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Abstract

When a case-based planner is retrieving a previous case in preparation for solving a
new similar problem, it is often not aware of the implicit features of the new problem
situation which determine if a particular case may be successfully applied. This means
that some cases may be retrieved in error in that the case may fail to improve the planner’s
performance. Retrieval may be incrementally improved by detecting and explaining
these failures as they occur. In this paper we provide a definition of case failure for the
planner, dersnlp (derivation replay in snlp), which solves new problems by replaying
its previous plan derivations. We provide EBL (explanation-based learning) techniques
for detecting and constructing the reasons for the failure. We also describe how to
organize a case library so as to incorporate this failure information as it is produced.
Finally we present an empirical study which demonstrates the effectiveness of this
approach in improving the performance of dersnlp.

1 Introduction

Case-based planning provides significant performance improvements over generative plan-
ning when the planner is solving a series of similar problems, and when it has an adequate
theory of problem similarity [5, 6, 12, 16]. One approach to case-based planning is to store
plan derivations which are then used as guidance when solving new similar problems [2, 16].
Recently we adapted this approach, called derivational replay, to improve the performance of
the partial-order planner, snlp [6]. Although we found that replay tends to improve overall
performance, its effectiveness depends on retrieving an appropriate case. Often the planner
is not aware of the implicit features of the new problem situation which determine if a certain
case is applicable.

Earlier work in case-based planning has retrieved previous cases on the basis of a static
similarity metric which considers the previous problem goals as well as the features of the
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initial state which are relevant to the achievement of those goals [10, 6]. If these are elements
of the new problem situation then the case is retrieved and reused in solving the new problem.
Usually the new problem contains extra goal conditions not covered by the case. This means
that the planner must engage in further planning effort to add constraints (including plan
steps and step orderings) which achieve the conditions that are left open. Sometimes an extra
goal will interact with the covered goals and the planner will not be able to find a solution to
the new problem without backtracking and retracting some of the replayed decisions. In the
current work we treat such instances as indicative of a case failure. We provide a framework
by which a planner may learn from the case failures that it encounters and thereby improve
its case retrieval.

We present the derivation replay framework, dersnlp+ebl, which extends dersnlp,
a replay system for a partial-order planner, by incorporating explanation-based learning
(EBL) techniques for detecting and explaining analytical failures in the planner’s search
space. These include a method for forming explanations of plan failures in terms of their
inconsistent constraints, and regressing these explanations through the planning decisions in
the failing search paths [11]. These techniques are employed to construct reasons for case
failure, which are then used to annotate the case to constrain its future retrieval. We evaluate
the effectiveness of using case failure information in an empirical study which compares the
performance of dersnlp on replay of cases both with and without failure information.

The rest of the paper is organized as follows. In Section 2, we first describe dersnlp
which implements our approach to derivation replay in the partial-order planner, snlp. We
discuss a definition of case failure for dersnlp, and show how dersnlp recovers from
the case failures it encounters. Then, in Section 3 we briefly describe the explanation-based
learning techniques that we have developed in [11], including the construction of failure
explanations, and their regression and propagation up the search tree. We then show how
reasons for case failure are constructed using these techniques, and how these failure reasons
are used to refine the labeling of cases in the library. Section 4 describes an empirical study
demonstrating the relative effectiveness of replay when this failure information is utilized.
Finally, in Section 5 we discuss the relationship to previous work in case storage and retrieval.

