
Relevance and Overlap Aware Text Collection Selection

Thomas Hernandez & John (Wes) Dyer & Subbarao Kambhampati∗

Department of Computer Science and Engineering
Arizona State University

Tempe, AZ 85282
Paper Id: 427

Abstract

In an environment of distributed text collections, the first
step in the information retrieval process is to identify which
of all available collections are more relevant to a given
query and should thus be accessed to answer the query.
Collection selection is difficult due to the varying relevance
of sources as well as the overlap between these sources.
Previous collection selection methods have considered rel-
evance of the collections but have ignored overlap among
collections. They thus make the unrealistic assumption that
the collections are all effectively disjoint. In this paper,
we describe two new approaches: (i) COSCO which han-
dles collection overlap, and (ii) ROSCO, which builds on
COSCO to handle both collection relevance and collection
overlap. We start by developing methods for estimating the
statistics concerning size, relevance, and overlap that are
necessary to support collection selection. We then explain
how COSCO and ROSCO select text collections based upon
these statistics. Finally, we demonstrate the effectiveness
of COSCO and ROSCO by comparing them to major text
collection selection algorithms (CORI and RDDE) under a
variety of scenarios. Our evaluation is based on a set of 8
testbeds drawn from online scientific paper collections that
vary systematically across relevance, overlap and size.

1 Introduction

Traditional information retrieval techniques concentrate
on solving the problem of finding which documents within
a source could be relevant to a user query. A slightly
more complicated scenario occurs when a user wishes to
query several collections simultaneously (e.g. news meta-

∗Work reported in this paper is based on an M.S. thesis by Thomas
Hernandez [8, 9] and a follow-up honors thesis [6] by John Dyer. This
research is supported in part by ASU Prop 301 grant ECR A601. The
authors would like to thank Ullas Nambiar for the many helpful discussions
throughout this research.

searchers and bibliography search engines). Here, in addi-
tion to the standard information retrieval issues, we have
the additional challenge of deciding which collections to
access. Unless the retrieval system intends to search ev-
ery information source at hand – which of course would not
be particularly efficient – it must decide which collection or
subset of collections to call to answer a given query. This
particular process is generally referred to ascollection se-
lection. This is particularly important because redundant or
irrelevant calls are expensive in terms of query execution
cost and post-query processing (i.e. duplicate removal and
results merging), network load, source load, etc. Naturally,
as the number of collections increase, effective collection
selection becomes essential for the performance of the over-
all retrieval system.

The general trend in the existing approaches for collec-
tion selection essentially requires term frequency statistics
about each collection in order to select the sources they
deem relevant to the query (c.f. [16]). This general strategy
works fairly well when the collections do not overlap (as
was the case in the collections made from the TREC corpus
[16]). However, many real world collections have signif-
icant overlap. For example, multiple bibliography collec-
tions (e.g. ACMDL, IEEE XPlore, DBLP etc.) may store
some of the same papers, and multiple news archives (e.g.
New York Times, Washington Post etc.) may store very
similar news stories. Since the existing approaches fail to
take into account overlap between collections when deter-
mining their collection order, they may decide to call a col-
lection which has no new documents when considering the
documents which have already been retrieved at that point
in time (e.g. in the case of two mirror collections). This
leads to significant loss of performance in query process-
ing.

These problems which arise in collection selection in a
distributed group of overlapping collections have not previ-
ously been addressed in the literature, as it has usually been
assumed that the group of collections constitutes a perfect

1

partition of all documents available. Our objective in this
paper is to design a system able to order the collections such
that when a collection is accessed, it is the collection which
would provide the most new relevant results (documents).
To do so, our system must be capable of making two types
of predictions:

• How likely is it that a given collection has documents
relevant to the query, and

• Whether a collection is useful given the ones already
selected.

We present two algorithms for achieving these aims:
COSCO which develops an effective way of consider-
ing coverage and overlap among collections, and ROSCO
which builds on COSCO and combines the overlap with
top-k relevance.

