
Refinement Planning: Status and Prospectus

Subbarao Kambhampati�

Department of Computer Science and Engineering
Arizona State University, Tempe, AZ 85287, rao@asu.edu

Abstract

Most current-day AI planning systems operate by iter-
atively refining a partial plan until it meets the goal
requirements. In the past five years, significant progress
has been made in our understanding of the spectrum and
capabilities of such refinement planners. In this talk, I
will summarize this understanding in terms of a unified
framework for refinement planning and discuss several
current research directions.

Introduction
Developing automated methods for generating and reasoning
about plans and schedules, whether in aid of autonomous
or human agents, has been part and parcel of AI research
from the beginning. The need for planning arises naturally
when an agent is interested in controlling the evolution of
its environment. Algorithmically, a planning problem has as
input a set of possible courses of actions, a predictive model
for the underlying dynamics, and a performance measure
for evaluating the courses of action. The output or solution
is one or more courses of action that satisfy the specified
requirements for performance. A planning problem thus
involves deciding ‘‘what’’ actions to do, and ‘‘when’’ to do
them. The ‘‘when’’ part of the problem has traditionally been
called the ‘‘scheduling’’ problem [20].

The simplest case of the planning problem, where the
environment is static and deterministic, and the planner has
complete information about the current state of the world, has
come to be known as the classical planning problem. My
talk is concerned with algorithms for synthesizing plans in
classical planning. Generating plans for classical planners has
received significant attention over the past twenty years. Most
of the plan generation algorithms that have been developed
are informally called ‘‘refinement planners’’, in that they
iteratively refine a partial plan until it meets the specified
goals. In this talk, I will attempt to provide a coherent semantic

�This research is supported in part by NSF research initiation
award (RIA) IRI-9210997, NSF young investigator award (NYI)
IRI-9457634 and ARPA/Rome Laboratory planning initiative grants
F30602-93-C-0039 and F30602-95-C-0247. Special thanks to Bi-
plav Srivastava, Gopi Bulusu, Suresh Katukam, and Laurie Ihrig
for the many hours of discussions, David McAllester for his patient
correspondence regarding SNLP and refinement search, and Dan
Weld for his encouragement. Portions of this paper are borrowed
from a recent overview of planning approaches, which I co-authored
with Tom Dean.

picture of refinement planning, and describe the various
existing approaches in terms of this framework. I will also
consider the tradeoffs inherent in refinement planning, and
possible directions for developing more efficient refinement
planners.

Preliminaries of Modeling Change: Before proceeding
further, let me briefly review how classical planningproblems
are modeled. In most classical planning approaches, a state
is described in terms of a set of boolean state variables.
Suppose that we have three boolean state variables: P , Q,
and R. We represent the particular state s in which P and
Q are true and R is false by the state-variable assignment,
s = fP = true; Q = true; R = falseg, or, somewhat more
compactly, by s = fP;Q;:Rg.

An action is represented as a state-space operator � de-
fined in terms of preconditions (Pre(�)) and postconditions
(also called effects) (Post(�)). If an operator (action) is
applied (executed) in a state in which the preconditions are
satisfied, then the variables mentioned in the postconditions
are assigned their respective values in the resulting state. If
the preconditions are not satisfied, then there is no change in
state.

Several syntactic extensions can be added on top of this
basic operator representation, facilitating conditional effects
and effects quantified over finite universes. Pednault [17]
shows that this action representation is semantically equiva-
lent to the largest subset of situation calculus for which we
can get by without writing frame axioms explicitly.

Goals are represented as state-variable assignments that
assign values to subsets of the set of all state variables. By
assigning values to one or more state variables, we designate
a set of states as the goal. We say that a state s satisfies a goal
�, notated s j= �, just in case the assignment � is a subset of
the assignment s. Given an initial state s0, a goal �, and a
library of operators, the objective of the planning problem is
to find a sequence of state-space operators h�1; : : : ; �ni such
that f(s0; h�1; : : : ; �ni) j= �.

