
Optimizing Recursive Information Gathering Plans in EMERAC

Subbarao Kambhampati∗ , Eric Lambrecht,
Ullas Nambiar, Zaiqing Nie, Gnanaprakasam Senthil
Department of Computer Science & Engineering, Arizona State University,
Tempe, AZ , USA 85287

Abstract. In this paper we describe two optimization techniques that are specially tailored for
information gathering. The first is a greedy minimization algorithm that minimizes an infor-
mation gathering plan by removing redundant and overlapping information sources without
loss of completeness. We then discuss a set of heuristics that guide the greedy minimization
algorithm so as to remove costlier information sources first. In contrast to previous work, our
approach can handle recursive query plans that arise commonly in the presence of constrained
sources. Second, we present a method for ordering the access to sources to reduce the execu-
tion cost. This problem differs significantly from the traditional database query optimization
problem as sources on the Internet have a variety of access limitations and the execution
cost in information gathering is affected both by network traffic and by the connection setup
costs. Furthermore, because of the autonomous and decentralized nature of the Web, very
little cost statistics about the sources may be available. In this paper, we propose a heuristic
algorithm for ordering source calls that takes these constraints into account. Specifically, our
algorithm takes both access costs and traffic costs into account, and is able to operate with
very coarse statistics about sources (i.e., without depending on full source statistics). Finally,
we will discuss implementation and empirical evaluation of these methods in Emerac, our
prototype information gathering system.

Keywords: Data Integration, Information Gathering, Query Optimization

1. Introduction

The explosive growth and popularity of the world-wide web have resulted in
thousands of structured queryable information sources on the Internet, and
the promise of unprecedented information-gathering capabilities to lay users.
Unfortunately, the promise has not yet been transformed into reality. While
there are sources relevant to virtually any user-queries, the morass of sources
presents a formidable hurdle to effectively accessing the information. One
way of alleviating this problem is to develop information gatherers (also
called mediators) which take the user’s query, and develop and execute an
effective information gathering plan, that accesses the relevant sources to
answer the user’s query efficiently.1 Figure 1 illustrates the typical archi-
tecture of such a system for integrating diverse information sources on the

∗ This research is supported in part by NSF young investigator award (NYI) IRI-9457634,
Army AASERT grant DAAH04-96-1-0247, and NSF grant IRI-9801676. We thank Selçuk
Candan for many helpful comments. Preliminary versions of parts of this work have been
presented at IJCAI [31], and workshops on Intelligent Information Integration [30, 26].

c© 2003 Kluwer Academic Publishers. Printed in the Netherlands.

jiis-final-kluw.tex; 14/04/2003; 12:16; p.1

2

internet. Several first steps have recently been taken towards the develop-
ment of a theory of such gatherers in both database and artificial intelligence
communities.

The information gathering problem is typically modeled by building a
virtual global schema for the information that the user is interested in, and
describing the accessible information sources as materialized views on the
global schema.2 The user query is posed in terms of the relations of the global
schema. Since the global schema is virtual (in that its extensions are not stored
explicitly anywhere), computing the query requires rewriting (or “folding”
[39]) the query such that all the extensional (EDB) predicates in the rewrite
correspond to the materialized view predicates that represent information
sources. Several researchers [33, 39, 27] have addressed this rewriting prob-
lem. Recent research by Duschka and his co-workers [10, 11] subsumes most
of this work, and provides a clean methodology for constructing information
gathering plans for user queries posed in terms of a global schema The plans
produced by this methodology are “maximally contained” in that any other
plan for answering the given query is contained in them.3

Generating source complete plans however is only a first step towards
efficient information gathering. A crucial next step, which we focus on in
this paper, is that of query plan optimization. Maximally contained plans
produced by Duschka’s methodology are conservative in that they in essence
wind up calling any information source that may be remotely relevant to the
query. Given the autonomous and decentralized nature of the Internet, sources
tend to have significantly overlapping contents (e.g. mirror sources), as well
as varying access costs (premium vs. non-premium sources, high-traffic vs.
low-traffic sources). Naive execution of maximally contained plans will ac-
cess all potentially relevant sources and be prohibitively costly, in terms of
the network traffic, response time, and access costs (in the case of “premium”
sources that charge for access).

At first blush, it would seem that we should be able to directly apply
the rich body of work on query optimization in databases [5] to solve this
problem. Unfortunately, this does not work because many of the assumptions
made in the traditional database query optimization do not hold in informa-
tion gathering scenarios. To begin with, in traditional databases, redundancy
and overlap among different sources is not a major issue, while it is a very
crucial issue in information gathering. Similarly, traditional query optimiza-
tion methods depend on elaborate statistical models (histograms, selectivity
indices etc.) of the underlying databases. Such statistical models may not be
easily available for sources on the Internet.4 Finally, even the work on opti-
mizing queries in the presence of materialized views (c.f. [6]) is not directly
applicable as in such work materialized views are assumed to be available in
addition to the main database. In contrast, the global database in information
gathering is “virtual” and the only accessible information resides in materi-

jiis-final-kluw.tex; 14/04/2003; 12:16; p.2

3

<html> cgi

wrapper wrapper db

Gatherer user

Figure 1. The information gatherer acts as an intermediary between the user and information
sources on the Internet.

Build query
plan

Logical
Optimizations

Execution
Optimizations

Execute query
plan

Figure 2. The full process of query planning

alized views whose statistical models are not easily available. For all these
reasons, it is now generally recognized (c.f. [17]) that query optimization for
information gathering is a very important open problem.

In this paper we describe the query optimization techniques that we have
developed in the context of Emerac, a prototype information gathering system
under development. Figure 2 provides a schematic illustration of the query
planning and optimization process in Emerac. We start by generating a query
plan using the source inversion techniques described by Duschka [10, 11].
This polynomial time process gives us a “maximally contained” query plan
which serves as the input for the optimization methods. As in traditional
databases, our optimization phase involves two steps: logical optimization
and execution optimization. In traditional databases, logical optimization in-
volves rewriting a query plan, using relational algebra equivalences, to make
it more efficient; while execution optimization involves steps such as ordering
the access to the base relations to make computations of joins cheaper. For
Emerac, the logical optimization step involves minimizing the maximally
contained query plan such that access to redundant sources is removed. Ex-
ecution optimization involves ordering the access to the information sources
in the minimized plan so as to reduce execution cost.

Our contributions: For logical optimization, we present a technique that
operates on the recursive plans generated by Duschka’s algorithm and greed-
ily minimizes it so as to remove access to costly and redundant information

jiis-final-kluw.tex; 14/04/2003; 12:16; p.3

4

sources, without affecting the completeness of the plan. For this purpose, we
use the so-called localized closed world (LCW) statements that characterize
the completeness of the contents of a source relative to either the global
(virtual) database schema or the other sources. Our techniques are based
on an adaptation of Sagiv’s [40] method for minimizing datalog programs
under uniform equivalence. Although there exists some previous research on
minimizing information gathering plans using LCW statements [9, 18], none
of it is applicable to minimization of information gathering plans containing
recursion. Our ability to handle recursion is significant because recursion
appears in virtually all information gathering plans either due to functional
dependencies, binding constraints on information sources, or recursive user
queries [10]. Additionally, in contrast to existing methods, which do pairwise
redundancy checks on source accesses, our approach is capable of exploiting
cases where access to one information source is rendered redundant by access
to a combination of sources together. Large performance improvements in our
prototype information gatherer, Emerac, attest to the cost-effectiveness of our
minimization approach.

Ultimately plan execution in our context boils down to doing joins be-
tween the sources efficiently. When gathering information on the Internet,
we typically cannot instruct two sources to join with each other. It is thus
necessary to order the access to the sources. The existing methods for subgoal
ordering assume that the plan is operating on a single “fully relational” (i.e.,
no binding restrictions) database, and that the plan execution cost is domi-
nated by the number of tuples transferred. In contrast, sources on the Internet
have a variety of access limitations and the execution cost in information
gathering is affected significantly by the connection setup costs. We describe
a way of representing the access capabilities of sources, and provide a greedy
algorithm for ordering source calls that respects source limitations, and takes
both access costs and traffic costs into account, without requring full source
statistics.

Although there exist other research efforts that address source redundancy
elimination and optimization in the presence of sources with limited capabil-
ities, Emerac is the first to consider end-to-end issues of redundancy elimina-
tion and optimization in recursive information gathering plans. It is also the
first system system to consider the source access costs as well as traffic costs
together in doing optimization.

Organization: The rest of the paper is organized as follows. Section 2 pro-
vides the background on information integration and describes the motivation
for our work. Section 3, we review the work on integrating diverse informa-
tion sources by modeling them as materialized views on a virtual database.
We pay special attention to the work of Duschka [10, 11], which forms the ba-
sis for our own work. Section 4 briefly reviews the use of LCW statements and

jiis-final-kluw.tex; 14/04/2003; 12:16; p.4

5

Sagiv’s algorithm for datalog program minimization under uniform equiv-
alence. Section 5 presents our greedy minimization algorithm that adapts
Sagiv’s algorithm to check for source redundancy in the context of the given
LCW statements. We also explain how the inter-source subsumption relations
can be exploited in addition to LCW statements (Section 5.1). We then dis-
cuss the complexity of the minimization and present heuristics for biasing the
greedy minimization strategy. Section 6.1 describes our algorithm for order-
ing source accesses during execution. Section 7 describes the architecture of
Emerac, our prototype information gatherer, and presents an empirical evalu-
ation of the effectiveness of our optimization techniques. Section 8 discusses
related work. Section 9 presents our conclusions, and outlines our current
research directions.

2. Background and Motivation

2.1. BACKGROUND

In order to place the work on Emerac in the proper context, it is important
to provide a broad classification of the prior work on information integra-
tion. Information integration (aka data integration) has received a significant
amount of attention in the recent years, and several systems have been de-
veloped. These include InfoMaster [21], Information Manifold [33], Garlic
[22], TSIMMIS [20], HERMES [3], and DISCO [1]. The similarities and
differences among these systems can be broadly understood in terms of (1)
the approach used to relate the mediator and source schemas and (2) the type
of application scenario considered by the system.

The application scenarios considered to date can be usefully classified into
two categories:

Authorized integration of databases: Integrating a set of heterogeneous database
systems owned by a given corporation/enterprise.

Information Gathering: Integrating a set of information sources that export
information related to some specific application area (e.g. comparison
shopping of books, integration of multiple bibliography sources etc.).

In the first case, we would expect that the set of data sources are relatively
stable, and that the mediation is “authorized” (in that the data sources are
aware that the they are being integrated). In the second, “information gather-
ing” scenario, the set of data sources may be changing, and more often than
not, the mediation may not have been explicitly authorized by the sources.
Systems such as Garlic [22], TSIMMIS [20], HERMES [3], and DISCO [1]

jiis-final-kluw.tex; 14/04/2003; 12:16; p.5

6

can be characterized as aiming at authorized database integration, while In-
foMaster [21], Information Manifold [33], Occam [27], Razor [18] as well as
the Emerac system presented in this paper address the information gathering
scenario.