1.1 Overview of the Problem and our Solution

The problem: Formally, the general text collection selec-
tion problem can be stated as follows. Given a setSn of
n text collections with unknown and possibly overlapping
document contents, a keyword queryQ, and two integers
c andk, pick a subsetSc of sizec from Sn such that ac-
cessing the collections inSc will result in the highest per-
centage recall of top-k relevant documents for the queryQ.
The setDK of top-k relevant documents is taken to be the
k most relevant documents that would have been returned
if the queryQ was applied to a single collection that con-
tained the union of all documents inSn. If the collections
in Sc each return the document setsDi, then the percentage
recall provided bySc is defined as:

R∗Sc
= 100× |(∪iDi) ∩ DK|

k
(1)

Notice that the formula considers the intersection be-
tween the union of all resultsDi and the set of top-k results
DK. Thus, returning same results multiple times (as might
be done when the collections are overlapping) doesn’t in-
crease the percentage recallR∗.

It should be noted that the percentage recall, as defined
above, isnormative, as it assumes complete information
about the distribution of relevant documents over collec-
tions. The implemented methods need toestimatethis in-
formation. Such estimates are often made through statistical
sampling of the collections.

Various methods in the literature focus on different ap-
proximations ofR∗ (see Section 2). Most well known
methods assume that the collections are non-overlapping
(i.e. disjoint), and thus|(∪iDi)| is equal to

∑
i |Di|. In this

paper, we are interested in relaxing this assumption. In the
following, we describe (i) COSCO which learns and uses
query specific collection overlap statistics, and (ii) ROSCO

which combines the overlap statistics with relevance statis-
tics. In terms of our discussion above, both COSCO and
ROSCO account for the of overlap between collections (i.e.,
they recognize that|(∪iDi)| may not be equal to

∑
i |Di|).

COSCO assumes that all documents are equally relevant
(and thus∪iDi ⊆ DK), while ROSCO avoids that assump-
tion and aims for collections that will give the most relevant
documents.
Overview of COSCO: COSCO stores coverage and over-
lap statistics with respect to queries. Doing so ensures that
when a new query comes in, the system is able to find statis-
tics relevant to that particular query. However, since it is
infeasible to keep statistics with respect to every query, we
actually store them with respect to query classes. Query
classes are defined in terms of frequent keyword sets, which
are identified among past queries for which we have cover-
age and overlap statistics. Any new query could then be
mapped to a set of known keyword sets. The benefit of us-
ing frequent item sets in place of exact queries is that pre-
viously unseen queries can also be mapped to some item
sets.

The coverage statistics are straightforward to obtain, as
they are related to the number of results returned by a col-
lection for a specific query. That number is usually readily
available from collections at query time. The overlap statis-
tics are more challenging to estimate, and we propose to
compute the overlap between two collections by looking at
their respective result sets, as opposed to the individual re-
sults. This approach simplifies greatly the overlap computa-
tion and yet seems to be an effective approximation, as will
be shown in this paper. Given a new query, COSCO uses its
learned statistics to estimate thecoverage and residual cov-
erageof the individual collections, and uses these estimates
to access the best sources.
Overview of ROSCO: ROSCO builds on COSCO ap-
proach to take both overlap and relevance into account.
Specifically, instead of estimating coverage and residual
coverage of the collections, ROSCO uses its learned statis-
tics to estimate relevance and residual relevance (both of
which are measured in terms of the number of new docu-
ments inDK returned by a collection). To this end, ROSCO
first builds a representative of each collection via query
sampling. The sampling serves three purposes. The first
purpose is to provide a basis upon which to estimate the rel-
evance of a collection with respect to a query. The second
purpose is to determine the overlap between collections.
The third purpose is to estimate the size of each collection.
The first and second purposes are accomplished together by
using random sampling whereas the third purpose specifi-
cally samples from frequent queries (using the COSCO ap-
proach). This phase constitutes the offline portion of the
solution.
Evaluation: To evaluate the effectiveness of our approaches
in comparison to the existing techniques, we developed

2

eight testbeds. These testbeds, drawn from online scien-
tific bibliographic sources such as ACMDL, vary across
three fundamental attributes:relevance, overlap, and size.
The testbeds thus allow a collection selection method to
be tested under a variety of conditions, thereby provid-
ing an understanding of the effect that these factors have
on the method’s performance. Using these testbeds, we
present a detailed experimental evaluation of COSCO and
ROSCO as well as two other major methods–CORI [3] and
ReDDE [17]. Our experiments demonstrate that COSCO
and ROSCO algorithms outperform existing methods in
the testbeds that have overlapping collections, while being
competitive in the others.
Organization: The paper is organized as follows. Exist-
ing work related to the particular problems presented above
is discussed in Section 2. The COSCO approach for com-
puting and using collection overlap statistics is presented
in Section 3. The ROSCO approach for combining over-
lap and top-k relevance is described in Section 4. The ex-
perimental setup is described in Section 5, followed by the
results in Section 6. Finally, we conclude in Section 7.