Semantic picture of Refinement Planning
Refinement planners [8] attempt to solve a planning problem
by navigating the space of sets of potential solutions (action
sequences). The potential solution sets are represented and
manipulated in the form of ‘‘partial plans.’’ Syntactically, a
partial plan � can be seen as a set of constraints (see below).
Semantically, a partial plan is a shorthand notation for the set

of action sequences that are consistent with its constraints.
The set of such action sequences is called the set of candidates
(or candidate set) of the partial plan.

We define a generic refinement planning procedure,
Refine(�), as follows [8].

1. If an action sequence h�1; �2; : : : ; �ni is a candidate of
� and also solves the planning problem, terminate and
return the action sequence.

2. If the constraints in � are inconsistent, then eliminate �
from future consideration.

3. Select a refinement strategy, and apply the strategy to
� and add the resulting refinements to the set of plans
under consideration.

4. Nondeterministically select a plan �0 from those under
consideration and call Refine(�0).

The first step of the search process is the ‘‘solution con-
struction’’ process, where the planner attempts to extract a
solution from the current partial plan’s candidate set. We shall
see later that the solution constructor function checks only on
the minimal candidates of the plan, since the candidate set
of a partial plan can be infinitely large [8]. The second step
is closely related to the first, and attempts to prune the plan
from further refinement if it can be shown not to contain any
solutions. The last two steps involve applying a refinement
operator to the partial plan to generate new partial plans,
and recursing on one of those refinements. Refinements can
be understood as operations that split the candidate set of
the partial plan to which they are applied. Specifically, a
refinement strategy converts a partial plan � into a set of new
plans f�1; : : : ; �ng such that the candidate set of each �i is a
subset of the candidate set of �. A refinement operator is said
to be complete if every solution belonging to the candidate
set of the plan will be in the candidate sets of at least on of
the plans generated by the refinement operator. A refinement
operator is said to be systematic if the candidate sets of the
refinements are disjoint. It is easy to see that the selection
of refinement strategy does not have to backtracked over, as
long as the refinement operators are complete.

The specifics of a refinement planning algorithm will
differ depending on the representation of the partial plans
used (i.e., what specific constraints are employed) and the
type of refinements employed on that representation. We
already pointed out that syntactically, a partial plan is a set
of constraints. The semantic status of a plan constraint is
clarified by specifying when a given action sequence is said
to satisfy the constraint. Within these broad guidelines, a
large variety of syntactic representations can be developed.
Once a representation for a partial plan is given, a refinement
operator can be specified in terms of the types of constraints
that it adds to a partial plan. If the constraint sets added by
refinements are mutually exclusive and exhaustive, then the
refinement operators will be systematic and complete.

Representing Partial Plans
To focus our discussion, we will start by looking at a specific
partial plan representation that is useful for modeling most
existing planners (later, we will consider alternative repre-
sentations that are promising). In this representation, partial
plan consists of a set of steps, a set of ordering constraints
that restrict the order in which steps are to be executed, and a
set of auxiliary constraints that restrict the value of state vari-
ables over particular intervals of time. Each step is associated

R P, R Q,¬

S

P()

Q()

R

S()
W V,

R U V W, ,,()
R U,¬

0 α0,() 1 α1,()

2 α2,() 3 α3,()

4 α4,()

5 α5,() ∞ α∞,()

Q R

Figure 1: This figure depicts the partial plan �eg. The
postconditions (effects) of the steps are shown above the
steps, while the preconditions are shown below the steps
in parentheses. The ordering constraints between steps are
shown by arrows. The interval preservation constraints are
shown by arcs, while the contiguity constraints are shown by
dotted lines.

........Minimal Candidate 1 Minimal Candidate m

+

from Minimal. Candidate. m

Candidates derived
From Minimal. Candidate. 1

Candidates derived

+

Union of these sets is the candidate set of the partial plan

......

