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ABSTRACT

Automated planning problems classically involve ndingejsence of actions
that transform an initial state to some state satisfying jwttive set of goals
with no temporal constraints. But in many real-world probsg the best plan may
involve satisfying only a subset of goals or missing de nealgdeadlines. For ex-
ample, this may be required when goals are logically comigtor when there are
time or cost constraints such that achieving all goals oe timay be too expensive.
In this case, goals and deadlines must be declared as saft.these partial satis-
faction planning (PSP) problems. In this work, | focus ontigatar types of PSP
problems, where goals are given a quantitative value basedhether (or when)
they are achieved. The objective is to nd a plan with the lpstlity.

A rst challenge is in nding adequate goal representatidinat capture com-
mon types of goal achievement rewards and costs. One pappla@asentation is to
give a single reward on each goal of a planning problem. harexpand on this
approach by allowing users to directly introduce utilitypedadencies, providing for
changes of goal achievement reward directly based on this ggalan achieves.
After, | introduce time-dependent goal costs, where a planrs penalty if it will
achieve a goal past a speci ed deadline.

To solve PSP problems with goal utility dependencies, | labkising state-
of-the-art methodologies currently employed for cladsptanning problems in-
volving heuristic search. In doing so, one faces the chgélenf simultaneously
determining the best set of goals and plan to achieve thems.igbomplicated by
utility dependencies de ned by a user and cost dependentik the plan. To ad-
dress this, | introduce a set of heuristics based on combmsatising relaxed plans
and integer programming formulations. Further, | explareapproach to improve

search through learning techniques by using automatigaiherated state features
[



to nd new states from which to search. Finally, the inveatign into handling
time-dependent goal costs leads us to an improved seatchigee derived from

observations based on solving discretized approximatbnest functions.
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Chapter 1

Introduction

Research into automated planning has usually focused ofultrechievement of
all goals. But this approach neglects many fundamentaiwedd scenarios where
goals and their achievement deadlines can be only partatlg ed. For example,
goals might be logically conicting, and resource congitaimay prevent their
timely achievement. Consider Mars rover mission planninghis situation, goals
involve performing experiments at a variety of locationghwgost constraints (e.g.,
battery power), making it so deadlines might be missed gr asubset of the goals
can be satis ed [88]. We call these problemartial satisfaction plannindPSP)
problems. In this dissertation, we will focus on particulgres of PSP problems,
such that goal achievement can be given some value (e.@raeand actions are
given costs. The objective is to balance a goal's achievéwadue with action costs
to achieve the best plan. In the case where we assign revwagisls, we want to
maximize the overall difference between the reward gainedc¢hieving goals and
the cost of the actions to achieve themnet bene t[95, 88].

In tackling partial satisfaction planning, we face duallages:

2 Finding adequate goal reward representations that captumenon types of

goal achievement reward and goal deadline cost; and

2 Finding effective methods to solve planning problems thaatehgoals with

these representations.

Representations and solving methods have a strong intaracth one another

and decisions made for approaching one challenge haved difect on the other.
1



For instance, focusing on a general representation of giedeement reward di-
rectly effects (and often increases) the dif culty of sa@lgiplanning problems that
involve those representations. Hence, the two topics falmane another and sep-
arating representations and solving methods becomes lcoesto In the end, we
chose to look at our representations in terms of their géiherave reasoned that
more general representations would yield solving methagalsle of handling less
expressive representations that others may nd more apypgebm a user stand-
point. Further, our solving methods may be applicable t@ptrelated problems
and be less specialized in nature.

Given our representations, we solve resulting partias&attion planning prob-
lems using state-of-the-art methods in automated plannirtge decision to use
these methods were based both on our own experiments ancadeors (which
we discuss) and their applicability to the problems at hamdhe rest of this intro-

duction, we summarize the representations and solvingadsttinat we applied.
1.1 REPRESENTINGGOAL ACHIEVEMENT REWARDS AND COSTS

As a baseline representation for goal reward, one can adsomisingle reward
value with each goal fact. But even with this relatively siempepresentation, the
process of nding goals on which to focus is complicated bg thct that they
interact with one another. Actions may share in their agmsent of goals (positive
interaction) or con ict (negative interaction). These @&gof interactions introduce
cost dependencié®tween goals because the cost of achieving them separatgly
differ from the cost of achieving them together.

This dissertation work further extends on this represariato directly ad-
dressutility dependenciesvhich allow users to specify changes in utility on sets

of goals [29]. Two concrete examples of utility dependeneyrautual dependency

2



and conditional dependency. For mutual dependency, they ati a set of goals is
different from the sum of the utility of each individual go&or example, (1) while
the utility of having either a left or right shoe alone is zetloe utility of having
both of them is much higher (i.e., the goals complement edoér) (2) the util-
ity of having two cars is smaller than the sum of the individuidities of having
each one of them (i.e., the goals substitute each other)diGamal dependency is
where the utility of a goal or set of goals depends on wheth&ob another goal
or set of goals is already achieved. For example, the utfityaving a hotel reser-
vation in Hawaii depends on whether or not we have alreadghased a ticket to
Hawaii. A main representational challenge is in nding a rabdhere the different
types of goal utility dependencies can be naturally exgesEor this, we use the
Generalized Additive Independence (GAlgdel [2], combining utility theory and
deterministic planning. This model has the advantagesttisaéxpressive, general,
and can be compiled from other models such as UCP-Netwo#s [1

We also de netime-dependent goal costshere no cost is given for achieving
a goal by a deadline time, but after that time point cost iases until it reaches
a maximum cost value. For example, consider a satellite evgeals should be
achieved on time to avoid negative impact to an organizationdget (due to em-
ployee and equipment usage). There exists a de nable fumain the cost for
missing the satellite's goals. The main challenge in deghthese types of goals
is how to best represent them such that they can be easilgdsolsing a cost
function on goal achievement time, even if the function medr, poses some par-
ticular challenges on how to limit the search space to enstilgions to be found
ef ciently. To these ends, we look at representing lineastdanctions directly, as

continuous functions over time, and using discrete appnakons.

3



To model linear cost functions directly, we use a small subkéhe planning
domain description language PDDL+ [43], an extension of RDiat allows the
modeling of continuous processes over time. This providetht ability to capture
a numeric representation of tbarrent timewithin a plan, a capability that is oddly
lacking from other versions of PDDL. After this, we then de an action that “col-
lects” the penalty cost based on when the goal is achievekingnéhe assumption
that the goal can be achieved only once (though relativehpks extensions can
remove this assumption).

For handling the discretized model, we turn to planning dardascription lan-
guage PDDL3 [48], which allows us to model soft deadlinesidiscrete penalities
where if the deadline is missed, then a penalty is paid. Uilsganguage, we de-
ne several deadlines for each original continuous dea&d¢joal, generating a step

function and allowing the approximation of the continuoastdunction.
1.2 SOLUTION METHODS FORPARTIAL SATISFACTION PLANNING

The main contribution of this dissertaiton is in solving gbgroblems with goal
utility dependencies, where users can de ne reward depenele between goals;
and time-dependent goal achievement costs, such thatngiasteadline incurs
some penalty cost. We also explore methods for compilingrgibartial satisfaction
planning problem de nitions into th@et bene tmodel and look toward how to

solve them.
Solving for Goal Utility Dependencies

To solve PSP problems with goal utility dependencies wedhice heuristics for
an anytime, best- rst branch and bound search (originaiyndd in the planner
Sap&S [7]) and a learning approach that can be used to improve uglatiens by

restarting the search. The heuristic methods use integgraanming (IP) formula-
4



tions to solve the combinatorial problems associated wotd gnd action selection.
The approach for improving search through learning tealesquses search state
features to nd new states from which to search.

In developing heuristics for partial satisfaction plarqithe challenge faced is
in simultaneously determining the best set of goals to aehémd nding the best
plan for them. Both are complicated by utility and cost defeties within a plan.
We rst introduce a set of heuristics that use a combinatibcast propagation
over a relaxed planning graph (similar to the one used in kener FF [63]) and
an IP encoding to capture goal achievement cost and gody (®9]. Speci cally,
the approach solves a relaxed version of the planning prokiat ignores nega-
tive interactions between actions and utility dependenbetween goals. It then
encodes the solution to the relaxed problem in an IP fornagtucing the positive
cost dependencies between actions and all goal utilityribgrecies. The solution
to this IP encoding gives an inadmissible heuristic meafsurgtates during search,
which effectively removes goals from consideration thgbesgy unreasonable to
achieve. We call this heuristit®} . We also implemented an admissible version
of this heuristic, which does not nd a solution to the relexgoblem but instead
uses anaxpropagation over the planning graph structure, capturilogvar bound
on the cost to reach the goals. Then, having found that destcbdes the values
along with the utility dependencies of the goals in an IP falation whose solution
provides an admissible heuristic we daff;! .

As one would expect, these two heuristics perform much bt a heuris-
tic that completely ignores goal utility dependencies agésua solely procedural

approach to removing goals (as done in the plaiSag&S ). Its performance also

lIn the case of maximizing net bene t, an admissible heurisill always over-estimate the net
bene t of goal achievement.



scales much better than encoding the entire problem as adbdtlangth integer
program [29].

While the relaxed plan-based heuristics do a fair job ofnestiing the cost of
goal achievement, ultimately one would like to select atiand goals together to
optimizenet bene t This requires a heuristic estimate with more of an “optamniz
tion” perspective. A standard way of setting up a relaxatiensitive to this is to
formulate an IP encoding for a problem, and then computeanieal programming
(LP) relaxation of this encoding. In addition to being sémsito the objectives
of the optimization, such encodings are also sensitive@émtgative cost interac-
tions between actions—something that is notoriously mgsén standard relaxed
plan heuristics. A challenge in adopting such an approaabivas deciding ex-
actly what type of IP encoding to use. While bounded horizwcodings have been
explored in past work [29], this can only guarantee feagibtms, and offers no
guarantees of optimality.

Hence, we use a heuristic adopting a compact IP encodingsthat dependent
on a horizon bound. It represents the causal interactiotvgele@ actions, thereby
taking negative interactions between actions into accoling a relaxation of the
original problem in that it ignores action ordering, allogifor fewer constraints
and variables than typical encodings. By itself, this IPcgtieg gives an admissible
heuristic. But to increase scalability, an LP relaxationtttg encoding is used,
keeping the heuristic admissible. We call this heuris{f' . On domains we
tested, with the use of lookahead techniques, this heup&iforms quite a bit
better than th@%%! heuristic (also applying similar lookahead techniques®ims

relax

of plan quality given a bounded solving time [9].



Improving Plan Net Bene t Through Learning

Along with heuristics, this dissertation also investigate method of improving
heuristic values through learning techniques. With thénoigation nature of PSP
net bene tproblems, the STAGE algorithm [15] looked to be an attractivethod-
ology, as it had shown promise for improving search in theedrof optimization.
STAGE is an online learning approach that was originallyeirted to improve the
performance of random-restart, hill-climbing technigaasptimization problems.
Rather than resort to random restarts, which may or may pthe base search to
escape a local minimum, STAGE aims to learn a policy that ngeilligently gen-
erate restarts that are likely to lead the hill-climbingrsbaowards signi cantly
better local optima. The algorithm works in two stages: 8thgvhere a base-level
hill-climbing search is run until reaching a local minimumdaStage 2, where the
algorithm trains on a sequence of states that the hill-gluigbearch passed through.
The second stage learns a function that predicts, for a gitages, the valuev of
the optima that will be reached fromby hill-climbing. This learned function is
then used in a new local search to scout for a stitteat has more promise to reach
an even better state. If the learner is effectsfds expected to be a good restart
point. This work adapts this approach to operate within gstesnatic (best- rst
branch and bound) search. We call our modi ed approach Segfe

The main challenge in adopting STAGE to P&& bene tis in nding appro-
priate state features for the learner. Boyan and Moore [$8fibandcraftedstate
features. Unfortunately, it is infeasible to hand-gereefaatures for every planning
domain and problem. Moreover, such interventions run cautd the tenets of
domain-independent planning. Instead, the features dimibenerated automat-
ically from the planning problems. This work uses two tecjueis for generating

7



features. The rst uses the “facts” of the states and theoastieading to those
states as features. The second uses a more sophisticatedit@r syntax to gen-
erate higher level features. Both were implemented andde¢kem using oun&;,

heuristic. The results show the promise of this type of le@ympproach, in one

domain showing signi cant improvements over using !, heuristic alone.
Solving for Related Partial Satisfaction Planning Models

Though PSRPet bene tis one model of representing PSP problems, another broadly
used model for PSP was introduced in the 2006 Internatiolaanihg Competi-
tion. The competition organizers de ned a language callB®P3 (version 3 of
the Planning Domain Description Language). In it, theyddtrced a myriad of
features, including soft top-level goals that induced d ifdsey were not satis ed.
They generated subsets of PDDL3 for the competition, onetoiwwassimple
preferencegPDDL3-SP), and generated a competition track for this subgve
found that these problems can be compiled into R8Fbene tsuch that they can
be solved by a PSRet bene tplanner. Indeed, we implemented this compilation
and entered a planner callétcharfS into the planning competition [7]. This
planner compiles PDDL3-SP problems into P& bene tproblems and solves
them using the planneBap&S . The entry received distinguished performance
award. Later, we also tried a compilation of PDDL3-SP intstdmased planning in

a planner calletochar¥©S™ which experiments performed worse than the compi-

lation to PShhet bene t
Solving for Time-Dependent Goal Cost
All of the solving methods discussed so far relate to hagdétemporal goals.

However, there also exists an important class of PSP prafleat involve the par-

tial satisfaction of deadlines. In these problems, a plamm&y nd a plan that
8



achieves a goal past its stated temporal deadline, and thisethe plan will incur
a penalty cost dependent on when in the plan the goal is reaihjieved. To solve
for these types of problems, we make the assumption thati€@sonotonically
increasing and that all cost increases occur linearly toesgraximum cost value.
As mentioned earlier, we look at solving directly for the ttonous representation
of the cost function and a discretized version of the costtion. Solving for the
discretized model yielded key insights and gave way to @diesearch approach,
combining the ef ciency bene ts that the discretized mogebvides with the ac-
curacy that the continuous model provides. All of the sajvimethods were imple-
mented in a modi ed version of the state-of-the-art tempplannerpOPFto create
a planner called ©ric (Optimizing Preferences and Time-Dependent Costs).
In the continuous models we described, the planner was raddob parse and
handle the extension allowing it to capture therent timewithin a plan. With the
best- rst branch-and-bound search process used ird®rEplanner, the algorithm
uses initial, candidate solutions to prune away the seg@tesby using an admissi-
ble estimate on the plan cost to prune parts of the searcle paiove can guarantee
will lead to worse solutions. For the discretized model, e the built-in solving
methods within @Tic made for handling PDDL3 soft deadlines. The results show
that various decretizations can do better than a continomngel, dependent on the
domain. However, upon investigating the reason for thigyrits out that the rea-
son the discretized models perform better is because th@maoons models' direct
representation of the cost functions provide less prunimigyathan the discretized
model. From these insights, we introduce a tiered searctoaphp that searches for
initial candidate solutions using pruning similar to theés in the discretized mod-

els. With an initial candidate solution, the technique perfs repeated searches

9



mimicking ner and ner grained discretized pruning, graly approaching the
search pruning found in the continuous model. This approacis out to be over-
all superior than either directly handling discretized mledr continuous models
in the domains tested.

The rest of this dissertation proceeds as follows. We dsbosv we formally
represent goal rewards, and the extension into goal utiefyendencies, plus our
extension for time dependent goal rewards (Chapter 2). by 3, we discuss
the anytime search used in our pursuit of solving PSP nettygndlems. We then
discuss the technical details of heuristics and the legrajpproach for solving PSP
net bene tproblems with goal utility dependencies along with empgiricesults
in Chapter 4. In Chapter 5 we discuss the compilation from PBBSP to PShet
bene tand the results from an entry into tB€ International Planning Competition
in 2006, YocharS , that used this compilation. We also show a comparison again
using a compilation to cost-based planning in the same pigrsystem. Also in
that section, we discuss dif culties faced when attemptimgelect goals up-front
on problems from that planning competition. Chapter 6 dises the investigation
into solving planning problems wittime dependent goal costBinally, Chapter 7

goes over related work and we conclude in Chapter 8.
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Chapter 2

Representations for Partial Satisfaction Planning

Classic automated planning problems de ne an initial stateonjunctive set of
goals. The objective is to nd a sequence of actions, alsadd in the problem,
that leads from the initial state to a state containing alhefgoals. Partial satisfac-
tion planning is planning where only some goals or constsatan be satis ed in
full. It can be seen as a generalization of classical plapaird provides a natural
extension to capture a range of scenarios that involvediniésources. Those lim-
its can force a choice to ignore goals or constraints thad@se&ed but unnecessary.
This means that a user must mark goals and other constraiststaor optionally
achievable. Further, plans must have a ranking between, thecause otherwise
the natural procedure would be to simply ignore everythivag ts marked as soft.
To enable this ranking, my work assigns quantitative fuomgiover meeting soft
goals and deadlines.

To start, classical planning is the problem of transformangnitial statd into
a goal states 4 G, given a nite set of uentsF wherel u© F andG pu F. To
transforml into a stateG containing all uents ofG, we de ne a set of action8,
such that each actiam2 A has a set of preconditiongte(a) u F, a set of delete
effects,del(a) 1 F and a set of add effectadd(a) u F. Applying an actioma
to a states requires thas p pre(a). When applied tes, an actiona generates a

new states® such thats® = (s ndel(a)) [ add(a). The objective is to generate a

in sequence leads to a st&evhere8g 2 G;g 2 G.

