

tangled up with very specific meanings. For example, as we mentioned earlier,
some authors (c.f. [54,18,1]) consider dependency directed backtracking to refer to
doing EDB and storing al learned nogoods (this despite the fact that nothing in the
phrase “dependency directed backtracking” hints at nogood storage!). Similarly,
the term backjumping has been used originally by Gaschnig [17] to refer to the act
of backtracking intelligently from the leaf nodes alone-in other words, there was
no propagation, and computation of interior node failure explanations. However,
some recent descriptions use the term to refer to the process of propagation and
interior node failure explanation.

In addition to the terminological differences, the descriptions of CSP backtrack-
ing/learning approaches may look different from the formalization here for two
reasons. First, most work on traditional CSP has concentrated on “binary constraint
satisfaction problems’ (BCSPs)— whereall the constraints are between pairs of vari-

35

ables. BCSPs admit a specialized datastructure called “constraint graphs’—which
contain the variables as the vertices and an edge between two vertices if there is
a constraint relating the corresponding variables. BCSPs al so accommodate a spe-
cialized representation for explanations of failure. Since al constraints are binary,
the failure caused when we assign a value to a variable can be blamed squarely on
asingle other assigned variable in the current partial assignment.

The second reason for the superficial differences between our formalization and
traditional descriptions of CSP algorithmsis that most CSP techniques do not ex-
plicitly talk about regression as a part of backtracking. Thisisbecausein CSP there
is a direct one-to-one correspondence between the current partial assignment in a
search node and the decisions responsible for each component of the partial assign-
ment. ° For example, a constraint = = a must have been added by the decision
x < a. Thus, in the example in Figure 13 it would have been easy enough to see
that we can “jump back” to N, as soon as we computed the failure explanation at
N4.

This specia structure of BCSP problems has facilitated specialized versions of
EDB algorithm such as “Graph-based back jumping” [9] that use the constraint
graphs to help in deciding which decision to backtrack to. In planning, no one-to-
one correspondence exists between decisions and the constraints in the node. For
example, both demotion and step-addition decisions may add orderings to a plan,
and step-addition may add a variety of constraints, including orderings, steps and
auxiliary constraints. Even here, it is possible to build more complex dependency
structures. An example of such syntactic structures for planning are the “decision
graphs’ [8]. One way of thinking about constraint graphs and decision graphsisto
see them as providing some partial details about the explanation of failure, without
requiring an explicit failure analysis. The disadvantage is that by not considering
and reasoning with failure explanations explicitly, these techniques typicaly are
incapable of using propagation techniques to compute interior node failure expla-
nations, and to support learning.

In away, constraint graphs and decision graphs attempt to solve the same prob-
lem that is solved by regression. However, the semantics of these structures are
often problem dependent, and storing and maintaining them can be quite complex
[48]. In contrast, the notion of regression and propagation is problem independent
and explicates the dependencies between decisions on an as-needed basis. On the
other hand, regression and propagation work only when we have a declarative rep-
resentation of decisions and failure explanations, while dependency graphs may be
constructed through procedural or semi-automatic means.

19 This is not strictly true in algorithms that interleave forward checking and refinement,
since the forward checking phase may infer many assignments at once. However, even
here, we can keep inferred assignments separate from the assignments added by refinement
decisions, and erase al the inferences as soon as we backtrack over the last refinement
assignment that allowed the inferred constraint.

36

The CSP backtracking ideathat is closest to our EDB formalization is the * conflict
directed backjumping” (CBJ) approach proposed by Prosser [49]. This algorithm
is originally proposed for binary CSP problems. When a new variable = is given
avalue v in the context of the current partial assignment A/, CBJ checks to see if
any of the constraints involving = and some variable y that has an assignment in
N isviolated (recall that the constraints are al binary). If aviolated constraint is
found, then the corresponding variable y is added to the conflict set of the variable
v, and anew valueistried for v. If al the values of v are found to be inconsistent,
then CBJ picks the most recently instantiated variable ; from the conflict set of
v and backtracks to it. At this point, the conflict set of v, minus the variable j, is
added to the conflict set of j (Prosser calls this step “conflict set merging”). If 5
till has unexplored values, one of them is assigned to 7, and the search continues.
If 5 has no more unexplored values, we continue backtracking—thistime to the most
recently assigned variable that appearsin j's conflict set.

Although the description of thewholealgorithmisinterms of conflict setsand their
values, it is easy to see that conflict sets are really a stylized representation of the
explanations of failure for BCSP problems. In particular, suppose we are at node
N, inwhich the variables z1, - - - z,, are assigned values v, - - - v,, respectively, and
we aretrying to assign the variable x,,. Suppose further that z,,’s domain contains 3
valuesa, b and ¢, and these values are disallowed by the current values of z;, z; and
xy, respectively (where i, j, £ < n). In EDB, the branch corresponding to z,, + a
fails with the failure explanation z,, = a A z; = v;, and the other two branches
fail with the failure explanations z,, = b A z; = v; and z,, = ¢ A z;, = v;,. These
three explanations, when regressed and conjoined, give rise to the explanation of
failure of Nas:l?, = ANz, =v; Nz = U The conflict set of N/ iS{LI}i,QS’j,LBk},
which is just the failure explanation without the values of the variables (the values
are anyway present in the representation of the node). The process of “conflict
set merging” essentially computes the interior node failure explanation, and corre-
sponds to what we have called the “propagation” process (in particular, note that
our propagate procedure, in Figure 7, line 3.1.2 incrementally accumul ates the ex-
planation of failure of interior nodes). The cascade of backtracks facilitated by CBJ
are similar to recursive propagation (line 3.2 in Figure 7). The regression process
is not explicitly considered in CBJ because of the one-to-one correspondence be-
tween decisions and the constraints they add, and the addition of flaw description
to interior node failure explanation is not donein CBJfor reasons discussed in Sec-
tion4.1. Thus, CBJ can be seen as an instantiation of EDB procedure for the special
case of BCSPs? .