Ground linearizations that satisfy auxiliary constraints

Ground Linearization 1 Ground Linearization 2 Ground Linearization n

Corresponds to the ground operator sequence

Partial Plan (a set of ordering, binding, step and auxiliary constraints)

Safe Ground Linearization 1 Safe ground Linearization m

Topological sorts on steps of the partial plan

Syntactic View

 Semantic View

Figure 2: A schematic illustration of the relation between a
partial plan and its candidate set. T

with a state-space operator. To distinguish between multiple
instances of the same operator appearing in a plan, we assign
to each step a unique integer i and represent the ith step as
the pair (i; �i) where �i is the operator associated with the ith
step. Figure 1 shows a partial plan �eg consisting of seven
steps. The plan �eg is represented as follows.

h f(0; �0); (1; �1); (2; �2); (3; �3); (4; �4); (5; �5); (1; �1g;

f(0
�

� 1); (1 � 2); (1 � 4); (2 � 3); (3 � 5); (4 � 5); (5
�

�1)g;

f(1
Q

� 2); (3
R

� 1)g i

An ordering constraint of the form (i � j) indicates that
Step i precedes Step j. An ordering constraint of the form

(i
�

� j) indicates that Step i is contiguous with Step j, that is
Step i precedes Step j and no other steps intervene. The steps
are partially ordered in that Step 2 can occur either before or

after Step 4. An auxiliary constraint of the form (i
P
� j) is

called an interval preservation constraint and indicates that
P is to be preserved in the range between Steps i and j
(and therefore no operator with postcondition :P should
occur between Steps i and j). In particular, according to the

constraint (3
R

� 1), Step 4 should not occur between Steps 3
and 1.

Figure 2 shows the schematic relations between a partial
plan in such a representation and its candidate set, and we

will illustrate it with respect to the example plan in Fig-
ure 1. Each partial plan corresponds to a set of topological
sorts (e.g. h1; 2; 3; 4; 5i and h1; 2; 4; 3; 5i). The subset of
these that satisfy the auxiliary constraints of the plan (e.g.
h1; 2; 4; 3; 5i) are said to be the safe-ground linearizations of
the plan. Each safe ground linearization of the plan corre-
sponds to an action sequence which is a minimal candidate of
the partial plan (e.g. h�1; �2; �4; �3; �5i). An infinite number
of additional candidates can be derived from each minimal
candidate of the plan by augmenting (padding) it with addi-
tional actions without violating the auxiliary constraints (e.g.
h�1; �2; �2; �4; �3; �5i). Thus, the candidate set of a partial
plan is infinite, but the set of its minimal candidates is finite.
The solution constructor functions search the minimal candi-
dates of the plan to see if any of them are solutions to the
planning problem. Refinement process can be understood as
incrementally increasing the size of these minimal candidates
so that action sequences of increasing lengths are examined to
see if they are solutions to the problem. The search starts with
the null plan hf(0; �0); (1; �1)g; f(0 � 1)g; fgi, where �0
is a dummy operator with no preconditionsand postconditions
corresponding to the initial state, and�1 is a dummy operator
with no postconditions and preconditions corresponding the
goal.

Refining Partial Plans
There are several possible ways of refining partial plans,
corresponding intuitively to different ways of splitting the set
of potential solutions represented by the plan. In the follow-
ing sections, I outline several popular refinement strategies
employed in the planning literature.

State-Space Refinements
The most straightforward way of refining partial plans in-
volves using progression to convert the initial state into a
state satisfying the goal conditions, or using regression to
convert a set of goal conditions into a set of conditions that
are satisfied in the initial state. From the point of view of par-
tial plans, this corresponds to growing prefix or the suffix of
the plan. The refinements are called state-space refinements
since given either the prefix or the suffix of a plan, we can
uniquely determine the nature of the world state following the
prefix and preceding the suffix.