11



We rst look at partial satisfaction planning with net bengwhich extends on
this. Itis the problem of nding a plan with the maximunet bene tor difference
between achieved goal reward and action costs [88, 95]. Baahg 2 G has a
(constant-valued) utility functiomy whereuy , 0, representing how mucf is
worth to a user; and each actian2 A has an associated execution cqost 0,
representing how costly it is to execute each action (eegresenting the amount
of time or resources consumed). All goals becauft constraintso that any plan
achieving a subset of goals (even the empty set) is a valid plet P be the set of
all valid plans and leGp p G be the set of goals achieved by a pR®2 P. The
objective is to nd a plarP that maximizes the difference between total achieved
utility u(Gp) and total cost of all actions iR:

X X

arg max Ug i Ca (2.1)
P2P 92Gp a2P

In this chapter, we discuss extensions to this model thatigeedor goal utility
dependencies, or reward dependencies between goals sudckheving a set of
goals may have a reward greater (or less) than the sum of edhdual goals'
reward. After, we de ne goal costs in the context of tempgianning, where

actions have duration and goal achievement after a deadbnes a penalty cost.
2.1 GoAL UTILITY DEPENDENCIES

In partial satisfaction planning (PSP) the process of mpgoals on which to focus
is complicated by the fact that they interact with one anotRer instance, actions
may share in their achievement of goals (positive inteoagtor con ict (negative

interaction). These types of interactions introduce cepethdencies between goals
12



because the cost of achieving them separately may differ the cost of achieving
them together. In the previously de ned goal reward modé&t$Pnet bene { goals
only interact through cost dependencies. This work ext@&®I3 to handle utility
dependencies. This allows users to specify changes ityuidised on the achieved
set of goals.

With no utility dependencies on goals their utilities araditide: u(Gp) =
gz%P Ug, Whereug represents the utility of a gogl To represent goal utility depen-
dencies, we adopt th@eneralized Additive Independen@&Al) model [2]. This
model was chosen because it is expressive, general and wmegile to it from
other commonly used models such as UCP-Networks [14]. Ihds the utility of
the goal seG ask local utility functionsf Y(Gk) 2 R over setsGx p G. For any
subseG®u G the utility of Glis:

X
u(GY = f(Gx) (2.2)
kaGO
This model allows users to specify changes in utility oves s goals. We

name the newP SP problem with utility dependencies represented by the GAI
modelPSPP . If there argG;j local functiond ¥(G,) and eacl, contains a single

goal thenPSPP reduces to the original PSP problem (no utility dependexcie
2.2 TIME-DEPENDENTGOAL COSTS

So far we have discussed goal utility functions that arepedeent of achievement
time. That s, the achieved reward is always the same givesame set of achieved
goals. But often penalty can be incurred basewbena goal is achieved [55]. For
example, consider a delivery truck that must deliver gogda particular deadline
and being late means reduced payment. Thidiilme-dependergoal because nal
value of a goal varies with its achievement time.

13



Before diving into how these goals are de ned, it is impottarde ne temporal
actions in temporal planning problems. Temporal planniraplems are typically
de ned using a PDDL2.1 model of actions and time [42]. In thesodels, dura-
tive actions can be split into instantaneous actions liksehn classical planning,
where the two parts of an action (a “start” and “end” poin® knked via a de ned
duration and invariant conditions (i.e., conditions thatstrhold throughout the du-
ration of the action). Hence, we can de ne a ground PDDL2rperal actiona
as having three sets of conditiongte -, conditions that must be true at the start
of a durative actionpre,, the conditions that must be true at the end of a durative
action; preg , the conditions that must hold during the open interval tionaof
the action (i.e., all time points between the start and entti@fiction). Effects of
actions can occur at the start or end as well, wieéfe are the effects that happen
at the start of an action aredf , are the effects that happen at the end of an action.
The duration of the action is single valdar 2 R o.> Actions can execute concur-
rently, meaning that actions may start before others haished. It is important to
note that starting an action forces its end. That is, the &edte of all actions in a
plan must occur before the plan reaches its nal goal stateeise, the goal of
planning is the same. From an initial sthtea nal goal state must be found where
all goals in the goal sé&b are true.

For time-dependent goal costs, we look toward de ning a ¢osttion over
goal achievement within the temporal planning frameworkhe Tdea was rst
explored by Haddawy and Hanks in the context of planning fatinoal utility

plans [55]. One can view these as deadline goals, where ratpeost is given if

lIn PDDL2.1 actions can include a calculable minimum and maxn duration of an action,
but for the sake of simplifying matters, and in all of the damsaon which we discuss, we assume
that each action has a single, pre-de ned duration.
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the goal is achieved before a deadline, but afterwards fkeadinear increase in
cost given for goal achievement until reaching a maximun eakie (at another
given time point). We would like to nd the lowest cost planthre presence of such
goals?

We model time-dependent goal cost as a function of the gaaid its nal

achievement timg:3

0 if tg -ty

oGty = | ol 0gy ifta<ty- tos

td+ i

VWY AR 00

wherecy is the full cost forg, tq is the soft deadline time for the goal ahd . is
the time point where full penalty cost is given for the goahislfunction ensures
that no cost is given if the goal is achieved beftyepartial penalty is given if the
goal is achieved betwedgp andtg. . and the full cost is paid if the goal is achieved

afterty. .. For each goal, we sum the costs of their achievement and e is

to minimize the cost.

2This objective is compilable directly intoet bene tas de ned earlier.

3We assume a goal can be achieved once (and not deleted thehiesed). This assumption
can hold without loss of generality via the use of compilatiechniques to force a dummy goal to
become true at the original goal's rst or last achieveméntt
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Chapter 3

Heuristic Search for Maximizing Net Bene t

Effective handling of PSP problems poses several chalkrigeluding an added
emphasis differentiating between feasible and “good” @ldndeed, in classes of
PSP problems that involve all soft goals and constraintsvally feasible, but
decidedly non-optimal solution would be the “null” plan;athis, choosing to do
nothing and ignoring the goals. In the case of PSP, one hasotif@ed problem
of deciding what goals to pursue (in the case of soft goalegnto achieve them
(in the case of time-dependent costs) and nding the best faachieve those
goals so that we may nd the best solution. Choosing goalarihér complicated
in the presence of goal utility dependencies, were we havertsider both action
interactions and goal interactions.

All of the main planning methods in this dissertation haw&rtbasis in heuris-
tic search (even the techniques inspired by local seardhateadiscussed in Sec-
tion 4.4). In this chapter, we discuss the search methodfosg@rtial satisfaction

planning when maximizinget bene t*
3.1 BESTFIRST HEURISTIC SEARCH FORPSP

The planneiSap&S [7] provides the underlying search algorithm for most of the
planners discussed in this dissertation. This best- mstiristic forward search plan-
ner uses an anytime variation of tAé [56] algorithm guided by a heuristic derived
from the relaxed planning graph [63]. Lik&", this algorithm starts with the initial

stateS;,; and continues to dequeue from the open-list the most progiisdsdeS

1The planner @Tic, which is used for handling soft temporal planning deadliaad is dis-
cussed in Chapter 6 also uses heuristic search. Howevazaitsh works toward minimizing penalty
costs and uses a search strategy geared toward scalingtepifooral planning.
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(i.e., highesf (s) = g(s) + h(s) value). For each search nodeg(s) represents
the bene t achieved so far by visitirgfrom s,y andh(s) represents the projected
maximum additional bene t gained by expandiagwith plan bene t de ned in
Section 2.1. Though calculatirg(s) is trivial, having a good estimate ¢is) is
hard and key to the success of best- rst search algorithmsinQ exploration of
the search tree the algorithm keeps outputting bettertyydins whenever a node
S with the best-so-fag(s) value is expanded (i.e., it outputs a “best” plan upon gen-
erating it rather than when a state is expanded). Bikethe algorithm terminates
when it chooses a nodewith h(s) = 0 from the open list.

On top of this, the algorithm additionally uses a rudimeptapnkahead tech-
nique derived from the relaxed plan graph-based heurwstiu)ar to what is done
in the planner YAHSP2 [97], but using a relaxed plan strietmd without a re-
pair strategy. Speci cally, it takes relaxed plans foundidg the calculation of the
heuristic and repeatedly attempts to simulate their exacuintil either all actions
have been simulated or no further simulation is possible. résulting state is then
added to the search queue, effectively probing deeperhitedarch space.

In practice, the search algorithm prunes the search spaegrimyving nodes that
appearunpromising(i.e., nodes where the estimated bene t is negative). Thoug
this improves ef ciency, one potential drawback is that wia@ inadmissible heuris-
tic h(s) underestimates the value of a search ngdkeens will be discarded (when
compared to the benet of the best solution found sodéss) from a statesg)
even if it can be extended to reach a better solution. A siraitategy is used in the
planner @rTIC, which we use for time-dependent costs, though it always ase
admissible heuristic to prune (and hence does not suffer this drawback). For

the other planners, one difference frd®ap&S , is that the algorithm is modi ed
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to keep some search nodes that appear unpromising whenengrgted. During
search it sets a valikeas half the distance between the best node found s far
and the worst-valued unpromising node. For each unpromssarch nods that

is within a threshol@ of the current best solution, it nd% the complement of the
percentage distance between it and the beneggofi.e., g(sg)). It then keeps
with probability’2 Note that it only uses this method when applying inadmissib
heuristics.

Anytime Best-First Search Algorithm for PSP: One of the most popular methods
for solving planning problems is to cast them as the problérmsearching for a
minimum cost path in a graph, then use a heuristic searchda solution. Many
of the most successful heuristic planners [13, 63, 31, 7Pe®ibloy this approach
and use variations of best- rst graph search (BFS) algor#ho nd plans. We
also use this approach to solve P& bene tproblems. In particular, many of
the planners in this dissertation use a variatioAdbfwith modi cations to handle
some special properties of P8Bt bene t(e.g., any state can be a goal state when
all goals are soft). The remainder of this section will mélthem and discuss the
search algorithm in detail.

Standard shortest-path graph search algorithms searahmorimum-cost path
from a start node to a goal node. Forward state space searshl¥ing classical
planning problems can be cast as a graph search problentagso(1) each search
noden represents a complete planning stsit€?) if applying actiona to a states
leads to another stag3then actiora represents a directed edge 9" s°from's
to s°with the edge cost, = ¢, ; (3) the start node represents the initial statét) a
goal node is any statg; satisfying all goalg 2 G. In our ongoing example, at the

initial statel = fat(A)g, there are four applicable actioas= Move(A;B), a; =
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Move(A;C), a3 = Move(A; D), anday = Move(A; E) that lead to four states
s; = fat(B); a0, s2 = fat(C); a0, s3 = fat(D);gs0, ands, = fat(E); g.0.
The edge costs will represent action costs in this planniaggransition grapgh
and the shortest path in this graph represents the lowesptms Compared to
the classical planning problem, the P& bene tproblem differs in the following

ways:

2 Not all goals need to be accomplished in the nal plan. In tkaeeyal case

where all goals arsoft, any executable sequence of actions is a candidate

plan (i.e., any node can be a valid goal node).

2 Goals are not uniform and have different utility values. Pplan quality is not
measured by the total action cost but by the difference batee cumulative
utility of the goals achieved and the cumulative cost of tteas used. Thus,
the objective function shifts frorminimizingtotal action cost tanaximizing

net bene t.

To cast PSRet bene tas a graph search problem, some changes are necessary

so that (1) the edge weight representing the change in plaatdey going from a
search node to its successors and (2) the criteria for tatimgnthe search process
coincides with the objective of maximizing net bene t. Eioomes a discussion
on the modi cations, then a discussion on a variation of Afesearch algorithm
for solving the graph search problem for PSP. To simplify diseussion and to
facilitate proofs of certain properties of this algorithttme algorithm will make the
following assumptions: (1) all goals are soft constrai{@¥the heuristic is admis-

sible. Later follows a discussion about relaxing one or nudrthose assumptions.

2In the simplest case where actions have no cost and the imejéenction is to minimize the
number of actions in the plan, the algorithm can consideactlbns having uniform positive cost.
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g-value: A" uses the valué (s) = g(s) + h(s) to rank generated statessfor
expansion withg representing the “value” of the (known) path leading frora th
start staté tos, andh estimating the (unknown) path leading frato a goal node
that will optimize a given objective function. In PSft bene { g represents the
additional bene t gained by traveling the path frdmo s. For a given stats, let

Gs 1 G be the set of goals accomplishedsirthen:

g(s) =(U(s)i U(l))i C(Pii s) (3.1)
P P . . .
whereU(s) = ug andU(l) = ug are the total utility of goals satis ed in
92Gs P 92G,
sandl. C(P,, §) = C, is the total cost of actions iR, s. For example:
az2Py g

U(sz) = Ug, =100, andC(P;: s,) = Ca, = 90 and thugy(sp) = 100 90 = 10.

In other wordsg(s) as de ned in Equation 3.1 represents the additional bene t
gained when plaR,, s is executed il to reachs. To facilitate the discussion, we
use a new notation to represent the bene t of a ghateading from a stats to
another state®

X

B(Pjs) = (U(s)i U(s) i Ca (3.2)
azP

Thus, we havg(s) = B(P,, 4jI).

h value: In graph search, the heuristic valhés) estimates the path frosto the
“pest” goal node. In PSRet bene t the “best” goal node is the nodg such that
traveling froms to sy will give the most additional bene t. In general, the closer
thath estimates the real optimiaf value, the better in terms of the amount of search

effort. Therefore, we rstintroduce the de nition df°.
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Best bene cial plan: For a given states, a best bene cial planPg is a plan
executable irs and there is no other plaR executable irs such that:B (Pjs) >
B(PEjs).

Notice that an empty plaR. containing no actions is applicable in all states
andB (P.js) = 0. ThereforeB (PEjs) , 0for any states. The optimal additional

achievable bene t of a given stasds calculated as follows:

h*(s) = B(PSjs) (3.3)

In our ongoing example, from stats,, the most bene cial plan is
P2 = fMove(C; D), Move(D; E)g, andh®(s;) = B(PEjs,) = U(f gs; G2; u0) i
U(f%0) i (Cvove(c:d) + CMove(d:e)) = ((300+100+100) j 100); (200+50) =
400j 250 = 150 Computingh® directly is impractical as the algorithm needs to
search foiP® in the space of all potential plans and this is as hard asraplyie
PSPnet bene tproblem for the current search state. Therefore, a goodajppa-
tion of h® is needed to effectively guide the heuristic search allgorit

Figure 3.1 describes the anytime variation of fkiealgorithm that is used to
solve the PShhet bene tproblems. LikeA®, this algorithm uses the valde =
g+ hto rank nodes to expand, with the successor generator amchiingh values
described above. It is assumed that the heuristic usadnsgssible Because the
algorithm tries to nd a plan that maximize®et bene t admissibility means over-
estimating additional achievable bene t; thug;s) , h"(s) with h“(s) de ned

above. Like other anytime algorithms, the algorithm keeps mcumbent value
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SEARCI—(H:;H_-,T G;AI)

1.901) A ug
g2l

2.F(1)A g(I)+ h(l)

3.Bg A g(l)

4.Pg A;

5.0PEN Af Ig

6. whileOPEN 6 ; and notinterrupteddo

7. sA argmaxf (x)
x20PEN

8. OPEN A OPEN nfsg

9. ifh(s)=0

10. stop search

11. else

12. foreacts’2 Successorgs)

13. ifg(s®) >Bg

14. Ps A plan leading from to s°
15. Bg A g(s9

16. OPEN A OPENnfs : f(s) - Bgg
17. iff (Y >Bg

18. OPEN A OPEN [f s%Y

19. ReturrPg

Figure 3.1: Anytime A* search algorithm.

Bg to indicate the quality of the best found solution at any giveoment (i.e.,
highest net bene t§.

The search algorithm starts with the initial stdtand keeps expanding the
most promising nods (i.e., one with highest value) picked from th€©PEN list.
If h(s) = 0 (i.e., the heuristic estimate indicates that there is not@adal bene t
gained by expanding) the algorithm stops the search. This is true for the termi-
nation criteria of theA® algorithm (i.e., where the goal node giviegs) = 0). If

h(s) > 0, then it expands by applying applicable actiorsto s to generate all

SFigure 3.1, as implemented in our planners is baseSap&S and does not include duplicate
detection (i.e., n@CLOSEDIist). However, it is quite straightforward to add duplieatetection to
the base algorithm similar to the w&L OSEDIist is used inA”°.
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successors. If the newly generated node has a betteg(sY value than the best
node visited so far (i.eg(s®) > B g), then it recorddy leading tos® as the new
best found plan. Finally, if (s% - Bg (i.e., the heuristic estimate indicates that
expandings’ will never achieve as much additional bene t to improve therent
best found solution), it will discard® from future consideration. Otherwisgis
added to th®©P EN list. Whenever a better solution is found (i.e., the valuB pf
increases), it will also remove all nodgs2 OP EN such thaf (sj) - Bg. When
the algorithm is interrupted (either by reaching the timenxemory limit) before the
node withh(s) = 0 is expanded, it will return the best pl&a recorded so far (the
alternative approach is to return a new best [farwhenever the best bene t value
Bg is improved). Thus, compared &, this variation is an “anytime” algorithm
and always returns some solution plan regardless of thedrmeemory limit.

Like any search algorithm, one desired property is presgrgptimality. If the
heuristic is admissible, then the algorithm will nd an ap@l solution if given

enough time and memofty.

Proposition 1: If h is admissible and bounded, then the algorithm in Figure 3.1
always terminates and the returned solution is optimal.
Proof: Given that all actiong have constant cost > 0, there is a nite number

P
of sequences of actions (plari3)such that ¢, - Ug. Any states generated by
az2pP

“Note that with the assumption bfs) being admissible, we havgs) , 0 because it overes-
timatesB (PEjs) , 0.