2 Derivation Replay in Partial-Order Planning

Derivational analogy is a case-based planning technique which includes all of the following
elements [2, 16, 17]: a facility within the underlying planner to generate a trace of the
derivation of a plan, the indexing and storage of the derivation trace in a library of previous
cases, the retrieval of a case in preparation for solving a new problem, and finally, a replay
mechanism by which the planner utilizes a previous derivation as a sequence of instructions
to guide the search process in solving a new problem. Figure 1a illustrates the replay of a
derivation trace. Whenever a new problem is attempted and a solution is achieved, a trace
of the decisions that fall on the derivation path leading from the root of the search tree to
the final plan in the leaf node is stored in the case library. Then, when a similar problem is
encountered, this trace is used as a sequence of instructions to guide the new search process.
dersnlp employs an eager replay strategy. With this strategy, control is shifted to the series
of instructions provided by the previous derivation, and is returned to from-scratch planning
only after all of the valid instructions in the trace have been replayed [6, 7]. This means
that the plan which is produced through replay, called the skeletal plan, contains all of the
constraints that were added on the guidance of the one previous trace. When the skeletal
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Figure 1: Schematic characterization of derivation storage and replay. Each time that a plan
is derived, the decisions contained in the plan derivation (shown as filled circles to the left
in Figure (a) ) are stored as a sequence of instructions (shown as open rectangles) which
are used to guide the new search process. The guidance provided by replay is considered
successful if the skeletal plan that replay produces can be extended (by the addition of
constraints) into a solution to the new problem. If replay has been successful, the skeletal
plan lies on the new derivation path leading to the solution (the new derivation path is shown
to the right of Figure (a) as a sequence of filled circles). A replay failure is indicated when
the skeletal plan has to be backtracked over in order to reach a solution. In Figure (b), a
solution to the new problem could be reached only by backtracking over the skeletal plan,
which now lies outside the new plan derivation (shown as filled circles). Explanations are
constructed for the failing plans in the leaf nodes of the subtree underneath the skeletal plan,
and are regressed up the tree to compute the reasons for case failure.

plan contains open conditions relating to extra goals not covered by the earlier case, further
planning effort is required to extend this plan into a solution for the new problem.

In the current work we define replay success and failure in terms of the skeletal plan.
Replay is considered to fail if the skeletal plan which contains all of the constraints prescribed
by the old case cannot be extended by the addition of further constraints into a solution for
the new problem (See Figure 1b). In such instances, the planner first explores the failing
subtree underneath the skeletal plan, then backtracks over the replayed portion of the search
path until a solution can be found. Replay failure results in poor planning performance, as
illustrated in Figure 2, since it entails the additional cost of retrieving a trace from the library,
as well as the cost of validating each of the decisions in the trace. This means that when
replay fails and the planner has to backtrack over the skeletal plan performance may be worse
than in from-scratch planning.

When a case fails, and the planner goes on to find a new solution, the final plan that it
reaches does not contain some of the constraints that are present in the skeletal plan. The
derivation path which leads from the root of the search tree to the final plan in the leaf node
thus avoids (or repairs) the failure encountered in replaying the old case. Consider a simple
example taken from the logistics transportation domain of [16] (See Figure 3a). The goal is to
have package OB1 located at the destination location ld. The package is initially at location
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Figure 2: Successful replay reduces the size of the search. However it entails the additional
cost, � , of retrieving a trace from the library, as well as the cost, �, of validating each of
the decisions in the trace. When replay fails performance may be worse than in from-scratch
planning.
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Figure 3: An illustration of replay success and failure. In the previous case (shown in Figure
(a)) a plan has been derived to accomplish the transport of a single package, OB1, to the
destination airport ld. Decisions were made which establish the plane’s route (indicated in
Figure (a) by the curved arrows), as well as the loading and unloading of the package. The
new problem, illustrated in Figure (b), contains an extra goal which involves the transport
to ld of a second package, OB2, which is initially located off the previous route. The planner
must backtrack and choose an alternative route (shown in bold) in order to accomodate the
extra goal.

l1. There is a plane located at lp which can be used to transport the package. A previous case
which solves this problem will contain decisions which add steps that determine the plane’s
route to the destination airport as well as steps which accomplish the loading of the package
at the right place along this route. These decisions may be readily extended to load and
unload extra packages which lie along the same route. However, if the new problem involves
the additional transport of a package which is off the old route, the planner may not be able
reach a solution without backtracking over some of the replayed decisions (See Figure 3b).
The new derivation path makes some alternative choices in achieving the goal which was
covered by the previous case. Although it arrives at a plan which contains more steps, this
plan may be readily extended to solve the extra goal.