The set of steps f�1; �2; : : : ; �ng with contiguity con-

straints f(�0
�

� �1); (�1
�

� �2); : : : ; (�n�1
�

� �n)g is called
the header of the plan �. The last element of the
header, �n, is called the head step. The state defined by
f(s0; h��1; : : : ; ��ni), where ��i is the operator associated
with �i is called the head state. In a similar manner, we can
define the tail, tail step, and tail state. As an example, the
partial plan �eg shown in Figure 1 has the Steps 0 and 1 in
its header, with Step 1 being the head step. The head state
(which is the state resulting from applying �1 to the initial
state) is fP;Qg. Similarly, the tail consists of Steps 5 and 1,
with Step 5 being the tail step. The tail state (which is the
result of regressing the goal conditions through the operator
�5) is fR;Ug.

Progression (or forward state-space) refinement involves
advancing the head state by adding a step �, such that the
preconditions of �� are satisfied in the current head state, to
the header of the plan. The step � may be newly added to
the plan or currently present in the plan. In either case, it is

1

3

P Q¬⇒

P¬()

Q()

R Q⇒

R()

0
2

∞

1

2
∞0

0

0∞
2
Q()

1

3

Q()

1

2
∞

3

Q()

1

23

0

∞

Q()

P Q¬⇒ P Q¬⇒

P Q¬⇒

R() R Q⇒

R()

R Q⇒ P Q¬⇒R Q⇒

R()

establishment

arbitration

demotion promotion confrontation

Figure 3: Example of plan-space refinement

made contiguous to the current head step and becomes the
new head step.

As an example, one way of refining the plan�eg in Figure 1
using progression refinement would be to apply an instance
of the operator �2 (either the instance that is currently in the
plan (2; �2) or a new instance) to the head state (recall that
it is fP;Qg). This is accomplished by putting a contiguity
constraint between (2; �2) and the current head step (1; �1)
(thereby making the former the new head step).

In realistic problems, many operators may be applicable
in the head state and very few of them may be relevant to
the top level goals. To improve efficiency, some planners
use means-ends analysis to focus on relevant operators. The
general idea is the following: Suppose we have an operator �
whose postconditions match a goal of the problem. Clearly,
� is a relevant operator. If the preconditions of � are satisfied
in the head state of the current partial plan, we can apply it
directly. Suppose they are not all satisfied. In such a case,
we can consider the preconditions of � as subgoals, look
for an operator �0 whose postconditions match one of these
subgoals, and check if it is applicable to the head state. This
type of recursive analysis can be continued to find the set of
relevant operators, and focus progression refinement [14].

We can also define a refinement strategy based on regres-
sion, which involves regressing the tail state of a plan through
an operator. For example, the operator�3 is applicable (in the
backward direction) through this tail state (which is fR;Ug),
while the operator �4 is not (since its postconditions are in-
consistent with the tail state). Thus, one way of refining �eg
using regression refinement would be to apply an instance
of the operator �3 (either the existing instance in Step 3 or
a new one) to the tail state in the backward direction. This
is accomplished by putting a contiguity constraint between
(3; �3) and the current tail step.

In both progression and regression, solution constructor
function can be simplified as follows: check to see if head
state is a super set of the tail state, and if so, return the header
concatenated with tail.

Plan-Space Refinements
State-space refinements have to guess correct answers to two
questions up front: (a) whether a specific action is relevant to

the goals of the planning problem and (b) where exactly in
the final plan does the action take place. Often, it is easier
to see whether or not a given action is relevant to a plan,
but much harder to guess the precise position at which a
step must occur in the final plan. The latter question more
naturally falls in the purview of ‘‘scheduling’’ and cannot
be answered well until all of the steps have been added. To
avoid this premature forced commitment, we would like to
introduce the new action into the plan, without committing
to its position in the final solution. This is the intuition
behind plan-space refinements. The refinement is named
‘‘plan-space’’ because when we allow an action to be part
of a plan without constraining it to be either in the prefix or
the suffix, the partial plan does not represent a unique world
state. Thus, the search cannot be recast in terms of the space
of world states.