5Given that there are both positive and negative edge beme tise state transition graph, it
is desirable to show that there is no positive cycle (any j&olving positive cycles will have
in nite achievable bene t value). Positive cycles do notigxn our state transition graph because
traversing over any cycle does not achieve any additioilaydut always incurs positive cost. This
is because the utility of a search natlis calculated based on the world state encodeditot what
accumulated along the plan trajectory leading)owhich does not change when going through a
cyclec. However, the total cost of visitingjis calculated based on the sum of action costs of the plan
trajectory leading tes, which increases when traversing Therefore, all cycles have non-positive
net bene t (utility/cost trade-off).
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planP such thatP Ca > 2£ Ug will be discarded and will not be put in tl@PEN

list becausd (s)a2<F> 0 - Bg. Given that there is a nite number of states that can
be generated and put in ti&PEN list, the algorithm will exhaust th©PEN list
given enough time. Thus, it will terminate.

The algorithm in Figure 3.1 terminates when either @fEN list is empty or
a nodes with h(s) = 0 is picked from theOPEN list for expansion. First we
see that if the algorithm terminates whé&P EN = ;, then the plan returned is
the optimal solution. If (s) overestimates the real maximum achievable bene t,
then the discarded nodsslue to the cutoff comparisdn(s) - Bg cannot lead to
nodes with higher bene t value than the current best fourldtsm represented by
Bg. Therefore, our algorithm does not discard any node thatezahto an optimal
solution. For any nods that is picked from th©PENI ist for expansion, we also
haveg(s) - Bg becausd®g always represents the highgstalue of all nodes that
have ever been generated. Combining the fact that no exgarutke represents a
better solution than the lateBg with the fact that no node that was discarded from
expansion (i.e., not put in or ltered out from t@PEN list) may lead to a better
solution tharBg, we can conclude that if the algorithm terminates with an tgmp
OPENIist then the nalBg value represents the optimal solution.

If the algorithm in Figure 3.1 does not terminate w@REN = ;, then it
terminates when a nodewith h(s) = 0 was picked from th©PEN list. We can
show thast represents the optimal solution and the plan leadirsgtas the last one
output by the algorithm. Whesiwith h(s) = 0 is picked from theDPENIist, given
that8s’°2 OPEN :f (s)= g(s), f(sY, all nodes inth@©PENIist cannot lead to
a solution with higher bene t value thag(s). Moreover, letsg represent the state

for which the plan leading tsg was last output by the algorithm; thBg = g(sg).
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If sz was generated before then becausé(s) = g(s) < g(sg), s should have
been discarded and was not added to@REN list, which is a contradiction. If
sg was generated aftex then becausg(sg) , 9(s) = f (s), s should have been
discarded from th@®©PEN list whensg was added to th©PEN list and thuss
should not have been picked for expansion. Given shaas not discarded, we
haves = sg and thusPs represents the last solution output by the algorithm. As
shown above, none of the discarded nodes or nodes still @#teN list whens is
picked can lead to better solution thanwheres represents the optimal solution.
o)
Discussion: Proposition 1 assumes that the heuristic estinmaie bounded and
this can always be done. For any given sgtEquation 3.3 indicates thhf(s) =
B(PEjs) = (U(s9)i U(s))i i Ca- U(sY = i Ug - i Ug = Ug. Therefore,
a2P8 g2s° 926G
it is possible to safely assume that any heuristic estimatebe bounded so that
8s:h(s) - Ug.

To simplify the discussion of the search algorithm desdctilove, several as-
sumptions were made at the beginning of this section: alkgua soft, the heuristic
used is admissible, the planner is forward state space hand are no constraints
beyond classical planning. If any of those assumptionsdkated, then some ad-
justments to the main search algorithm are necessary ordmnd-irst, if some
goals are “hard goals”, then only nodes satisfying all haragcan be termination
nodes. Therefore, the condition for outputting the new bmstd plan needs to be
changed frong(s) > B to (g(s) > Bg) " (Gn 2 s) whereG,, is the set of all
hard goals.

Second, if the heuristic is inadmissible, then the nal il is not guaranteed

to be optimal. To preserve optimality, it is possible to platl generated nodes in
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the OPEN list. Finally, if there are constraints beyond silze planning such as
metric resources or temporal constraints, then adjussmenst be made to the state
representation. Indeed, in the case of temporal problethsr gearch algorithms
may be more suitable so that temporally expressive plarpriolglems can be han-
dled [27]. To these ends, Chapter 6 discusses the use otagatiffbaseline planner
that is suitable for dealing with temporally expressivenpliag problems [24, 23]

for soft temporal deadlines.
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Chapter 4

Solving for Goal Utility Dependencies

While solving for goals that have individual rewards offéssown set of challenges,
handling goal utility dependencies presents its own issiieependencies are de-
ned such that only positive reward is given for achievinged sf goals, then we
have the same problem as having individual rewards (i.eevery goal set we can
de ne a dummy goal with reward that becomes true when the sebrines true).
However, with negative rewards the situation becomes mibi@ll in practice.
Indeed, heuristics based on ignoring delete lists of astlmave dif culty picking
up on negative penalties. That is, when a goal independkrtks bene cial but
gives a negative value when combined with other goals, simg@herating dummy
sets will not work. The heuristic will assume the “cheapedghpto each goal set,
effectively making the assumption that only the positivades of goal achieve-
ment. The issue is that these heuristics typically only warsthe cheapest cost
of goal reachability, ignoring decisions on whether to aehiparticular sets of end
goals based on negative rewards.

This chapter discusses methods to handle problems withugitigt dependen-
cies. It rst brie y discusses a technique that can extendaia integer program
(IP) encodings of planning problems to include constraimtsgoal utility depen-
dencies. The main disadvantage of this approach is thatd&damys of problems
require a limit on the plan length (i.e., it limits the plangihorizon such that op-
timality can never be fully guaranteed), and therefore ary optimal to some
bound. Hence, we cover heuristics that combine planninghgraethods with a

declarative integer program (IP) encoding. The rst hetizgsgenerate an IP en-
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coding over the relaxed plan heuristic. In these heuristies IP encoding selects
a goal set along with an estimated cost for achieving it. Whis method it is
possible to generate admissible and inadmissible hexgjstihere the admissible
heuristic can guarantee optimal solutions when the sedgdrithm terminates.
The main innovation is the combination of a relaxed plan kizatdles cost interac-
tions between goals and a declarative IP encoding that ephoth mutual goal
achievement cost and goal utility dependencies. We theadate and discuss an
IP-based admissible heuristic that relies on an actionrorgleelaxation, which
then is further relaxed to a linear program (LP). And nallye discuss a learning

method that can be used to improve plan quality in some cases.
4.1 |P ENCODING FORPSPP

Since classical planning problems can be solved by IP, amtedP provides a
natural way to incorporate numeric constraints and ohjedtinctions, it follows
thatPSPP planning problems can be solved by IP as well.

This section discusses an IP formulation to harfiB#® problems by extend-
ing the generalized single state change (G1SC) formuldfiéh Currently, the
G1SC formulation is the most effective IP formulation fohsog classical plan-
ning problems, and it outperforms the previously develdpeibrmulation used to
solve PSP problems without utility dependencies [95].

The G1SC formulation represents the planning problem asaf fmwosely cou-
pled network ow problems, where each network correspomdgrte of the state
variables in the planning domain. The network nodes coomgdpo the state vari-
able values and the network arcs correspond to the valusiticars. The planning
problem is to nd a path (a sequence of actions) in each nétwach that, when

merged, they constitute a feasible plan. In the networkdes@nd arcs appear in
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layers, where each layer represents a plan period. Theslayerused to solve the
planning problem incrementally. That is, we start by perfimg reachability analy-
sisto nd a lower bound on the number of layers necessaryliesbe problem. If
no plan is found, all the networks are extended by one exyex land the planning
problem is solved again. This process is repeated untilmiplound (see [96] for
a complete description of the G1SC formulation).

In order to deal with utility dependencies we incorporater fextensions to the

G1SC formulation:

2 |In PSPP problems, not all goals have to be achieved for a plan to tsédiea
Therefore, we remove those constraints from the G1SC fation which

state that goals must be achieved.

2 For each goal utility dependency functiGn, we add a variables, 2 f 0; 1g,

wherezg, =1 if all goals inGy are achieved, anzi;, = 0 otherwise.

2 For each goal utility dependency functi@y, we add constraints to ensure

thatGy is satis ed if and only if all goalgy 2 Gy are achieved, that is:

X
Yergr 1] Gej+1 - Zg, (4.1)
f;g 2D5('92Gk
f2D¢

whereD. is the domain of a state varialbdey.rqr 2 f0;1g are variables
of the IP problem that represent value changes in the statbles, and is

the plan horizon.

2 We create an objective function to maximize the net-benattlity minus

cost) of the plan.

29



X X
MAX u(Gy)zg, i CaXat (4.3)
Gk azA;l-t- T
whereu(Gy) represents the utility of satisfying the goal utility degency

functionGy, andc, represents the cost of executing actiod A.

The extended G1SC formulation is bounded length optimel, (it generates
optimal plans for a plan horizom). Global optimality cannot be guaranteed as

there could still be solutions with higher net bene t at lenglan horizons.
4.2 DELETE RELAXATION HEURISTICS FORGOAL UTILITY DEPENDENCIES

A relaxed planning graph is created by iteratively applyatigpossible applicable
actions given the propositions available, thereby geimgyat union of the previ-
ously available propositions with the ones added by apglwe actions. This can
provide a cost estimate on reaching a particular proposityosumming the cost of
each action applied to reach it, always keeping the minimumsed cost (i.e., the
cheapest cost to reach any proposition). This process lesdaadst propagation
After this, we can extract a relaxed plan from the planningpgrby nding the
supporting actions for the set of goals. The heuristic vaugpically taken from
the sum of the cost of all actions in the relaxed plan. If weld@xtract an optimal
relaxed plan the heuristic would be admissible. Howevee, tuthe dif culty of
this task (which is NP-hard [19]) greedier approaches aneigdly used (such as
preference for the cheapest supporting action at each step)

In these heuristic methods we estimate the €gj to achieve each goal [33].
Starting withC(f ) = 0 for factsf in the initial statd andC(f ) = C(a) = 1 for all
other facts and all actions, the propagation rules to estim@sts to achieve facps

and to execute actiorssare?

lca, which is the execution cost &, is different fromC(a), which is the estimated cost to
enable the execution af(i.e., costs to achieve preconditionsa)f
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2 Facts:8f : C(f) = fl;/IALdN(a) (C(a) + c)

1. Max-prop:8a2 A : C(a) = fl\z/IF;Ar\e)Ea) C(f);or

2. Sum-propB8a2 A : C(a) = f2F§re(a)C(f)

The update rules are used while extending a (relaxed) pigmgraph structure [11].
After the propagation is done (i.e., no costs chan@g) is an estimate on the cost

to achieve for each goag 2 G.
Deriving Heuristics from Propagated Costs

This dissertation will use the notatidij to name the heuristics. Hereis the
method used to de ne the goal utilities agds the method used to estimate the
goal costs. The dependencies between goal utilities car bed using the GAI
model (discussed in Chapter 2) while the dependencies batgeal costs can be
estimated using relaxed plafs.

It is easy enough to observe that if we usaxpropagation (max-prop), then
C(g) will underestimate the cost to achiegavhile there is no such guarantee for
sumpropagation (sum-prop) [13]. With max propagation, we haneadmissible
heuristic, allowing optimal solutions to be found. UsiG) calculated by the cost

propagation process outlined, we can estimate the achelahe t value as:

heA = MAX [u(GY i (MAX 9 (4.4)

Notice part of the heuristic includes the local utility fuloms as de ned in

Equation 2.2 (see Section 2.1). As such, the heuristic ttjrepplies the GAI

model. If using max-prop, then Equation 4.4 will give thg4! heuristic and if

2Given this notation, we can view the heuristic used in thapéaSap&S [7] ash$i™ because
it sums the individual goal utilities and extracts a relaptah to estimate cost.

31



using sum-prop, it will give a correspondim@/) heuristic. Whileh®2!, overes-

timates the real achievable benet, there is no such gueeafurh) . Recall
that since the problem involves maximizing net bene t, anirisic that always
overestimates is required to maintain admissibility. THenssibility of hG2! is
maintained since the goal utility dependencies are solvedifectly (with the cost
estimates fronmaxpropagation) or in a relaxed fashion. In other words, smee
propagation provides an underestimate of individual ¢astshC2!, solves the goal
utility dependencies exactly, its admissibility is maintd since the heuristic will
always provide an overestimate of total achievatdebene t

To handle the goal utility dependencies with the propagated, the heuris-
tic solves the following integer program to get the nal histic value, whereC

represents the propagated cost value:

2 Binary Variables:

- 892 G;8Gk u G; f¥(Gk) 6 0: create one binary integer variabig,
X, -

2 Constraints:

P
- . 1i X+ Xg,, 1
92 Gy

-802Gk: (1i Xg )+ Xy, 1
2 Objective: MAX(P fY(Gk) @ Xg, i C).
Relaxed Plan-based Heuristic
h&4 can easily offer a high overestimate on thet bene t since it relies on max
propagation, a weak estimate on the cost to achieve indivigoals. ThehSA

sum

heuristic, while more informative, relaxes the cost intdicm and assumes that
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plans achieving different goals are independent and do vetlap. To improve
on this, it is possible to adapt the relaxed plan heuristist introduced in the FF
planner [63], that solves a relaxation of the planning peobby delete effects (also
called the “delete list”). This heuristic offers improventg overh&/l by taking
into account actions contributing to the achievement oéshgoals. The challenge
in extending it to PSP with goal utility dependencies is hovwet ciently nd a
high-bene t relaxed plan in the presence of both cost andyutiependencies.

Let Gp- 1 G be the set of goals achieved by the relaxed an The relaxed

plan heuristic foPSPP is:

X
h® S = MAX  u(Ge+) i Ca (4.5)

a2p+

Note that Equation 4.5 looks like Equation 2.1 except thatdjptimal planP
in Equation 2.1 is replaced by the optimal relaxed piih (i.e., one achieving
maximum bene t for the relaxed problem) in Equation 4t8.S3. overestimates
the real achievable bene t and can be used as an admissibistiein the search
to nd the optimal solution forPSPP problems.

While nding a satisfying relaxed plaf* for any given goal seGp- n G
is polynomial, extractingy® i requires nding an optimal relaxed plan (highest
benet). This task is NP-hard even when we already know thintgd goal set
Gg. and actions have uniform cost [19]. To approximateZy, for PSPP the

heuristic uses the following three steps. The rst two stegese introduced in the

plannerSap&° while the third step is novel:

1. Greedily extract a low cost relaxed plBi that achieves thiargestset of

achievable goals.
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2. Capture the achievement cost dependencies betweewateigoals using

the causal structure &f*.

3. Pose the problem of extracting the optimal subplan wighirthat takes both
cost and utility dependencies into account as an IP encodigolution

h&il of this IP encoding is used to estimateSy! .

relax

Step 1: Heuristically Extract a Low Cost Relaxed Plan: Let G° u G be the
set of all achievable goal€(g) < 1 ). The heuristic uses the planning graph and
the propagated achievement costs to heuristically exarbmt-cost relaxed plan to

supportGPas follows:

1. Start with supported facBF = |, subgoal seBG = G°n| and the relaxed

planP* = ;.

2. For eaclg 2 SG select a supporting actiam: g 2 Add(a) with lowest
execution cost(a) value. UpdateP* A P* [f ag, SGA SG[ (Pre(a)n
SF) andSF A SF[ Add(a).

3. RepeatuntifG = ;.

This backtrack-free process is guaranteed to nish in tirog/pomial in the
number of actions.
Step 2: Build Cost Dependencies withiP*: Because certain actions contribute
to the achievement of multiple goals, there are dependgha®veen the costs to
achieve them. Those relations can be discovered by usingatiial structure of

the extracted relaxed pldh" .
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To capture the mutual dependencies between the goal anieewveosts, the
heuristic nds the set of actions shared between differentigl plans achieving

different goals. This uses the causal links in the relaxad BI* .

GS(a) = [ GS(p) (4.6)
p2 Effect (a)

8 s
3 pl ( GS(a)) if p2 G

GS(p) - Sp2Prec(a) (4'7)
3 GS(a) if p62G

p2Prec(a)

Using the above equations for each ac#S(a) contains the set of goats
thata contributes to, where the goal-supporting S88&(a) represent the achieve-
ment cost dependencies between goals.

Step 3: Estimate the Maximum Achievable Bene t: In this step, the heuristic
combines the goal supporting $86(a) found in the previous step with the goal
utility dependencie$" to nd the most bene cial relaxed plaR °within P*. One
naive approach to ndP®p P* is to iterate over alP®r+] subsetsG® p Gp-

of goals, whereGp -+ is the set of goals achieved B/, and compare the bene t
of plansP?achievingG® However, wherGj is large this approach becomes im-
practical. Therefore, the heuristic uses a declarativecgmbh of setting up an IP
encoding with its solution representing the most bene oiédxed plarPp P*.
Note that while IP is generally slow, the number of actiongh@a relaxed plan is
much smaller an IP encoding of the entire (relaxed) plangnagh, giving a rela-
tively reasonable heuristic solving time per node. Theiséals IP has constraints
representing the goal supporting €%(a) found in the previous step. These en-
force the fact that if a given goal is selected, then any action that contributes to

the achievement aj should also be selected. The nal heuristic IP encoding $ook
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very similar to that used fan®4! andh®\ | with added constraints on the actions.

max sum ?