Although related in many ways, authorized database integration and infor-
mation gathering systems do differ in two important ways–the way source and
mediator schemas are modeled, and the types of approaches used for query
optimization.

There are two broad approaches for modeling source and mediator schemas
[23]. The “global as view” (GAV) approach involves modeling the mediator
schema as a view on the (union of) source schemas. The “local as view”
(LAV) approach involves modeling the source schemas as views on the me-
diated schema. The GAV approaches make query planning relatively easy
as a query posed on the mediated schema can directly be rewritten in terms
of sources. The LAV approach, in contrast, would require a more complex
rewriting phase to convert the query posed on the mediator schema to a query
on the sources.

The advantage of LAV approach however is that adding new sources to
a mediator involves just modeling them as views on the mediated schema.
In contrast, in the GAV approach, the mediated schema has to be rewritten
every time a new source is added. Systems that address authorized integration
of known databases, such as Garlic, Disco, TSIMMIS and HERMES use the
GAV approach as they can be certain of a relatively stable set of sources.
In contrast, systems aimed at information gathering, such as the Information
Manifold [33] and InfoMaster [21] use the LAV approach.

The other main difference among information integration systems is the
types of approaches used for query optimization. Systems addressing autho-
rized integration of known databases can count on the availability of statistics
on the databases (sources) being integrated. Thus Garlic [22], TSIMMIS [8],
HERMES [3] and DISCO [41] systems attempt to use cost-based optimiza-
tion algorithms for query planning. Systems addressing information gathering
scenarios, on the other hand, cannot count on having access to statistics about
the information sources. Thus, either the mediator has to learn the statistics
it needs, or will have to resort to optimization algorithms that are not depen-
dent on complete statistics about sources. Both Infomaster and Information
Manifold system use heuristic techniques for query optimization.

Within the above classification, Emerac is aimed at information gather-
ing. Thus, it is most closely related to systems such as InfoMaster [21],
Information Manifold [33], Occam [27] and Razor [18]. Like these other
systems, Emerac too uses the LAV approach to model source and mediator
schemas, and uses heuristic techniques for query optimization. The specific
contributions of Emerac over the other systems are:

jiis-final-kluw.tex; 14/04/2003; 12:16; p.6

7

− A systematic approach for handling minimization of (recursive) datalog
query plans using the LCW information.

− A heuristic optimization technique for query plans that takes into ac-
count both the access and transfer costs.

3. Building Query Plans: Background

Suppose our global schema contains the world relation advisor(S,A), where
A is the advisor of S. Furthermore, suppose we have an information source
ADDB, such that for every tuple (S,A) returned by it, A is the advisor of
S. This can be represented as a materialized view on the global schema as
follows:

ADDB(S,A) → advisor(S, A)

We make the “open world assumption,” (OWA) on the sources [2], meaning
that the ADDB source has some but not necessarily all of the tuples satisfying
the advisor relation.

Suppose we want to retrieve all the students advised by Weld. We can
represent our goal by the query Q:

query(S, A) :- advisor(S, A) ∧ A = “Weld”

Dushcka et. al. [10, 11] show how we can generate an information gather-
ing plan that is “maximally contained” in that it returns every query-satisfying
tuple that is stored in any of the accessible information sources. This method
works by inverting all source (materialized view) definitions, and adding them
to the query. The inverse, v−1, of the materialized view definition with head
v(X1, . . . , Xm) is a set of logic rules in which the body of each new rule is
the head of the original view, and the head of each new rule is a relation from
the body of the original view. When we invert our definition above, we get:

advisor(S,A) :- ADDB(S,A)

When this rule is added to the original query Q, we effectively create
a datalog5 program whose execution produces all the tuples satisfying the
query.

Note that we are modeling sources as “conjunctive views” on the mediated
schema. The complexity of finding the maximally contained plan depends
on the expressiveness of the language used to describe sources. Duschka
and Abiteboul [2] show that as long as sources are described as conjunctive
views on the mediated schema, and we use the open world assumption on the
sources, maximally contained plans can be found in polynomial time. The
complexity becomes NP-hard when the sources are written as disjunctive, and

jiis-final-kluw.tex; 14/04/2003; 12:16; p.7

8

undecidable when the sources are written as recursive views on the mediated
schema.

Constrained sources & Recursion: The materialized view inversion algo-
rithm can be modified in order to model databases that have binding pattern
requirements. Suppose we have a second information source, CONDB that
requires the student argument to be bound, and returns the advisor of that
given student. We denote this in its view as follows:

CONDB($S, A) → advisor(S, A)

The ‘$’ notation denotes that S must be bound for any query sent to
CONDB. A straightforward inversion of this source will get us a rule of the
form:

advisor(S,A) :- CONDB($S, A)

which is unexecutable as S is not bound. This is handled by making up
a new relation called dom whose extension is made to correspond to all
possible constants that can be substituted for S. In our example, assuming
that we have both the ADDB source and the CONDB source, the complete
plan for the query, which we shall refer to as P , is:

r1: query(S, A) :- advisor(S , A) ∧ A=“Weld”

r2: advisor(S, A) :- ADDB(S, A)

r3: advisor(S, A) :- dom(S) ∧ CONDB(S, A)

r4: dom(S) :- ADDB(S, A)

r5: dom(A) :- ADDB(S, A)

r6: dom(A) :- dom(S) ∧ CONDB(S, A)

Notice that all extensional (EDB) predicates in the progam correspond to
source predicates (materialized views). Notice also the presence of dom(S)
relation in the rule r3. Rules r4, r5 and r6 define the extension of dom by
collecting all possible constants that can be derived from source calls. Finally,
note that rule r6 is recursive, which makes the overall plan recursive, even
though the original query as well as the source description are non-recursive.
Given the ubiquitousness of constrained sources on the Internet, it is thus
important that we know how to handle recursive information gathering plans.

It is worth noting that the complexity of finding maximally contained plans
remains polynomial when we have sources with access constraints. The only
change is that the query plan itself is going to be a recursive datalog program.
This change can in turn significantly increase the execution cost of the plans.
Consequently, we focus on using any information about the source overlap to
minimize the query plan and remove the recursion as much as possible.

jiis-final-kluw.tex; 14/04/2003; 12:16; p.8

9

4. Plan minimization preliminaries

The plan P above accesses two different advisor databases to answer the
query. It would be useful to try and cut down redundant accesses, as this
would improve the execution cost of the plan. To do this however, we need
more information about the sources. While the materialized view character-
izations of sources explicate the world relations that are respected by each
tuple returned by the source, there is no guarantee that all tuples satisfying
those properties are going to be returned by that source.

One way to support minimization is to augment the source descriptions
with statements about their relative coverage, using the so-called localized
closed world (LCW) statements [14]. An LCW statement attempts to charac-
terize what information (tuples) the source is guaranteed to contain in terms
of the global schema. Suppose, we happen to know that the source ADDB is
guaranteed to contain all the students advised by Weld and Hanks. We can
represent this information by the statement (note the direction of the arrow):

ADDB(S, A) ← advisor(S, A) ∧ A=“Weld”

ADDB(S, A) ← advisor(S, A) ∧ A=“Hanks”

Pair-wise rule subsumption: Given the LCW statement above, intuitively
it is obvious that we can get all the tuples satisfying the query Q by ac-
cessing just adDB. We now need to provide an automated way of making
these determinations. Suppose we have two datalog rules, each of which has
one or more materialized view predicates in its body that also have LCW
statements, and we wish to determine if one rule subsumes the other. The
obvious way of checking the subsumption is to replace the source predicates
from the first rule with the bodies of their view description statements, and the
source predicates from the second rule with the bodies of the LCW statements
corresponding to those predicates. We now have the transformed first rule
providing a “liberal” bound on the tuples returned by that rule, while the
transformed second rule gives a “conservative” bound. If the conservative
bound subsumes the liberal bound, i.e., if the transformed second rule “con-
tains” (entails) the transformed first rule, we know that second rule subsumes
the first rule. Duschka [9] shows that this check, while sufficient, is not a
necessary condition for subsumption. He proposes a modified version that
involves replacing each source predicate s with s ∧ v in the first rule, and
with s∨ l in the second rule, where v is the view description of s, and l is the
conjunction of LCW statements of s. If after this transformation, the second
rule contains the first, then the first rule is subsumed by it.6

Minimization under uniform equivalence: Pair-wise rule subsumption checks
alone are enough to detect redundancy in non-recursive plans [32, 18], but are
inadequate for minimizing recursive plans. Specifically, recursive plans cor-

jiis-final-kluw.tex; 14/04/2003; 12:16; p.9

10

respond to infinite union of conjunctive queries and checking if a particular
rule of the recursive plan is redundant will involve trying to see if that part
is subsumed by any of these infinite conjuncts [42, pp. 908]. We instead base
our minimization process on the notion of “uniform containment” for datalog
programs, presented in [40]. To minimize a datalog program, we might try
removing one rule at a time, and checking if the new program is equivalent
to the original program. Two datalog programs are equivalent if they produce
the same result for all possible assignments of EDB predicates [40]. Checking
equivalence is known to be undecidable. Two datalog programs are uniformly
equivalent if they produce the same result for all possible assignments of
EDB and IDB predicates. Uniform equivalence is decidable, and implies
equivalence. Sagiv [40] offers a method for minimizing a datalog program
under uniform equivalence that we illustrate by an example (and later adapt
for our information gathering plan minimization). Suppose that we have the
following datalog program:

r1: p(X) :- p(Y) ∧ j(X, Y)

r2: p(X) :- s(Y) ∧ j(X, Y)

r3: s(X) :- p(X)

We can check to see if r1 is redundant by removing it from the program,
then instantiating its body to see if the remaining rules can derive the instan-
tiation of the head of this rule through a simple bottom-up evaluation [42].
Our initial assignment of relations is p(“Y”), j(“X”, “Y”) . If the remaining
rules in the datalog program can derive p(“X”) from the assignment above,
then we can safely leave rule r1 out of the datalog program. This is indeed
the case. Given p(“Y”) we can assert s(“Y”) via rule r3. Then, given s(“Y”)
and j(“X”, “Y”), we can assert p(“X”) from rule r2. Thus the above program
will produce the same results without rule r1 in it.