The main idea in plan-space refinement is to shift the
attention from advancing or regressing the world state to
establishing goals in the partial plan. A precondition P of a
step (i; �i) in a plan is said to be established if there is some
step (j; �j) in the plan that precedes i and causes P to be
true, and no step that can possibly intervene between j and
i has postconditions that are inconsistent with P . It is easy
to see that if every precondition of every step in the plan is
established, then that plan will be a solution plan. Plan-space
refinement involves picking a preconditionP of a step (i; �i)
in the partial plan, and adding enough additional step, or-
dering, and auxiliary constraints to ensure the establishment
of P . One problem with this precondition-by-precondition
establishment approach is that the steps added in establish-
ing a precondition might unwittingly violate a previously
established precondition. Although this does not affect the
completeness of the refinement search, it can lead to wasted
planning effort, and necessitate repeated establishments of
the same precondition within the same search branch. Many
variants of plan-space refinements avoid this inefficiency by
protecting their establishments using IPCs. When the plan-
ner uses plan-space refinements exclusively, its refinement
process can terminate as soon as any of the safe ground
linearization of the plan correspond to solutions.

Let me illustrate the main ideas in precondition establish-
ment through an example. Consider the partial plan at the
top in Figure 3. Step 2 in this plan requires a precondition
Q. To establish this precondition, we need a step which has
Q as its postcondition. None of the existing steps have such
a postcondition. Suppose an operator �3 in the library has
a postcondition R) Q. We introduce an instance of �3 as
Step 3 into the plan. Step 3 is ordered to come before Step 2
(and after Step 0). Since �3 makes Q true only when R is true
before it, to make sure that Q will be true following Step 3,
we need to ensure that R is true before it. This can be done
by posting R as a precondition of Step 3. Since R is not a
normal precondition of �3, and is being posted only to guar-
antee one of its conditional effects, it is called a secondary
precondition [17]. Finally, we can protect the establishment

of precondition Q by adding the constraint 3
Q

� 2. If we also
want to ensure that 3 remains the sole establisher of Q in the

final solution, we can add another auxiliary constraint 3
:Q

� 2.
In [13], McAllester shows that adding these two auxiliary
constraints ensures systematicity of plan-space refinement.
Tractability Refinements: Since the position of the steps

0
1

2
∞

1 ′
0 ′ ∞′

2 ′

3
4

5
6

P

Q

R

S

0
1

∞

P

Q

S

R

2

reduction

Figure 4: Step 2 in the partial plan shown on the left is
reduced to obtain a new partial plan shown on the right. In
the new plan, Step 2 is replaced with the (renamed) steps and
constraints specified in the reduction shown in the center box.

in the plan is not uniquely determined after a plan space
refinement, there is uncertainty regarding (a) the state of the
world preceding or following a step, (b) the relative order of
steps in the plan and (c) the truth of IPC constraints in the
plan. A variety of refinement strategies exist that attempt to
make the reasoning with partial plans tractable by pushing the
complexity into the search space. These refinements, called
tractability refinements, fall into three broad classes: pre-
positioning, pre-ordering and pre-satisfaction refinements.
The first pick a pair of steps �1 and �2 in the plan and

generate two refinements one in which �1
�

� �2, and the

other in which �1 6
�

� �2. The pre-ordering refinements
do the same thing except they enforce ordering rather than
contiguity constraints between the chosen steps. Finally, the
pre-satisfaction refinements pick an IPC in the plan, and
enforce constraints such that every ground linearization of the
plan satisfies the IPC (see below).

We can illustrate the pre-satisfaction refinements through
the example in Figure 3, after we have introduced Step 3 and
ensured that it producesQ as a postcondition,we need to make
sure that Q is not violated by any steps possibly intervening
between Steps 3 and 2. In our example, Step 1, which can
possibly intervene between Steps 3 and 2, has a postcondition
P) :Q, that is potentially inconsistent with Q. To avert
this inconsistency, we can either order Step 1 to come before
Step 3 (demotion), or order Step 1 to come after Step 2
(promotion), or ensure that the offending conditional effect
will not occur. This last option, called confrontation, can be
carried out by posting :P as a (secondary) precondition of
Step 1.