Speci cally:
2 Binary Variables:

—8a2 P;8g 2 G;8Gk u G; fU(Gk) 6 0: create one binary integer

variableX ,, Xg, Xg, -
2 Constraints:

- 8a2P;89g2GS(a): (1i Xg)+ Xa, 1

P
s (1i Xg)+ X, ., 1
gz Gk

- 802Gk: (1i Xg )+ Xg, 1
. P
2 Objective: MAX( fY(Gy) aXg, | §Xa0C)

Solving this IP encoding gives the bene t value of the mosideial relaxed
plan P°within P*. The bene t of thisP°plan can be used ash§}, heuristic to
guide search.

Evaluation

We implemented the heuristic framework on top of thap&S planner [7] and
compared it with the discussed IP-based encoding of a baliegth version of
the planning problem. We call the heuristic planS&UDSand IP approaciPUD.
SPUDSs compared using the three heuristics we deschffl(, h%4! , andh& )
along with a version o6ap&° whose heuristic ignores the goal utility dependen-
cies (but whose state evaluation does not).

iPUD runs with CPLEX 10.0, a commercial LP solver, while we ijsesolve

version 5.5 (a free solver with a Java wrapper) to solve thenkéddings irSPUDS
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We found thatlp_solve while less powerful than CPLEX, has a shorter IP setup
time and is more suitable f@PUDS which sets up an IP encoding at every search
node. All tests use a P4 2.66GHz/1GB RAM computer with a 6@@rse time
limit. SPUDSand Sap&° continuously nd better solutions until a termination

criterion is met.

Test Problems: The PSPP problems were automatically generated from a subset
of the propositional planning benchmarks used in IPC3 af@biFRn zenotravel
airplanes move people between citiessatellitg satellites turn to objects and take
pictures; inrovers rovers navigate an area to take samples and images; afRPjn
trucks visit markets to buy products.

For each domain, we implemented a Java program that paesesgmal prob-
lem les and generates theSPP version with action cost and goal utilities ran-
domly generated within appropriate upper and lower boufide set of goal de-
pendencies along with their utility values were also raniyagenerated. Thus, the
number of dependencies, size of the dependencies, setlefigealved, utility val-
ues and action costs were all selected within varied loweugper bounds for each
domain. All goals are soft, and therefore planners carallivsolve each problem
with the null plan.

For these tests, we varied our bounds on action cost and gbatilty values
such that each domain focuses on different aspects ofyudiéipendency. In zeno-
travel, ending a plan with people at various locations clkangility signi cantly,
and ying a person between locations has a cost that is oighty less than the
individual utilities of achieving each goal. Thus, it isalito have the certain sets

of people at various locations. In TPP, purchasing itemsahesst about equiv-
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alent to the individual utility of having the item. Howevdraving items together
can change the utility of a plan considerably. The idea isntukate the bene t of
having several items together (e.g., to build a crate yod mexd, nails, a hammer
and saw). The satellite domain removes the emphasis on ldes¢ actions have
costs lower than the comparatively higher bene t of haviegesal images (e.qg.,
to produce a mosaic image). The domain also adds severdiiveegaal utility
dependencies (i.e., substitution) by including negattitgyufor having certain sets
of images yet ending a plan by pointing to an inconvenient apd having only a
few images (e.g., a “partial mosaic”). The rovers domaimugas on substitution as
having certain scienti ¢ data together can give redundafarimation and therefore
remove a large portion of utility gained by having them safear

Sap&° has a heuristic that only takes cost dependencies into atcsuch
that it will remove goals from its heuristic calculation gnt the cost of reaching
a goal appears greater than its reward. In TPP and zenqgttaeehchievement
cost for a single goal is about equivalent to or is (more Qf@geater than the
reward obtained for the independent goal reward. Sinc&#p&S heuristic looks
only at cost dependencies between goals, it is unlikelyithaill choose a good
(or very large) goal set in these domains. With the roverssatdllite domains,
negative goal utility dependencies exist that effectivedgate the bene t of simply
achieving goals one after the other. Thatis, it is often teedn those domains that
achieving two goals together has reward much less than tependent rewards
given for having both goals (such a strategy would yield aatieg net bene ).
This is an especially pronounced feature of the satellitaaln. In rovers, the cost
of navigating between waypoints where samples may be tdlags p role as well.

In the satellite domain, the heuristic 8ap&°> is likely to select an (incorrect)
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large set of goals, having ignored negative goal utilityetefencies, and in the
rovers domain, it may select an improper goal set due to gday uependencies
and action costs.

Analysis: The results in Figure 4.1 show the plan quality achieved loj @éanning
method (top graph) and the time to reach that quality (botcaph). On problems
where only the null plan was found, we indicate the extensearch for a better
plan by setting the time to 600 seconds. For every othernostahe time that the
best plan was found is shown. As the gure shows, the testpdoaghes varied
in their relative plan quality on each domain &PUDSusing theh&} heuristic
always performed among the best.

Both the zenotravel and TPP domains involve gathering tdjéftough zeno-
travel focuses on delivering these objects as well. Pesitillity dependencies play
an important role in these domains, since the cost of adlgesisingle goal often
outweighs the individual reward it gives. We see thap&> does poorly, while the
SPUDSheuristics andPUD fared much better. Since ti#ap&° heuristic is not
informed about utility dependencies, this comes as no mérpin easier problems,
thehS heuristic tends to return plans of similar or equal qualiigampared with
the other techniques used. However, as problem size iresd&d! begins to re-
turn plans of better quality, but still does worse th#if, in terms of the overall
number of plans found with best quality. With the IP-only eggech,iPUD, as the
size of the problem increases it is unable to nd a good fdasiblution.

For our version of the satellite domain, goal combinatiemave utility from
the overall quality of plans. Also, the plans of higher gtyaiend to require many

actions. This can be seen in the quality of the plans #R&lD returns. Its reach-

ability analysis is unable to properly estimate the dis¢atocgoals and it therefore

39



begins its solution searching at a small horizon. Foh$, heuristic, it turns out
that action selection helps guide search toward the goals.

For the rovers domainPUD does well on several problems. However, like
in the satellite domain, better quality plans require adargorizon on some of
the problems than its initial horizon provides. This gi@BUDSwith the hS{l
heuristic an edge ovePUD in 8 of the 20 problems. The heuristib§/ and
h&2! have information regarding utility dependencies, thobfi, often performs
worse tharh, (solving 5 of 20 problems with better quality plans) anff). is
only able to nd the null plan in every problem instance foveos, likely because it
cannot detect the cost dependencies between actions wetisisn of the domain.

Also of interest is the time it takes to solve each problenwbken the heuris-
tic search methods and the IP encoding usedPldD. Since theSPUDSheuris-
tics solve an IP encoding at each search node, they take ranger to compute
on larger problems than the proceduBzp&® heuristic. UnfortunatelySap&S
lacks the heuristic guidance necessary to properly setedsgvith utility depen-
dencies. Though we found that the per-node IP encodirttf) increased the
amount of time spent per search node by 3 to 200 times oveof®ap&S (with
the highest increases on larger problen&PUDSwith the hS. heuristic does
better overall.

When reaching the time limit (600 seconds for our resulgpds , SPUDS
andiPUD return their best solution. ISPUDSand Sap&° this behavior comes
from the best rst anytime search and witRUD this behavior comes from the
CPLEX solver, which can return the best feasible solutiamtbwithin a given time

limit. Insights can be obtained by observing the amountrogtit takes to nd the

solution that is eventually returned. We used the anytintebier to illustrate the
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scalability of each approach. Figure 4.2 shows, of problgéénthrough 20 in each
domain (i.e., the most dif cult), which technique perforipgst in terms of quality
throughout their search (e.dh& has the best quality for 16 of the problems at

relax

2 seconds). Of our approachés, performs the best overall. In the 80 tested
problems, it solves 22 instances at 600 seconds better tiyaptlaer planner. Also
interesting is that in 45 instances it obtains the best pfaheapproaches or one

of similar quality (by “similar” we mean within 0.1% of the besolution).

4.3 AN ADMISSIBLE LP-BASED HEURISTIC FORGOAL UTILITY DEPENDEN

CIES

While we have made efforts toward adapting relaxed planistes for planning
problems with goal utility dependencies, there is still ammatch in terms of opti-
mization. The overall best performing heuristic we havensaefar is inadmissible.
Instead, we would like an approach that has more of an opdiiniz perspective.
A standard way of setting up a relaxation with an optimizaperspective involves
(i) setting up an integer programming (IP) encoding for thabem and (ii) com-
puting a linear programming (LP) relaxation of this encgdim addition to being
sensitive to the objectives of the optimization, such axatian is also sensitive
to more constraints within the problem. In the case of plagnnegative interac-
tions between the actions, which is notoriously missindgnagtandard relaxed plan
heuristics, can be accounted for, potentially leading ttebdeuristic values. One
challenge in adopting this approach involves deciding @netkact type of IP en-
coding for the PSP problem. Although we have experimented i encodings
for PSP in the previous section, such encodings are beitedgor problems with
bounded horizons. The normal idea in bounded horizon ptenisito put a bound

on the number of plan steps. While this idea works for ndirggible plans, it
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does not work for nding optimal plans since it is not clearattbound is required
to guarantee optimality. We adopt an encoding that is no¢déent on the horizon
bound. In particular, we describe a compact causal encddingction selection
that accounts for the delete effects of the actions but Emaction ordering. This
provides an admissible heuristic.

Our formulation is based on domain transition graphs, stdiin the planner
Fast Downward [59]. Each of the graphs represents a vanaltee multi-valued
SAS+ formalism [3] with a value of a variable existing as atee@and effects as
arcs between them. We de ne a network ow problem over eacthem. Side
constraints are introduced to handle pre-, post-, and prewaditions of actions.
Additionally, we incorporate parameters, variables, aodstraints to handle as-
pects of goal utility dependencies. Unlike a bounded-toorigor step) encoding,
our encoding is more compact and needs no estimates on pkfosiits genera-
tion.

After solving for the LP formulation, we can perform a lookald, similar to
what we usually do in our best- rst search algorithm when wef@rm satis cing
search (i.e., search using inadmissible heuristics). Gfferehce is that we can
extract the relaxed plan using the LP solution as guidanbat i, during a relaxed
plan extraction process, if an action is in the LP solutiowel as in the planning
graph, we selectit. This can occasionally improve qualisadutions over a similar

lookahead using an relaxed plan extraction process thatisted by cost.
LP Heuristic
We present a novel admissible heuristic that solves a rietexaf the original

P SPYP problem by using the LP-relaxation of an IP formulation. Widdbon the

heuristic discussed in [93] for classical planning. Whileshheuristics ignore the

42



delete effects of the actions, this heuristic accountdfedelete effects, but ignores
action orderings instead. The formulation that we desasbd®sed on the SAS+

planning formalism [3], where a SAS+ planning task is a typte hV; A; Sp; Sl

actions,sy indicates the initial state ars} denotes the goal variable assignments.
Eachv 2 V has a domaiD, and takes a single valudfefrom it in each states,
stated as[v] = f. Each actiomra 2 A includes a set of preconditionpre(a),
post-conditionspost(a), and prevail conditiongrev(a).

Previous work has shown that we can translate classical If&)Rplanning
problems into SAS+ planning problems [35, 60], and we usstthinslation process
for generating our heuristic.

We de ne a SAS+ planning task as a tuple = (V;%;G;A), whereV =
fvy; i vhgis a nite set of variables. Each variable2 V has an associated nite
domainD.. We write s(v) to denote the value of variablein states, wheres
is called a partial state #(v) is de ned for some subset of, ands is called a
state ifs(v) is de ned for allv 2 V. sy is a state called the initial state axis
a partial state called the goa\ is a nite set of actions. Each actian2 A is of
the formhpre, post previ, wherepre andpostdescribe the effects of the action and
prev describes the prevail conditions of the action. We weté (a; v) to denote
the effect of actiora in variablev andprev(a; v) to denote the the prevail condition
ofainv.

We writec(a) to denote the cost of executing actianandu(Gg) to denote the
utility of achieving goal utility dependendy. The utility of a (partial) states is

given by the sum of all goal utility dependencies satis eddyThat is,u(s) =
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P T _
k2k .25 U(Gk). Our objective is to nd a plar¥athat maximizesnet bene t

which is given by utility minus cost.

We map this problem into an IP formulation in which the ordgrof the actions
isignored. Hence, the formulation is not dependent on thgtkeof the plan and, as
a result, only a single IP variable is required for each actibignores the ordering
of actions and thus is a relaxed formulation of the origirmalgtem. After having
the IP formulation, which gives an admissible heuristic,ca# h" , we use the
solution to its LP relaxation as a further relaxed admisshi#uristic that we call
h& . A discussion of the admissibility of the heuristic is foundAppendix A.

The IP formulation models each variable in the planning [gwbas an appro-
priately de ned network ow problem. Interactions betwetre variables, which
are the result of the action effects and prevail conditians,modeled as side con-
straints on the network ow problems. Informally, the fortation seeks to maxi-
mize net bene t subject to ve sets of constraints: goal domsts, network ow
constraints, linking constraints, prevail constraintsd ajoal utility dependency
constraints.

The goal constraints ensure that the hard goals are satithechetwork ow
constraints model the multi-valued uents, the linking stnaints link the action
variables with the network ows, the prevail constraintatstthe conditions for
satisfying prevail conditions, and the goal utility dependy constraints state the
conditions for satisfying the goal utility dependencies.

Parameters.In order to describe our formulation, we introduce threeapeaters:
2 cost(a): the cost of actiom 2 A.

2 utility (v;f): the utility of achieving the valué in state variables in the

goal state.
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2 utility (k): the utility of achieving the goal utility dependen®y in the goal

State.

Variables. We de ne ve types of variables: (1) Action variables are dde indi-

cate the number of times an action is executed; (2) End valtiables are used to
indicate which value is satis ed at the end of the soluticarpl(3) Effect variables
indicate the number of times an effect is executed; (4) piregdaables indicate the
number of times a prevail condition is required; and nall§) goal dependency
variables indicate which goal dependencies are satis ébdeaend of the solution

plan.
2 action(a) 2 Z*: the number of times actiom?2 A is executed.

2 effect(a;v; e 2 Z*: the number of times that effeetin state variables is

caused by actioa.

2 prevail(a;v;f) 2 Z*: the number of times that the prevail conditibrin

state variable is required by actiom.

2 endvalugv;f) 2 f 0;1g: isequalto 1if valué in state variable is achieved

at the end of the solution plan, 0 otherwise.

2 goaldeggk) 2 f 0; 1g: is equal to 1 if goal utility dependendyy is satis ed,

0 otherwise.
Constraints. The constraints are de ned as follows:

2 Goal constraints foreach2 V,f 2 D, suchthaf 2 G,. If f is a goal of

v thenf must be the end value of

endvalaudv;f) =1 (4.8)
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2 Network ow constraints for eacky 2 V,f 2 D,. If a value is deletedh
times then it must be addedtimes. For each variable value there must be a
balance of ow (i.e., the number of deletions equals the nendditions).

If f 2 sp[v] is the initial state o/, thenf is added by means of a constant.
Similarly, iff 2 G, isagoal, or the end value vtthenf is deleted by means

of theendvalugv; ) variable.

X
1fif f 2 so[v]g + effecfa;v; e =

effects transition td

X (4.9)
effec{a;v; € + endvalaugv;f)
effects that transition frorh

2 Linking constraints for each 2 A andv 2 V. Action variables are linked
to their respective effect and prevail variables. Gengilére is only one
effect or prevail variable per action per variable. Henagihg constraints
would normally be de ned asction(a) = effect(a;v; e or action(a) =
prevail(a;v;f). If an action is executed times, then its effect or prevail
condition must be executedtimes. The SAS+ formalism, however, allows
the precondition of an action to be unde ned [3]. We mode$thy using a
separate effect or prevail variable for each possible predition.

X
action(a) = effec{a;v; e
effects ofainv

(4.10)
+ prevail(a; v;f)
prevails ofa in v

2 Prevail implication constraints for eaeh2 A,v 2 V,f 2 D,. If a prevall
condition is executed then the corresponding value mustddechat least

once. In other words, if there is a prevail condition valyghenf must be
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added. We set M to an arbitrarily large value.

X
Ifif f 2 so[v]g+ effec{a;v; e , (4.11)
effects that transition to

X
prevail(a;v; f)=M (4.12)

actions with prevail orf
2 Goal dependency constraints for each goal utility depecydkn All values
of the goal utility dependency are achieved at the end of dhdien plan if
and only if the goal utility dependency is satis ed.

X
goaldegk) , endvaludv;f)i (jGxji 1) (4.13)

f in dependenck

goaldefgk) - endvalugv;f) 8f in dependenck (4.14)

Example: To illustrate the heuristic, let us consider a transpatgbroblem where
we must deliver a persopgrlto a locationJoc2 using a planepl, and must end
with the plan atoc3. The cost of ying fromlocltoloc2is 150, fromloclto loc3
is 100, fromloc3to loc2is 200, and fromoc2to loc3is 100. To keep the example
simple, we starperlin pl There is a cost of 1 for droppirmuerloff. Havingperl
andpl at their respective destinations each give us a utility dfQL(or a total of
2000). Figure 4.3 shows an illustration of the example wétbheedge labelled with
the cost of travelling in the indicated direction (not shoave the utility values for
each individual goal).

The optimal plan for this problem is apparent. With a totadtaaf 251, we can
y from loclto loc2, drop offperl, then y to loc3. Recall that the LP heuristic,
while it relaxes action ordering, works over SAS+ multised uents. The trans-
lation to SAS+ captures the fact that the plank,can be assigned to only a single

location. This is in contrast to planning graph based hg&asishat ignore delete
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lists. Such heuristics consider the possibility that otgje@n exist in more than
one location at a given step in the relaxed problem. Thesefatrthe initial state,
a planning graph based heuristic would return a relaxed (&) that allowed the
planeplto y from locltoloc2, andloclto loc3, putting it in multiple places at
once.