Having defined case failure and provided an example, we are now in a position to
describe how the planner learns the reasons underlying a case failure. Specifically, we use
EBL techniques to accomplish this learning. In the next section, we show how the EBL
techniques developed in [11] are employed to construct reasons for case failure.
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Type : ESTABLISHMENT Type : ESTABLISHMENT
Kind : NEW STEP Kind : NEW LINK
Preconditions : Preconditions :
hp0; s0i 2 C hp0; s0i 2 C
Effects : Effects :
S0 = S [ fsg O0 = O [ fs � s0g
O0 = O [ fs � s0g B0 = B [ unify(p; p0)
B0 = B [ unify(p; p0) L0 = L [ fhs; p; s0ig
L0 = L [ fhs; p; s0ig C0 = C � fhp0; s0ig
E = E [ effects(s)
C0 = C � fhp0; s0ig
[ preconditions(s)

Figure 4: Planning decisions are based on the current active plan hS;O;B;L; E; Ci and
have effects which alter the constraints so as to produce the new current active plan
hS 0;O0;B0;L0; E 0; C0i.

3 Learning from Case Failure

dersnlp+ebl constructs case failure reasons incrementally as the skeletal plan is extended
by the addition of constraints and failures are encountered. As Figure 1b illustrates,
dersnlp+ebl forms explanations for the failures that occur in the subtree rooted at the
skeletal plan. 1 Path failure explanations identify a minimal set of conflicting constraints in
the plan which are together inconsistent. These are then regressed up the tree to construct
reasons for case failure.

Since a plan failure is explained by a subset of plan constraints, failure explanations
are represented in the same manner as a partial plan. dersnlp represents its partial plans
as a 6-tuple, hS;O;B;L; E; Ci, where [1]: S is the set of actions (step-names) in the plan,
each of which is mapped onto an operator in the domain theory. S contains two dummy
steps: tI whose effects are the initial state conditions, and tG whose preconditions are the
input goals, G. B is a set of codesignation (binding) and non-codesignation (prohibited
binding) constraints on the variables appearing in the preconditions and post-conditions of
the operators which are represented in the plan steps, S . O is a partial ordering relation on S,
representing the ordering constraints over the steps in S . L is a set of causal links of the form
hs; p; s0i where s; s0 2 S . A causal link contains the information that s causes (contributes) p
which unifies with a precondition of s0. E contains step effects, represented as hs; ei, where
s 2 S . C is a set of open conditions of the partial plan, each of which is a tuple hp; si such
that p is a precondition of step s and there is no link supporting p at s in L.

The explanation for the failure of the partial plan contains the constraints which contribute
to an inconsistency in the plan. These inconsistencies appear when new constraints are added
which conflict with existing constraints. dersnlp makes two types of planning decisions,
establishment and resolution. Each type of decision may result in a plan failure. For example,
an establishment decision makes a choice as to a method of achieving an open condition,
either through a new/existing plan step, or by adding a causal link from the initial state.
When an attempt is made to achieve a condition by linking to an initial state effect, and
this condition is not satisfied in the initial state, the plan then contains a contradiction. An

1Depth limit failures are ignored. This means that the failure explanations that are formed are not sound in
the case of a depth limit failure. However, soundness is not crucial for the current purpose, since explanations
are used only for case retrieval and not for pruning paths in the search tree.
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(b) A Detailed Example

Figure 5: Explanations are constructed for the failing plans in the leaf nodes of the subtree
rooted at the skeletal plan, and are regressed up the tree. The path failure explanation at
the root of the tree is computed as e1

1 = d�1
1 (d�1

2 � � � (d�1
f (e1)) � ��). The case failure reason

represents a combined explanation for each of the path failures.

explanation for the failure is constructed which identifies the two conflicting constraints:
h;; ;; ;; fhtI ; p; sig; fhtI ;:pig; ;i.

As soon as a path failure is detected and an explanation is constructed, the explanation is
regressed through the decisions in the failing path up to the root of the search tree. In order to
understand the regression process, it is useful to think of planning decisions as STRIPS-style
operators acting on partial plans (See Figure 4). The preconditions of these operators are
specified in terms of the plan constraints that make up a plan flaw, which is either an open
condition or a threat to a causal link. The effects are the constraints that are added to the
partial plan to eliminate the flaw.