Depending on whether protection strategies are used, and
what tractability refinements are used, we can get a very large
spectrum of plan-space refinements [8]. The effectiveness of
plan space refinement in controlling the search is determined
by a variety of factors, including (a) the order in which the
various preconditions are selected for establishment (b) the
manner in which tractability refinements are applied during
search. See [8] for a discussion of some of the trade-offs.

Task-Reduction Refinements
In both the state-space and plan-space refinements, the only
knowledge that is assumed to be available about the planning
task is in terms of primitive actions (that can be executed
by the underlying hardware), and their preconditions and
postconditions. Often, one has more structured planning
knowledge available in a domain. For example, in a travel
planning domain, we might have the knowledge that one
can reach a destination by either ‘‘taking a flight’’ or by

‘‘taking a train’’. We may also know that ‘‘taking a flight’’
in turn involves making a reservation, buying a ticket, taking
a cab to the airport, getting on the plane etc. In such a
situation, we can consider ‘‘taking a flight’’ as an abstract
task (which cannot be directly executed by the hardware).
This abstract task can then be reduced to a plan fragment
consisting of other abstract or primitive tasks (in this case
‘‘making a reservation’’, ‘‘buying a ticket’’, ‘‘going to the
airport’’, ‘‘getting on the plane’’). This way, if there are some
high-level problems with the ‘‘taking flight’’ action and other
goals, (e.g. there is not going to be enough money to take a
flight as well paying the rent), we can resolve them before we
work on low level details such as getting to the airport. The
resolution is can be carried out by the generalized versions of
tractability refinements used in plan-space refinement.

This idea forms the basis for task reduction refinement.
Specifically, we assume that in addition to the knowledge
about primitive actions, we also have some abstract actions,
and a set of schemas (plan fragments) that can replace any
given abstract action. Task reduction refinement takes a
partial plan � containing abstract and primitive tasks, picks an
abstract task �, and for each reduction schema (plan fragment)
that can be used to reduce �, a refinement of � is generated
with � replaced by the reduction schema (plan fragment). As
an example, consider the partial plan on the left in Figure 4.
Suppose the operator �2 is an abstract operator. The central
box in Figure 4 shows a reduction schema for Step 2, and
the partial plan shown on the right of the figure shows the
result of refining the original plan with this reduction schema.
At this point any interactions between the newly introduced
plan fragment and the previously existing plan steps can
be resolved using techniques such as promotion, demotion
and confrontation discussed in the context of plan-space
refinement. This type of reduction is carried out until all the
tasks are primitive.

Notice that the partial plans used in task reduction planning
contain one additional type of constraint -- the non-primitive
tasks. Informally, when a plan contains a non-primitive
task t, then every candidate of the plan must have the
actions comprising at least one concretization of t (where a
concretization of a non-primitive task is the set of primitive
partial plans that can be generated by reducing it using task
reduction schemas).

Tradeoffs in Refinement Planning
Now that we looked at a variety of approaches to refine-
ment planning, it is worth looking at the broad tradeoffs in
refinement planning. There are two classes of tradeoffs --
the first arising from algorithmic modifications to the generic
refinement search, and the second arising from the match
between refinements and the characteristics of the planning
domain.

An example of the first class of tradeoffs is that between the
cost of solution constructor vs. size of the search space. We
can reduce the search space size by considering partial plans
that can compactly represent a larger number of minimal
candidates. From a planning view point, this leads to least
commitment on the part of the planners. However, as the
number of candidates represented by a partial plan grow, the
cost of the picking a solution from the partial plan increases.

This tradeoff is well represented in the refinements that we
have looked at. Plans produced by state-space refinements

will have single minimal candidates, while those produced by
plan space refinements can have multiple minimal candidates
(corresponding roughly to the many topological sorts of the
plan). Finally, partial plans produced using task reduction
refinements may have even larger number of minimal candi-
dates since the presence of a non-primitive tasks essentially
allows any action sequence that contains any concretization
of the non-primitive task as a minimal candidate.