The NR, approach, proposed by Schiex and Verfaillie [51] at about the same time
as the CBJ algorithm combines EDB and a generalization of EBL in asingle algo-
rithm. One important difference is that NR, allows resolving learned explanations

20 Kondrak and vanBeek [37] point out that the completeness of CBJ has never been for-
mally proven, and provide a proof in terms of their framework. Seeing CBJ as an instance
of EDB provides an alternative proof of completeness and correctness of CBJ.

37

of failure to generate explanations of failure independent of the propagation stage
(see Section 5.2). Thus, sometimes it may allow backtracking to higher levels than
CBJ (and EDB), at the expense of increased storage and costlier processing of
learned explanations (al so see next section).

In the context of planning, the backtracking scheme used by UCPOP+EBL [30] is
essentially identical to EDB. Empirical results presented in [30] demonstrate that
this backtracking scheme improves the performance of the planner significantly. To
our knowledge, UCPOP+EBL is the only planner to have used an explanation di-
rected backtracking scheme. In fact, it isin the course of our work on UCPOP+EBL
that | became interested in the close relation between EDB and EBL ideas and the
many variations they take on in planning and CSP literature.

Appendix A explains the connections between dynamic backtracking algorithm
[7,18,19] and the EDB framework. The discussion there clarifies the claims about
dynamic backtracking —including polynomial stored nogoods, saving intermediate
work, and backtracking to an earlier variable.

5.2 EBL asalazy way of learning induced nogoods

Aslong as the leaf nodes are given sound explanations of failure, the interior node
failure explanationslearned by the EBL processare“induced (implicit) constraints’
in that they can be deduced logically from the explicitly specified problem and do-
main constraints. Clearly, EBL is not the only way for deriving induced constraints
—any logical deduction mechanism operating on the explicit knowledge can derive
the constraints (and control rules) derived by EBL. There are a variety of such ap-
proaches, all of which can be characterized as being “more eager” in deriving the
implicit constraints.

Perhaps the most eager approach for learning induced constraints is to do undi-
rected or “forward” deduction on the domain/problem knowledge. Examples of
this type of learning include “partial evaluation” techniques used in program opti-
mization [57], and the constraint propagation (local consistency enforcement) tech-
niques used in CSP [56]. The utility problem that we discussed in the context of
EBL (Section 4.5) applies equally well to the constraints derived by these direct-
inferencing approaches. In addition, since uncontrolled deduction can be computa-
tionally expensive, direct-inferencing approaches also have to worry about control -
ling the amount of computation spent in the inference. Normally various syntactic
criteria are used to affect this control. For example, in the case of constraint prop-
agation in CSP, the degree of inference is measured by the level of consistency
enforcement. Enforcement of strong k-level consistency takes O(n*) time, and es-
sentially makes explicit all constraints of size < k.

The primary difference between EBL and these direct inference approachesis that
EBL approaches tend to be “example driven”. Specifically, they wait for a failure

38

to occur, and only then learn (deduce) implicit constraints that are relevant to that
failure. The assumption is that such failures are more likely to recur, thus mak-
ing the implicit constraints worth storing explicitly. There are various degrees of
discernible eagerness even within the “example directed” learning schemes. The
traditional EBL framework that | described in Section 3.5islazy inthat it will start
with leaf node failure explanations and combine them only to derive ancestor node
failure explanations. Thus, two explanations of failure will be combined only when
they occur as the failure explanations of two sibling nodes in the current search
tree. Traditional EBL does not consider direct resolution of stored explanations.
In contrast, some approaches, such as the NR, [50,51] alow combining (“resolv-
ing”) any set of stored failure explanations. They can thus derive more implicit
constraints than traditional EBL . %!

Dechter [9], describes an even more eager approach —which does nogood learning
by just analyzing the failing leaf nodes, without reasoning about interior nodes. In
particular, the approach enumerates all failure explanations of the node that violate
either explicitly stated constraints or implied constraints. It is interesting to note
that since the constraint sets of interior nodes are subsets of the constraint sets of
leaf nodes, when we enumerate all possible failure explanations of the leaf nodes,
we also implicitly enumerate the failure explanations of the interior nodes. For
example, in Figure 12, the explanation of failure of the interior node N, also holds
true in the leaf node N5 (and Ng), and thus could in principle have been isolated
just by looking at N5. Thus, in theory we can avoid regression and propagation
procedures all together [9].

While al the approaches are explicating the implicit constraints, the tradeoffs be-
tween eager and lazy (or “example-directed”) approaches are related to the utility
problem. Specifically, a possible advantage of computing interior node failure ex-
planationsin the EBL way is that the regression and propagation procedures com-
pute failure explanations based on the search tree that is actually generated by the
problem solver, it is possible that the failure explanations generated by this process
are more utile, in that they have a higher chance of being applicable in other parts
of the search tree or in other problems (see Section 4.5).%2

Of course, being completely example-driven has its drawbacks too. Etzioni and
Minton [14] argue that often EBL produces overly-specific knowledge that leadsto
inefficient inter-problem transfer, precisely becauseit isguided purely by examples.
They suggest using hybrid techniques that use both direct inferencing and example
driven learning to improve the generality of learned knowledge.

21 schiex and Verfaillie [50] also discuss an even more eager example guided learning
method called “ Stubborn learning” which involves continuing to refine a node even after
a failure has been discovered in it, to experience and learn more failures. This somewhat
quixotic method seems to have only had a partial empirical success.

22 the situation here is similar to the tradeoffs between complete regression vs. example
guided regression; see Section 3.2.