5. Greedy Minimization of Recursive plans

We now adapt the algorithm for minimizing datalog programs under uniform
equivalence to remove redundant sources and unnecessary recursion from the
information gathering plans. Our first step is to transform the query plan
such that the query predicate is directly related to the source calls. This is
done by removing global schema predicates, and replacing them with bodies
of source inversion rules that define those predicates (see [42, Sec. 13.4]).7

jiis-final-kluw.tex; 14/04/2003; 12:16; p.10

11

Replace all global schema predicates in P
with bodies of their inversion rules.

repeat
let r be a rule in P that has not yet been considered
let P̂ be the program obtained by deleting rule r from P
and simplifying it by deleting any unreachable rules.
let P̂ ′ be P̂[s 7→ s ∨ l]
let r′ be r[s 7→ s ∧ v]
if there is a rule, ri in r′,
such that ri is uniformly contained by P̂ ′

then replace P with P̂
until each rule in P has been considered once

Figure 3. The greedy plan minimization algorithm

Our example plan P , from Section 3, after this transformation with the LCW
statements in Section 4 looks as follows:

r2: query(S, A) :- adDB(S , A) ∧ A=“Weld”

r3: query(S, A) :- dom(S) ∧ CONDB(S, A) ∧ A=“Weld”

r4: dom(S) :- ADDB(S, A)

r5: dom(A) :- ADDB(S, A)

r6: dom(A) :- dom(S) ∧ CONDB(S, A)

We are now ready to consider minimization. Our basic idea is to iteratively
try to remove each rule from the information gathering plan. At each itera-
tion, we use the method of replacing information source relations with their
views or LCW’s as in the rule subsumption check (see previous section) to
transform the removed rule into a representation of what could possibly be
gathered by the information sources in it, and transform the remaining rules
into a representation of what is guaranteed to be gathered by the information
sources in them. Then, we instantiate the body of the transformed removed
rule and see if the transformed remaining rules can derive its head. If so, we
can leave the extracted rule out of the information gathering plan, because
the information sources in the remaining rules guarantee to gather at least as
much information as the rule that was removed. The full algorithm is shown
in Figure 3.

For our example plan above, we will try to prove that rule r3, containing
an access to the source conDB, is unnecessary. First we remove r3 from our
plan, then transform it and the remaining rules so they represent the informa-
tion gatherered by the information sources in them. For the removed rule, we
want to replace each information source in it with a representation of all the

jiis-final-kluw.tex; 14/04/2003; 12:16; p.11

12

possible information that the information source could return. Specifically,
we want to transform it to r[s 7→ s ∧ v]. This produces:

query(S,A) :- dom(S) ∧ CONDB(S, A)

∧ advisor(S, A) ∧ A=“Weld”

For the remaining rules, P − r3, we transform them into P ′ = (P −
r3)[s 7→ s ∨ l], which represents the information guaranteed to be produced
by the information sources in the rules. For our example, we produce:

r21: query(S, A) :- ADDB(S, A) ∧ A=“Weld”

r22: query(S, A) :- advisor(S, A) ∧ A=“Weld”

r23: query(S, A) :- advisor(S, A) ∧ A=“Hanks”

dom(S) :- ADDB(S, A)

dom(S) :- advisor(S, A)

dom(A) :- ADDB(S, A)

dom(A) :- advisor(S, A)

dom(A) :- dom(S) ∧ CONDB(S, A)

dom(A) :- dom(S) ∧ advisor(S, A)

When we instantiate the body of the transformed removed rule r3, we
get the ground terms: dom(“S”), conDB(“S”, “A”), A=“Weld”, advisor(“S”,
“A”). After evaluating P ′ the remaining rules given with these constants, we
find that we can derive query(“S”, “A”), using the rule r22, which means
we can safely leave out the rule r3 that we’ve removed from our information
gathering program.

If we continue with the algorithm on our example problem, we will not be
able to remove any more rules. The remaining dom rules can be removed if we
do a simple reachability test from the user’s query, as they are not referenced
by any rules reachable from the query.

5.1. HANDLING INTER-SOURCE SUBSUMPTION RELATIONS

The algorithm above only makes use of LCW statements that describe sources
in terms of the global schema. It is possible to incorporate inter-source sub-
sumption statements into the minimization algorithm. Specifically, suppose
we are considering the removal of a rule r containing a source relation s

from the plan P . Let U be the set of inter-source subsumption statements that
have s in the tail, and U←7→:− be the statements of U with the ← notation
replaced by : − notation (so U is a set of datalog rules). We have to check if
r[s 7→ s∧ v] is uniformly contained in (P − r + U←7→:−)[s 7→ s ∨ l] If so,
then we can remove r.

jiis-final-kluw.tex; 14/04/2003; 12:16; p.12

13

As an example, suppose we know that s1 and s2 are defined by the views:

s1(x) → r(x)

s2(x) → r(x)

Suppose we know that s1 contains all tuples that s2 contains. This corre-
sponds to the statement

s1(x) ← s2(x)

Suppose we have the query:

Q(x) :- r(x)

The corresponding maximally contained plan P will be:

Q(x) :- r(x)

r(x) :- s1(x)

r(x) :- s2(x)

To recognize that we can remove third rule from this plan because of the
source subsumption statements, we check if that rule is uniformly contained
in the program (P − r + “s1(x): −s2(x))′′, which is:

Q(x) :- r(x)

r(x) :- s1(x)

s1(x) :- s2(x)

The uniform containment holds here since if we add the tuple s2(A) to the
program, bottom up evaluation allows us to derive s1(A) and subsequently
r(A), thus deriving the head of the removed rule.

5.2. HEURISTICS FOR ORDERING RULES FOR REMOVAL

The final information gathering plan that we end up with after executing the
minimization algorithm will depend on the order in which we remove the
rules from the original plan. In the example given in Section 5.1, suppose we
had another LCW statement:

CONDB(S, A) ← advisor(S, A)

In such a case, we could have removed r2 from the original information
gathering plan P , instead of removing r3. Since both rules will lead to the
generation of the same information, the removal would succeed. Once r2 is
removed however, we can no longer remove r3. This is significant, since in
this case, a plan with rule r3 in it is much costlier to execute than the one
with rule r2 in it. The presence of r3 triggers the dom recursion through rules
r4 · · · r6, which would have been eliminated otherwise. Recursion greatly in-
creases the execution cost of the plan, as it can generate potentially boundless
number of accesses to remote sources (see Section 7). We thus consider for
elimination rules containing non-recursive predicates before those containing

jiis-final-kluw.tex; 14/04/2003; 12:16; p.13

14

recursive predicates (such as dom terms). Beyond this, we also consider any
gathered statistics about the access costs of the sources (such as contact time,
response time, probability of access etc.) to break ties [29].

Complexity of Minimization: The complexity of the minimization algo-
rithm in Figure 3 is dominated by the cost of uniform containment checks.
As Sagiv [40] points out, the running time of the uniform containment check
is in the worst case exponential in the size of the query plan being minimized.
However, things are brighter in practice since the exponential part of the com-
plexity comes from the “evaluation” of the datalog program. The evaluation
here is done with respect to a “small” database – consisting of the grounded
literals of the tail of the rule being considered for removal. Nevertheless,
the exponential complexity justifies our greedy approach for minimization,
as finding a globally minimal plan would require considering all possible
rule-removal orders.

6. Plan Execution

Once the datalog query plan has been minimized to remove any redundant
source accesses, Emerac attempts to execute the minimized plan. In this sec-
tion, we describe how the techniques for datalog plan execution (c.f. [42]) are
adapted to the information gathering scenario to efficiently execute Emerac’s
information gathering plans.

Two efficient approaches for executing datalog programs are (1) top-down
relational evaluation and (2) bottom-up evaluation with magic sets trans-
formation [42]a. In Emerac we use the top-down relational evaluation. The
top-down relational evaluation scheme attempts to avoid the inefficiencies
of the top-down tuple-by-tuple evaluation scheme by directly manipulating
relations (c.f. [42, Algorithm 12.17]. The standard version of this scheme
involves generating a rule/goal graph for the datalog program and evaluating
the graph until fix point. To make this evaluation feasible as well as more
efficient, a “conjunct ordering” algorithm is used to re-order the conjuncts
[35].

In order to adapt the top-down relational evaluation to information gather-
ing, we make the following extensions to it:

− We provide a framework for modeling the access restrictions on the
source relations. These restrictions include attributes that must be bound
in order to access the relation, as well as those attributes whose bindings
will be ignored by the source.

− We describe a novel conjunct ordering approach that takes into consider-
ation the access restrictions, and qualitative costs in reordering the rules
(and thereby the rule/goal graphs).

jiis-final-kluw.tex; 14/04/2003; 12:16; p.14

15

In the rest of this section, we elaborate on these two extensions. We should
mention here that in addition to these main changes, we also make another
minor but important change to the evaluation of the rule goal graph. The plan
is executed by traversing the relational operator graph. When ever a union
node is encountered during traversal of the rule/goal graph, new threads of
execution are created to traverse the children of the node in parallel. Use
of separate threads allows us to reduce the response time as well as return
answers to the user asynchronously.

6.1. ORDERING SOURCE CALLS DURING EXECUTION

A crucial practical choice we have to make during the evaluation of datalog
programs is the order in which predicates are evaluated. Our objective is to
reduce the “cost” of execution, where cost is a function of the access cost (in-
cluding connection time), traffic costs (the number of tuples transferred), and
processing cost (the time involved in processing the data). Typically, traffic
and processing costs are closely correlated.

In our cost model, we assume that the access cost dominates the other
terms. This is a reasonable assumption given the large connection setup de-
lays involved in accessing sources on the Internet. While the traffic costs can
also be significant, this is offset to some extent by the fact that many data
sources on the Internet do tend to have smaller extractable tables.8

Although the source call ordering problem is similar to the “join ordering”
phase in the traditional database optimization algorithms [5], there are several
reasons why the traditional as well as distributed-database techniques are not
suitable:

− Join ordering algorithms assume that all sources are relational databases.
The sources on the Internet are rarely fully relational and tend to support
limited types of queries. These limitations need to be represented and
respected by the join ordering algorithm.

− Join ordering algorithms in distributed databases typically assume that
the cost of query execution is dominated by the number of tuples trans-
ferred during execution. Thus, the so-called “bound-is-easier” assump-
tion makes good sense. In the Internet information gathering scenario,
the cost of accessing sources tends to dominate the execution cost. Con-
sequently, we cannot rely solely on the bound-is-easier assumption and
would need to consider the number of source calls.

− Typically, join ordering algorithms use statistics about the sizes of the
various predicates to compute an optimal order of joining. These tech-
niques are not applicable for us as our predicates correspond to source
relations, about which we typically do not have complete statistics.

jiis-final-kluw.tex; 14/04/2003; 12:16; p.15

16

− The fact that source latencies make up a significant portion of the cost
of execution argues for parallel (or “bushy”) join trees instead of the
“left-linear” join trees considered by the conventional algorithms [5].