There are also certain tradeoffs that arise from the match
between the plan representations and refinements used, and
the characteristics of the planning domain and problem. For
example, it is known that the plan-space refinements can
be more efficient compared to state-space refinements in
domains where the ordering of steps cannot be guessed
with reasonable accuracy a priori [1; 16]. The plan-space
refinements also allow separation of action selection and
establishment phases from the ‘‘scheduling’’ phase of the
planning, thus facilitating easier adaptation of the plan to
more situations [7], and to more closely integrate the planning
and scheduling phases [4]. On the other hand, state-space
refinements provide a good sense of the state of the world
corresponding to the partial plan, and can thus be useful
to agents who need to do non-trivial reasoning about the
world state to focus their planning and execution efforts [2;
14]. Finally, task-reduction refinements facilitate user control
of planner’s access to the primitive actions, and are thus
the method of choice in any domain where the user has
preferences among the solution plans [9].

Prospectus
Although early refinement planning systems tended to sub-
scribe exclusively to a single refinement strategy, our unifying
treatment of refinement planning demonstrates that it is possi-
ble to use multiple refinement strategies. As an example, the
partial plan �eg shown in Figure 1 can be refined with pro-
gression refinement (e.g., by putting a contiguity constraint
between Step 1 and Step 2), with regression refinement (e.g.,
by putting a contiguity constraint between Step 3 and Step 5),
or plan-space refinement (e.g., by establishing the precondi-
tion S of Step 3 with the help of the effect Step 2). Finally,
if the operator �4 is a non-primitive operator, we can also
use task reduction refinement to replace �4 with its reduction
schema. There is some evidence that planners using multiple
refinement strategies intelligentlycan outperform those using
single refinement strategies [10]. However, the question as
to which refinement strategy should be preferred when is still
largely open.

We can be even more ambitious however. Most existing
refinement planners have trouble scaling up to larger prob-
lems, because of the very large search spaces they generate.
While application of machine learning techniques to planning
[15] hold a significant promise, we can also do better by
improving the planning algorithms. One way of controlling
the search space blow-up is to introduce appropriate forms
of disjunction into the partial plan representation. By doing
this, we can allow a single partial plan to stand for a larger
number of minimal candidates. The conventional wisdom
in refinement planning has been to keep the solution con-
struction function tractable by pushing the complexity into
the search space [8]. Some recent work by Blum and Furst
[3] shows that partial plan representations that push all the
complexity into the solution construction function may actu-

a1

a3

a4

a5

a6

a2

a1

a2

a3

a4

a5

a6

P

Q

R

Q

P
S

R

M
Q

P

Q

P

Q

R
R

M

W

M

W

W

Q
P

P

Q

S

Figure 5: To the left is the search space generated by a
refinement planner using progression refinement. To the
right is the partial plan representation, called plan graph, used
in Graphplan [3]. Each candidate plan of the plan graph
must have some subset of the actions in ith level coming
immediately before some subset of actions in the i + 1th

level (for all i). The minimal candidates corresponding to
all plans generated by the progression planner are compactly
represented by a single partial plan (plan graph) in Graphplan.

ally perform much better in practice. They describe a system
called Graphplan in which the partial plan representation,
called plan graph, corresponds to a disjunctive representation
of the search space of a progression planner (see Figure 5)
[11]. The Graphplan refinement process (i.e., the process of
growing the plan-graph) does not introduce any branching
into the search space. Thus, all the complexity is transferred
to the solution construction process which has to search the
plan graph structure for minimal candidates that are solutions.
Empirical results demonstrate this apparently extreme solu-
tion to the refinement and solution construction tradeoff in
fact leads to significant improvements in performance.