2 Related Work

Several approaches have been taken to solve the collec-
tion selection problem, all of which can be seem as aiming
at maximizing some approximation of perecentage recall
R∗ as defined in Equation 1. As mentioned by Powell and
French in their systematic comparison of collection selec-
tion algorithms [16], the main idea until recently has been
to try to create a representative for each collection based
on term and document frequency information, and then use
that information at query-time to determine which collec-
tions are most promising for the incoming query. This is
the case for gGlOSS [7], the CVV ranking method [22],
CORI [3], SavvySearch [10], and many other approaches
[20, 14, 19, 11, 13, 5]. In their survey, Powell and French
[16] show that CORI is among the most effective of these
approaches, but that it tends to be sensitive to the size of
the collections–picking larger collections over smaller ones.
A recent system called ReDDE [17] is not as susceptible
to variations in size. Furthermore, ReDDE seeks to lo-
cate the top-k documents which is a stronger form of rel-
evance based ranking. Most of these methods seek to ap-
proximate a relevance based ranking of the collections and
assume that the collections are all non-overlapping. In con-
trast, COSCO/ROSCO approaches explicitly take collection
overlaps into account. While COSCO focuses solely on
overlap, ROSCO combines relevanceandoverlap.

Using coverage and overlap statistics for source selec-
tion has been explored by Nie and Kambhampati [15]. Our
work, while inspired by theirs, differs in many significant
ways. Their approach addresses the relational data model,
in which overlap can be identified among tuples in a much

more straightforward way. They use a large set of past
queries with their associated coverage and overlap statistics
and cluster them based on these statistics and the frequency
of the training queries. Unlike in a relational environment,
there are no attributes to classify queries on in a text col-
lection environment. Finally, while relational databases use
a binary notion of relevance (i.e., a tuple either is or is not
an answer for a query), text collections have to use the non-
binary notion of “relevance” [16]. Others have suggested
using coverage information [11, 21] or overlap information
[21, 19] in multi-collection scenarios, but none have actu-
ally learned and used both coverage and overlap statistics
for the specific purpose of collection selection.

3 The COSCO Approach

COSCO is composed of an offline component which
gathers the statistics and an online component which deter-
mines at runtime the collection ranking for a new incoming
query. In the following, we describe both these components
in detail.

3.1 Gathering and Computing the Statistics: the
Offline Component

The purpose of the offline component in the collection
selection system is to gather coverage and overlap informa-
tion about collections for particular queries, and compute
relevant statistics for the online component to use. More
precisely, the offline component addresses three subprob-
lems: (i) it must obtain the appropriate coverage and overlap
information from the collections for a set of training queries
(ii) it must then identify frequent item sets among previ-
ously asked queries to better map new queries at runtime
and finally, (iii) it must compute new statistics correspond-
ing to each of these item sets.

3.1.1 Measuring overlap and gathering statistics

As was mentioned earlier, the overlap between two col-
lections evaluates the degree to which one collection’s re-
sults are in common with another’s. The ideal overlap mea-
sure would therefore capture the number of results in a col-
lection Ca that have a similarity1 higher than a predeter-
mined threshold with a result in a collectionCb. Unfor-
tunately, using thresholds implies that collection overlap is
non-symmetric, in that a single result inCa could very well
be highly similar to several results inCb. An even more
problematic situation arises when considering overlap be-
tween several collections. In fact, since a documentD1 in

1Using a similarity measure to evaluate overlap instead of a strict iden-
tity detection mechanism is needed for this environment, as the overall
purpose of the system is to avoid retrieving redundant – as opposed to
identical – documents.

3

C1 may be highly similar to documentsD2 in C2 andD3

in C3 without D2 being highly similar toD3, document
overlap is non-transitive. Quantifying the overlap between
several collections can thus become too expensive.