39

Within CSP literature, there is overwhelming evidence that complementing EBL
and EDB with low level consistency enforcement in fact leads to the best perfor-
mance. This idea combines the strength of direct inferencing and example guided
learning techniques: low-order constraint propagation effectively makes explicit
lower-order failure explanations (typically involving pairs of variables) in a low-
order polynomial time. This makes search encounter failures less often. When the
failures are encountered, they will be higher-order ones, and these are explicated
by EBL analysis. In fact, most winning CSP search algorithms combine “forward
checking,” which does 2-level consistency enforcement with respect to the current
partial assignment, with EBL and EDB algorithms[16,4].

5.3 Posing Planning as CSP

Although we talked about EDB/EBL ideas in planning and constraint satisfaction
separately, there is another distinct body of research that attempts to pose plan-
ning problems directly as CSP problems. The complete planning problem cannot
be posed as a CSP problem since the former is P-Space complete while the latter is
NP-complete. However, it is possible to pose subparts of the planning problem as
CSP problems. In particular, the problem of “finding if any of the minimal candi-
dates (linearizations) of a set of partial plans corresponds to a solution,” also called
solution-extraction problem, can be posed as a CSP problem [28,34]. Yang's WAT-
PLAN [59] and Kambhampati and Yang's [34] UCPOP-D pose the problem of
checking a single planslinearizations for solutions as a CSP, while the more recent
research efforts including Graphplan [6] and SATPLAN [35], and Descartes [25]
encode the problem of sorting through the linearizations of a large set of partial
plans (represented in a digunctive fashion) as a CSP. In all these cases, the usual
search tradeoffs in CSP apply [16]. For example, the solution extraction phase of
Graphplan [6] corresponds to solving a dynamic CSP [32]. Graphplan’s backward
search algorithm solves this dynamic CSP using a combination of constraint prop-
agation (propagation of 2-sized mutex constraints) and aform of EBL (memoizing
higher-order mutex constraints learned through search failures) to improve perfor-
mance. In [29], | show how the framework presented in this paper can be adapted
to improve Graphplan’s search.

6 Summary and Conclusion

In this paper, | provided a unified characterization of two long standing ideas —
dependency directed backtracking and explanation based learning — in the general
task-independent framework of refinement search. | showed that at the heart of both
isaprocess of explaining failures at leaf nodes of asearch tree, and regressing them
through the refinement decisions to compute failure explanations at interior nodes.
Backtracking involvesusing the computed fail ure explanation to decide which deci-

40

sion point to go back to, and EBL involves storing and applying failure explanations
of the interior nodes in other branches of the search tree or other problems.

This task-independent characterization of EBL and IB, coupled with the fact that
planning and CSP tasks can be modeled in terms of refinement search, helps us
compare and understand the tradeoffs offered by a multitude of backtracking and
learning techniques devel oped independently for planning and CSP. My analysis
shows that most of the differences between CSP and planning approaches to EBL
and 1B revolve around different solutions to: (a) How the failure explanations are
selected (b) How they are contextualized (which involves deciding whether or not to
keep the flaw description and the description of the violated problem constraints)
and (c) How the storage of explanations is managed. The differences themselves
can be understood in terms of the differences between planning and CSP problems
as instantiations of refinement search.

| have also provided a comprehensive discussion of related work, showing how
the unified view covers and clarifies the existing algorithms. This discussion aso
shows how ideas behind dynamic backtracking emerge as extensions of EDB, and
explains the relations between notions of constraint propagation and EBL .

| believe that the insights gained from my unified treatment of EBL and EDB
in CSP and Planning facilitates a significantly greater cross-fertilization of ideas
among these communities. | speculate on some of these below. Please note that the
list below is not meant to be exhaustive, but is intended to indicate the types of
cross-fertilization of ideas that might be supported by this paper.

Inter-problem learningin CSPs. Aswe noted, CSP has always been concerned
about intra-problem learning without generalization. This makes sense under the
classical CSP assumption that every problem is different from every other prob-
lem — a problem comes with its own fresh set of variables and constraints, and all
of them are treated individually. This assumption is too pessimistic however when
real world tasks are modeled directly as CSP instances — the problems will share
severa of the variables as well as the several of the domain-wide constraints. For
example, suppose we model a jobshop scheduling problem in CSP. The capacity
constraints of the plant as well as the machinesin the plan are not likely to change
from problem to problem. Furthermore, traditional CSPs start with completely in-
stantiated constraints. In many problems, we can see the individual constraints to
be instantiations of specific constraint schemas, obtained by substituting specific
object names into the schema (c.f. [36]). In such cases, thereis going to be alarge
amount of shared structure between problems making inter-problem learning as
well as generalization very attractive. Inter-problem learning will also be useful in
dynamically evolving CSPs[10]. It would beinteresting to see how the utility anal-
ysis techniquesfrom EBL in planning can be modified to fit these requirements.

41

Using I B and EBL techniquestoimprove solution extractionin planning: We
briefly mentioned in Section 5.3 that Graphplan is anew and very influential algo-

rithm for plan synthesis that casts its solution extraction process as a constraint
satisfaction problem. More accurately, as we show in [32] Graphplan’s solution
extraction (or backward search) phase corresponds to a dynamic constraint satis-

faction problem (see Section 2.1.1). Roughly speaking, the goals and subgoals of

the problem correspond to the CSP variables, and the actions capable of support-

ing the goals correspond to the variable values. The preconditions of the actions
set up the “activity” constraints. Graphplan uses a systematic backtracking search

to solve the dynamic CSP, and uses a caching technique called “memoization.” A

stored memo names a set of goals that cannot together be achieved.

In my recent work [29], | show that the framework described in this paper allows us
to implement afull-fledged EDB and EBL based search for Graphplan in a straight-
forward fashion. | also demonstrate that EDB/EBL strategies significantly improve
the backtracking capabilites of Graphplan, as well as the utility of the memos it
stores. Empirical results demonstrate that the resulting search algorithm signifi-
cantly out-performs the standard Graphplan algorithm on a variety of benchmark
problems.