The success of Graphplan shows that there is a lot to be
gained by considering other disjunctive partial plan represen-
tations. An important issue in handling disjunctive partial
plans is how to avoid losing all the search space savings in
increased plan handling costs. One of the tricks in increasing
least commitment without worsening the overall performance
significantly seems to be to use constraint propagation tech-
niques to enforce local consistency among the partial plan
constraints. In CSP problems [18], refinement is used hand-in-
hand with local consistency enforcement through constraint
propagation to improve search performance. Although most
refinement planning systems ignored the use of constraint
propagation in planning, the situation is changing slowly. In
addition to Graphplan [3], which uses the constraint propaga-
tion process in both the partial plan construction, and solution
construction phase, there are also systems such as Descartes
[6], which attempt to incorporate constraint propagation tech-
niques directly into existing refinement planners. Solution
construction process can also be represented as an instance
of propositional satisfiability problem, and there is some re-
cent evidence [12] that nonsystematic search techniques such
as GSAT can give very good performance on such SAT
instances.

Summary
In this talk, I described the current state of refinement planning
algorithms using a unified framework for refinement plan-

ning. The framework explicates the tradeoffs offered by plan
representation and refinement strategies. I have concluded
by outlining several directions in which refinement planning
algorithms can be made more efficient. These involve using
disjunctive partial plan representations, and the using of CSP
techniques for handling partial plans.

References
[1] A. Barrett and D. Weld. Partial Order Planning: Evaluating

Possible Efficiency Gains. Artificial Intelligence, Vol. 67, No.
1, 1994.

[2] F. Bachus and F. Kabanza. Using Temporal Logic to Control
Search in a forward chaining planner. In Proc European
Planning Workshop, 1995.

[3] A. Blum and M. Furst. Fast planning throug planning graph
analysis. In Proc. IJCAI-95, 1995.

[4] K. Currie and A. Tate. O-Plan: The open planning architecture.
Artificial Intelligence, 51(1):49--86, 1991.

[5] R. Fikes and N. Nilsson. Strips: A new approach to the
application of theorem proving to problem solving. Artificial
Intelligence, 2:189--208, 1971.

[6] D. Joslin and M. Pollack. Passive and active decision post-
ponement in plan generation. In Proc. 3rd European Workshop
on Planning, 1995.

[7] L. Ihrig and S. Kambhampati. Derivational replay for partial
order planning. In Proc. AAAI-94.

[8] S. Kambhampati, C. Knoblock, and Q. Yang. Refinement
search as a unifying framework for evaluating design tradeoffs
in partial order planning. Artificial Intelligence, 76(1-2), 1995.

[9] S. Kambhampati. A comparative analysis of partial-order
planning and task-reduction planning. ACM SIGART Bulletin,
6(1), 1995.

[10] S. Kambhampati and B. Srivastava. Universal Classical Plan-
ner: An algorithm for unifying state space and plan space
approaches. In Proc European Planning Workshop, 1995.

[11] S. Kambhampati. Planning Methods in AI (Notes
from ASU Planning Seminar). ASU CSE TR 96-004.
http://rakaposhi.eas.asu.edu:8001/yochan.html

[12] H. Kautz and B. Selman. Pushing the Envelope: Planning,
Propositional Logic, and Stochastic Search In Proc. AAAI-96.

[13] D. McAllester and D. Rosenblitt. Systematic Nonlinear Plan-
ning. In Proc. 9th AAAI, 1991.

[14] D. McDermott. A heuristic estimator for means-ends analysis
in planning. In Proc. AIPS-96, 1996.

[15] Steve Minton, editor. Machine Learning Methods for Planning
and Scheduling. Morgan Kaufmann, 1992.

[16] S. Minton, J. Bresina and M. Drummond. Total Order and
Partial Order Planning: a comparative analysis. Journal of
Artificial Intelligence Research 2 (1994) 227-262.

[17] E.P.D. Pednault. Synthesizing plans that contain actions
with context-dependent effects. Computational Intelligence,
4(4):356--372, 1988.

[18] E. Tsang. Foundations of Constraint Satisfaction. Academic
Press, San Diego, California, 1993.

[19] D.E. Wilkins. Practical Planning: Extending the Classical AI
Planning Paradigm. Morgan Kaufmann, 1988.

[20] M. Zweben and M.S. Fox, editors. Intelligent Scheduling.
Morgan Kaufmann, San Francisco, California, 1994.