In contrast, the solution from the LP-based heuristic fas firoblem at the
initial state includes every action in the optimal plan. d&atf “1.0” is the value re-
turned for these actiorisThough this is a small example, the behavior is indicative
of the fact that the LP, through the encoding of multi-valusehts, is aware that
a plane cannot be wholly in more than one place at a time. #dése, the value
returned (thenet bene t or 2000; 251 = 1749 gives us the perfect heuristic.

To use this solution as a candidate in the branch and boumnchsdescribed in
the next section, we would like to be able to simulate the ettec of the relaxed
plan. For the example problem, this would allow us to reaghgbal optimally.
But because our encoding provides no action ordering, weataxpect to prop-
erly execute actions given to us by the LP. For this exampégpears that a greedy
approach might work. That is, we could iterate through thelakle actions and
execute them as they become applicable. Indeed, we evigntolédw a greedy
procedure. However, blindly going through the unorderedas leads us to situ-
ations where we may “skip” operations necessary to reachdhés. Additionally,
the LP may return values other than “1.0” for actions. Thenefwe have two is-
sues to handle when considering the simulation of actiocgi@n to bring us to

a better state. Namely, we must deal with cases where thetufhsenon-integer

3The equivalent to what is given " .
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values on the action variables and simultaneously conbim&to order the actions
given to us.

Using an LP for Guidance to Extract a Relaxed Plan:We should only extract
plans for sets of goals that appear to be bene cial (i.e.yidea highnet bene ).

We can use the LP for this, as it returns a choice of goals. rGivat the LP can
produce real number values on each variable (in this caselavgnable), we give

a thresholdpg on their value. For every goal there is a value assignment given
by the LP,V alug(g). If Valug(g) , e then we select that goal to be used in the
plan extraction process.

The main idea for extracting a relaxed plan using the LP goius guidance
is to prefer those actions that are selected in the LP solutiwhen extracting a
relaxed plan, we rst look at actions supporting proposisdhat are of the least
propagated cost and part of the LP solution. If no such astsoipport these propo-
sitions, we default to the procedure of taking the actiorhwlite least propagated
cost. Again, since the LP encoding can produce fractiorlabgwe place a thresh-
old on action selectionl,. If an action variableaction(a), is greater than the
thresholdaction(a) , pa, then that action is preferred in the relaxed plan extrac-
tion process given the described procedure.

To see why the LP makes an impact on the relaxed plans we gxeaas
revisit our ongoing example. Figure 4.4 shows the relax@tmphg graph with
each action and proposition labeled with the minimum castdaching it (using a
summing cost propagation procedure). Recall that we wabnitour relaxed plan
extraction process toward the actions in the LP becausaiaots information that

the planning graph lacks—namely, negative interactions.
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Assume that the LP solver returns the actionfsglocl, loc2), y(loc2, loc3),
drop(pl, loc2y. Given that both goals are chosen by the LP, we place botls goal
into the set of open conditions. We have three layers in tlaplgrand so we
progress backward from layer 3 to 1. We begin with the leapepsgive goal at
the last level and nd its cheapest actiog(locl,loc3). Since this action is not
part of the LP solution (i.e., its value is 0), we move on tornleg&t least expensive
supporting actiony(loc2,loc3). This action is in LP's returned list of actions and
therefore it is chosen to satisfy the ga#p1,loc3) Next, we support the open con-
dition at(perl,loc2)with drop(perl,loc2) This action is in the LP. We add the new
open conditiomat(pl,loc2)then satisfy it with the actiony(locl,loc2). We now
have the nal relaxed plan by reversing the order in whichdbgons were added.
Note that without the LP bias we would have the plar(locl,loc2), y(locl,loc3),
drop(perl,loc2y, which is only partially executable in the original plangiprob-

lem.
Evaluation

We created a planner called BBOP-LP (Branch and Bound Quesesiption Plan-
ning using Linear Programming, pronounced “bee-bop-g@-pon top of the frame-
work used for the planner SPUDBSY was implemented using the commercial
solver CPLEX 10. All experiments were run on a 3.2 GHz Pentiimith 1 GB
of RAM allocated to the planners.

The system was compared against SPUDS and two of its hesrisff, and
hG2! . Recall that the heuristic®} greedily extracts a relaxed plan from its plan-
ning graph then uses an IP encoding of the relaxed plan towegmals that look

unpromising. Using this heuristic, it also simulates thearion of the nal relaxed

plan as a macro action at each state. The other heuristiciibSRhat we look at,
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h&4 , is admissible and performs max cost propagation (i.eakis the maximum
reachability costamong supporters of any predicate oo@ptin the planning graph
but does not extract a relaxed plan (and so performs no mackakhead). It uses
the propagated costs of the goals on a planning graph asdariminimize the set
using an IP encoding for the goal utility dependencies.

We use the BBOP-LP system with three separate options. Sakgiwe use
thehZ heuristic without extracting a relaxed plan for simulatitvehs" heuris-
tic with the LP-based heuristic extraction process, andh{ffé heuristic with a
cost-based heuristic extraction process. The searchrtates only when a global
optimal solution is found (or time runs out). A goal and actibreshold for the LP-
based extraction of 0.01 was use8PUDS, using an anytime best- rst search with
the admissibl&é®2) heuristic, will also terminate when nding an optimal saburt
(or a timeout). Note that it is possible that SPUDS using traimissibleh®}),
heuristic will terminate without having found an optimalg®on (i.e., whenever it
chooses to expand a node whare 0). Recall that SPUDS usirig;!, will also
simulate the execution of the relaxed plan. Each of the @esnis run with a time
limit of 10 minutes.

Problems: We tested our heuristics using variants of three domaims ftee 3
International Planning Competition [744enotravelsatellite androvers We use a
different reward structure from the problems in our presgitests. Thaatelliteand
rovershave more positive goal utility dependencies, increasednefor individual
goals and decreased negative goal utility dependenciestefidre, these domains

are likely to have more positiveet bene tgoal sets than in our previous tests. In

“In our experiments, this threshold provided overall betsults over other, higher values for
Ma andys that were tested.
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zenotravelmoving between locations has a cost about half that of eatitaiidual
goal reward. We also added more negative goal utility depeciés to this domain.

We tested on th&@PPdomain, but all varieties we attempted returned similarly-
valued plans for nearly all of the problems on each of the oaghwith a few
minor exceptions). Therefore, we do not discuss resultthierdomain.

Analysis: Figure 4.5 shows the results of running the planners in texinise net
bene t of the solutions found and the time it took to search for theegisolution
value. In 13 of the problems the®)' heuristic with the LP-based relaxed plan
lookahead technique performed best. In fact, in only fouhefproblem instances
is this method returninget bene tvalue less than one of the other metharsn-
travel problems 14 through 17).

Searching with th&& heuristic allowed us to nd the optimal plan in 15 of
the 60 problems, where it exhausted the search space. Weasbotttis toh®4!
which exhausted the search space in only 2 of the problerss ridhtwo zeno-
travel problems). However, to the credit bf%! , it was able to come close to
nding near-optimal solutions in some cases in all of the éams. The new re-
ward structure effectively makes the “best” goal set takeéy to reach than in our
previous experiments (i.e., it sometimes requires mornemr&to reach the better
goal set). Henceh®, nds plans that give reward imoversunlike in our previ-
ous tests, and is unable to nd the plans equivaleri3f), . Betweenh$2! and
h&N  (without a lookahead), it turns out thaf4! gets plans of better net bene t
in 3 of the problems izenotravel 1 problem insatelliteand 8 problems imovers
However, given the heuristics and search methodology titale simply collect-
ing more rewards during the search process. Thereforgljfitalt to say how this

relates to scalability. However, one advant&gé' has is that it is informed as to

52



the negative interactions between actions (unhigg! andhSl ), so is likely to
have a higher degree of informedness (especially as it medivsdual goals).

We note that the LP-based relaxed plan lookahead is oftéertibain the other
methods (in 13 cases). The differences, however, are ysuatlsigni cant from
the cost-based relaxed plan lookahead. One obvious resattwat both are designed
to reach the same LP-selected goals, while the LP-basegictedir relaxed plan is
informed as to the negative interactions that exist withmproblem (e.g., a plane
cannot be in more than one place at a time). This has the feld-that unjusti ed
actions [41] (i.e., actions that do not contribute to thelgaee not considered as
often for the lookahead. In our example we saw a best-casasof this.

Relatedh®}, can be fairly accurate in its assessment of which goals tos#o
but this can be to its detriment (especially with its way affpng relaxed plans and
performing a lookahead). While it is perhaps ultimatelysuimg the “best” sub-
set of goals, if the search cannot actually reach tmampletesubset within the
computational time limit, we will not get all reward for it drwill likely miss the
“second best” goal subset as well. Consider the problem okibg a vacation.
A person would want a plane ticket, a hotel reservation, artigps a rental car.
It is easy enough to see that booking a rental car without lueepticket or ho-
tel reservation is a foolhardy plan. Stopping short of thiremoal set by getting
only the car would be unbene cial. It turns out tH#t}), , even with a lookahead,
can end up collecting goals that produce negative intenastithrough goal utility
dependencies and cost dependencies), but over time mayab&eun achieve ad-
ditional goals that can offset thieZ" , while greedier, pursues a larger number of
the goals initially. With limited computational time, thisn be a better strategy in

these problems to nd higher quality satis cing solutiodote that, even in the oc-
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casions wher&% is calculated signi cantly more slowly than} , as happens
in the more dif cult problems ofzenotravel, h' appears to give better quality

plans. This is likely due to its heuristic guidance and/erlttokahead.
4.4 IMPROVING NET BENEFIT THROUGH LEARNING TECHNIQUES

Use of learning techniques to improve the performance afraated planners was
a ourishing enterprise in the late eighties and early negt but has however
dropped off the radar in the recent years [100]. One appaeason for this is
the tremendous scale-up of plan synthesis algorithms itetedecade fueled by
powerful domain-independent heuristics. While early pkns needed learning to
solve even toy problems, the orthogonal approach of imgrdweuristics proved
suf ciently powerful to reduce the need for learning as atchu

However, this situation changing again, with learning et an integral part
of planning, as automated planners move from restrictigesital planning prob-
lems to focus on increasingly complex classes of probl&rike other planning
problems, a dominant approach for PSP problems is forwatg s{pace search
and one challenge in improving these planners has been elageng effective
heuristics that take cost and utility dependencies inteact This section of our
work [99] aims to investigate if it is possible to boost theuhstic search with the
help of learning techniques. Given the optimizing natur@®8P, we were drawn
in particular to STAGE [15], which had shown signi cant praa for improving

search in optimization contexts.

SFor zenotraveproblem 20, the initial state took 47 seconds (though duedeviay the CPLEX
solver works, it likely takes much less time per node).

50ne sign of this renewed interest is the fact that for the tiiste, in 2008, the International
Planning Competition had a track devoted to planners thal@nearning techniques. This track
was also held in the 2011 International Planning Compaititio
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STAGE is an online learning approach that was originallyemed to improve
the performance of random-restart hill-climbing techmigjon optimization prob-
lems. Rather than resort to random restarts which may or roapeip the base-
level search escape local minimum, STAGE aims to learn &yt intelligently
generate restart states that are likely to lead the hitMgiing search towards signif-
icantly better local optima. The algorithm proceeds in titerdted stages. In the
rst stage, the base-level hill-climbing search is run uiitreaches a local mini-
mum. This is followed by a learning phase where STAGE tramthe sequence of
states that the hill-climbing search passed through inrdalkearn a function that
predicts, for any given statg the valuev of the optima that will be reached from
by hill climbing. This learned function is then used in the@ed stage (alternative)
local search to scout for a stat®(that has the highest promise of reaching a better
state). If the learner is effectiva® is expected to be a good restart point for the
base-level search. The stages are then repeated starting’as the initial point.

The main challenge in adapting the STAGE approach to PSRvesond-
ing appropriate state features to drive the learner. Irr thiéginal work, Boyan
and Moore [15] usethand-craftedstate features to drive learning. While this may
be reasonable for the applications they considered, itfé&agible for us to hand-
generate features for every planning domain and problemreder, such man-
ual intervention runs counter to the basic tenets of donmmadependent planning.
Rather, we would like the features to be generated autoatigticom the problem
and domain speci cations. To this end, we developed twonegres for generating
features. The rst uses “facts” of the states and the actieading to those states as
features. The second, more sophisticated idea uses a Takosyntax to generate

higher level features [77]. We are not aware of any other wioakused the STAGE
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approach in the context of automatically generated featiie implemented both
these feature generation technigques and used them to adapmat of the STAGE
approach to support online learning in solving PSP problefteese differ from
methods that re ne features, such as those done by Faw®@tt |®e compared
the performance of our online learning system to a baselawistic search ap-
proach for solving these planning problems (c.f. [29]). @asults convincingly
demonstrate the promise of our learning approach. Paatigubur on-line learn-
ing system outperforms the baseline system including tamnieg time, which is
typically ignored in prior studies in learning and planning

The contributions of this are thus twofold. First, we dentate that the per-
formance of heuristic search planners in PSP domains campeved with the
help of online learning techniques. There has been litier pwork on learning
techniques to improve plan quality. Second, we show thatgbssible to retain the
effectiveness of the STAGE approach without resorting twherafted features.

In the following sections, we give details of our automatedtfire generation
techniques. Then we show a comparison of the performancerofrdine learn-
ing approach with the baseline heuristic search plannéndus)! but without

lookahead techniques as typically used in variantSag&s ).
Preliminaries

We rst provide a few preliminaries on our representatiortiod problem for our
feature generation and on the STAGE approach in general.

Problem Representation: To employ our automatic feature generation methods,
we provide a representation of PSP that breaks down the ipmmoblem into
components typically seen in domain and problem de nitior&peci cally, we

de ne a PSP problen® as a tuple of O; P;Y;I;G; U; C), whereO is a set of
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constantsP is a set of available predicates arids a set of available action schema.
Afactp 2 P is associated with the appropriate set of constan®.iR is a set of
all facts. A states is a set of facts antl is the initial state. Additionally, we de ne
the set of grounded actiols where eacla 2 A is generated frony 2 Y applied

to appropriate set of constants@n We de ne actions as we did previously, where
each actiora 2 A consists of preconditiopre(a) which must be met in the current
state before applying, add(a) describes the set of added facts after applaagd
del(a) describes the set of deleted facts after appl@n@ is a cost function that
maps an actiom to a real valued cosC : a! R . We de ne our goals; and
utility functionsU as in Section 2.

STAGE: STAGE [15] learns a policy for intelligently predicting tast points for

a base-level random-restart hill-climbing strategy. Irksby alternating between
two search strategies, called $¥ARCH and SSEARCH O-SEARCH is the base-
level local search which hill-climbs with some natural aftjee functionO for the
underlying problem (e.g., number of bins used in the birkpagproblem). The
S-SEARCH works to scout for good restart points for theSBARCH.

The OSEARCHIs run rst until, for example, the hill climbing reaches ek

SEARCH and letos(s;) = bes}s; O(sj) be the objective function value of the best
state found on this trajectory aftey. STAGE now tries to learn a functiovi to
predict that any statg” that is similar to the statg on the trajectoryl, will lead
the hill-climbing strategy to an optima of valoe(s;).

In the next phase, SEARCH is run usingV as the objective function, to nd
a states that will provide a good vantage point for restarting thes©aRCH  S-

SEARCHnNnormally starts frons,,, the state at the end of the trajectory of the previous
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O-seARCH (although theoretically it can start from any random stiaeuding the
initial state)’

This sequence of GEARCH, learning and SSEARCH are iterated to provide
multiple restarts for the GEARCH As we go through additional iterations, the

training data for the regression learner increases moigatibyy For example, after

objective value encountered in the trajectory after ssatie 03(s;), in addition to
the training data from the rst GGEARCH s; |  0s(S;), we also have the training
datas? ! 03(s’). The regression is re-done to nd a n&function which is then
used for driving SSEARCH in the next iteration.

Boyan and Moore [15] showed that the STAGE approach is éffeetcross a
broad class of optimization problems. The critical indicadf STAGE's success
turns out to be availability of good state features that agppert effective (re-
gression) learning. In all the problems that Boyan and Maovestigated, they
provided hand-crafted state features that are customizi tproblem. One of the
features used for bin-packing problems, for example, iz#in@nce of bin fullness.
As we shall see, an important contribution of our work is towlthat it is possible

to drive STAGE with automatically generated features.

Adapting STAGE to Partial Satisfaction Planning

Automated Feature Generation: One key challenge in adapting the STAGE ap-
proach to domain-independent PSP stems from the dif cuitizandling the wide

variety of feature space between planning domains. Whsle-teependent features

often appear obvious in many optimization problems, dorraiiependent prob-

’In fact, if we can easily nd the global optimum &f, that would be the ideal restart point for
the OseARCH This is normally impossible becausemight be learned with respect to nonlinear
(hand-selected) features of state. The inverse imayeai the state space forms its own complex
optimization problem, thus necessitating a second locatée
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lem solvers (such as typical planning systems) generatjyire a different set of
features for each domain. Producing such features by hantgpigctical and it is
undesirable to require users of a planning system to praudh a set. Instead, we
use automated methods for feature construction.

In our work, we experimented with two methods for featureegation. One
method derives propositional features for each problemm filoe ground problem
facts. The other derives relational features for each donnsing a Taxonomic syn-
tax [77]. We describe both below. An important differencéwsen Taxonomic
and propositional feature sets is that the former remamsame for each domain,
while the latter changes from problem to problem even in #reesdomain. Thus,
the number of propositional features grows with the sizerobjgms while Taxo-
nomic features does not.