Using global constraintsto do constraint propagation and failure detection in
planning: We have noted that the best CSP search techniques combine EBL and
EDB with low-degree constraint propagation. Since planning can also be cast as
a refinement search, it is reasonable to expect that similar techniques work well
for planning too. As we mentioned, to our knowledge, the only planner that uses
EDB techniquesis UCPOP+EBL [30]. It isinteresting to speculate as to why such
technigues have not been widely used in planning literature. Part of the problem,
as we pointed out in Sections 2.3 and 4.4, is that planning problems do not contain
enough global constraints with respect to which inconsistencies can be detected,
and constraint propagation can be done. The conventional wisdom behind separat-
ing resource and capacity constraints out of the planning is that satisfying those
constraintsis best seen as a*“ scheduling” activity. The ideais to use planning tech-
niques only to come up with feasible action sequences, to which resources are as-
signed in the scheduling phase. Although thislookslike a good divide-and-conquer
technique, | believe that it may actually be counter-productive for the planning ef-
ficiency. By removing resource and capacity constraints from planning, we make
the problem artificially under-specified, making the search harder. By keeping the
constraints up-front, we can use them to bias the search of the planner (for ex-
ample by propagating those constraints through the current partial plan), and also
use them to explain the failure of unpromising plans (for example, most looping
plans may wind up violating resource constraints). This argues for richer problem
specifications that have hither-to been shunned in classical planning.

As we noted, another important difference between planning and CSP is that the
description of search nodesin CSP (partial assignments) is much simpler than that

42

in planning (partial plans). This facilitates a very simple representation of the fail-
ure explanations for CSP making a variety of backtracking agorithms feasible.
Although it is easy to adapt EDB/EBL to the more complex partial plan repre-
sentations, ideas such as dynamic backtracking become harder (since eliminating
explanations will contain a variety of constraints). This suggests planning search
spaces that have more uniform representations are perhaps more amenabl e to back-
track technigues. One idea would be to “compil€” plan representations down to a
more uniform language before applying EDB and EBL. State-variable based state
representations provide a promising avenue [45].

Acknowledgments

The ideas described here devel oped over the course of my interactionswith Suresh
Katukam, Gopi Bulusu and Yong Qu. | thank them for them for their insights. |
also thank Suresh Katukam and Terry Zimmerman and Roberto Bayardo for their
critical comments on a previous draft, and Steve Minton for his encouragement on
this line of work. A preliminary version of this paper was presented at AAAI-96
[27]. This research is supported in part by NSF research initiation award (RIA)
IRI-9210997, NSF young investigator award (NY1) IRI-9457634 an ARPA/Rome
Laboratory planning initiative grants F30602-93-C-0039 and F30602-95-C-0247,
and an ARPA AASERT grant DAAH04-96-1-0231.

References

[1] A. Baker. Intelligent backtracking on constraint satisfaction problems: Experimental
and Theoretical results. PhD thesis, University of Oregon, 1995.

[2] R. Bayardo and D. Miranker. A complexity analysis of space-bounded learning
algorithms for the constraint satisfaction problem. In Proc. AAAI-96, 1996.

[3] R. Bayardo and R. Schrag. Using csp look-back techniques to solve exceptionally
hard sat instances. In Ppls of Constraint Programming Languages (lecture notes in
CS v. 1118), 1996.

[4] R. Bayardo and R. Schrag. Using csp look-back techniques to solve real-world sat
instances. In Proc. AAAI-97 (to appear), 1997.

[5] N. Bhatnagar and J. Mostow. On-line learning from search failures. Machine
Learning, 15:69-117, 1994.

[6] A. Blum and M. Furst. Fast planning through plan-graph analysis. In Proc. |JCAI-95,
1995.

[7] M. Bruynooghe. Solving combinatorial search problems by intelligent backtracking.
Information processing letters, 12:36-39, 1981.

43

[8] L. Daniel. Planning: Modifying non-linear plans. Technical Report DAl Working
Paper: 24, University Of Edinburgh,, 1977.

[9] R. Dechter. Enhancement schemes for learning: Back-jumping, learning and cutset
decomposition. Artificial Intelligence, 41:273-312, 1990.

[10] R. Dechter and A. Dechter. Belief maintainance in dynamic constraint networks. In
Proc. AAAI-88, 1988.

[11] G. DeJong. The Computer Science and Engineering Handbook, chapter 21.
Explanation-based learning. CRC Press, 1996.

[12] T. Estlin and R. Mooney. Multi-strategy learning for search control for partial order
planning. In Proc. AAAI-96, 1996.

[13] O. Etzioni. A structural theory of explanation-based learning. Artificial Intelligence,
60(1), 1993.

[14] O. Etzioni and S. Minton. Why EBL produces overly-specific knowledge: A critique
of the prodigy approaches. In Proc. Machine Learning Conference, 1992.

[15] D. Frost and R. Dechter. Dead-end driven learning. In Proc. AAAI-94, 1994,

[16] D. Frost and R. Dechter. In search of the best constraint satisfactions earch. In Proc.
AAAI-94, 1994.

[17] J. Gaschnig. A general backtrack algorithm thateliminates most redundant tests. In
Proc. 1JCAI-77, 1977.

[18] M. Ginsberg. Dynamic backtracking. Journal of Artificial Intelligence Research,
1:25-46, 1993.

[19] M. Ginsberg and D. McAllester. Gsat and dynamic backtracking. In Proc. KRR, 1994.

[20] J. Gratch and G. DeJong. Composer: A probabilistic solution to the utility problem in
speed-up learning. In Proc. AAAI-92, pages 235-240, 1992.

[21] R. Greiner. Palo: a probabilistic hill-climbing agorithm. Artificial Intelligence,
84:177-208, 1996.

[22] C.A.R. Hoare. Some properties of predicate transformers. Journal of the ACM,
25:461-480, 1978.

