
YochanPS: PDDL3 Simple Preferences as Partial Satisfaction Planning

J. Benton & Subbarao Kambhampati
Computer Sci. & Eng. Dept.

Arizona State University
Tempe, AZ 85287

{j.benton,rao}@asu.edu

Minh B. Do
Embedded Reasoning Area
Palo Alto Research Center

Palo Alto, CA 94304
minhdo@parc.com

Introduction
YochanPScompiles a problem using PDDL3 “simple prefer-
ences” (PDDL3-SP), as defined in the 5th International Plan-
ning Competition (IPC5), into a partial satisfaction planning
(PSP) (van den Briel et al. 2004). The commonality of the
semantics between these problem types enable the conver-
sion. In particular, both planning problem definitions in-
clude relaxations on goals and both define plan quality met-
rics. We take advantage of these commonalities and pro-
duce a problem solvable by PSP planners from a PDDL3-SP
problem definition. A minor restriction is made of resulting
PSP plans so the compilation may be simplified to avoid ex-
traneous exponential increases in the number of actions. We
chose SapaPS to solve the new problem.

PSP Net Benefit and PDDL3-SP
In partial satisfaction planning (Smith 2004; van den Briel
et al. 2004), goals g ∈ G have utility values u(g) ≥ 0, rep-
resenting how much each goal is worth to a given user. Each
action a ∈ A has an associated positive execution cost ca

where A is the set of all actions in the domain. Moreover,
not all goals in G need to be achieved. Let P be the low-
est cost plan that achieves a subset G′ ⊆ G of those goals.
The objective is to maximize the net benefit, that is tradeoff
between total utility u(G′) of G′ and total cost of actions
a ∈ P :

maximizeG′⊆G u(G′)−
∑

a∈P

ca (1)

In PDDL3 “simple preferences” (PDDL-SP), preferences
can be defined in goal conditions g ∈ G and action precon-
ditions pre(a) | a ∈ A (Gerevini & Long 2005). Conditions
defined in this way do not need to be achieved for a plan
to be valid. This relates well to goals as defined in PSP.
However, unlike PSP, cost is acquired by failing to satisfy
preferences. There is also no explicit utility defined. Let Φ
be a preference condition, then Cost(Φ) = α, where α is
a constant value.1 Let pref(G) be the set of all preference
conditions on goals and pref(a) be all preference precon-
ditions on a ∈ A. For a plan P , if a preference precondi-
tion, prefp ∈ pref(a) where a ∈ P , is applied in state S,

1In PDDL3, many preferences may have the same name. For
PDDL3-SP, this is syntactic sugar and we therefore refer to prefer-
ences as if each is uniquely identified to simplify the discussion.

without satisfying p then cost Cost(prefp) is incurred. In
the case of a preference on a goal, prefg ∈ pref(G), cost
Cost(prefg) is applied when the preference goal is not sat-
isfied at the end state of a plan. In PDDL3-SP, we want to
find a plan P that incurs the least cost.

Compiling PDDL3-SP to PSP
Both PSP and PDDL3-SP use a notion of cost on actions,
though their view differs on how to define cost. PSP defines
cost directly on each action, while PDDL3-SP uses a less
direct approach by defining conditions for when cost is gen-
erated. In one sense, PDDL3-SP can be viewed as consid-
ering action cost as a conditional effect on an action where
cost is increased on the preference condition’s negation. We
use this observation to inspire our action compilation to PSP.
That is, we compile PDDL3 “simple preferences” on actions
in a manner that is similar to how (Gazen & Knoblock 1997)
compiles conditional effects.

We handle goal preferences differently. In PSP, we gain
utility for achieving goals. In PDDL3-SP, we add cost for
failing to achieve goals. Taken apart these concepts are com-
plements of one another (i.e. cost for failing and utility for
succeeding). The idea is that not failing to achieve a goal
reduces our cost (i.e. gains utility for us). Therefore, as part
of our compilation to PSP we transform a “simple prefer-
ence” goal to an equivalent goal with utility equal the cost
produced for not satisfying it in the PDDL3-SP problem. In
this way we can view goal achievement as canceling out the
cost of obtaining the goal. That is, we can compile a goal
preference prefp to an action that takes p as a condition.
The effect of the action would be that we “have the prefer-
ence” and hence we would place that effect in our goal state
with a utility equal to Cost(prefp).

Figure 1 shows the algorithm for compiling a PDDL3-SP
problem into a PSP problem. We begin by first creating a
temporary action a for every preference prefp in the goals.
The action a has p as a precondition, and a new effect, gp. gp

takes the name of prefp. We then add gp to the goal set G,
and give it utility equal the cost of violating the preference.
The process then removes prefp from the goal set.

After processing the goals into a set of actions and new
goals, we proceed by compiling each action in the prob-
lem. For each a ∈ A we take each set precSet of the
power set P (pref(a)). This allows us to create a version



forall pref(p) ∈ pref(G) do
pre(a) := p
gp := name(prefp)
eff(a) := gp

forall b ∈ A do
eff(b) := eff(b) ∪ ¬{gpref}

endfor;
A := A ∪ {a}
U(gpref ) := Cost(prefp)
G := (G ∪ {gpref}) \ {p}

endfor;
i := 0
forall a ∈ A do

for each precSet ∈ P (pref(a)) do
pre(ai) := pre(a) ∪ precSet
eff(ai) := eff(a)
cai

:= Cost(pref(a) \ precSet)
A := A ∪ {ai}
i := i + 1

endfor;
A := A \ {a}

endfor;

Figure 1: PDDL3-SP to PSP compilation process.

of a for every combination of its preferences. The cost of
the action is the cost of failing to satisfy the preferences in
pref(a) \ precSet. We remove a from the domain after all
of its compiled actions are created. Notice that because we
use the power set of preferences, this results in an exponen-
tial increase in the number of actions.