Propositional Features: In a propositional feature set, each fact in the state rep-
resents a feature. Intuitively, if there is some importaat f that contributes to
the achievement of some goal or a goal by itself, then sthegsiriclude the fact
should be valued high. In other words, a binary feature thauie with the fact ,
should be weighted higher for the target value functiors then natural to have all
the potential state facts or propositions as a feature $gg.ifituitive idea has been
tested in a probabilistic planning system [17]. In theirezabe features were used
to learn policies rather than value functions. Given camtst@ and predicateR in

a PSP problen°, we can enumerate all the ground faBts Each ground fact is
made into a binary feature, with the value of the feature dpene when the fact is
in the current state. We call the planning and learning systat uses these binary

features a “Propositional” system.
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Relational Features: Although the propositional feature set in the previous sub-
section is intuitive and a simple method to implement, itrcgnrepresent more
sophisticated properties of the domain, where relatiohsdmn state facts are im-
portant, e.g., conjunction or disjunction of the facts.

Our second approach involves relational (object-orientedtures. For many
of the planning domains, it is natural to reason with objaectthe domain. In
particular, it is reasonable to express the value of a staterms of objects. For
example, in a logistics domain, the distance to the goal eamdl represented with
“number of packages not delivered”. Here, the “packageasatteanot delivered yet”
are a good set of objects that indicates the distance to thle ijave can provide a
means to represent a set of objects with such a propertyttieerardinality of the
set could be a good feature for the value function to learn.

Taxonomic syntax [77] provides a convenient framework lfi@ase expressions.
In what follows, we review Taxonomic syntax and we de ne ceature space with
Taxonomic syntax.

Taxonomic SyntaxA relational databask is a collection of ground predicates,
where ground predicates are applications of predigat2sP to the correspond-
ing set of objectgo 2 O). Each state in a planning problem is a good example
for a relational database. We prepend a special symlifathe predicate is from
goal description and if the predicate is both true in the current state and the goal
state.c predicates are a syntactic convenience to express medssealysis [78].
Note that goal information is also part of state informatigm example relational
database (a state from a Logisticsworld domain) is showngdnrg 4.6. In this

example, there are two packagesckageland package?2 packageds not at the
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goal location angbackagels at the goal location. So there is additional facgt(
packagel locationl).

Taxonomic syntaxC is de ned as follows,

C = a-thingj(p C; ::: ? i1 Cyp)iC\ Cj: C

It consists ofa-thing, predicates with one position in the argument are left for
the output of the syntax, while other positions are lledhitther class expressions,
intersections of class expressions and negations of a elgmsssion.n(p) is the
arity of the predicate®. We de ne depthd(C) for enumeration purposes-thing

has depth 0 and class expression with one argument pretieatdepth 1.

di(p C1 ::: ? 1t Cyp)) =max d(Cy) +1

Taxonomic Syntax Semantic§axonomic syntaxC[R] against a relational
databasdr describes sets of objecta-thing describes all the objects iR. In
the example in Figure 4.6, they are (cityl, truckl, packagatkage2, locationl,
location2). (p C; ::: ? ::: Cy(p) describes a set of objec® that make
the predicate true inR whenO is placed in the ? position while other positions
are lled with the objects that belong to the corresponditags expression. For
example, conside€ = (cat ? a-thing) and letR be the relational database in
Figure 4.6. C[R] is then (packagel). Among all the objects, only packagel can
Il in the ? position and make thec#it packagel locationl) predicate true. Note
thata-thing allows any object, including location1. As another examptmsider
C%= (at ? a-thing). CIR] is then (packagel, truckl, package2). It is worth-

while to speculate the meaning ©f It indicates all the objects that Il in the rst

61



argument position ofat and make the predicate true in the Logisticsworld, which
means all the objects that are already in the goal.

Feature Generation Function for Partial Satisfaction Ptang: We enumer-
ate limited depth class expressions from the domain deniti a-thing is in-
cluded in the feature set by default. Recall the planningaarde nition, P° =
(O;P;Y;1;G;U; C). UsingP, the set of predicates, we can enumerate Taxonomic
features. First, for all the predicates, except one argapesition, we |l all the
other argument positions witlrthing. This set constitutes the depth 1 Taxonomic
features. For the Logisticsworl@, andC®in the above corresponds to this set of
depth 1 features. Depthfeatures can then be easily enumerated by allowing depth
nj 1Taxonomic syntax in other argument positions than the duipsition. For
example,(at : (cat ? a-thing) ?)is a depth 2 feature, which is constructed
by using a depth 1 Taxonomic feature at the rst argumenttpsi The meaning
of this feature is “the location where a package is not yehengoal location”. In
our experiments, we used depth 2. We could use deeper Taxofheatures, but
this increased the solving time during the enumeration aatuation process. We
call the planning and learning system that uses the clas®&sipn feature set a
“Taxonomic” system. The value of the Taxonomic featurediésdardinality of the
Taxonomic expressions, which gives out sets of objectss Takes the features
appropriate for value function learning.

In both the “Propositional” and “Taxonomic” feature setg also use actions
involved as part of the features. Each state in PSP includexce of the actions
that led the initial state to the current state. For the “Tebwic” feature set, we
union these actions with state facts for the relational lkega construction. The

semantics of this database straightforwardly follow froaxdnomic syntax. For
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the “Propositional” feature set, we also enumerate all thtemtial ground actions

and assign a binary value 1 if they appear in the actions dldlatiol the state.
Evaluation

To test our approach, we again used variations of domainstie 3rd International
Planning Competition (except for TPP). Our experimentsatsanilla” version of

the search with&}l (i.e., it does not perform a lookahead). We used a 2.8 GHz
Xeon processor for our tests. For our training data, we nsed1000 evaluated
states and set the timeout for each problem to 30 minutes of tiRe . We
implemented our system on top of our search framework and bfg, without

a relaxed plan lookahead as a baseline search. Note thaaimerig time was not
signi cant, as the number of automated features generateitypically less than
10,000. This effectively enables our system to performinedearning.

To learn from the feature sets, we used a linear regressioihiat is, given
our features, we learn a linear function that will output atireated reward and use
this function to determine the “best” rewanét bene tstate from which to restart.
To nd this function, we used two different libraries for odifferent automated
feature types. The statistical package R [83] was used éoTéxonomic features,
but operated more slowly when learning with the binary peifpanal features.
The Java Weka library worked better on this set, and we tberaised it when
handling features of this type. For our evaluation, we asklthe performance of
the Stage-PSP system in each domain on the baseline pl@9%effage-PSP with

the Taxonomic features, and Stage-PSP with the propoaltfeatures. Note that

Stage-PSP systenmgludelearning time.

8We have tried alternative training data sets, by changiadh parameter variously between
500 to 2000, but the results were more or less the same.
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For the case of learning with “Taxonomic” features, we alsedia simple wrap-
per method. We greedily add one feature at a time until treecemvergence in the
approximation measure. For this purpose, we used the Resm&tric, which mea-
sures the explanation for the variances. This is a pradigalrithm design choice

for feature selection, since R cannot handle too many featur

Rovers Domain: Figure 4.9 shows the results for this domain. In the grapé, th
X-axis is for the problem numbers. There were 20 problemse Ydaxis shows
net-bene t obtained by each system. As can be seen in thee, glaxonomic sys-
tem signi cantly outperformed SPUDS (usih/., for most of the problems. The
roversdomain yielded the best results of the three we tested. Excepn a few
problem instances, both feature types, the Taxonomic aopogitional outper-
formed SPUDS(witth&) ). The cumulative net bene t across the problems in
each domain is available in Figure 4.7. In Figure 4.7, fortversdomain, we can
see that both of the learning systems, propositional andri@xic, outperform the
baseline planner, achieving twice the cumulative net beo&h&p, alone. This
shows the bene t of the learning involved. Note that, in oxperiments, there was
no prior training. That is, in most of the recent machinenésy systems for plan-
ning, they used prior training data to tune the machine krammhile our systems
learn online.

Finally, Figure 4.8 lists some of the selected features leywthrapper method
with the Taxonomic system. The rst listed feature indicatee number of lo-
cations traveled where soil data is to be communicated istédoc The second
provides the number of “take image” actions with rock-asayn hand. As can

be seen in these expressions, the Taxonomic syntax cansexpiae relationally

expressive notions than ground facts. Note also that thessteires make sense:
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Moving to a location where soil data will likely move us to inoped net bene t.
Additionally, taking a goal image while already having hisd analysis moves us

toward a goal (and therefore higher net bene t).

Satellite Domain: To perform an operation, a satellite needs to turn to thd dgh
rection, calibrate its instruments and nally take a phot@erform a measurement.
Figure 4.11 shows the results on satellite domain. The pedoce of Stage-PSP
using either of the feature sets does not dominate as syrasgieen in theovers
domain. However, Stage-PSP still outperformed the baselanner in cumulative
net bene t measure on the problems, as can be veri ed thrétigare 4.7.

Figure 4.10 lists the features of Taxonomic system foundhbyrapper method.
The rst feature expresses correctly-pointing facts (ntitat c-predicates were
used) and the second one expresses the number of actiomgrthett the correctly

pointing areas, these features help with nding end-stpteriting” goals.

Zenotravel Domain: Figure 4.13 shows the results pénotraveldomain. aThe
learners did not fare as well in this domain. As can be seerigar€ 4.13, the
learning systems lost to SPUDS on the same number of prolasrie number of
problems they won. The cumulative net bene t across problenshown in Figure
4.7. The numbers show a slight edge using the Taxonomicresatirhe margin is
much smaller than the other domains.

Figure 4.12 shows the features found in the Taxonomic sysiém rst feature
listed expresses the number of refuel actions taken (ahdsstegatively weighted)
and the second expresses the number of zooming actionsttaltengoal location.

When the learning system fared well, for example, in fiivers domain, we

found that the learned value function led thesSARCH to a quite deeper state
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that requires many actions to reach from the initial statealshieves the key goal
facts.

Although we provided the action features to take the actmst structure into
account, the learned value function is not too sensitivdhéodctions used. One
possible reason for this may be that the Taxonomic syntaxsetesemantics rather
than bag semantics. That is, when the partial plan correpgrio a search node
contains multiple instances of an action matching a featineaction is counted
only once.

Summary Motivated by the success of the STAGE approach in learnimgpoove

search in optimization problems, we adopted it to partias&ection planning prob-
lems. The critical challenge in the adaptation was the nequdvide automated
features for the learning phase of STAGE. We experimentaid tmio automated
feature generation methods. One of them—the Taxonomiareaet—is espe-
cially well suited to planning problems because of its ob@eented nature. Our

experiments show that our approach is able to provide ingmants.
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(at truckl locationl), (at packagel locationl),
(in-city location1 city1), (in-city location2 city1)
(gat packagel locationl)
(cat packagel locationl)
(at package?2 location2y#t package?2 locationl)

Figure 4.6: Example Relational Database: A State from Ltagieorld

| Domain | Measure | SPUDS | Stage-PSP (Prop) Stage-PSP (Tax)
Rover NetBenet | 3.0£10° 6.0£10° 6.5£10°
No. Features 14336 2874
satellite | NetBenet | 0.89£ 1P 0.92£ 1P 1.06£ 10°
No. Features 6161 466
zenotravel| NetBenet | 4.3£10° 4.1£10° 45£10°
No. Features 22595 971

Figure 4.7: Summary of the net bene t number of features

(navigate athinggcommunicated-soil-data ?) ?)

(take-image ? (have-rock-analysis athing ?)
athing athing athing)

Figure 4.8: Taxonomic Features found for Rover domain
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Figure 4.10: Taxonomic features found for satellite domain
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Figure 4.11: Results on satellite domain
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Chapter 5
PDDL3 “simple preferences” and PSP

While our approach to partial satisfaction planning repngéations involves assign-
ing rewards for goal achievement, another equivalent ambres to de ne costs for
failing to achieve goals. The organizers of 8f& International Planning Competi-
tion (IPC-5) introduced PDDL3.0 [49], which includes thigthod of de ning PSP
problems. Indeed, one track named “simple preferencesD{EDSP) has quali-
ties analogous to PSiket bene t Because of the similarity, we studied how our
methods could be applied to this representation. Furthedoaked whether our
planner does better using cost representations alonghy.eonverting reward to
action costs) or if handling rewards directly was a bettgraach to solving the
problem within our framework.

In PDDL3-SP, each preferenge 2 Aincludes a variable, 2 V that counts
the number of timeg; is violated andt;, 2 C representing the violation cost when
pi is not satis ed. Each actioa 2 A can have preferences associated with its
precondition as can each goagl2 G. Additionally, they can include conjunctive

and disjunctive formulas on uents. The objective functien

minimize ¢; ¢v,, + C Cvp, + 11+ Cy Cvp, (5.1)

where violation costs; 2 R are multiplied by the number of timgs is violated.
We introduce a method of converting PDDL3-SP problems iaitigl satisfac-
tion planning (PSP) problems, which gives the preferencesvard for achieve-

ment rather than a cost for violation. These new problemdioam be solved by a
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planner capable of solving PSP problems, in our case, wethsgalanneiSap&s
for a resulting planner we cafocharfs .

There are two main differences between how PDDL3-SP andrieEBene t
de ne softgoals. First, in PDDL3-SP, soft goal preferences are agtstwith a
preference name which allows them to be given a violatioh &escond, goal pref-
erences can consist of a disjunctive or conjunctive goahida. This is opposed
to PSPnet bene tproblems where individual goals are given reward. Despieé

differences, the similarities are abundant:

2 Theviolation costfor failing to achieve an individual goal in PDDL3-SP and

achievement utilityn PSPnet bene tare semantically equivalent.

2 PDDL3-SP and PSRet bene tboth have a notion of plan quality based on
a quantitative metric. PDDL3-SP bases a plan's quality on el it re-
duces the goal preference violation cost. On the other HagBnet bene t
views cost as a monotonically increasing value that meagheeresources

consumed by actions and reward by goal achievement.

2 Preferences on action conditions in PDDL3-SP can be viewgealcandi-
tional costin PSPnet bene t The cost models on actions differ only in that
PDDL3-SP provides areferencewvhich acts as a condition for applying ac-

tion cost.

As part of our compilation, we rst transform “simple preégrce” goals to
equivalent goals with utility equal to the cost producedrot satisfying them in
the PDDL3-SP problem. Speci cally, we can compile a goafgmencepref (GO |j
G G to an action that takeS%as a condition. The effect of the action is a newly

created goal representing the fact that we “have the predei@ref (G9).
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The goal compilation process converts goal preferences adtitional soft
goals and actions achieving them in PSP. We begin by creatingw actiona
for every preferenceref (G j G° u G in the goals. The actioa hasG°as a
set of preconditions, and a new effeggo. We then addyse to the original goal
setG, and give it utility equal to the cosipref (G9) of violating the preference
pref (GY. We remove the preferenpeef (G% from the resulting problem and also
force every non-compiled action that destr@/%to removeggo (by addingggo to
the delete list of these actions).

Other compilation methods for handling the constraintsiP3.0 were also
introduced in the IPC-5. For instance, the planner MIPS-X{Z6&] used a trans-
formation from PDDL3.0 that involved a compilation into dagoals and numeric
uents. YochaS and other compilation approaches proved competitive in the
competition. In fact, botiYochafS and MIPS-XXL participated in the “simple
preferences” track and received a “distinguished perfoceaaward. However,
the compilation used by MIPS-XXL did not allow the plannerdicectly handle
the soft goal preferences present in PDDL3.0. To assist teraéning whether
considering soft goals directly during the planning preasselpful, we also intro-
duce a separate compilation from PDDL3.0 that completeigiehtes soft goals,
resulting in a classical planning problem with action cosidie problem is then
solved by the anytimé® search variation implemented Bap&° . We call the

resulting planneochary©ST .
5.1 Yocha*°ST : PDDL3-SPTO HARD GOALS

Recently, approaches to compiling planning problems watfigoals to those with
hard goals have been proposed [36]. In fact, Keyder & Geffner fidctly han-

dle PSPnet bene tby compiling the problem into one with hard goals. While
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COMPILE-TO-HARD
1.B :=;
2. forallpref (G9 j G°u G
3. create two new actioreg anda,
4. pre(ag) = G°
5. ggo:= name(pref (GY)
6. eff (a1) = goo
7 C(al) =0
8. B:=B[f ag
9. G:=(G|[f geg) nfGY
10. pre(ay) = : G°
11. eff (ap) := ggo
12. C(ap) := c(pref (GY)
13. B:=B[f axg
14. G:=(G[f grer g nfGY
15.A:= B[ A

Figure 5.1: PDDL3-SP goal preferences to hard goals.

we explicitly address soft goals iMochafS , to evaluate the advantage of this
approach we explore the possibility of planning for PDDLB-By compiling to
problems with only hard goals. We call the planner that usisscompilation strat-
egy Yochar¥©ST | It uses the anytim@® search variation fronSap&°S but reverts
back to the original relaxed plan heuristic®apg31].