[23] L. Ihrig and S. Kambhampati. Design and implementation of a derivational replay
system based on a partial order planner. In Proc. AAAI-96, 1996.

[24] Y.J. Jiang, T. Richards, and B. Richards. No-good backmarking with min-conflict
repair in constraint satisfaction and optimization. In Proc. 2nd Principlesand Practice
of Constraint Programming workshop, 1994,

[25] D. Joslinand M. Pollack. Isleast commitment always agood idea? In Proc. AAAI-96,
1997.

[26] S. Kambhampati. Admissible pruning strategies for plan-space planners. In Proc.
IJCAI-95, 1995.

[27] S. Kambhampati. Formalizing dependency directed backtracking and explanation-
based learning in refinement search. In Proceedings of AAAI-96, 1996.

[28] S. Kambhampati. Refinement planning as a unifying framework for plan synthesis.
Al Magazine, 18(2), 1997.

[29] S. Kambhampati. EBL and DDB for Graphplan. Technical Report ASU CSE TR
98-008, Arizona State University, August 1998.

[30] S. Kambhampati, S. Katukam, and Y. Qu. Failure driven dynamic search control
for partial order planners. An explanation-based approach. Artificial Intelligence, 88,
1996.

[31] S. Kambhampati, C. Knoblock, and Q. Yang. Planning as refinement search: A
unified framework for evaluating design tradeoffs in partial order planning. Artificial
Intelligence (special issue on Planning and Scheduling), 76:167-238, 1995.

[32] S. Kambhampati, E. Parker, and E. Lambrecht. Understanding and extending
graphplan. In Proceedings of 4th European Conference on Planning, 1997.

[33] S. Kambhampati and B. Srivastava. Universa classical planner: An agorithm for
unifying state-space and plan-space planning. In Proc. 3rd European Workshop on
Planning Systems, 1995.

[34] S. Kambhampati and X. Yang. Role of digunctive representations and constraint
propagation in planning. In Proc. KR-96, 1996.

[35] H. Kautz and B. Selman. Pushing the envelope: Plannng, propositional logic and
stochastic search. In Proc. AAAI-96, 1996.

[36] H. Kautz, B. Selman, and D. McAllester. Encoding plans in propositional logic. In
Proc. KR-96, 1996.

[37] G. Kondrak and P. vanBeek. A theoretical evaluation of selected backtracking
agorithms. In Proc. 1JCAI-95, 1995.

[38] S. Letovsky. Operationality criteria for recursive predicates. In Proc. AAAI-90, 1990.

[39] D. McAllester.
Partial-order dynamic backtracking. http://www.ai.mit.edu/people/dam/dynamic.ps,
1993.

[40] D. McAllester and D. Rosenblitt. Systematic nonlinear planning. In Proc. 9th AAAI,
1991.

[41] S. Minton. Quantitative results concerning the utility of explanation based learning.
Artificial Intelligence, 42:363-391, 1990.

[42] S. Minton, J.G Carbonell, C.A. Knoblock, D.R. Kuokka, O. Etzioni, and Y. Gil.
Explanation-based learning: A problem solving perspective. Artificial Intelligence,
40:63-118, 1989.

[43] S. Mittal and B. Falkenhainer. Dynamic constraint satisfaction problems. In Proc.
AAAI-90, 1990.

[44] H. Munoz-Avila and F. Weberskirsch. Planning for manufacturing workpieces by
storing, indexing and replaying planning decisions. In Proc. 3rd Intl. Conference on
Al Planning Systems, 1996.

[45] N. Muscettola, S. Smith, A. Cesta, and D. D’Aloisi. Coordinating space telescope
operations in an integrated planning and scheduling architecture. In Proc. IEEE Intl.
Conf. on Robotics and Automation, 1991.

[46] N.J. Nilsson. Principles of Artificial Intelligence. Tiogapress, Palo Alto, 1980.

[47] J. Pearl. Heuristics: Intelligent Search Strategies for Computer Problem Solving.
Addison-Wesley, 1984.

[48] C. Petrie. Constrained decision revision. In Proc. 10th AAAI, 1992,

[49] P. Prosser. Domain filtering can degrade intelligent backtracking search. In Proc.
JCAI-93, 1993.

[50] T. Schiex and G. Verfaille. Stubbornness: a posible enhancement for backjumping and
nogood recordings. In Proc. 11th ECAI, 1994.

[51] T. Schiex and G. Verfaillie. Nogood recording for static and dynamic constraint
satisfaction problems. In Proc. 5thintl. conference on toolswith artificial intelligence,
1993.

[52] B. Selman, H. Levesgue, and D.G. Mitchel. Gsat: A new method for solving hard
satisfiability problems. In In Proc. AAAI-92, 1992

[53] D. Smith and M. Peot. Suspending recursion in planning. In Proc. 3rd Intl. Al
Planning Systems Conference, 1996.

[54] R. Stallman and G. Sussman. Forward reasoning and dependency-directed
backtracking in a system for computer aided circuit analysis. Artificial Intelligence,
9:135-196, 1977.

[55] R.M. Keller T.M. Mitchell and S.T. Kedar-Cabdlli. Explanation-based learning: A
unifying view. Machine Learning, 1(1):47-80, 1986.

[56] E. Tsang. Foundations of Constraint Satisfaction. Academic Press, San Diego,
Cdlifornia, 1993.

[57] F. van Harmelen and A. Bundy. Explanation-based generalisation = partial evaluation.
Artificial Intelligence, 36:401-412, 1988.

[58] G. Verfdllie and T. Schiex. Solution reuse in dynamic constraint satisfaction
problems. In Proc. AAAI-94, 1994.

[59] Q. Yang. A theory of conflict resolution in planning. Artificial Intelligence, 58:361—
392, 1992.