Each of the conflicting constraints in the failure explanation is regressed through the
planning decision, and the results are sorted according to type to form the new regressed
explanation. As an example, consider that a new link from the initial state results in a failure.
The explanation, e1 is: h;; ;; ;; fhtI; p; sig; fhtI ;:pig; ;i When e1 is regressed through the
final decision, df to obtain a new explanation, ef1 , the initial state effect regresses to itself.
However, since the link in the explanation was added by the decision, df , this link regresses
to the open condition which was a precondition of adding the link. The new explanation, ef1 ,
is therefore h;; ;; ;; ;; fhtI ;:pig; fhp; sigi. The regression process continues up the failing
path until it reaches the root of the search tree. This process is illustrated graphically in
Figure 5a. A more detailed example is provided in Figure 5b. When all of the paths in the
subtree underneath the skeletal plan have failed, the failure reason at the root of the search
tree provides the reason for the failure of the case. It represents a combined explanation for
all of the path failures. The case failure reason contains only the aspects of the new problem
which were responsible for the failure. It may contain only a subset of the problem goals.
Also, any of the initial state effects that are present in a leaf node explanation, are also present
in the reason for case failure.
An Example of Case Failure: Figure 6a provides a trace of dersnlp’s decision process in
arriving at a solution to the simple problem taken from the logistics transportation domain.
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Goal : (AT-OB OB1 ld)
Initial : (AT-PL PL1 lp)

(AT-OB OB1 l1) ...
Name : G1 Name : G7
Type : START-NODE Type : ESTABLISHMENT
Name : G2 Kind : NEW-LINK
Type : ESTABLISHMENT New Link: (tI (IS-A AIRPORT ld ) 2)
Kind : NEW-STEP Open Cond: ((IS-A AIRPORT ld) 2)
New Step: (UNLOAD OB1 ?P1 ld) Name : G8
New Link: (1 (AT-OB OB1 ld) tG) Type : ESTABLISHMENT
Open Cond: ((AT-OB OB1 ld) tG) Kind : NEW-STEP
Name : G3 New Step: (LOAD OB1 PL1 ?A4)
Type : ESTABLISHMENT New Link: (4 (INSIDE-PL OB1 PL1) 1)
Kind : NEW-STEP Open Cond: ((INSIDE-PL OB1 PL1) 1)
New Step: (FLY ?P1 ?A2 ld) Name : G9
Open Cond: ((AT-PL ?P1 ld) 1) Kind : NEW-LINK
Name : G4 New Link: (3 (AT-PL PL1 l1) 4)
Type : ESTABLISHMENT Open Cond: ((AT-PL PL1 ?A4) 4)
Kind : NEW-STEP Name : G10
New Step: (FLY ?P1 ?A3 ?A2) Type : RESOLUTION
New Link: (3 (AT-PL ?P1 ?A2) 2) Kind : PROMOTION
Open Cond: ((AT-PL ?P1 ?A2) 2) Unsafe Link : (3 (AT-PL PL1 l1) 4)
Name : G5 Threat : (2 :(AT-PL PL1 l1))
Type : ESTABLISHMENT Name : G11
Kind : NEW-LINK Type : ESTABLISHMENT
New Link: (tI (AT-PL PL1 lp) 3) Kind : NEW-LINK
Open Cond: ((AT-PL ?P1 ?A3) 3) New Link: (tI (AT-OB OB1 l1) 4)
Name : G6 Open Cond: ((AT-OB OB1 l1) 4)
Type : ESTABLISHMENT
Kind : NEW-LINK Key to Abbreviations:
New Link: (tI (IS-A AIRPORT l1) 3) PL = PLANE
Open Cond: ((IS-A AIRPORT ?A2) 3) OB = OBJECT

Final Plan: (FLY PL1 lp l1) Created 3
(LOAD OB1 PL1 l1) Created 4

(FLY PL1 l1 ld) Created 2
(UNLOAD OB1 PL1 ld) Created 1

Ordering of Steps: ((4 < 2) (3 < 4) (4 < 1) (3 < 2) (2 < 1))