When we output a plan, we must remove all new actions
that produce preference goals and our metric value is calcu-
lated as follows:

∑

g∈G

U(g) −
∑

g′∈G′
U(g′) +

∑

a∈P

ca (2)

Plan Criteria
The reader may notice that the above algorithm will gen-
erate a set of actions Aa from an original action a that are
all applicable in states where all preferences are met. That
is, actions that have cost may be inappropriately included
in the plan at such states. This would mean that the PSP
compilation could produce incorrect metric values in the
final plan. One way to fix this issue would be to explic-
itly negate the preference conditions that are not included
in the new action preconditions. This is similar to the ap-
proach taken in (Gazen & Knoblock 1997) for conditional
effects. We decided against this for three related reasons.
First, all known PSP planners require domains be specified
using STRIPS actions and this technique would introduce
non-STRIPS actions–specifically, actions with negative pre-
conditions and those with disjunctive preconditions (due to
the negation of conjunctive preferences). Second, compil-
ing disjunctive preconditions to STRIPS may require an ex-
ponential number of new actions (Gazen & Knoblock 1997;
Nebel 2000) and since we are already potentially adding an

exponential number of actions in the compilation from pref-
erences, we thought it best to avoid adding more. Lastly, and
most importantly, we can use a simple criteria on the plan
that removes the need to include the negation of preference
conditions: We require that for every action generated from
a, only the least cost applicable action ai ∈ Aa can be in-
cluded in P at a given state. This criteria is already inherent
in some PSP planners such as SapaPS (Do & Kambhampati
2004) and OptiPlan (van den Briel et al. 2004).

Example
As an example, let us see how an action with a preference
would be compiled. Consider the following PDDL3 action
taken from the IPC5 TPP domain:

(:action drive
:parameters
(?t - truck ?from ?to - place)

:precondition (and
(at ?t ?from) (connected ?from ?to)
(preference p-drive (and
(ready-to-load goods1 ?from level0)
(ready-to-load goods2 ?from level0)
(ready-to-load goods3 ?from level0))
))

:effect (and (not (at ?t ?from))
(at ?t ?to)))

A plan metric assigns a weight to our preferences:

(:metric (+ (* 10 (is-violated p-drive) )
(* 5 (is-violated P0A) )))

This action can be compiled into PSP style actions:

(:action drive-0
:parameters
(?t - truck ?from ?to - place)

:precondition (and
(at ?t ?from) (connected ?from ?to)
(ready-to-load goods1 ?from level0)
(ready-to-load goods2 ?from level0)
(ready-to-load goods3 ?from level0)))

:effect (and (not (at ?t ?from))
(at ?t ?to)))

(:action drive-1
:parameters
(?t - truck ?from ?to - place)

:cost 10
:precondition (and
(at ?t ?from) (connected ?from ?to))

:effect (and (not (at ?t ?from))
(at ?t ?to)))



Let us also consider the following goal preference in
the same domain:

(:goal
(preference P0A (stored goods1 level1)))

The goal will be compiled into the following PSP ac-
tion:

(:action p0a
:parameters ()
:precondition (and (stored goods1 level1))
:effect (and (hasPref-p0a) ) )

With the goal:

((hasPref-p0a) 5.0)

5th International Planning Competition
For the planning competition, we used the compilation de-
scribed in combination with SapaPS (Do & Kambhampati
2004) to create YochanPS . SapaPS inherently meets the
plan criteria required for our compilation. It performs an
A* search, and its cost propagated relaxed planning graph
heuristic ensures that, given any set of actions with the
same effects, the branch with the least cost action will be
taken. As another point, SapaPS is capable of handling
“hard” goals, which are prevalent in the competition do-
mains. It has also shown to be successful in solving PSP
problems (van den Briel et al. 2004).

Conclusion
We outlined a method of converting domains specified in
the “simple preferences” category of the Fifth International
Planning Competitions (PDDL3-SP) to partial satisfaction
planning (PSP) problems. The technique uses ideas for com-
piling action conditional effects into STRIPS actions as a
basis. Though the process has the potential for adding sev-
eral actions to the domain, in practice the number of added
actions appears manageable.

References
Do, M., and Kambhampati, S. 2004. Partial satisfaction
(over-subscription) planning as heuristic search. In Knowl-
edge Based Computer Systems.
Gazen, B., and Knoblock, C. 1997. Combining the ex-
pressiveness of ucpop with the efficiency of graphplan. In
Fourth European Conference on Planning.
Gerevini, A., and Long, D. 2005. Plan constraints and
preferences in PDDL3: The language of the fifth interna-
tional planning competition. Technical report, University
of Brescia, Italy.
Nebel, B. 2000. On the compilability and expressive power
of propositional planning formalisms. Journal of Artificial
Intelligence Research (12):271–315.

Smith, D. 2004. Choosing objectives in over-subscription
planning. In Proc. of ICAPS-04.
van den Briel, M.; Sanchez, R.; Do, M. B.; and Kambham-
pati, S. 2004. Effective approaches for partial satisfaction
(over-subscription) planning. In Proc. of AAAI-04.