[60] T. Zimmerman and S. Kambhampati. Using unsound failure explanations to imrprove
the effectiveness of ebl. In preparation, 1998.

46

\
x,y,u,v: {A,B,C,D,E} X A f
w: {D,E} I : {A,B}
x=A = w=E Ny {x=A}
x=B = w=E
X=A = v£A y«<B
v=B = u#B N,: {x=A&y=B}
y=B = u#A A
V=B = WD V)(A/ JVeB
u=C =I#A —— v —
\¥:D=M¢B // N;: (x=A&y=B&v=D}
u—A /
x u<—B ueC
M:U=A&y=B&v=D&u=C}
WeE o T~
Ny {x=A&y=B&v=D&u=C&w=E} weD

Ng: {x=A&y=B&v=D&u=Cé&w=D}

Fig. A.1. CSP examplefor illustrating the ideas of sticky values and dynamic backtracking

A Relating EDB framework to Dynamic Backtracking

Inthisappendix, | relatethe EDB framework to anew variant of backtracking called
Dynamic Backtracking that was popularized by Ginsberg and McAllester [19]. | do
thisin a quasi-tutorial fashion by motivating and carrying out the generalization of
the EDB framework to dynamic backtracking. My development sheds more light
on the antecedents of the dynamic backtracking algorithms.

The EDB framework that we described in this paper suffers from two possible
drawbacks. In this appendix, we will describe these drawbacks, and ways of ex-
tending EDB to overcome them. When EDB intelligently backtracks to an ancestor
node, it erases all the progress it made on the nodes between that ancestor node and
the failure node, potentially wasting alot of useful work. In particular, it is possible
that we tried a variety of decisionsfor the intermediate flaws before settling on the
ones that we just erased! Consider a variation on our CSP example, shown in Fig-
ure A.1. Compared to the example in Figure 13, this one has more constraints and
represents a snapshot of the search process in which the search process has already
encountered severa failures (shown by branches terminated with cross signs). Sup-
pose the search is currently at the point where it has computed the explanation of
failure of node Ny tobex = A Ay = B (having seenthefailuresat N; and Ng). If
we apply EDB analysis, we will backtrack over nodes N; and N, to the node N-.
When we do this, we lose the assignment of values to variables v and «, which as
far as we are concerned, have nothing to do with the failure.

47

A related, but less obvious, problem is the rigidness imposed by the search tree
during backtracking. Specifically, the EDB algorithms backtrack only up to the last
decision that has played a part in causing the failure (i.e., the last culprit decision).
Sometimes, it may be useful to undo an earlier decision affecting the failure expla-
nation, while keeping the later ones intact. In the example in Figure A.1, when we
fail at node N5, and compute its explanation of faillureasz = A A w = FE, we
may have liked to backtrack al the way to the decision z +— A, while keeping the
decision w <+ E untouched. %

Both the ability to keep intermediate work and to backtrack to an earlier decision
taking part in an explanation of failure, require similar sorts of extensionsto EDB.
We will first discuss a partial solution that involves rearranging the order in which
resolution possibilities are tried for intermediate flaws, and then a more complete
solution that keeps justifications for each of the “tried-but-failed” decisionsfor the
intermediate flaws.

A.1 Cachingintermediate work with the use of “ Sticky values’

One partial solution is to remember the current flaw resolution decisions while
backtracking over flaws to higher levels, and try those decisions first when re-
considering thoseintermediateflaws. In Figure A.1, when EDB backtracksover IV,
we could remember that the preferred decision for handling the needsAssignment
flaw corresponding to w isu + C'. Similarly, we can remember the preferred deci-
sion for thev asv + B. Once we backtrack up to N, and try adifferent value for
y, we can immediately consider the flaws corresponding to v and « and apply the
preferred decisionsfirst. Notice that we are not changing the resolution possibilities
(“livedomains’) of » and v, but just reordering them. Thus, the compl eteness of the
search isnot affected. Thisisacommon heuristic optimizationin game-playing and
search communities, and is evaluated within CSP by Frost and Dechter (who call it
the “sticking values® approach). In [16], they report empirical studies showing that
sticking values in conjunction with EDB can improve performance significantly.

The sticking values only remember the decision that was used for the intermediate
flaws. But, a potentially more useful source of information is the set of decisions
that were tried and found to fail for the intermediate flaws. For example, in Fig-
ure A.1, suppose the values A and B were tried for . and A, B, C' were tried for
v and were found to fail, before we settled for the current values. We might want
to remember this information since otherwise, we are likely to repeat the failing
values once the sticking values v = B and v = C' don’t work. The obvious idea
of pruning the failing values from the domains of v and « will not work since the
the values may have failed because of the particular values assigned to the past

23 The need for changing past variable order is not very clear when failures are incremen-

tally detected after every refinement. We shall see the use of this capability when the search
isorganized as atraversal through a series of complete assignments.

48

variables, x and y. The failure reasons may not hold once these past variables are
reassigned during backtracking. It is possible to extend the sticky valuesideain an
interesting way to cover this situation — rearrange the resol ution decisions for each
flaw in such away that the resolution possibilities that were tried and found to fall

are put towards the back of the list, with the current decision and the as yet untried
decisions in the front of the list. In CSP terms, we rearrange the domains of the
variables such that the values that were tried and were found to fail are kept behind
the current and untried values. This will ensure that failing decisions are not tried
until and unless unexplored decisions have been considered first. Since we are only
re-arranging the domains, the completeness of the search is not effected. Thisidea
is equally applicable to planning. Asfar as| know this generalized sticking values
idea has not been tried either in planning or CSP.