(a) Previous Case

Goal : (AT-OB OB1 ld) (AT-OB OB2 ld)
Initial : ((IS-A AIRPORT ld) (IS-A AIRPORT l1))

(IS-A AIRPORT lp) (IS-A AIRPORT l2)
(AT-PL PL1 lp) (AT-OB OB1 l1)

(AT-OB OB2 l2) ...
... Name : D4
... Type : ESTABLISHMENT
Name : G11 Kind : NEW-LINK
Type : ESTABLISHMENT New Link: (tI (AT-PL PL1 lp) 6)
Kind : NEW-LINK Open Cond: ((AT-PL ?P3 lp) 6)
New Link: (tI (AT-OB OB1 l1) 4) Name : D5
Open Cond: ((AT-OB OB1 l1) 4) Type : RESOLUTION
Name : D1 Kind : PROMOTION
Type : ESTABLISHMENT Unsafe Link: (tI (AT-PL PL1 lp) 6)
Kind : NEW-STEP Threat: (3 (AT-PL PL1 lp))
New Step: (UNLOAD OB2 ?P2 ld) Name: D6
New Link: (5 (AT-OB OB2 ld) tG) Type : ESTABLISHMENT
Open Cond: ((AT-OB OB2 ld) tG) Kind : NEW-LINK
Name : D2 New Link :(tI (AT-OB OB2 lp) 6)
Type : ESTABLISHMENT Open Cond: ((AT-OB OB2 lp) 6)
Kind : NEW-LINK
New Link: (2 (AT-PL PL1 ld) 5) Path Failure Explanation:
Open Cond: ((AT-PL ?P2 ld) 5) E = fhtI ; (: AT-OB OB2 lp)ig
Name : D3 L = fhtI; (AT-OB OB2 lp); 6ig
Type : ESTABLISHMENT
Kind : NEW-STEP
New Step: (LOAD OB2 PL1 ?A6) Key to Abbreviations:
New Link: (6 (INSIDE-PL OB2 PL1) 5) PL = PLANE
Open Cond: ((INSIDE-PL OB2 PL1) 5) OB = OBJECT

Case Failure Explanation:
C = fh(AT-OB OB1 ld); tGi

h(AT-OB OB2 ld); tGig
E = fhtI; (AT-PL PL1 lp)i
htI ; (:AT-OB OB2 ld)i
htI; (:INSIDE-PL OB2 ?PL )i
htI; (:AT-OB OB2 l1)i
htI ; (:AT-OB OB2 lp)ig

(b) A Failing Path

Figure 6: An Example Trace of a Failing Path for dersnlp

We will use this trace as an example and again assume that this derivation is replayed in
solving a new problem that contains an extra goal. The trace in Figure 6a derives a plan to
solve a problem which has a single goal, that OB1 be at the destination airport, ld.

Starting with the null plan dersnlp first chooses a method of achieving this open
condition. The first step to be added to the plan unloads the package, OB1, at its destination,
ld. Planning continues by adding a second step to fly a plane to the package destination. This
step accomplishes a precondition of the unload action, which is that the plane has to be at ld
in order to unload the package. As planning continues more steps are added, and some of the
open conditions are linked to existing steps, or to the initial world state. Eventually a threat
is detected. The flight to the final destination location threatens a precondition of the load
action, since the plane has to be at the package location in order to load the package. This
threat is resolved by promoting the flight to the package destination to follow the loading of
the package. The final plan is shown at the bottom of Figure 6a.

If the derivation in Figure 6a is replayed in solving a new problem where there is an
extra package to be transported to the same destination, and this package lies outside the
plane’s route, replay will fail. Figure 6b illustrates how the decisions that dersnlp makes
in extending the derivation result in a path failure. Although the subtree underneath the
skeletal plan fails, for illustration purposes only one failing path is traced in Figure 6b. The
figure shows only the latter portion of the path, starting with the skeletal plan. dersnlp

first attempts to extend the replayed path by adding the unload and then the load actions.
A precondition of a load is that the plane is at some location. dersnlp links the plane’s
location to the initial world state. The plane originates at lp. This decision is then followed
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Figure 7: Local organization of the case library.