6.1.1. Representing source access capabilities
As we mentioned, in the information gathering scenarios, the assumption that
information sources are fully relational databases is not valid. An information
source may now be a wrapped web page, a form interfaced database, or a fully
relational database. A wrapped web page is a WWW document interfaced
through a wrapper program to make it appear as a relational database. The
wrapper retrieves the web page, extracts the relational information from it,
and then answers relational queries. A form-interfaced database refers to a
database with an HTML form interface on the web which only answers se-
lection queries over a subset of the attributes in the database. A WWW airline
database that accepts two cities and two dates and returns flight listings is an
example of a form interfaced database.

In our system, we use a simple way to inform the gatherer as to what types
of queries an information source would accept.9 We use the “$” annotation
to identify variables that must be bound, and “%” annotation to identify un-
selectable attributes (i.e., those attributes whose bindings cannot be pushed
to the source to narrow down the selection). Thus a fully relational source
would be adorned source(X,Y), a form interfaced web-page that only ac-
cepts bindings for its first argument would be adorned source(X,%Y), while
a wrapped web-page source would have all its attributes marked unselectable,
represented as source(%X,%Y). Finally, a form interfaced web-page that
requires bindings for its first argument, and is able to do selections only on
the second argument would be adorned as source($X,Y,%Z).

Often times, a single source might support multiple binding patterns. These
are supported by listing all the feasible binding patterns for that source. For
example, if source S1 has two binding patterns: S1($X,Y,%Z), S1(X, $Y,%Z),
it means that S1 can be accessed either with X bound or with Y bound. In
either case, the attribute Z cannot be selected at the source (and must be
filtered locally).

The “$” and “%” annotations are used to identify feasible binding patterns
for queries on a source, to establish generality relations between two binding
patterns, and to ensure that soundness is preserved in pushing variable se-
lection constraints (such as “Y = 7”) into source calls. Given a source with
annotations S1($X,%Y,Z), only the binding patterns of the form Sb−−

1 are
feasible (where “−” stands for either bound or f ree argument). Similarly, we
are not allowed to push selection constraints on Y to the source S1 (they must
be filtered locally). Thus the call S

bbf
1 is modeled as S

bff
1 filtered locally with

the binding on Y .

jiis-final-kluw.tex; 14/04/2003; 12:16; p.16

17

A binding pattern Sp is more general than Sq (written Sp �g Sq, if every
selectable (non “%”-annotated) variable that is free in q is also free in p, but
not vice versa. Thus, for the source S1 above, the binding pattern S

bbf
1 is more

general than the binding pattern S
bfb
1 (while such a relation would not have

held without “%” annotations). Intuitively, the more general a binding pattern,
the higher the number of tuples returned by the source when called with that
binding pattern. We ignore binding status of “%”-annotated variables since
by definition they will not have any effect on the amount of data transferred.
Finally, we define #(α) as the number of bound variables in α that are not
%-annotated. Notice that “�g” holds only between binding patterns of the
same source while “#(.)” can be used to relate binding patterns of different
sources.

6.1.2. Plans and Costs
In Emerac, we support simple select/project/join queries on the information
sources. Given the access restrictions on the sources, plans for such queries
involve computing “dependent joins” (c.f. [7]; see below) over the source
relations. Moreover, it may not always be feasible to push selections to the
sources. As an example, consider two data sources S1(%X,Y), S2($Y,Z)
that export the relations R1(X,Y) and R2(Y,Z) respectively. Suppose we
have a query

Q(X,Z) : −R1(X,Y), R2(Y,Z), X =′′ a′′

The query rewriting phase in Emerac will convert this to

Q(X,Z) : −S1(X,Y), S2(Y,Z), X =′′ a′′

It would seem that a good execution plan for the query would be to push
the selection over X to S1 and do join between the two sources (in any order).
However, since S1 has an unselectable attribute restriction on X , it is not
possible to do a selection at the source. Further, since S2 requires Y to be
bound, we need to do a dependent join between S1 and S2. A feasible plan
for this query would thus be:

σX=′′a′′(Sff
1 (X,Y))

Y
→

./ S
bf
2 (Y,Z)

Here source S1 is being called with the binding pattern ff , and the results
are processed (at the mediator) with a selection on X = “a”. Next, the source
S2 is called with the binding pattern bf , where calls are issued once for each
unique value of Y from the left sub-tree. (This form of passing bindings from
the left subtree of a join to the right subtree is called a “dependent join,”
and has been studied in the literature in connection with optimization in the
presence of foreign functions [7].)

jiis-final-kluw.tex; 14/04/2003; 12:16; p.17

18

In computing the plans, we are thus interested in deciding not only the
order in which the joins are carried out, as is the case in traditional system-
R style query optimization [5], but also about what specific binding patterns
are used in source calls, and how far it is feasible to push selections into
query plans. We note that the execution cost is a function of the access cost
(including connection time), traffic costs (the number of tuples transferred),
and processing cost (the time involved in processing the data). Thus, optimal
plans will need to minimize:

∑

s

(Cs
a ∗ ns + Cs

t ∗Ds)

where ns is the number of times a source s has been accessed during the plan
and Cs

a is the cost per access, and Cs
t is the per tuple transfer cost for source

s, and Ds is the number of tuples transferred by s. We note that this cost
metric imposes a tension between the desire to reduce network traffic, and
the desire to reduce access costs. To elaborate, reducing the network traffic
involves accessing sources with less general binding patterns. This in turn
typically increases the number of separate calls made to a source, and leads
to increased access cost. To illustrate this further, consider the subgoals:

S1(X,Y)∧ S2(Y,Z)

Suppose that the query provides bindings for X . How should we access the
sources? The conventional wisdom says that we should access S1 first since it
has more bound arguments. As a result of this access, we will have bindings
for Y which can then be fed into calls to S2. The motivation here is to reduce
the costs due to network traffic. However, calling S1 and using its outputs
to bind the arguments of S2 may also lead to a potentially large number of
separate calls to S2 (one per each of the distinct Y values returned by S1)10,
and this can lead to a significant connection setup costs, thus worsening the
overall cost. On the other hand, calling S2 without propagating bindings from
S1 would reduce the source calls to two. We need to thus consider both the
access costs and the traffic costs to optimize the ordering of the sources.

Since we often do not have the requisite statistics to do the full cost-based
optimization, we propose an approach that is less dependent on full statistics.
Our algorithm does not make use of a quantitative measure of access cost or
transfer costs, but rather a qualitative measure of high and low cost of access
to a source. We describe this approach in the next section.

6.1.3. An algorithm for ordering source calls
We make two important assumptions in designing our source-call ordering
algorithm:

− Exact optimization of the execution cost requires access to source selec-
tivity statistics. While such statistics may be available for intra-corporation

jiis-final-kluw.tex; 14/04/2003; 12:16; p.18

19

information integration scenarios (c.f. GARLIC [22]), they are harder to
get in the case of autonomous and decentralized sources on the Internet.

− We assume that by default source access costs (rather than network traf-
fic) are the dominating cost of a query plan. This becomes reasonable
given the large connection setup delays involved in accessing sources on
the Internet. Many Internet sources tend to have small extractable tables
which help offset the traffic costs that at times can be proportional to or
greater than access cost.11

If our assumptions about the secondary importance of network traffic costs
were always true, then we can issue calls to any source as soon as its binding
constraints are met (i.e., all the variables requiring bindings have bindings
available). Furthermore, we need only access the source with the most general
feasible binding pattern (since this will reduce the number of accesses to the
source). We do provide an escape clause for this assumption (see below), as
sometimes sources can transfer arbitrarily large amounts of data for calls with
sufficiently general binding patterns.

High-traffic Binding Patterns: To ensure that we don’t get penalized ex-
cessively for concentrating primarily on access costs, we also maintain a
table, called HTBP, of least general (w.r.t. “�g”) source binding patterns that
are still known to be high-traffic producing. The general idea is to postpone
calling a source as long as all the feasible binding patterns for that source
supported by the currently bound variables are equal to or more general than
a binding pattern listed in HTBP.

An underlying assumption of this approach is that while full source statis-
tics are rarely available, one can easily gain partial information on the types
of binding patterns that cause excessive traffic. For example, given a source
that exports the relation

Book(Author, T itle, ISBN,Subject, P rice, Pages)

we might know that calls that do not bind at least one of the first four attributes
tend to generate high traffic. The information as to which binding patterns
generate high traffic could come either from source modeling phase, or could
be learned with rudimentary probing techniques. The latter approach involves
probing the sources with a set of sample queries, and logging for each source
the binding patterns and the cardinalities of generated result sets, identifying
the HTBP patterns using a threshold on the result set cardinality.

There are two useful internal consistency conditions on HTBP. First, if Sα

is listed in HTBP (where α is a binding pattern on S), then every Sβ where
β �g α is also implicitly in HTBP. Similarly, if Sα is in HTBP, then it cannot
be the case that the only free variables in α are all “%”-annotated variables.

jiis-final-kluw.tex; 14/04/2003; 12:16; p.19

20

Inputs: FBP: table of forbidden binding patterns
HTBP: table of high traffic binding patterns
V := all variables bound by the head; V ′ := ∅
C[1 · · ·m]:=
Array where C[i] lists sources chosen at ith stage;
P [1 · · ·m]:=
Array where P [i] lists sources postponed at ith stage

for i := 1 to m (where m is the number of subgoals)
do begin

C[i] := ∅; P [i] := ∅; V := V ∪ V ′

for each unchosen subgoal S

do begin
B := All feasible binding patterns for S w.r.t. V

and FBP sorted using “�g” relation.
for each β ∈ B
do begin

if 6 ∃β′∈HTBP s.t.(β = β′) ∨ (β �g β′)
then begin

Push S with binding pattern β into C[i];
Mark S as ”chosen”;
add to V ′ all variables appearing in S;

end
end
if B 6= ∅ and S is not chosen

then Push Sγ into P [i], where
γ ∈ B has the maximum #(.) value;

end
if C[i] = ∅ and P [i] 6= ∅

then begin
Take the source Sβ ∈ P [i] with maximum #(.)
value and push it into C[i];
add to V all variables appearing in S;

else fail
end
Return the array C[1..i].

Figure 4. A greedy source call ordering algorithm that considers both access costs and traffic
costs.

jiis-final-kluw.tex; 14/04/2003; 12:16; p.20

21

A greedy algorithm to order source calls based on these ideas appears in
Figure 4. It is along the lines of “bound-is-easier” type ordering procedures
[35, 33]. By default, it attempts to access each source with the most general
feasible binding pattern. This default is reasonable given our assumption that
access costs dominate transfer costs. The default is overridden if a binding
pattern is known to produce too much traffic–by being present in HTBP (or
being more general than a pattern present in HTBP).