A.2 Caching thejustifications for eliminated decisions (Dynamic Backtracking)

Both the sticking values idea and the generalization we discussed above are only
partial solutions for saving intermediate work, and supporting backtracking to ear-
lier variables. To see this, note that black-listing previously failed resolution de-
cisions for a flaw, when backtracking over that flaw, is not aways going to be a
good idea. In particular, the reason for the failure of a particular decision may not
hold once we backtrack and change the way an earlier flaw has been resolved. In
the example shown in Figure A.1, the value v = A will fail only if y is assigned
the value B. If thisvalue is backtracked over, the failure will no longer occur, and
thus black-listing u = A may be counter productive. A more complete solution
thus involves maintaining, for each of the failing resolution possibilities of a flaw,
ajustification as to why it is failing. The justification can be provided by the ex-
planation of failure of the node where the failing resolution possibilitieswere tried.
In general, keeping track of such explanations and reasoning with them could be
quite cumbersome especialy in tasks such as planning where the node descriptions
contain avariety of constraints (see Section 6). However, the ssmplicity of node and
constraint representation in CSP problems makes it feasible. (We thus will restrict
our attention to CSP for most of the remainder of this section.)

In the case of our running example, we need to maintain, and check, the validity of
justifications for eliminating certain values of » and v. Specifically, the explanation
of faillurethat eliminated v« = A, viz.,y = B A u = A, can be remembered as

y=B = u#A,

with the operational interpretation that aslong asy = B, « cannot have the value
A. We shall call this an “éliminating explanation.” When search is resumed after
backtracking, the intermediate variables are given a value that is not eliminated by
the failure explanations that are still valid after the backtrack variable has been re-
assigned. Thisis the general idea behind what Bruynooghe [7] called “Intelligent

49

backtracking,” and Ginsberg and McAllester [19] call “dynamic backtracking.” 2*

There are two important issues in implementing this idea. The first is that if we
remember the explanations for all the variable-value combinations that were ever
eliminated, we might wind up storing an exponential number of explanations. One
solution isto store only those explanationsthat are still relevant to the current (par-
tial) assignment. In theexamplein Figure A.1, as soon as we change the assignment
y = B, wewill deletethe explanation“y = B = u # A.” Thisway, we will keep
only a polynomial number of eliminating explanations (specificaly, O(nv) expla-
nations where n is the number of variables, and v is the largest variable domain
size). Notice that it is possible that sometime in the future, we reassign z, recon-
sider thevaluey = B, and thus re-detect that the value v = A will not work. This
isthe price we pay for keeping only the ruled-out explanationsthat are relevant.

The second issue is the role of search tree in the backtracking scheme. Keeping
just the relevant eliminating explanations also allows us to reconstruct sufficient
information about the search tree structure. Eliminating explanations in effect tell
us the unexplored values (“live domains’) for all variables. Once we keep track of
the current live domains of the variables in terms of eliminating explanations in
each search node (in addition to the current partial assignment), we do not need the
search tree to traverse the search space in a systematic fashion. In fact, eliminating
explanations lift some of the rigidness imposed by search tree on the traversal or-
der. The main restriction imposed by a search tree is that backtracking should be
done in the order the flaws were originally selected for resolution. The eliminating
explanations effectively allow us to change the decision higher up in the tree, while
appropriately maintaining the valid decisions for the lower level flaws, thus lifting
thisrestriction.

L et us see how we can use the eliminating explanationsto traverse the search space,
starting from the failure at N5 in Figure A.1:

Ny:z=ANy=BANv=BAu=CAw=~F

Assuming that we aready eliminated thevalue A for v and A and B for « (as shown
in Figure A.1, our current list of eliminating explanationswill be:

Eliminating Fxp:y=B = v # A;y = B = u # A,
v=B=u#B

24 Although the main ideas of dynamic backtracking — including incremental maintenance
of eliminating explanations, removing irrelevant eliminating explanations to keep storage
polynomial, saving intermediate work, and backtracking without search tree — were all
introduced (in an exceedingly brief note) by Bruynooghe [7] for CSP problems even before
the simpler 1B algorithms [49], the algorithm seems to have been forgotten for over twelve
years, when it was apparently re-discovered by Ginsberg [18].

50

We consider the explanation of failure z = A A w = E. Suppose, we decide to
handle this failure by modifying the value of w. Once we pick the variable we
want to change, we must convert the failure explanation into adirectional form that
eliminates the current value of the chosen variable. In our example, we rewrite the
explanationz = AANw = Fasz = A = w # FE (meaning that as long as the
assignment contains z = A, w cannot be equal to £) and keep this as one of the
eliminating explanations of the search node. When we do this, we effectively make
x a past variable with respect to w, without fixing the position of w with respect to
the other variables. We can then change the assignment of w to any non-eliminated
value. In this case we have a single possibility, w = D. The current search node is
thus:

N': Assignment :x = A,y=B,v=B,u=C,w=D
Eliminating Fxp: 2 =A=>w# FE;y=B=uv# A
v=B=u#Bjy=B=u#A

At this point, we detect another failure: y = B A w = E. We have the flexibility
of modifying either the value of y or the value of w. Suppose we decide to modify
w again. We then get a second eliminating explanation for w: y = B = w # D.
Now, since both values of w have been eliminated, we have to change some other
variable. In particular, the two eliminating explanations of w can be resolved, with
the domain constraint of w, w = D V w = E to derive a new failure explanation:
x = ANy = B. This essentially says that unless we change the value of = or
y, we cannot find an assignment for w. (Notice that this is exactly what we get
as the interior node explanation if we use the propagation procedure.) We now
have the flexibility of modifying either the value of = or the value of y. If we
want to modify the value of = (which we couldn’t have done in normal search-
tree based backtracking), all we need to do is to rewrite the failure explanation as
y = B = z # A, and then change the value of . Our new search node will 1ook
asfollows:

N": Assignment iz =B,y=B,v=B,u=C,w =D
Eliminating Fep:y=B =z #Ajy=B=>w# D;y= B = v # A
v=B=u#Bjy=B=u#A

Notice that we kept the values of y, v, u as well as w since they are not eliminated
by the eliminating explanations of the current node. The eliminating explanation
z = A = w # Fisremoved sinceit is not relevant once = became B.