by a decision to link the object’s location to the initial state. This results in an inconsistency
in the plan since the object is not at lp initially (See path failure explanation in Figure 6b).
The full case failure reason is shown at the bottom of Figure 6b. It gives the conditions under
which a future replay of the same case will result in failure. A summary of the information
content of the explanation is: There is an extra package to transport to the same destination
location, and that package is not at the destination location, is not inside the plane, and is
not located on the plane’s route. This explanation identifies implicit features of the problem
description which are predictive of failure and are used to censor retrieval.
Library Organization: Each time a case fails the failure reason is used to annotate the case
in the library. The library fragment depicted in Figure 7 is indexed by a discrimination net
and represents all of the cases which solve a single set of input goals. Individual cases which
solve these goals are represented one level lower in the net. Each case is labeled by the
relevant initial state conditions. When one of these cases is retrieved for replay and the case
fails, it is then annotated with the reason for the case failure. When the case is retrieved
again this failure reason is tested in the new problem situation, and, if satisfied, the retrieval
process returns the alternative case that repairs the failure. The case failure reason is thus
used to direct retrieval away from the case which will repeat a known failure, and towards
the case that avoids it.

4 Empirical Evaluation of the Retrieval Strategy

In this section we describe an empirical study which was conducted with the aim of
demonstrating the advantage of retrieving cases on the basis of previous replay failures.
We chose domains in which randomly generated problems contained interacting goals, and
tested planning performance when dersnlp was solving n-goal problems from scratch and
through replay of a similar (n-1)-goal problem. We compared the performance improvements
provided by replay when information about the previous case failure was not used in case
retrieval vs when it was used.

4.1 Experimental Method

Domains: Experiments were run on problems drawn from two domains. The first was the
artificial domain, (�2D

mS1), originally described in [1] and shown in Figure 8. Testing was
done on problems which were randomly generated from this domain with the restriction that
they always contain the goal G�. Notice that if G� is one of a set of problem goals, and it
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(�2D
mS1) :

(A�
i precond : fIi; P�g add : fGig delete : fIj jj < ig)

(A�
i precond : fIiP�g add : fGig delete : fIjjj < ig)

(A� precond : fg add : fG�g delete : fP�g [ fGij8ig)

Figure 8: The specification of Barrett and Weld’s Transformed (DmS1)Domain

is not true initially, then any other goal, Gi, that is present in the set must be achieved by
the operator A�

i , and not by A
�
i . This means that any time a case is replayed that previously

solved a goal, Gi, through an action A
�
i , and G� as an extra goal not covered by the case,

then replay will fail.
The logistics transportation domain of [16] was adopted for the second set of experiments.

Eight packages and one airplane were randomly distributed over four cities. Problem goals
represented the task of getting one or more packages to a single destination airport. The fly
operator was augmented with a delete condition which prevented planes from visiting the
same airport more than once. This meant that replay failed for dersnlp if there was an extra
package to be transported which was off the previous route taken by the plane.
Retrieval Strategy: Cases were initially retrieved on the basis of a static similarity metric
which takes into account the new goals that were covered by the case as well as all of their
relevant initial state conditions. The metric was similar to the validation structure-based
similarity metric of [9] and the foot-printed similarity metric of [16]. Prior studies show it to
be a reasonably effective metric. In learning mode, cases were also retrieved on the basis of
the same metric. However, in this mode, the failure reasons attached to the case were used
to censor its retrieval. Each time that a case was retrieved in learning mode, these failure
conditions were also tested. If each failure reason was not satisfied in the new problem
specification, the retrieval mechanism returned the case for replay. If, on the other hand, a
failure reason was found to be true in the new problem context, then the case that repaired
the failure was retrieved. Following retrieval, the problem was solved both by replay of the
retrieved case as well as by planning from scratch.
Experimental Setup: Each experiment consisted of three phases, each phase corresponding
to an increase in problem size. Goals were randomly selected for each problem, and, in the
case of the logistics domain, the initial state was also randomly varied between problems. In
an initial training session that took place at the start of each phase n, 30 n-goal problems
were solved from scratch, and each case was stored in the case library. Following training,
the testing session consisted of randomly generating problems in the same manner but with
an additional goal. Each time that a new (n+ 1) goal problem was tried, an attempt was made
to retrieve a similar n-goal problem from the library. Cases were chosen so as to have all but
one of the goals matching. This meant that the skeletal plan that was returned by the replay
procedure contained one open condition representing a goal corresponding to an extra input
goal.