The procedure takes as input a rule with m subgoals and a given binding
pattern for its head. The input also includes FBP, a table of forbidden binding
patterns for each source (constructed from the “$” annotations), and the table
HTBP, which contains all source binding patterns that are known to be high-
traffic producing. At each level i, the algorithm considers the feasible binding
patterns of each unchosen source from most general to least general, until one
is found that is not in HTBP. If such a binding pattern is found, that source,
along with that binding pattern, is added to the set of selected sources at that
level (maintained in the array of sets C[i]). If not, the source, along with the
least general feasible binding pattern (given the “$” restrictions as well as the
currently available bound variables), is temporarily postponed (by placing it
in P [i]). If at the end of considering all unchosen sources at level i, we have
not chosen at least one source (i.e., all of them have only high-traffic inducing
binding patterns), then one of the sources from the list of postponed sources
(P [i]) is chosen and placed in C[i]. This choice is made with the “bound-
is-easier” assumption by selecting the source with the least general binding
pattern (in terms of #(.)).

Anytime a source is placed in C[i], the set V of variables that currently
have available bindings is updated.12 This ensures that at the next stage more
sources will have feasible, as well as less general, binding patterns available.
This allows the algorithm to progress since less general binding patterns are
also less likely to be present in the HTBP table. Specifically, when C[i] is
empty and P [i] is non-empty, we push only one source from P [i] into C[i]
since it is hoped that the updated V will then support non-high-traffic binding
patterns at the later stages. (By consulting HTBP, and the set of unchosen
sources, the selection of the source from P [i] can be done more intelligently
to ensure that the likelihood of this occurrence is increased).

Notice that each element of C is a (possibly non-singleton) set of source
calls with associated binding patterns (rather than a single source call)–thus
supporting parallel source calls which reduce the time spent on connection
delays. Thus, C[i] may be non-empty for only a prefix of values from 1 to m.
The complexity of our ordering algorithm is O(n2) where n is the length of
the rule. Note that HTBP table determines the behavior of our algorithm.
An empty HTBP table makes our algorithm to focus on reducing source
accesses(similar to [46]), whereas presence of all source binding patterns in
HTBP table makes the algorithm focus on reducing network traffic by using a

jiis-final-kluw.tex; 14/04/2003; 12:16; p.21

22

•Sources: DP(A:Author,T:Title,Y:Year)

 SM98(T:Title,U:URL)

•Query: Q(A,T,U,1998)

•Plan: Q(A,T,U,1998) :- DP(A,T,1998) & SM98(T,U)

HTBP: {DPbbb SM98bb}

Step 1. V={Y}

Cand: DPfff DPffb SM98ff
 XX XX XX

 P[1] = {DPffb SM98ff}

 C[1] = DPffb

Step 2. V={A,T,Y}

 Cand: SM98ff SM98bf

 XX XX

 P[2]={SM98 bf}

 C[2]=SM98 bf

HTBP: {DPffb}

 Step 1. V={Y}

 Cand: DPfff DPffb SM98ff
 XX XX

 C[1] = SM98 ff

 Step 2. V={Y, U, T}

 Cand: DPfff DPffb DPfbf DPfbb

 XX XX XX

 C[2] = DPfbf

HTBP: {}

 Step 1. V={Y}

 Cand: DPfff DPffb SM98ff

 C[1] = SM98 ff DPfff

Bound-is-easier

Figure 5. Example illustrating the operation of the source-call ordering procedure. Note that
based on the contents of the HTBP table, the procedure can degenerate into bound-is-easier
type ordering.

variant of bound-is-easier [35]. When some source patterns are present in the
HTBP table our algorithm attempts to reduce both access and transfer costs,
as appropriate.

6.1.4. Example
Figure 5 shows an example illustrating the operation of the source-call order-
ing procedure. We have two sources in the query plan: DP(A,T,Y), which is a
source of all database papers, and SM98(T,U), which is a source of all papers
from SIGMOD-98. The query binds the year to 1998, and wants the author,
title and URL tuples. We will illustrate the algorithm under three different
scenarios.
Case 1: In the first case, shown on the left, HTBP contains DPbbb, and SM98bb.
Notice that this means that every possible call to these sources is considered to
be high-traffic. Given that the query binds one variable, Y , the only possible
source call bindings we have are: DPfff , DPffb, and SM98ff . Among these,
the algorithm finds no possible feasible source call that is not in HTBP–all of
them are more general than the source call patterns stored in HTBP. Thus, it
winds up picking up DPffb since this is the one with most bound variables.
At this, point, the second iteration starts with one remaining source SM98,
and bindings for three variables, A, T, Y (where A and T are supplied by the
first call). The two possible source calls are SM98ff and SM98bf , both of
which are again in the HTBP. So, the algorithm picks SM98bf . The query
plan thus involves doing a dependent join [7] between DPffb and SM98bf ,
with the unique titles retrieved by the DP tuples being used to invoke SM98

(DP ffb(A, T, Y)
T
→

./ SM98bf (T,U))

jiis-final-kluw.tex; 14/04/2003; 12:16; p.22

23

S1 S2

S3 S4

Y

W

Z

S1 S2

S3 S4

Y

W

Z

Call Graph

Join Graph

S1 S2

S3 S4

Y

W

Z

Figure 6. Converting a call graph into a join graph

Case 2: In the second case, only the call DPffb is in the HTBP. Thus, in the
first iteration, neither of the DP calls are feasible, but the SM98 call is. So,
SM98ff is chosen. In the second iteration, we have four DP calls, of which
three are in HTBP. The call DPfbf is however not in HTBP, and is thus fea-
sible. The query plan thus involves a dependent join between SM98 and DP

with the URL values from SM98 call being passed to DP (SM98ff (T,U)
T
→

./

DP fbf (A, T, Y)).
Case 3: In the third case, HTBP is empty. Thus, we simply pick the most gen-
eral feasible source calls in the very first iteration–leading to calls SM98ff

and DPfff . The query plan is thus a (non-dependent) join between the sources
SM98 and DP (DP fff (A, T, Y) ./ SM98ff (T,U)).

6.1.5. Converting the Call Graph to a Join Tree
When the algorithm in Figure 4 terminates,the array C specifies which sources
are to be called at each stage, and what binding patterns are to be used in those
calls - specifically, all the source calls in C[i] are issued in parallel before
those in C[i + 1]. There is still the matter of what is the exact join tree that is
to be executed at the mediator to derive answers from these source calls.

Consider running the algorithm on the query with the given binding re-
strictions

Q(X,Y,W,Z) : −S
ff
1

(X, Y) ∧ S
bf
2

(Y, Z) ∧ S
ff
3

(T, W) ∧ S
bf
4

(W,Z)

We also assume that HTBP is empty.13 Our algorithm will end with C[1] =

{Sff
1 , S

ff
3 } and C[2] = {Sbf

2 , S
bf
4 }. Analyzing the common variables among

the sources, it is easy to represent this as a call graph as shown in Fig-
ure 6–which has both directed and undirected arcs. Arcs correspond to shared
variables between source calls. A directed arc from S1 to S2 states that a
shared variable needs to be bound by S1 before reaching S2.

The join tree can be greedily derived from the call graph by combining
vertices in the graph till it becomes a single node. The vertex combination is
done by traversing the graph in a topologically sorted order. All the vertices
that have directed arcs between them are first combined (by doing a dependent

jiis-final-kluw.tex; 14/04/2003; 12:16; p.23

24

join [7] between the corresponding sources). Then the undirected arcs are
processed by converting them to joins. Finally, if we are left with a discon-
nected graph, the corresponding subtrees are joined by a cartesian product.
Accordingly converting the example in Figure 6 gives us the following plan:

(

S
ff
1

(X, Y)

Y

→

./ S
bf
2

(Y, Z)

)

./

(

S
ff
3

(T, W)

Z

→

./ S
bf
4

(W,Z)

)

As the example above shows, our approach supports bushy join trees (in-
stead of sticking merely to left-linear joint trees). As is evidenced by this
example (and pointed out first in [16]), bushy join trees allow us to avoid
cartesian products in more situations than left linear join trees alone would–
when there are binding restrictions on sources.

7. Implementation and Evaluation

We will start by describing the architecture and implementation of Emerac(Section 7.1).
Next, we will discuss a variety of experiments we conducted to evaluate its
effectiveness. Section 7.2 evaluates the effectiveness of the plan minimization
routines described in Section 5 in terms of their costs and benefits. Sec-
tion 7.3 describes the experiments we conducted to evaluate the techniques
for improving the plan execution that we presented in Section 6. This section
starts with an empirical validation of our assumptions about the domination
of source access costs (Section 7.3.1). The source call ordering scheme is
evaluated over simulated sources in Section 7.3.2, and over sources on the
Internet in Section 7.3.3.

7.1. ARCHITECTURE OF Emerac

Emerac is written in the Java programming language, and is intended to be a
library used by applications that need a uniform interface to multiple infor-
mation sources. Full details of Emerac system are available in [28]. Emerac
presents a simple interface for posing queries and defining a global schema.
Emerac is internally split into two parts: the query planner and the plan execu-
tor. The default planner uses algorithms discussed in this paper, but it can be
replaced with alternate planners. The plan executor can likewise be replaced,
and the current implementation attempts to execute an information gathering
plan in parallel after transforming it into a relational operator graph.

The query planner accepts and parses datalog rules, materialized view
definitions of sources, and LCW statements about sources. Given a query,
the query planner builds a source complete information gathering plan (using
the method from [10]) and attempts to minimize it using the minimization
algorithm presented in Section 5.

jiis-final-kluw.tex; 14/04/2003; 12:16; p.24

25

The optimized plan is passed to the plan executor, which transforms the
plan into a relational operator graph. The plan executor makes use of “$” and
“%”-adornments to determine the order to access each information source in
a join of multiple sources, as described in this paper. The plan is executed by
traversing the relational operator graph. When a union node is encountered
during traversal, new threads of execution are created to traverse the chil-
dren of the node in parallel. Use of separate threads also allows us to return
answers to the user asynchronously, facilitating return of first tuples faster.

Handling Recursion during execution: Since information gathering plans
can contain recursion, handling recursive plans during execution becomes an
important issue. Since each recursive call to a node in the r/g graph [42] can
potentially generate an access call to a remote source, evaluating a program
until it reaches fix point can get prohibitively expensive. Currently, we take a
practical solution to this problem involving depth-limited recursion. Specif-
ically, we keep a counter on each node in the r/g graph to record how many
times the node has been executed. When the counter reaches a pre-specified
depth-limit, the node would not be executed, and an empty set will be returned
to represent the result of executing the node. Since the recursion induced by
the binding restrictions does not involve any negation in the tail of the rules,
this strategy remains sound– i.e., will produce only correct answers.

Wrapper Interface: Emerac assumes that all information sources contain
tuples of information with a fixed set of attributes, and can only answer sim-
ple select queries. To interface an information source with Emerac, a Java
class needs to be developed that implements a simple standard interface for
accessing it. The information source is able to identify itself so as to provide
a mapping between references to it in materialized view and LCW definitions
and its code.