One caveat here isthat since we only remember the nogoods rel evant to the current
partial assignment, if we are not careful, we can get into looping and fail to termi-
nate. Specifically, when the irrelevant explanationz = A = w # FE isremoved,
there is a possibility that at a latter time, we may encounter another failure involv-

51

ingz andw (suchasz = B Aw = F,in N") and decide to change the value of z
this time (by writing the failure as the eliminating explanationw = £ = = # B),
and consequently make w a past variable of z. This can lead to cycling behavior 2
since we had earlier made = a past variable of w.

The problem here is that when weremoved z = A = w # E, we aso forgot that
we had made z past variable compared to w. A simple solution is to remember,
whenever we rewrite an explanation of failure into an eliminating explanation for
avariable z’, that all the variables on the left hand side of the eliminating explana-
tion are effectively made past variables of z'. This can be done by maintaining, in
addition to the eliminating explanations, a partial order among variables, which is
monotonically refined. Even when an eliminating explanation becomes irrelevant
and leavesthe node, the past-future variable distinctionsit made become part of the
partial order. When new failures are encountered, we must respect the partial or-
der among the variables when converting them into eliminating explanations. This
effectively avoids cycling and ensures termination.

Doing thisin our example would make us accumulate the following partial order-
ings by thetimewegetto N”: z < w,y < z, y < v and y < v. Thus the complete
description of N” is:

N": Assignment :z=B,y=Av=B,u=C,w=D
Eliminating Fep :y=B =2 # Ajy = B = w # D;
y=B=v#Av=B=>u#Bjy=B=>u#A
Partial order : (z < w,y < z,y < v,y < v).

Since z < w ispart of al the descendants of N, we will never be able to make w
apast variable of z.

This is the idea behind partial order dynamic backtracking [19]. The original dy-
namic backtracking algorithm due to Ginsberg [18] was less general than this— it
assumed a pre-specified total order on the variables, as against an incrementally
constructed partial order.

With the partial order among variables, the dynamic backtracking algorithm can be
seen as effectively maintaining several search tree topologies simultaneously and
backtracking on any one of them depending on the heuristics), thus giving more
flexibility in backtracking. Ginsberg and McAllester [19] argue that this flexibility
provides the dynamic backtracking algorithm the ability to exploit local gradients
in the search space like GSAT [52] and other |ocal-search algorithms, without sac-
rificing compl eteness.

25 To see this, note that at some future point, ’s value may be changed, makingy = B =
x # A irrelevant, and at that time, nothing stops us from reverting back to « = A and
re-trace the failures between = and w.

52

To complete the anal ogy with local search algorithmslike GSAT, we notethat since
wedon't need to erase the values of intermediate variables during backtracking, and
since we can effectively backtrack to any variable, therereally isno reason to search
in the space of partial assignments. We can directly traverse the space of complete
assignments. The decision as to which variables value should be changed can be
made by independent heuristics such as “min-conflict” heuristic [52], that attempt
to follow local gradients in the search space. Having decided which variable to
change, we can then select afailure explanation involving that variable and rewrite
the explanation such that it becomes an eliminating explanation for that variable.
Of course, dynamic backtracking, being systematic, does not completely equal the
freedom of movement provided by GSAT. Partial order dynamic backtracking pro-
vides unlimited freedom in selecting variables to reassign at the beginning of the
search. However, as the search progresses, the partial order monotonically tightens,
reducing the freedom (thus ultimately ensuring termination).

Despite the theoretical elegance of the idea, there is as yet no clear evidence indi-
cating that dynamic backtracking leads to improvements over conventional depen-
dency directed backtracking in practice. In fact, Bayardo and Schrag [3] report that
simple EDB, coupled with relevance-based learning, and forward checking outper-
form dynamic backtracking in the test suites that Ginsberg and McAllester [19]
present in favor of dynamic backtracking. Another problem is that dynamic back-
tracking is not as readily applicable to planning as the simpler EDB is. The main
issue, as we remarked earlier, isthe complexity of eliminating explanations.

A.3 EBL in Dynamic Backtracking

Since dynamic backtracking algorithms use nogoods as part of the node represen-
tation, it would seem that they may not benefit much from learning. In fact, we are
not aware of any evaluations of dynamic backtracking complemented with learning.
Part of the confusion comes from not recognizing the difference between eliminat-
ing explanations (also called directional nogoodsin [19]), and the learned nogoods.
As we saw in Section A.2, eliminating explanations are stored only to give infor-
mation about the position of the current node in the search space. It is enough to
remember a polynomial number of them in the current node if we are willing to
do partia order dynamic backtracking. In addition to the eliminating explanations,
dynamic backtracking can benefit from learned nogoods, which become part of the
problem constraints, and will be used to detect failures in the current assignment.
The utility of the learned nogoodsis of course governed by the tradeoff between the
cost of storage and matching on one hand and reduction in search through learning
on the other. Although the same “failure explanation” can become a part of both
the eliminating explanations and the stored nogoods, whether or not it staysin the
former is determined by the relevance considerations imposed by dynamic back-
tracking algorithm, while whether or not it staysin the latter is best determined by
the EBL storage tradeoffs (see Section 4.5).

53

Indeed, thefailure explanations comprising the eliminating explanations are exactly
the explanationsthat will be stored by a 0*-order relevance based learning scheme
[2]. Bayardo and Schrag's recent empirical results suggest that 4'*-order relevance
based learning leads to better performance. This suggests that dynamic backtrack-
ing agorithms can benefit stored nogoods other than the directional ones included
in the search node. Although Bayardo and Schrag [3] show that normal search us-
ing forward checking, EDB and EBL outperforms dynamic backtracking, it would
be interesting to see whether the dominance holds when Dynamic backtracking is
armed with EBL.