If during the testing session, a case that was similar to the new problem was found which
had previously failed and that case was annotated with a failure reason, then the problem
was solved in learning, static and from-scratch modes, and the problem became part of the
30-problem set. With this method, we were able to evaluate the improvements provided by
failure-based retrieval when retrieval on the static metric alone was ineffective, and when
failure conditions were available. If no similar case with a failure reason was found in the
library, then the problem was attempted through replay, and if a replay failure occurred, the
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(�2D
mS1) Logistics

Phase Learning Static Scratch Learning Static Scratch
(1) Two Goal

%Solved 100% 100% 100% 100% (6.0) 100% (6.0) 100% (6.0)
nodes 90 240 300 1773 1773 2735

time(sec) 1 4 2 30 34 56
(2) Three Goal

% Solved 100% 100% 100% 100% (8.2) 100% (8.2) 100% (8.2)
nodes 120 810 990 6924 13842 20677

time(sec) 2 15 8 146 290 402
(3) Four Goal

% Solved 100% 100% 100% 100% (10.3) 100% (10.3) 100% (10.3)
nodes 150 2340 2533 290 38456 127237

time(sec) 3 41 21 32 916 2967

Table 1: Performance statistics in (�2D
mS1) and Logistics Transportation Domain (Average

solution length is shown in parentheses next to %Solved for the logistics domain only)

case that repaired the failure was also stored in the library. In order that the new case differed
from the old only in the quality of the advice that it contained and not in the amount of
information, prior to storing the derivation trace it was stripped of the decisions relating to
the extra goal. The new case was then stored in the library, and the old case was annotated
with the failure reason, as well as a pointer to the new case. This meant that (n + 1)-goal
problems were always solved by replaying n-goal cases.

4.2 Experimental Results

The results of the experiments are shown in Tables 1 and 2. Each table entry represents
cumulative results obtained from the sequence of 30 problems corresponding to one phase of
the experiment. The first row of Table 1 shows the percentage of problems correctly solved
within the time limit (550 seconds). The average solution length is shown in parentheses
for the logistics domain (solution length was omitted in (�2D

mS1) since all of the problems
generated within a phase have the same solution length). The second and third rows of
Table 1 contain respectively the total number of search nodes visited for all of the 30 test
problems, and the total CPU time (including case retrieval time). dersnlp in learning mode
was able to solve as many of the multi-goal problems as in the other two modes and did
so in substantially less time. Case retrieval based on case failure resulted in performance
improvements which increased with problem size (See Table 1). Comparable improvements
were not found when retrieval was based on the static similarity metric alone. This should
not be surprising since cases were retrieved that had experienced at least one earlier failure.
This meant that testing was done on cases that had some likelihood of failing if retrieval was
based on the static metric.

In the simple artificial domain, (�2D
mS1), cases retrieved on the basis of the static

similarity metric alone always resulted in a replay failure. Moreover, cases that were
retrieved on the basis of failure conditions were always successfully replayed. In the more
complex transportation domain, the likelihood of replay success or failure depends on the
parameters that govern the problem generation, including the number of cities and the
number of packages to be transported. Results from this domain, however, were even
more compelling. Retrieval based on failure analysis showed substantial improvements over
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(�2D
mS1) Logistics

Phase Learning Static Learning Static
Two Goal

% Succ 100% 0% 53% 53%
% Der 60% 0% 48% 48%
% Rep 100% 0% 85% 85%

Three Goal
% Succ 100% 0% 80% 47%
% Der 70% 0% 63% 50%
% Rep 100% 0% 89% 72%

Four Goal
% Succ 100% 0% 100% 70%
% Der 94% 0% 79% 62%
% Rep 100% 0% 100% 81%

Table 2: Measures of Effectiveness of Replay

retrieval based on the static metric alone. Notice, in particular, the last phase, which included
testing on four-goal problems. On these problems, the planner showed up to two orders of
magnitude improvement in CPU time in learning mode.