In order to facilitate construction of wrappers for web pages, a tool was
created to convert the finite state machine based wrappers created by Soft-
Mealy [24] into Java source code that can be compiled into information sources
usable by Emerac. We have successfully adapted 28 computer science faculty
listing web pages wrapped with SoftMealy into information sources usable by
Emerac.

7.2. EVALUATING THE EFFECTIVENESS OF PLAN MINIMIZATION

We used the prototype implementation of Emerac to evaluate the effective-
ness of the optimization techniques proposed in this paper. We used two sets
of experimental data. The first were a set of small artificial sources contain-
ing 5 tuples each. Our second data set was derived from the University of
Trier’s Database and Logic Programming (DBLP) online database, which
contains bibliographical information on database-related publications. Indi-

jiis-final-kluw.tex; 14/04/2003; 12:16; p.25

26

1.00E+03

1.00E+04

1.00E+05

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

redundant constrained sources

T
im

e
 t

o
 p

la
n

 &
 E

xe
cu

te
 (

m
s)

 [
lo

g
]

Naïve d=1
LCW d=1
Naïve d=3
LCW d=3
Naïve d=5
LCW d=5

(a) Cumulative costs
of LCW vs. Naive (ar-
tificial sources)

1.00E+03

1.00E+04

1.00E+05

1.00E+06

1.00E+07

1.00E+08

1 2 3 4 5 6 7 8

redundant constrained sources

T
im

e
to

 p
la

n
 &

 E
xe

cu
te

 (
in

 m
. s

ec
.)

 (
lo

g
)

Naive 256 (1)

LCW 256 (1)

Naive 256 (3)

LCW 256 (3)

(b) Cumulative costs
of LCW vs. Naive (ar-
tificial sources)

1.00E+03

1.00E+04

1.00E+05

1 2 3 4 5 6 7 8

unsubsumed constrained sources

T
im

e
to

 p
la

n
 &

 e
xe

cu
te

 (
in

 m
. s

ec
.)

 (
lo

g
) LCW

(c) Effect of unsub-
sumed constrained
sources on LCW

Figure 7. Results characterizing utility of minimization algorithm.

vidual sources used in the experiments corresponded to different subsets of
DBLP data (ranging from 128 to 2048 tuples). In each case, some of the
sources are unconstrained, while others have binding restrictions (leading to
recursive plans). To normalize for differences caused by individual source
implementations, we extracted the data into tables which we stored on disk as
Java serialized data. All experiments were conducted using a simple wrapper
(written in compiled Java) to return the contents of the serialized tables.

The sources delay answering each query for a set period of time in order
to simulate actual latency on the Internet. In all our experiments, this delay
was set to 2 seconds, which is quite reasonable in the context of current day
Internet sources.

Utility of minimization: To see how the planner and executor performed
with and without minimization, we varied the number of duplicate informa-
tion sources available and relevant to the query, and compared the total time
taken for optimization (if any) and execution. Given that the minimization
step involves an exponential “uniform containment” check, it is important to
ensure that the time spent in minimization is made up in improved execution
cost. Notice that we are looking at only the execution time, and ignoring other
costs (such as access cost for premium sources), which also can be reduced
significantly with the minimization step. The naive method simply builds and
executes source complete plans. The “LCW” method builds source complete
plans, then applies the minimization algorithm described in Section 5 before
executing the plans. For both methods, we support fully parallel execution at
the union nodes in the r/g graph. Since in practice, recursive plans are handled
with depth bounded recursion, we experimented with a variety of depth limits

jiis-final-kluw.tex; 14/04/2003; 12:16; p.26

27

(i.e., the number of times a node is executed in the rule-goal graph), starting
from 1 (which in essence prunes the recursion completely).

The plots in Figure 7 show the results of our experiments. Plot a is for the
artificial sources, and shows the relative time performances of LCW against
the naive algorithm when the number of redundant constrained sources is
increased. In this set of experiments, LCW statements allow us to prove all
constrained sources to be redundant, and the minimization algorithm prunes
them. The y-axis shows the cumulative time taken for minimization and ex-
ecution. We note that the time taken by the LCW algorithm remains fairly
independent of recursion depth as well as number of constrained sources. The
naive algorithm, in contrast, worsens exponentially with increasing number
of constrained sources. The degradation is more pronounced for higher re-
cursion depths, with the LCW method outperforming the naive one when
there are two or more redundant constrained sources. Plot b repeats the same
experiment, but with the sources derived from the DBLP data. The sources
are such that the experimental query returns upto 256 tuples. The experi-
ment is conducted for recursion depth limits 1 and 3. We note once again,
that LCW method remains fairly unaffected by the presence of redundant
constrained sources, while the naive method degrades exponentially. Plot c

considers DBLP data sources in a scenario where some constrained sources
are left unsubsumed after the minimization. As expected, LCW performance
degrades gracefully with increased number of constrained sources. Naive al-
gorithm would not have shown such graceful degradation as no sources would
be removed through subsumption.

7.3. EVALUATING THE EFFECTIVENESS OF SOURCE CALL ORDERING

In this section, we report on a set of experiments conducted on both artifi-
cial and real Internet sources to evaluate the effectiveness of our algorithm
(referred to as HT). We compare the performance with two other greedy
approaches for join ordering namely Bound-is-easier (BE) and Reduced Ac-
cess (RA). For sources where HTBP information cannot be ascertained and
hence is not available, HT will work as RA. The aim of our experiments is
to demonstrate that our algorithm outperforms algorithms that concentrate on
reducing only tuple transfer cost (as in BE) or only source access cost (as in
RA). BE corresponds roughly to the algorithm used in Information Manifold
[33] while RA is similar to the algorithm proposed in [46] for reducing source
access costs. The experiments also indirectly show that the kind of coarse
statistics that we assume in our algorithm are likely to be available easily in
practice.

jiis-final-kluw.tex; 14/04/2003; 12:16; p.27

28

 y = 0.0250x + 4887

 y = 0.0256x + 92.119

0

20000

40000

60000

80000

100000

120000

0 1000000 2000000 3000000

Size(in KB)
T

im
e

(m
se

c)

intranet

internet

Linear (internet)

Linear (intranet)

Figure 8. Comparison of Access and Transfer Cost

7.3.1. Verifying the dominance of Access Cost
An important assumption we made in developing the execution algorithm is
about dominance of source access cost over tuple transfer cost for sources on
the Internet. In this section we describe a simple empirical validation of this
hypothesis. We consider access cost as the cost incurred in setting up a con-
nection to a source. Transfer cost is incremental cost for each transaction. We
considered two sources, an internet source http://dvs1.dvlabs.com/adcritic/
and a local intranet source. We recorded the time taken to download various
files with sizes ranging from 10KB to 25MB from both the sources. Each
byte transfer is considered as a transaction. Average values were taken after
4 rounds of data transfer for each file.

Though access(a) and transfer time(t) for a source are not known, they
can be calculated from a plot of downloading time vs. filesize as given in
Figure 8. Source access time (a) is the y-intercept and tuple transfer time (t)
is the slope of the graph.

As can be seen from Figure 8 the access cost for internet source (nearly
5 sec) is much higher than that for intranet source (92 msec). Tuple transfer
time, on the other hand is nearly same for both types of sources. This validates
our assumption that for data sources residing on the Internet, source access
cost is considerably higher than tuple transfer cost.

7.3.2. Source Call Ordering Results for Artificial Sources
Below we present results from the performance evaluation of HT, BE and RA
algorithms for queries over sources mimicking Internet sources. We derived
the sources from the relations present in the “Enterprise Schema” used in
[13]. The sources are designed as Java servlets accessible from a server on the
Intranet. The servlets accept a query and return relevant tuples extracted from
data stored in flat files. To model the latency exhibited by Internet sources, we
delay the response from the servlets. The delay is proportional to the number

jiis-final-kluw.tex; 14/04/2003; 12:16; p.28

29

of tuples in the resultset. Some of the servlets were designed to also mimic
the bursty behaviour (i.e., sending sets of tuples interspersed with delays [43])
shown by some Internet sources. A detailed description of sources in terms
of their attributes and their forbidden binding patterns is given below:

Employeeffffffff(N : Name, S : SSN,B : DateofBirth, A : Address,X : Sex, Y :
Salary, U : Manager,D : DeptNo)

Deptffff(Dn : DeptName, D : DeptNo,U : Manager, T : MrgStartDate)

Deptlocff (D : DeptNo,Dc : Location)

Worksonfff (S : SSN,P : ProjectID,H : Hours)

Projectffff(Pn : ProjectName,P : ProjectId,Dc : Location, D : DeptNo).

The subscripts on source names describe forbidden binding pattern de-
rived from ”$” and ”%” annotations for the sources. Intuitively, FBP and
HTBP will have fewer patterns than the set of feasible binding patterns for a
source. Hence we use them to represent the infeasible/costly binding patterns
thereby reducing the look up time for our experiments.

Table I. HTBP for Artificial Sources

Employee Dept Deptloc Workson Project

f,f,f,f,f,f,f,f b,b b,f,f f,f,b,f

f,f,f,f,f,f,f,b b,f f,b,f f,f,b,b

f,f,f,f,f,f,b,b f,b f,f,b

0

100

200

300

400

500

600

700

800

Q1 Q2 Q3

T
im

e(
m

se
c)

B E

H T

R A

Figure 9. Comparison of algorithms w.r.t Execution Time for Q1,Q2,Q3

The Table I lists source binding patterns that generate large resultsets for
most of the values given to the bound attributes. Each column in Table I is
an HTBP table. Thus given Deptloc(D,“Houston”) and the HTBP table of
Deptloc, one can see that pushing the value Location=”Houston” to the source
Deptloc will result in high traffic. The source Dept has an empty HTBP table.
Hence any query with a binding pattern that is not forbidden for Dept can be

jiis-final-kluw.tex; 14/04/2003; 12:16; p.29

30

0

200

400

600

800

1000

1200

1400

Q1 Q2 Q3

Jo
in

 S
iz

e(
tu

p
le

s)

B E

H T

R A

Figure 10. Comparison of algorithms w.r.t Join Size for Q1,Q2,Q3

0

50

100

150

200

250

Q 1 Q 2 Q 3

S
o

u
rc

e
C

al
ls

B E

H T

R A

Figure 11. Comparison of algorithms w.r.t # of Source Calls for Q1,Q2,Q3

issued to Dept. But we cannot assume a source with no HTBP to have low
cost. Therefore we deliberately modeled Dept to simulate a source with high
response time.

The graphs in Figures 9, 10 and 11 compare the average values of
execution time, size of result sets and number of source calls for BE, HT
and RA. The results were obtained by running queries Q1, Q2 and Q3 using
these algorithms. The queries were generated with 3 different binding pat-
terns per source and 5 different binding values per binding pattern. The times
for running the source call ordering algorithms themselves were minute in
comparison with the execution costs.