Figure 5.1 shows the algorithm for compiling PDDL3-SP gaafferences into
a planning problem with hard goals and actions with costcétrdition preferences
are compiled using the same approach a¥adoharts , which is discussed later.
The algorithm works by transforming a “simple preferencealnto an equivalent
hard goal with dummy actions that give that goal. Speciygalle compile a goal
preferencepref (GY j G° u G to two actions: actiora; takesGP as a condition

and actiona, takes: G°as a condition (foregoing goal achievement). Act@mn

1This is done so we may compare the compilation in our anytim@éwork.
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has costeroand actiora, has cost equal to the violation cost of not achievify
Botha,; anda, have a single dummy effect to achieve a newly created hardhyata
indicates we “have handled the preferenpesf (GY. At least one of these actions,
a; Or a,, is always included in the nal plan, and every other nonf@rence action
deletes the new goal (thereby forcing the planner to agatiddevhether to re-
achieve the hard goal, and again include the necessarywaaméat actions). After
the compilation to hard goals, we will have actions with wigtive preconditions.
We convert these into STRIPS with cost by calling the alponiin Figure 5.4.
After the compilation, we can solve the problem using anyipé capable of
handling hard goals and action costs. In our case, w&apd&®S with the heuristic
used in the non-PSP plann@apao generatérochary©ST . We are nowninimizing
cost instead omaximizingnet bene t (and hence take the negative of the heuristic
for search). In this way, we are performing an anytime sealgbrithm to compare
with YochafS . As in Yocharis , which we will explain in the next section, we
assign unit cost to all non-preference actions and incrpaskerence cost by a
factor of 100. This serves two related purposes. First, theiktic computation
uses cost propagation such that actions with zero costsa#mtially look “free” in
terms of computational effort. Second, and similarly, @tsi that move the search
toward goals take some amount of computational effort wisckeft uncounted
when action costs are zero. In other words, the search nadieation completely
neglects tree depth when actions have zero cost.
Example: Consider an example taken from the IPC-5 TPP domain showigin F
ure 5.2 and Figure 5.5. On the left side of these two gures h@rsexamples

of PDDL3-SP action and goal preferences. On the right sideskow the newly
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(:action p0Oa-0

‘parameters ()

:cost 0.0

‘precondition (and (stored goodsl
levell))

-effect (and (hasPref-p0a)))

(:action pOa-1
‘parameters ()
:cost 500.0
:precondition (and
(not (stored goods1 levell)))
-effect (and (hasPref-p0a)))
(:goal (preference POA
(stored goodsl1 levell))) With new goal: (hasPref-p0a)

(a) Goal preferences in PDDL3-SP (b) Actions with cost
Figure 5.2: PDDL3-SP to cost-based planning.

created actions and goals resulting from the compilatiaassical planning (with
action costs) using our approach described above.

In this example, the preferred ggatored goodsl levell) has a vio-
lation cost of5 (de ned in Figure 5.5). We add a new gdalasPref-p0a) and

assign the cost of achieving it with actip@a-1 (i.e., not having the goal) to 500.

5.2 Yochafs : PDDL3-SPTO PSP

When all soft goals in PDDL3-SP are compiled to hard goalss élways easi-
est (in terms of search depth) to do nothing. That is, simpéceting the higher
cost preference avoidance actions will achieve the goalawing “handled” the
preference. Consequentially, the relaxed plan baseddtieumay be misleading

because it is uninformed of the mutual exclusion betweerptkérence evalua-
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tion actions. That is, the heuristic may see what appear® @ fguick” path to
a goal, where in fact that path requires the undesirableetpesce of violating a
preference. Instead, viewing preferences as goals thdeaieable to achieve (i.e.,
attaching reward to achieving them) allows the relaxed pkuristic to be directed
to them. As such, we introduce a method of converting PDDE3s&blems into
PSP problems, which gives the preferences a reward fornashient rather than a
cost for violation, thus giving better direction for thearéd planning graph heuris-
tic. There are two main differences between how PDDL3-SPRfsidnet bene t
de ne softgoals. First, in PDDL3-SP, soft goal preferences are agtstwith a
preference name which allows them to be given a violatioh &escond, goal pref-
erences can consist of a disjunctive or conjunctive goahida. This is opposed
to PSPnet bene tproblems where individual goals are given utility. Despitese

differences, the similarities are abundant:

2 Theviolation costfor failing to achieve an individual goal in PDDL3-SP and
achievement utilityn PSPnet bene tare semantically equivalent. Thus, if
there is a goad) with a violation cost oft(g) for not achieving it in PDDLS3-
SP, then it is equivalent to having this goal with utility of = c(g) for

achieving it in PSP.

2 PDDL3-SP and PSRet bene tboth have a notion of plan quality based on
a quantitative metric. PDDL3-SP bases a plan's quality on hell it re-
duces the goal preference violation cost. On the other Ha8Bnet bene t
views cost as a monotonically increasing value that meagheeresources
consumed by actions. In PDDL3-SP we have a plan m&tend a plarP,
has a higher quality than a pld if and only if AP;) < Y4AP,). A plan's

quality in PSPnet bene tdeals with the trade-off between the utility of the
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1.B:=;

2. forall pref (G9Y j G°u G
3. pre(a):= G°

4. geo:= name(pref (G9)
5. eff (@) := geo

6. B:=B|[f ag

7. U(geo) = c(pref (GY)
8. G:=(G[f gsg) nfGY

9. forallb2 A

10.  eff (b):= eff () [:F geog
11.A:=B[ A

Figure 5.3: Preferences to P&Bt bene tgoals

goals achieved and the cost of the actions to reach the gohakxefore, a
planP; has a higher quality than a pl&? in PSPnet bene tif and only if
UPy) i C(P) >U(Py) i C(P2), whereU(P) represents the utility of a

planP andC(P) represents the cost of a pl&én

2 Preferences on action conditions in PDDL3-SP can be vieweacandi-
tional costin PSPnet bene t The cost models on actions differ only in that
PDDL3-SP provides areferencavhich acts as a condition for applying ac-
tion cost. Like violation costs for goal preferences, attiondition violation
cost is incurred if a given action is applied to a state whieat tondition is

not satis ed.

As part of our compilation, we rst transform “simple preégrce” goals to
equivalent goals with utility equal to the cost producedrot satisfying them in
the PDDL3-SP problem. Speci cally, we can compile a goafgmrencepref (G |
G°u G to an action that takeS%as a condition. The effect of the action is a newly

created goal representing the fact that we “have the predergref (G9).
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Both PDDL3-SP and PSRet bene thave a notion of cost on actions, though
their view differs on how to de ne cost. PSfet bene tde nes cost directly on each
action, while PDDL3-SP uses a less direct approach by deg tiwe penalty for not
meeting an execution condition. Therefore, PDDL3-SP cawi®sed as consid-
ering action cost as a conditional effect on an action whest is incurred on the
preference condition's negation. From this observatiomcan compile PDDL3.0
“simple preferences” on actions in a manner that is simdandw conditional ef-
fects are compiled [46].

Goal Compilation: The goal compilation process converts goal preferences int
additional soft goals and actions achieving them in PSRurEi&.3 illustrates the
compilation of goals. We begin by creating a new actofor every preference
pref (G j G° u G in the goals. The action hasG° as a set of preconditions,
and a new effecigeo. We then addjco to the original goal se®, and give it utility
equal to the cost(pref (G9) of violating the preferencpref (G%. We remove the
preferenceref (GY from the resulting problem and also force every non-conapile
action that destroy&° to removeggo (by addinggeo to the delete list of these
actions).

Action Compilation: To convert precondition action preferences, for each actio
a 2 A we generaté® (pref (a)) as the power set giref (a) (i.e.P (pref (a)) con-
taining all possible subsets pfef (a)). As Figure 5.4 shows, for each combina-
tion of preferences 2 P(pref (a)), we create an actioas derived froma. The
cost of the new actiors equals the cost of failing to satisfy all preferences in
pref (a) ns. We removea from the domain after all of its compiled actioasare
created. Since some preferences contain disjunctiveedaus compile them away

using the method introduced in by Gazen & Knoblock [46] fonwerting disjunc-
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=0

.foralla2 A

foreachprecSet2 P (pref (a))
pre(a) ;= pre(a) [ precSet
eff () := eff (a)
Cy := 100 £ c(pref (a) nprecSe)
A:=A[f ag
i=i+1

A= Anfag

CoOoNoORWDNE

Figure 5.4: Compiling preference preconditions to actwitk cost.

tive preconditions in ADL to STRIPS. Notice that because we tlne power set of
preferences, this could potentially result in a large nunolbeewly formed actions.
Since this increase is related to number of preferencesjuhdber of actions that
need to be considered during search may seem unwieldy. Hwwes found that in
practice this increase is usually minimal. After completad the planning process,
we apply Equation 5.2 to determine the PDDL3-SP total viofatost evaluation:

X X X
ToTALCOST = Ug i Ugo + Ca (5.2)

902G g2 GO az2P

Action Selection: The compilation algorithm will generate a set of actidngrom
an original actiora with jA,j = 21P" (i Gijven that actions i\, appear as sep-
arate operators to a planner, this can result in multipleadhstances fronA,
being included in the plan. Therefore, a planner could pceduans with super u-
ous actions. One way to X this issue is to explicitly add néégas of the prefer-
ence conditions that are not included in the new action prditions (i.e., we can
use a negation of the precondition formula in the actionsarathan removing the

whole condition). This is similar to the approach taken by&we& Knoblock [46]
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when compiling away conditional effects. This compilat@pproach, however,
may result in several disjunctive preconditions (from rigmgthe original conjunc-
tive preference formula), which will result in even moreiags being included in
the problem. To overcome this, we use a simple criterion emptan that removes
the need to include the negation of clauses in the disjunptigferences. Given that
all actions inA, have the same effect, we enforce that for every action gestera
from a, only theleast cosapplicable actiom; 2 A, can be included i at a given
forward search step. This criterion is already include8ap&® .
Example: Consider the examples found in Figures 5.5 and 5.6. Figiralows
the compilation for the TPP domain actiodrive and Figure 5.6 shows a TPP
domain PDDL3-SP goal preference that has been compiledPi@Rnet bene t

For the action compilation, Figure 5.5 shows the prefergndeive has a
cost of 10£ 100 = 1000for failing to have all goods ready to load at level O of a
particular location at the timdrive is executed. We translate this idea into one
where we either (1) have all goods ready to load at level Or{(ake new action
drive-0  with cost100 or (2) do not have all goods ready to load at level 1 (as in
the new actiordrive-1  with cost1000Q.

To convert the goal condition from PDDL3-SP into P& bene twe generate
a single action named for the preference, as shown in FigéreThe new action
takes the preference goal as a precondition and we agaodude the new goal
(hasPref-pOa) . However, with this compilation process, we give it a wilit
value of 5.0. This is the same as the cost for being unablehee(stored
goodsl levell)

As for implementation detailsyocha/fS multiplies the original preference

costs by 100 and uses that to direct the forward search. Abrecthat do not
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(:action drive
‘parameters
(?t - truck ?from ?to - place)
:precondition
(and
(at 2t ?from)
(connected ?from ?to)
(preference p-drive
(and
(ready-to-load
goods1 ?from level0)
(ready-to-load
goods2 ?from level0)
(ready-to-load
goods3 ?from level0))))
-effect (and (not (at ?t ?from))
(at ?t ?to)))

Weight assigned to preferences:
(:metric
(+ (£ 10 (is-violated p-drive) )
(E 5 (is-violated POA) )))

(a) Action preferences in PDDL3-SP

(:action drive-0
‘parameters
(?t - truck ?from ?to - place)
:cost 100
‘precondition (and
(at ?t ?from) (connected
?from ?to)
(ready-to-load
goods1 ?from level0)
(ready-to-load
goods2 ?from level0)
(ready-to-load
goods3 ?from level0)))
-effect (and (not (at ?t ?from))
(at ?t ?to)))

(:action drive-1
‘parameters
(?t - truck ?from ?to - place)
:cost 1000
‘precondition (and
(at ?t ?from) (connected
?from ?to))
-effect (and (not (at ?t ?from))
(at ?t ?to)))

(b) Actions with cost

Figure 5.5: Compiling action preferences from PDDL3-SPdst<ased planning.
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(:action pOa
‘parameters ()
:cost 100
‘precondition (and
(stored goodsl1 levell))
-effect (and (hasPref-p0a)))
(:goal (preference POA (stored goodsl
levell))) With new goal: ((hasPref-p0Oa) 5.0)

(a) Goal preferences in PDDL3-SP (b) Action with cost in PSP
Figure 5.6: Compiling goal preferences from PDDL3-SP to.PSP

include a preference are given a default unit cost. Againjevehis so the heuristic
can direct search toward short-length plans to reduce pigrirme. An alternative
to this method of arti cial scale-up would be to increase pineference cost based
on some function derived from the original problem. In outi&h experiments, we
took the number of actions required in a relaxed plan to redictme goals at the
initial state and used this value to generate a scale-uprfabinking this may re-
late well to plan length. However, our preliminary obseimas$ using this approach
yielded worse results in terms of plan quality.

After the compilation process is donSap&S is called to solve the new PSP
net bene tproblem with the normal objective of maximizing the net bern@&hen
a planP is found, newly introduced actions resulting from the cdatpns of goal

and action preferences are removed before returRitgythe user.
Evaluation

Most of the problems in the “simple preferences” track of {P€onsist of groups
of preferred disjunctive goals. These goals involve vagiaspects of the problems

(e.g., adeadline to deliver a package intilueksdomain). TheYocharfS compilation
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converts each preferenganto a series of actions that have the preference condi-
tion as a precondition and an effect that indicates phatsatis ed. The utility of

a preferred goal is gained if we have obtained the preferantiee end of the plan
(where the utility is based on the penalty cost of not satgfithe preference in
PDDL3-SP). In this way, the planner is more likely to try tchawve preferences
that have a higher penalty violation value.

In the competitionyochartS was able to solve problems in ve of the domains
in the “simple preferences” track. Unfortunately, manylod problems in several
domains were large andocharf> ran out of memory due to its action grounding
process. This occurred in thmathways TPP, storageandtrucksdomains. Also,
some aspects of several domains (such as conditional £fect quanti cation)
could not be handled by our planner directly and needed totmpied to STRIPS.
The competition organizers could not compile tppenstackslomain to STRIPS,
and soYocharf> did not participate in solving it. Additionally, thgipesworld
domain did not provide a “simple preferences” categorgchar’S also handles
hard goals, which were present in some of the problems, by autputting plans
when such goals are satis ed. TI®ap&° heuristic was also slightly modi ed
such that hard goals could never be removed from a relaxed®ja

To test whether varying goal set sizes for the heuristic gealoval process
affects our results, we compared running the planner wittokéng goal set sizes
in each iteration of at most 1 and at most 2. It turns out thatlinost all of the
problems from the competition, there is no change in theityual the plans found
when looking at individual goals (as against individual lgoand pairs of goals)
during the goal removal process of the heuristic. Only inprnablems in theovers

domain does there exist a minor difference in plan qualibe(m favor of looking
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at only single goals, and one in favor of looking at set siZemne and two). There
is also an insigni cant difference in the amount of time take nd plans.

In conclusion,YocharfS performed competitively in several of the domains
given by the organizers of tH&#" International Planning Competition (IPC-5). Its
performance was particularly good in “logistics” style daims. The quality of the
plans found byYocha’s earned it a “distinguished performance” award in the
“simple preferences” track. For comparison, we solved B@-b problems with
Yochar¥®ST and showed that compiling directly to classical planninthveiction
cost performs worse than compiling to a P&R bene tproblem in the competition
domains.

For the rest of this section, we evaluate the performancéoharfS in each
of the ve “simple preferences” domains in which the planparticipated. For
all problems, we show the results from the competition (Wwhian also be found
on the competition website [47]). We focus our discussiomplam quality rather
than solving time, as this was emphasized by the IPC-5 azgesi To compare
YochafS and Yocha¥©®ST , we re-ran the results (with a small bug x) using a
3.16 GHz Intel Core 2 Duo with 4 GB of RAM, 1.5 GB of which wascalated to
the planners using Java 1.5.

The Trucks Domain: Thetrucksdomain consists of trucks that move packages to
a variety of locations. It is a logistics-type domain witle tbonstraint that certain
storage areas of the trucks must be free before loading &anplace into other
storage areas. In the “simple preferences” version of tbmmain, packages must
be delivered at or before a certain time to avoid incurringefgrence violation

penalty.
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Figure 5.7(a) shows the results for ttnecksdomain in the competition. Over-
all, Yocharis performed well in this domain compared to the other planirers
the competition. It scaled somewhat better than both MIP&-X36] and MIPS-
BDD [36], though the competition winner, SGPIlan [64] solvadre problems,
often with a better or equal quality. Notably, in problemshiough 9,Yochars
had dif culty nding good quality plans. Examining the défences between the
generated problems provides some insight into this behalidhe rst ten prob-
lems of this domain, the number of preferences (i.e., satgjancreased as part of
the increase in problem size. These all included existenui@nti cation to handle
deadlines for package delivery, where a package must beededi before a particu-
lar encoded time step in the plan (time increases by one ur@hwlriving or deliv-
ering packages). For examppgckageInay need to be delivered sometime before
a time stefs. Because this criterion was de ned using a predicate, hised the
number of grounded, soft disjunctive goal sets to incréa3eis in turn caused
more goals to be considered at each time step. The planrapip'grcost propaga-
tion and goal selection processes would take more time setbe#cumstances. In
contrast, the second set of problems (problems 11 throughd@ained absolute
package delivery times on goal preferences (@agckagelmust be delivered at
exactly timets) thereby avoiding the need for disjunctive preference® fflanner
solved four instances of these harder probléms.

A seeming advantage tgocharf®ST in this domain is that it is attempting
to nd the least costlyway of achieving the goal set and does not rely on pruning

away goals a¥ocharfS does. Irtrucks the violation cost for failing to satisfy goal

2Recall that the compilation to PSfet bene tgenerates a new action for each clause of a
disjunctive goal formula.

3Note thatYocharS solved more problems than in the competition on the new rasishe
CPU was faster.
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preferences turns out to be low for many of the goals, andesS8#p&° heuristic
used byYocha’S may prune away some of the lower valued goals if the number
of actions required for achievement is deemed too high. Kewehis advantage
seems not to help the planner too much here. Also notevthehary©®ST has great
dif culty with problems 8 and 9. Again, this is largely due tompilation of goals

to actions, as the large number of actions that were gemecatesed the planner's
branching factor to increase such that many states withl éguaistic values were
generated. When large numbers of preferences &gishar¥®S™ must “decide”

to ignore them by adding the appropriate actions.