Table 2 records three different measures which reflect the effectiveness of replay. The
first is the percentage of successful replay. Recall that replay of a trace is considered here to
be successful if the skeletal plan is further refined to reach a solution to the new problem.
The results on the percentage of successful replay point to the greater efficiency of replay in
learning mode. In the (�2D

mS1) domain, replay was entirely successful in this mode. In the
transportation domain, retrieval based on failure did not always result in successful replay,
but did so more often than in static mode.

The greater effectiveness of replay in learning mode is also indicated by the two
other measures contained in the subsequent two rows of Table 2. These are respectively,
the percentage of plan-refinements on the final derivation path that were formed through
guidance from replay, and the percentage of the total number of plans created through replay
that remained in the final derivation path. The case-based planner in learning mode showed
as much or greater improvements according to these measures, demonstrating the relative
effectiveness of guiding retrieval through a learning component based on replay failures.

4.3 Summary

The results from our experiments in both the artificial domain, (�2D
mS1), and the more com-

plex logistics transportation domain, demonstrate that replay performance can be significantly
improved by taking into account the failures that are encountered during replay. Performance
improvements were greatly enhances when the planner was able to avoid case failures that
were predicted on the basis of previously experienced failures. These results validate our
choice of definition of case failure, as well as our method of constructing case failure reasons.
The results indicate that the case failure annotations were successful in predicting future
case failure. Moreover, when case failure was predicted, the failure annotations enabled the
retrieval of alternative cases which provided substantially better performance improvements
through replay. Our results demonstrate that when failure information is available, the
improvements gained by utilizing this information are such that they more than offset the
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added cost entailed in testing failure reasons and retrieving on the basis of failure information.

5 Related Work and Discussion

The current work complements and extends earlier treatments of case retrieval [10, 16, 17].
Replay failures are explained and used to avoid the retrieval of a case in situations where
replay will mislead the planner. CHEF [4] learns to avoid execution-time failures by
simulating and analyzing plans derived by reusing old cases. In contrast, our approach
attempts to improve planning efficiency by concentrating on search failures encountered in
plan generation. We integrate replay with techniques adopted from the planning framework
provided by snlp+ebl [11]. This framework includes methods for constructing conditions
for predicting analytical failures in its search space.

In this paper, we explain and learn only from analytical failures. However, our approach
may be also be extended to explain failures related to plan quality [15]. If plans are rejected
by an independent plan evaluation which identifies a combination of plan constraints which
are to be blamed for the quality of the plan, then explanations may be constructed that identify
those constraints. This would allow the retrieval mechanism to learn to avoid cases which
result in similar bad plans, and thereby improve the quality of the solutions, as well as the
planning performance.

Although EBL techniques have been previously used to learn from problem-solving
failures [14], the goal of EBL has been to construct generalized control rules that can
be applied to each new planning decision. Here we use the same analysis to generate
case-specific rules for case retrieval. Rather than learn from all failures, we only concentrate
on learning from failures that result in having to backtrack over the replayed portion of the
search path. As learned information is used as a censor on retrieval rather than as a pruning
rule, soundness and completeness of the EBL framework may not be as critical. Furthermore,
keeping censors on specific cases avoids the utility problem commonly suffered by EBL
systems. See [13, 8, 3] for discussions on the issue of the relative tradeoffs offered by
case-based and EBL methods in learning to improve planning performance .

6 Conclusion
In this paper, we described a framework for a case-based planning system that is able to
exploit case failure to improve case retrieval. A case is considered to fail in a new problem
context when the skeletal plan produced through replay can not be extended by further
planning effort to reach a solution. EBL techniques are employed to explain the failure of
the subtree directly beneath the skeletal plan. This failure explanation is then propagated up
the tree to the root, where it is in terms of the problem specification and is used to explain
the case failure and to predict similar failures that may occur in the future. Failing cases are
annotated with the reasons for failure which direct the retrieval process on to an alternative
case which avoids the failure. Our results demonstrate the effectiveness of this approach.
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