Query1 : Q(N, S,B, A,X, Y,U,D,Dn,U, T,Dc)
P lan : Q(N,S,B, A,X, Y,U,D, Dn,U, T,Dc) : −

Employee(N,S,B,A,X,Y,U,D),Dept(Dn,D,U,T), Deptloc(D,Dc).

Query2 : Q(D,Dc, S, P,H, Pn)
P lan : Q(D,Dc, S, P,H,Pn) : −

Deptloc(D,Dc),Workson(S,P,H),Project(Pn,P,Dc,D).

Query3 : Q(Dn,D, U, T,Dc, S, P,H, Pn)
P lan : Q(Dn,D,U, T,Dc, S, P,H, Pn) : −

Dept(Dn,D,U,T),Deptloc(D,Dc),Workson(S,P,H), Project(Pn,P,Dc,D).

From Figure 11, we can see that RA always optimizes the Status: O

jiis-final-kluw.tex; 14/04/2003; 12:16; p.30

31

number of source calls and has the least number of source calls for all 3
queries. BE on the other hand focuses on having smaller result sets and thus
to reduce the transfer cost, as is evident from Figure 10. But no approach is a
clear winner when the total execution cost is considered (see Figure 9). Our
HT algorithm gives lowest execution cost for 2 out of the 3 cases considered.
We can see that HT tries to reduce both number of source calls (Figure 11)
and/or resultset size (Figure 10) while executing the queries. For Q2 and Q3,
HT has source number of source calls equal to BE but smaller result sets
compared to BE and RA and hence achieves lower execution cost. HT strikes
a middle ground compared to BE and RA and tries to optimize both access
cost and transfer cost. Thus HT generates low cost execution plans more often
than BE and RA.

The case where RA is better than HT in Figure 9 shows that HTBP is not
always perfect. We consider a binding pattern as HTBP if it generates large
resultsets for most binding values (without regard to attribute selectivities). It
could well be the case that for a specific instantiation of the binding pattern
(i.e. for particular value(s) of attribute(s)), a HTBP may not generate high
traffic. RA which does not consider HTBP thus makes source calls using this
binding pattern and emerges a winner.

7.3.3. Source Call Ordering Results for Internet Sources
The next set of tests were done on data sources derived from the DBLP Bibli-
ography of AI and Database papers maintained by Michael Ley at http://dblp.uni-
trier.de. We use a simple scenario with the execution plan using only 2 sources:

Dp1fbff,ffff (A:Author, Co:Co-Author, C:Conference, Y:Year)

Dp2ffff (A:Author, T:Title, C:Conference, Y:Year)

We derive two sources Dp1 and Dp2 shown above from the DBLP Bibli-
ography by projecting the corresponding relations from DBLP. Specifically,
we developed a wrapper over DBLP that accepts queries over relations of
Dp1 and Dp2, forwards them to DBLP and extracts the relevant relation from
the resultset given by DBLP. Queries accepted by the wrapper have to sat-
isfy the FBP associated with the projected relation. The subscripts on source
names give the forbidden binding patterns (FBP). HTBP for these sources are
shown in Table II. These HTBP statements can be determined by rudimentary
probing techniques. Specifically, we execute queries on sources with various
binding pattern/value combinations and log the resultset sizes and execution
times. Given similar resultset sizes for two sources, we cannot deduce that
both binding patterns are HTBP since the sources may have differing process-
ing power and database size. Hence we store the execution time for queries
on a source and use these to determine the average response time and resultset

jiis-final-kluw.tex; 14/04/2003; 12:16; p.31

32

Table II. HTBP for Real Sources
Dp1 and Dp2

Dp1(A,Co,C,Y) Dp2(A,T,C,Y)

F,B,B,B F,F,F,B

F,F,B,F

F,B,F,F

B,F,F,F

Table III. Results of accessing Dp1, DP2
using BE and HT

BE HT

Source calls 20.8/15.3 12.7/11.5

Join size 8.8/9.0 8.2/7.9

Time 30.5/21.8 18.8/16.4

size returned by the source. Any binding pattern that generates larger result
sets than average resultset size or has considerably higher response time than
the average case is considered HTBP. The binding pattern restriction for Dp1
is Dp1 ($A, %Co, C, Y) and that for Dp2 is Dp2 ($A, T, C, Y). The “%”
annotation describes that the attribute has to be filtered locally. But both the
sources must bind the attribute ’Author’ to retrieve tuples. The experimental
setup is thus:

Query : Q(A, Co, T, C, Y)

P lan : Q(A, Co, T, C, Y) : − Dp2(A,T,C,Y),Dp1(A,Co,C,Y)

Table III shows the performance of various algorithms for queries over
Dp1 and Dp2. Performance is measured as the number of source calls made,
resultset size (Joinsize) and the query response time (Time). The time in-
curred in executing the source call ordering algorithms were negligible com-
pared to the execution costs. The results show that HT performs better than
BE for these sources. The example also shows that the HTBP statistics can be
collected for real Internet sources and that our algorithm does perform better
than other existing source call algorithms.

8. Related Work

As we mentioned, systems that consider integration in the context of infor-
mation gathering use LAV approach to model sources. In the LAV approach,

jiis-final-kluw.tex; 14/04/2003; 12:16; p.32

33

sources are seen as materialized views over the mediated schema. The user
query, posed in terms of the mediator schema, has to be re-written solely
in terms of source calls. Although this problem, on the surface, is similar to
query rewriting in terms of materialized views [6], there are several important
differences that complicate the query rewriting:

− We are only interested in rewritings that are entirely in terms of source
relations.

− The sources may not contain all tuples satisfying their view definition.
This leads to the so-called open-world assumption, and changes the ob-
jective of query planning from finding a “sound and complete” query
plan to finding a “sound and maximally contained” [10] query plan (a
query plan P for the query Q is maximally contained if there is no other
query plan P ′ for Q that can produce more answers for Q using the same
set of sources).

− The materialized views represented by the sources may have a variety of
access restrictions. In such a case, the maximally contained query plan
may be a “recursive” query plan (or equivalently, an infinite union of
conjunctive plans).

IM [33] and Occam [27] are among the first systems to consider query
planning in the LAV approach. Both these systems search through the space
of conjunctive query plans, to find sound rewritings of the user query, and
optimizing them for efficient execution.

There are two problems with the approaches used by IM and Occam, when
some sources have access restrictions. To begin with, as shown by Duschka
et. al. [10, 11], maximally contained plans will be recursive when we have
sources with access restrictions. The approach of finding sound conjunctive
query plans, used by IM and Occam essentially “unfolds” the recursion14 ,
forcing them to handle infinite unions of conjunctive plans. IM gets around
this by sacrificing guarantees of maximal containment. Specifically, as men-
tioned in [11], while IM ensures that the query plans returned by the system
are feasible (i.e., respect all access restrictions), it does not guarantee maxi-
mally contained plans. Occam [27] was the first to formally recognize that the
maximally contained plan may correspond to an infinite union of conjunctive
query plans. It searches in the space of conjunctive query plans of increasing
lengths, pruning candidate plans when they are found to be redundant.

The unfolding of recursion inherent in IM and Occam also leads to in-
efficient query plan execution. Specifically, the unfolded conjunctive query
plans found by these algorithms tend to have a significant amount of overlap-
ping structure, and executing them separately leads to significant redundant
computation.

jiis-final-kluw.tex; 14/04/2003; 12:16; p.33

34

Emerac uses Duschka’s source inversion algorithm [12] to generate a dat-
alog query plan that is maximally contained with respect to the given query.
The query minimization and optimization are done directly on the datalog
query plan, without converting it to (a potentially infinite union of) conjunc-
tive query plans. Emerac thus avoids the redundant processing involved in
executing unfolded conjunctive query plans.

Friedman and Weld [18] offer an efficient algorithm for minimizing a non-
recursive query plan through the use of LCW statements. Their algorithm
is based on pair-wise subsumption checks on conjunctive rules. Recursive
rules correspond to infinite unions of conjunctive queries, and trying to prove
subsumption through pair-wise conjunctive rule containment checks will not
be decidable. The approach in Duschka [9] also suffers from similar problems
as it is based on the idea of conjunctive (un)foldings of a query in terms of
source relations [39]. In the case of recursive queries or sources with binding
restrictions, the number of such foldings is infinite. In contrast, our minimiza-
tion algorithm is based on the notion of uniform containment for recursive
datalog programs [40]. This approach can check if sets of rules subsume a
single rule. Thus it can minimize a much greater range of plans.

Execution optimization in Emerac involves ordering the calls to the sources
so as to reduce the access and transfer costs. There are some similarities be-
tween this source call ordering and the join ordering in traditional databases.
In contrast to traditional databases however, we cannot assume access to
full statistics in the case of information gathering. For example, the execu-
tion ordering algorithm used in the Information Manifold (IM) system [33]
generalizes the bound-is-easier style approach (first proposed as part of the
Nail! system [35]) to work with Internet sources with multiple capability
records (essentially, multiple feasible binding patterns per source), and to
reduce tuple transfer costs by pushing selections to the sources. Our work
can be seen as further extending the IM algorithm such that it uses coarse
information about the result cardinality for each feasible binding pattern, as
well as unselectable attribute limitations. Unlike the IM algorithm, we also
explicitly consider optimizing both source access cost and tuple transfer cost.
In contrast to IM which focuses on the tuple transfer costs, Yerneni and Li
[46] focus exclusively on minimizing access cost. The algorithm described
in this paper may be seen as striking a middle ground between minimizing
source access costs alone or minimizing tuple transfer costs alone. The ex-
periments in Section 7.3 establish the importance of considering both types
of costs. Finally, while use of heuristic algorithms for query optimization
is one approach for dealing with lack of source statistics, another approach
would be to learn the statistics. In [25], Gruser et. al. describe an approach
for online learning of response times for Web-accessible sources.

It should be noted that systems that address integration in the context of
federated database systems do use more cost-based approaches. For exam-

jiis-final-kluw.tex; 14/04/2003; 12:16; p.34

35

ple, the issue of join ordering in the context of heterogeneous distributed
databases is considered in the DISCO [1] and Garlic [22] projects. In contrast
to our approach, both these projects assume availability of full statistics for
the sources being integrated, and thus concentrate on cost-based optimization
methods. For example, the Garlic optimizer assumes full knowledge of the
statistics about the databases being integrated as well as their access and
query support capabilities. The query processing capabilities are represented
as a set of rules which are used by a Starburst-style optimizer [34] to rewrite
the mediator query. The statistics are used for cost-based optimization. In
the DISCO [1] approach, the optimizer assumes that the wrapper for each
source provides a complete cost model for the source. The main difference
between our approach and the Garlic approach is in terms of the granularity
of knowledge available about the information sources being integrated. While
the Garlic and DISCO approaches are well suited for federated database sys-
tems, where there is some level of central authority, they are less well suited
for integration in the context of information gathering, where the sources
are autonomous and decentralized, and are under no obligation to export
source statistics. Our approach relies on more coarse-grained statistics and
thus can get by without insisting on full knowledge of the source capabilities
and statistics. In our current Havasu data integration project, we are pursuing
a complementary approach–that of learning the needed statistics, and then
using them as the basis for cost-based query optimization [36, 37, 38].