The PathwaysDomain: This domain has its roots in molecular biology. It models
chemical reactions via actions and includes other actibasdhoose initial sub-
strates. Goals in the “simple preferences” track for thimdm give a preference
on the substances that must be produced by a pathway.

Figure 5.8(a) shows thatochari> tends to scale poorly in this domain, though
this largely is due to the planner running out of memory dgitimee grounding pro-
cess. For instance, the number of objects declared in probleaused our ground-
ing procedure to attempt to produce well od€P actions. On most of its solved
problemsYocharfS provided equal quality in comparison to the other planners.
Figure 5.8(b) shows that botfochafS and Yochar¥®ST found plans of equal
quality. Note that xing a small search bug ¥ochafS and Yochar¥®S™ caused
the planners, in this domain, to fail to nd a solution in pteim 4 on the new runs
(thoughYocharfS was able to nd a solution during the competition and this is
the only problem in which¥ochafS performs worse).

The (IPC-5) RoversDomain: Theroversdomain initially was introduced at the

3Y International Planning Competition (IPC-3). For the “simpreferences” ver-
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sion used in IPC-5, we must minimize the summed cost of agifiothe plan while
simultaneously minimizing violation costs. Each actios bhacost associated with
it through a numeric variable speci ed in the plan metric.eTgoals from IPC-3
of communicating rock samples, soil samples and image dateade into pref-
erences, each with varying violation cost. Interestintilis version of the domain
mimics the PSRet bene tproblem in the sense that the cost of moving from place
to place causes a numeric variable to increase monotoni¢zich problem spec-

i es this variable as part of its problem metric, therebyoaling the variable to
act as the cost of traversing between locations. Note tleaptbblems in this do-
main are not precisely the P3iet bene tproblem but are semantically equivalent.
Additionally, none of the preferences in the competitioolppems for this domain
contain disjunctive clauses, so the number of additionabas generated by the
compilation to PSPet bene tis small.

As shown in Figure 5.9(a)ocharTs is able to solve each of the problems with
quality that is competitive with the other IPC-5 participgnYocharf©ST gives
much worse quality plans on three problems and is compacabtee majority of
the other problems. For this domain, the heuristidaThar’s guides the search
well, as it is made to discriminate between goals based oodsieof the actions to
reach them. On the other hand, as shown in Figure 5.9¢zharr°ST attempts to
satisfy the goals in the cheapest way possible and, in treeh@roblems, always
returns an empty plan and then fails to nd a better one in tlegtad time. Thus,
Yochar¥®ST tends to nd plans that trivially satisfy the newly introdeat hard
goals.

The StorageDomain: Here a planner must discover how to move crates from con-

tainers to different depots. Each depot has speci ¢ spahiatacteristics that must
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be taken into account. Several hoists exist to perform thamgpand goals involve
preferences for storing compatible crates together indhgesdepot. Incompatible
crates must not be located adjacent to one another. Preéreiso exist about
where the hoists end up.

In this domain, bothYochar’S and Yochar¥®ST failed in their grounding
process beyond problem 5. Figure 5.10(a) shows that, of tblelggns solved,
Yochar® found solutions with better quality than MIPS-XXL. FigurelB8(b)
shows that bothYochafS and Yochar¥®ST solved versions o$toragethat had
universal and existential quanti cation compiled awaynfrahe goal preferences
and produced plans of equal quality. Of the problems solyeloldth planners, the
longest plan found in this domain by the two planners costaihactions (the same
plan found by both planners).

The TPP Domain This is the traveling purchaser problem (TPP), a genetaiza
of the traveling salesman problem. In this domain, sevevallg exist at various
market locations. The object of the planning problem is tapase some amount
of each product while minimizing the cost of travel (i.e.ivdrg a truck) and while
also satisfying goal preferences. TREP domain is unique in that it is the only
one in the “simple preferences” track to have preference aston preconditions.
When driving a truck away from a market, we always prefer teetadl of the goods
emptied at that market. Cost is added to the action if wedashtisfy this condition.
Like thetrucksdomain, this is a logistics-like domain. Goal preferenggscally
involve having a certain number of the various goods stored.

As we can see in Figure 5.11(aJpchafS nds plans of competitive quality
in the problems that were solved. This domain has soft g dare mutually

exclusive from one another (i.e., storing various amouhigoods). Though the
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heuristic used iYochars does not identify this, it does focus on nding goals to
achieve that may be of the highest quality. It turns out timat,PP, this is enough.
As the planner searches for a solution, it identi es thig fawd looks for plans that
can achieve the highest quality. It is interesting to no& ¥ocharm> solves more
problems than MIPS-XXL and MIPS-BDD. Also, when both nd atibns, plans
given by Yocharts are often of better quality.

As Figure 5.11(b) show/ocharf©ST has more dif culty nding solutions for
this domain thanyocharfS . It attempts to minimize actions as well as cost (as
doesYocharT® ), but tends not to improve plan quality after nding a plarnthva
lower level of goods (involving fewer actions).

Interestingly, a similarity exists between the anytimedebr of Yochar's
and Yochar¥®ST . Typically, both planners discover initial plans at appnoately
the same rate, and when possible nd incrementally betsglin fact, only when
Yochar® nds better solutions does the behavior signi cantly diffdnd in these
cases,YochamS “reaches further” for more solutions. We largely attribtiés
to the heuristic. That is, by ignoring some of the goals in rislexed plan, the
planner essentially serializes the goals to focus on dwseagch. At each search
node YochafS re-evaluates the reachability of each goal in terms of cestus
bene t. In this way, a goal can look more appealing at gredégths of the search.
This is especially noticeable in tA€PP domain. In this domain, all of the higher-
quality plans thatyocha’> found were longer (in terms of number of actions)
than those ofyochar¥®ST in terms of number of actions. This is likely because
the relaxed plan heuristic ifocha/¥°ST believes preference goals are reachable

when they are not.

4We also note evidence of this exists by the fact thathafS tends to do better as problems
scale-up.
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Other Tracks: While YochafS participated in the IPC-5 as a partial satisfac-
tion planner capable of handling PDDL3.0, it is basedSapaand therefore is
capable of handling a wide variety of problem types. Becaidhis, the plan-
ner also participated in both the “metrictime” and “propiasial” tracks. In the
“metrictime” track, YochariS performed quite well in terms of nding good qual-
ity (short makespan) plans, performing best in one domaia ‘time” versions of
openstacKsand second best in three domains (the “time” versiostofageand
trucks and the “metrictime” version ofoversy. The performance in these prob-
lems can be attributed to the action re-scheduling proeedtiapa which takes
an original parallel, temporal plan and attempts to re-ortdeactions to shorten
the makespan even more [30]. This especially holds fooffenstackgroblems,
whose plans have a high amount of parallelism.

Looking at the results ofochafS versus SGPlan for the tempodenstacks
domain provides some further insight into this behaviorerin the more dif cult
problems thatvochafS solves, the plans contained an equal or greater number of
actions. HoweveryocharfS parallelized them to make better use of time using its

action scheduling mechanism (which, again, was inheritaah the planneGapa.

Summary of IPC-5 Results: Yochars performs competitively in many domains.
In the trucksdomain, YocharifS scaled better than MIPS-XXL and MIPS-BDD,
but was outperformed overall in terms of number of problepigesl by SGPlan,
the winner of the competition. There are several technaadons foiYochars 's
inability to solve large problems in many of the domaingchar’s 's parsing
and grounding routine was quite slow and takes most if natfahe allocated 30

minutes time to parse large problems in many domains.
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In three domainst{ucks TPP, androvers, Yochar’® predominately gave bet-
ter quality plans tharvocha/¥®ST . From the search behavior, in many cases the
compilation to hard goals caused the planner to quickly sha@ ve solutions (i.e.,
trivially achieving the hard goals without achieving theference) despite the ad-
ditional cost associated with doing so. This is attributethe fact that the heuristic
also minimizes the number of actions in the plan while mizimg cost (since the
heuristic counts all non-preference actions with a costWhile this same qual-
ity exists in the heuristic used byocharTS , handlingsoftgoals directly helps the
planner by allowing it to completely avoid considering asl@ment of goals. In
other words, the planner can focus on satisfying only thasésghat it deems ben-
e cial and can satisfy some subset of them without selectiogions that “grant
permission” to waive their achievement.

Note that one issue withochar¥©ST is that the number of “dummy” actions
that must be generated can affect its search. For everytbpctions to decide
to “not achieve the goal” can be applicable, and thereforstine considered (such
that a node is generated for each one). This can quickly ¢legsearch space,
and therefore results in a disadvantage to the planner ax#be of the problems
increasesYocharTS , on the other hand, by directly handling soft goals, cancavoi
inserting such search states into the space, thereby sicgers scalability over
Yochary©ST .

Interestingly, Keyder and Geffner performed a similar gthetween cost-based
and PSP planners handling compiled versions of problemsoomaths from the
2008 International Planning Competition [67]. While theg dot perform a head-
to-head comparison on the same satis cing planner for hagd®SPnet bene t

versus handling compiled cost-based versions of the prohlthey did show some
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bene ts. That is, one can use the start-of-the-art in castel, satis cing planners
through compiling PSiet bene tproblems into cost-based versions of the prob-
lems. Of course, the question of whether we should be hapné&BPnet bene t
problems directly or compile them to cost-based planniredds on several fac-
tors. For instance, if there are further side constrairitged to goal choice that
a compilation could not handle, then solving a P8R bene tproblem directly
would likely be a better choice. Also, planners are likelygspond differently to
compiled versions of a problem versus direct handling ofl ghaice depending

upon the technigues they empfy.
Up-front Goal Selection in Competition Domains

While Sap&® , and by extensiorYochariS , performs goal re-selection during
search, one can also imagine dealing with soft goals by tseiethem before the
planning process begins. Afterward, a planner can treasdhexted goals dsard
and plan for them. The idea is that this two-step approachredace the com-
plexities involved with constantly re-evaluating the givgoal set, but it requires
an adequate technique for the initial goal selection pmc@s$ course, performing
optimal goal selection is as dif cult as nding an optimalgnl to the original PSP
net bene tproblem. However, one can imagine attempting to nd a felassiet of
goals using heuristics to estimate how “good” a goal set ig, &gain, proving the
satis ability of goals requires solving the entire plangiproblem or at least per-
forming a provably complete analysis of the mutual exclasibetween the goals
(which is as hard as solving the planning problem).

Given that hard goals must be non-mutex, one may believéthabst domains

mutually exclusive soft goals would be rare. However, usamsquite easily specify

5Since our original comparison, others have also shown atstances where handling PDDL3-
SP problems directly can often be better than compilatiarost-based planning [21].
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soft goals with complex mutexes lingering among them. Fstaince, consider a
blocks world-like domain in which the soft goals involve bks stacked variously.
If we have three blocksa( b, andc) with the soft goalgon a b) (on b ¢) and(on ¢
a), we have a ternary mutual exclusion and we can at best acbidyewo of the
goals at a time. For any number of blocks, listing every stagkossibility will
always generate-ary mutexes, whene can be as large as the number of blocks in
the problem.

Further, the IPC-5 “simple preferences” domains have mmeayy mutual ex-
clusions between goals with sometimes complex interagtguch that the satis-
faction of one set of goals may be negatively dependent upersatisfaction of
another set of goals (i.e., some goal sets are mutex with gta sets). It turns out
that even when binary mutexes are taken into account, ass wih the planner
AltWit (which is an extension of the plann@ftAlt S ), these complex interactions
cannot be detected [85].

Speci cally, the planneAltWit uses a relaxed planning graph structure to “pe-
nalize” the selection of goals that appear to be binary miyteaclusive by solving
for each goal individually, then adding cost to relaxed plémat interfere with
already-chosen goals. In other words, given a relaxed meama elected goaj
calledrg, and a relaxed plan for a candidate ggdlr g, we have a penalty cost
c for the selection ofy?if any action inr interferes with an action in (i.e., the
effects of actions img delete the preconditions found fg in actions at the same
step). A separate penalty is given if preconditions in théas ofr 4 are binary
and statically mutex with preconditions in the actions gfand the maximum of

the two penalties is taken. This is then added to the costagated through the
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planning graph for the goalAltWit then greedily selects goals by processing each
relaxed plan in turn, and selects the one that looks most @ieahe

To see if this approach is adequate for the competition beadks, we con-
verted problems from each of the ve domains into a format tten be read by
Altwit. We found that irstorage TPP, trucks andpathwaysAltWiIt selects goals
but indicates that there exists no solution for the set kasl HoweverAltWit
found some success movers a PSPnet bene tdomain where mutual exclusion
between goals is minimal in the benchmark set. The planneralske to solve 16
of the 20 problems, whil&ocharfS was able to solve all 20. Of the ona&Wit
failed to solve, it explicitly ran out of memory or gave esoFigure 5.12 shows the
results. In 12 of the 16 problem&[tWIt is capable of nding better solutions than
YocharTs . AltWit also typically does this faster. As an extreme example, tb n
the eventual nal solution to problem 12 advers YochafS took 172.53 seconds
while AltWIt took 324 milliseconds.

We believe that the failure oAltWIit on the other competition domains is not
just a bug, but rather a fundamental inability of its up-frobjective selection ap-
proach to handle goals with complex mutual exclusion reteti To understand
this, consider a slightly simpli ed version of the simplegferencestoragedo-
main from the IPC-5. In this domain we have crates, storagasardepots, load
areas, containers and hoists. Depots act to group storage mto a single cate-
gory (i.e., there are several storage areas within a sirgglet)l Hoists can deliver a
crate to a storage area adjacent to it. Additionally, haatsmove between storage
areas within a depot, and through load areas (which conmgcitd). When a crate

or hoist is in a storage area or load area, then no other hoisate may enter into
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the area. Crates begin by being inside of a container in adoaal (hence the load
area is initially passable, as no crates are actually ircficte

Figure 5.13 shows the layout in our example (which is a simglversion of
problem 1 from the competition). In the problem there exast®ist, a crate, a con-
tainer, two depotsdepot anddepot) and two storage areas in each desat,(o,
Say, 1 In depot andsay; o, S&; 1 in depot). The storage areas are connected to
each other, and one in each depot is connected to the loadiagEhe crate begins
inside of the container and the hoist begins al@épot atsay; 0. We have several
preferences: (1) the hoist and crate should end up in diffetepots (with a viola-
tion penalty of 1), (2) the crate should bedapot, (violation penalty of 3), (3) the
hoist should be isay, o Or say; 1 (violation penalty of 3), (45ay; o should be clear
(i.e., contains neither the hoist nor the crate with a viotapenalty of 2), and (5)
Say, 1 should be clear (violation penalty of 2).

The (shortest) optimal plan for this problem involves onlgvimg the hoist.
Speci cally, moving the hoist from its current locatiosgy; o, t0 sag, 1 (using 3
moves). This satis es preference (1) because the cratetimreodepot (hence it
will always be in a “different depot” than the hoist), (3) laese the hoistis isa; 1,
(4) becauseay, ¢ is clear and (5) becausay, ; is clear. It violates the soft goal
(2) with a penalty cost of 3. Of course, nding the optimalplaould be nice, but
we would also be satis ed with a feasible plan. However, ¢hisra heavy burden
on the goal selection process to nd a satis able, conjureset. In this problem
the “simple preference” goals have complex, non-binaryualugxclusions.

Consider thaAltWit procedure for nding a set of goals for this doma#tWit
selects goals greedily in a non-deterministic way. But thpartant aspect oAl-

tWit here is how it de nes its penalty costs for noticing mutuatlesion between
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goals. Interference involves the effect of one action dejethe precondition of
another action. However, there are often several ways wffgaty a preference,
most of which do not interfere with satisfying another prefee in the relaxed
setting. For instance, consider preference (1), that weldHmave the create and
hoist in different depots. A preference of this form essalytinvolves several dis-
crete disjunctive clauses, (e.g., “do not have the hoisaat; or do not have the
crate indepot”). Satisfying for one of these clauses is suf cient to beéehat
the preference can be achieved. If we achieve one of thage ‘@0 not have the
hoist atsay; 1"), the clause is satis ed. Of course even in the relaxed el we
must satisfy each of the disjunctive clauses (e.g., we caa &ach of “do not have
the hoist atsa,; y, wherex;y 2 f 0; 1g” or “do not have the crate idepof where
x 2 £0;1g"). It turns out that these are satis able in the initial gtaso this is a
trivial feat. If we then choose goal preference (2), havimg ¢rate indepog, we
can nd arelaxed plan that moves the hoist to the load areagves the crate from
the container and places it §&y; o (which is indepot). Satisfying (3), having the
hoist atsay, o Or sag, ; l0oks statically mutex with (1), but the competing needs or
interference penalty costs apply only when a relaxed plastexSince none ex-
ists for (1), AltWit nds a relaxed plan that moves the hoistday, ;.° Satisfying
preference goal (4) requires that we move a single stepy-asasis able, and shar-
ing an action with (2), and hence there exists no interfexemacompeting needs.
Preference goal (5) is satis ed at the initial state.

From this analysis, we can see thtWIt selects each of the goals, as there

exist no penalties to make them look unappealing. It willsequently fail when

SEven if a relaxed plan were to exist for (1), the disjunctileuses make interference dif cult
to identify—i.e., we can be satisfying for “do not have thaterindepot,” which is not mutex with
preference (3).
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attempting to nd a solution for the goals—there exists noywa satisfy for all
of the preferences. The complex mutual exclusions andrispe clauses cause
AltWit to select goal sets that are impossible to achieve. Fromdhe pf view
of the competitionAltWit suffers from similar issues in all but one of the “simple
preference” domains (namely, the “simple preferencesSigarofrovers.

In summary, while up-front selection of objectives doeswlPSPnet bene t
problems to use other planners, as we have suspected, ineoshgmains the

objective selection cannot even guarantee satis cinggp{aeyond the null plan).
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Figure 5.7: IPC