9. Conclusion

In this paper, we considered the query optimization problem for informa-
tion gathering plans, and presented two novel techniques. The first technique
makes use of LCW statements about information sources to prune unneces-
sary information sources from a plan. For this purpose, we have modified
an existing method for minimizing datalog programs under uniform contain-
ment, so that it can minimize recursive information gathering plans with the
help of source subsumption information. The second technique is a greedy
algorithm for ordering source calls that respects source limitations, and takes
both access costs and traffic costs into account, without requiring full source
statistics. We have then discussed the status of a prototype implementation
system based on these ideas called Emerac, and presented an evaluation of
the effectiveness of the optimization strategies in the context of Emerac. We
have related our work to other research efforts and argued that our approach
is the first to consider end-to-end the issues of redundancy elimination and
optimization in recursive information gathering plans.

We are currently exploring the utility of learning rudimentary source mod-
els by keeping track of time and solution quality statistics, and the utility

jiis-final-kluw.tex; 14/04/2003; 12:16; p.35

36

of probabilistic characterizations of coverage and overlaps between sources
[37, 38]. We are also working towards extending our current greedy plan
generation methods, so as to search a larger space of feasible plans and to
make the query optimization sensitive to both coverage and cost [36].

References

1. L. Raschid A. Tomasic and P. Valduriez. Scaling access to heterogeneous data sources
with disco. IEEE TKDE, 10(5), 1998.

2. Serge Abiteboul and Oliver M. Duschka. Complexity of answering queries using
materialized views. In Proceedings of the Twelfth ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems, PODS ’98, 1998.

3. Sibel Adalı, K. S. Candan, Yannis Papakonstantinou, and V.S. Subrahmanian. Query
caching and optimization in distributed mediator systems. In Proceedings of the 1996
ACM SIGMOD International Conference on Management of Data, pages 137–148, June
1996.

4. Sibel Adalı, Kasim S. Candan, Yannis Papakonstantinou, and V. S. Subrahmanian. Query
caching and optimization in distributed mediator systems. In Proceedings of the ACM
Sigmod International Conference on Management of Data, pages 137–148, 1996.

5. Surajit Chaudhuri. An overview of query optimization in relational systems. In Pro-
ceedings of the Sixteenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems, PODS 98, pages 34–43, 1998.

6. Surajit Chaudhuri, Ravi Krishnamurthy, Spyros Potamianos, and Kyuseak Shim. Opti-
mizing queries with materialized views. In Proceedings of the Eleventh International
Conference on Data Engineering, IEEE Comput. Soc. Press, pages 190–200, Los
Alamitos, CA, 1995.

7. Surajit Chaudhuri and Kyuseok Shim. Query optimization in the presence of foreign
functions. In Proc. 19th VLDB Conference, 1993.

8. Sudarshan Chawathe, Hector Garcia-Molina, Joachim Hammer, Kelly Ireland, Yannis
Papakonstantinou, Jeffrey Ullman, and Jennifer Widom. The TSIMMIS project: Inte-
gration of heterogeneous information sources. In Proceedings of the 100th Anniversary
Meeting, pages 7–18, Tokyo, Japan, October 1994. Information Processing Society of
Japan.

9. Oliver M. Duschka. Query optimization using local completeness. In Proceedings of
the Fourteenth National Conference on Artificial Intelligence, AAAI-97, pages 249–255,
Providence, RI, July 1997.

10. Oliver M. Duschka and Michael R. Genesereth. Answering recursive queries using
views. In Proceedings of the Sixteenth ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems, PODS ’97, pages 109 – 116, Tucson, AZ, May 1997.

11. Oliver M. Duschka and Alon Y. Levy. Recursive plans for information gathering. In
Proceedings of the Fifteenth International Joint Conference on Artificial Intelligence,
IJCAI, Nagoya, Japan, August 1997.

12. O.M. Duschka. Query Planning and Optimization in Information Integration. PhD
thesis, Stanford University, 1997.

13. R. Elmasri and S.B. Navathe. Fundamentals of Database Systems. The Ben-
jamin/Cummings Publishing Company, Inc., 2nd edition, 1994.

14. Oren Etzioni, Keith Golden, and Daniel Weld. Sound and efficient closed-world
reasoning for planning. Artificial Intelligence, 89(1–2):113–148, January 1997.

jiis-final-kluw.tex; 14/04/2003; 12:16; p.36

37

15. Daniela Florescu, Daphne Koller, Alon Y. Levy, and Avi Pfeffer. Using probabilistic
information in data integration. In Proceedings of VLDB-97, 1997.

16. Daniela Florescu, Alon Levy, Ioana Manolescu, and Dan Suciu. Query optimization in
the presence of limited access patterns. In Proc. SIGMOD Conference, 1999.

17. Daniela Florescu, Alon Levy, and Alberto Mendelzon. Database techniques for world-
wide web: A survey. SIGMOD Record, September 1998.

18. Marc Friedman and Daniel S. Weld. Efficiently executing information-gathering plans.
In Proceedings of the Fifteenth International Joint Conference on Artificial Intelligence,
IJCAI, Nagoya, Japan, August 1997.

19. Hector Garcia-Molina, Wilburt Labio, and Ramana Yerneni. Capability sensitive query
processing on internet sources. In Proc. ICDE, 1999.

20. Hector Garcia-Molina, Yannis Papakonstantinou, Dallan Quass, Anand Rajaraman,
Yehoshua Sagiv, Jeffrey D. Ullman, Vasilis Vassalos, and Jennifer Widom. The
TSIMMIS approach to mediation: Data models and languages. Journal of Intelligent
Information Systems, 8(2):117–132, 1997.

21. Donald F. Geddis, Michael R. Genesereth, Arthur M. Keller, and Narinder P. Singh.
Infomaster: A virtual information system. In Intelligent Information Agents Workshop
at CIKM ’95, Baltimore, MD, December 1995.

22. Laura M. Haas, Donald Kossmann, Edward L. Wimmers, and Jun Yang. Optimizing
queries across diverse data sources. In Proc. VLDB, 1997.

23. Alon Halevy. Answering queries using views: A survey. VLDB Journal, 2001.
24. Chun-Nan Hsu. Initial results on wrapping semistructured web pages with finite-state

transducers and contextual rules. In Proceedings of the AAAI Workshop on AI and
Information Integration, pages 66–73, 1998.

25. L. Raschid J. Gruser and V. Zadorozhny. Learning response time for websources using
query feedback and application in query optimization. The VLDB Journal, 9, 2000.

26. Subbarao Kambhampati and Senthil Gnanaprakasam. Optimizing source-call ordering
in information gathering plans. In Proc. IJCAI-99 Workshop on Intelligent Information
Integration, 1999.

27. Chung T. Kwok and Daniel S. Weld. Planning to gather information. In Proceedings of
the AAAI Thirteenth National Conference on Artificial Intelligence, 1996.

28. Eric Lambrecht. Optimizing recursive information gathering plans. Master’s thesis,
Arizona State University, August 1998.

29. Eric Lambrecht and Subbarao Kambhampati. Planning for information gathering: A
tutorial survey. Technical Report ASU CSE TR 97-017, Arizona State University, 1997.
rakaposhi.eas.asu.edu/ig-tr.ps.

30. Eric Lambrecht and Subbarao Kambhampati. Optimizing information gathering plans.
In Proc. AAAI-98 Workshop on Intelligent Information Integration, 1998.

31. Eric Lambrecht, Subbarao Kambhampati, and Senthil Gnanaprakasam. Optimizing
recursive information gathering plans. In Proc. IJCAI, 1999.

32. Alon Y. Levy. Obtaining complete answers from incomplete databases. In Proceed-
ings of the 22nd International Conference on Very Large Databases, pages 402–412,
Bombay, India, 1996.

33. Alon Y. Levy, Anand Rajaraman, and Joann J. Ordille. Querying heterogeneous in-
formation sources using source descriptions. In Proceedings of the 22nd International
Conference on Very Large Databases, pages 251–262, Bombay, India, 1996.

34. G. Lohman L.M. Haas, J. Freytag and H. Pirahesh. Extensible query processing in
starburst. In Proceedings of SIGMOD, 1989.

35. K.A. Morris. An algorithm for ordering subgoals in nail! In Proceedings of PODS,
1988.

jiis-final-kluw.tex; 14/04/2003; 12:16; p.37

38

36. Z. Nie and S. Kambhampati. Joint optimization of cost and coverage of query plans in
data integration. In Proc. CIKM, 2001.

37. Z. Nie, U. Nambiar, S. Vaddi and S. Kambhampati. Mining coverage statistics for
websource selection in a mediator. In Proc. CIKM, 2002.

38. Z. Nie, S. Kambhampati, U. Nambiar, and S. Vaddi. Mining source coverage statistics for
data integration. In Proc. Web Information and Data Management (WIDM) workshop,
2001.

39. Xiaolei Qian. Query folding. In Proceedings of the 12th International Conference on
Data Engineering, pages 48–55, New Orleans, LA, February 1996.

40. Yehoshua Sagiv. Optimizing Datalog Programs, chapter 17. M. Kaufmann Publishers,
1988.

41. Anthony Tomasic, Louiqua Raschid, and Patrick Valduriez. A data model and query
processing techniques for scaling access to distributed heterogeneous databases in Disco.
IEEE Transactions on Computers, special issue on Distributed Computing Systems,
1997.

42. Jeffrey D. Ullman. Principles of Database and Knowledgebase Systems, volume 2.
Computer Science Press, 1989.

43. T. Urhan and M. Franklin. Cost-based query scrambling for initial delays. In
Proceedings of SIGMOD, 1998.

44. Vasiis Vassalos and Yannis Papakonstantinou. Using knowledge of redundancy for query
optimization in mediators. In Proceedings of the AAAI Workshop on AI and Information
Integration, pages 29–35, 1998.

45. Vasilis Vassalos and Yannis Papakonstantinou. Describing and using query capabilities
of heterogeneous sources. In Proc. VLDB, 1997.

46. Ramana Yerneni and Chen Li. Optimizing large join queries in mediation systems. In
Proc. International Conference on Database Theory, 1999.

47. Qiang Zhu and Per-Ake Larson. Developing regression cost models for multidatabase
systems. In In Proceedings of PDIS, 1996.

jiis-final-kluw.tex; 14/04/2003; 12:16; p.38