To address the issues mentioned above, COSCO uses an
overlap approximation which amounts to considering the
set of result documents for a keyword query over a par-
ticular collection as a single document instead of a set of
documents. Overlap between two collections for a particu-
lar keyword query would thus be calculated as the overlap
between the union of the results of the two collections for
that query. The motivation for this approach is that it is
much cheaper than considering individual results for over-
lap computation and can still be effective enough in deter-
mining to what degree the results of two collections overlap
for an individual query. Furthermore, we choose to store
statistics for overlaps between pairs of collections only, as
the online component will approximate the overlap between
several collections using only thesepairwiseoverlaps. Ig-
noring the actual overlap between sets of more than two col-
lections will naturally cause some imprecisions, but, as will
be shown, this approximation remains effective and much
more efficient than an approach which would require over-
lap to be computed for all potential sets of collections.

More specifically, we first define a document to be a bag
of words (i.e. a set of(term, occurrence) pairs). Fol-
lowing the approach described above, overlap between col-
lectionsC1 andC2 for a keyword queryq is computed as
the size of the intersection2 R1q ∩ R2q, whereRiq is the
bag corresponding to the union of the topk documents
for query q from collectionCi. In other words,Riq =⋃k

j=1 resultsCi,q(j). whereresultsCi,q(j) refers tojth

document returned by collectionCi for keyword queryq.
Finally, the definition for overlap – as our approach suggests
– is the following:overlapq(Ci, Cj) = |Riq ∩Rjq| Notice
that collection overlap as defined above is now a symmetric
relation sinceoverlapq(Ci, Cj) = overlapq(Cj , Ci).

In addition to the overlap information, other necessary
statistics include query frequency and collection coverage.
Both are much easier to collect for individual queries. The
query frequency simply refers to the number of times a par-
ticular query has been asked in the past, and we will define it
asfreqq. Collection coverage for a query is the number of
results a collection returns for that query. Note that once the
coverage of each collection is known for a single query, the
absolute coverage becomes irrelevant; instead we can con-
sider coverage as a relative measure in terms of all results
available, making a closed-world assumption. The follow-
ing definition will be used for the coverage of a collection

2Recall that the intersectionD1 ∩D2 between two bags of wordsD1

andD2 is simply a bag containing each word and its minimum frequency
acrossD1 andD2. .

Ci with respect to a queryq:

coverageq(Ci) =
|resultsCi,q|∑n

j=1 |resultsCj ,q| (2)

whereresultsCi,q is the set of all documents returned by
collectionCi for keyword queryq andn is the total number
of collections being considered by the collection selection
engine. Notice that the denominator

∑n
j=1 |resultsCj ,q| in

Formula 2 may actually be counting some results multiple
times because of the overlap between collections, but this
does not affect the relative coverage measure of each col-
lection for a particular queryq since the sum would remain
constant forq.

In summary, the statistics stored for each query can be
considered as a vector of statistics, defined as

−−−→
statsq. The

components of
−−−→
statsq are the following:




coverageq(Ci), for all i from 1 to n
overlapq(Ci, Cj), for all i, j from 1 to n, with i < j
|Riq|, for all i from 1 to n.

Note that in addition to coverage and overlap statistics, we
also store|Riq| statistics. The size of the results bagRiq

is necessary and its usage will be clarified in Section 3.2.3
when describing the collection selection algorithm.

3.1.2 Identifying frequent item sets

With an overlap criterion now in hand and a statistics vec-
tor available for each training query, the next point to in-
vestigate relates to how to make use of the statistics. In
fact, keeping statistics with respect to each individual query
would not only be costly, but also of limited use since the
statistics could only be used for the exact same query. In
contrast, queries can be clustered in terms of their keywords
as well as their corresponding coverage and overlap statis-
tics with the objective of limiting the amount of statistics
stored, yet keeping enough information for the online com-
ponent to handle any incoming query.

Essentially, the method consists in using the Apriori
algorithm [1] to discover frequently occurring keyword
sets among previously asked queries. For example, the
query “data integration” contains three item sets:{data},
{integration}, and{data, integration}. All, some, or none
of these item sets may be frequent, and statistics will be
stored only with respect to those which are. While keep-
ing the number of statistics relatively low, this method also
improves the odds of having some partial statistics avail-
able for new queries, as we would possibly be able to map
previously unseen queries to some item sets. Using the pre-
vious example, even though the query “data” may not have
been asked as such, the idea is to use the statistics from
the query “data integration” – if it is frequent enough – to
estimate those for “data”. The purpose of identifying the

4

frequent items sets among the queries is to avoid having
to store statistics for each query, and instead store statistics
with respect to frequently asked keyword sets, which are
more useful for the online component, as will be explained
in Section 3.2.

3.1.3 Computing statistics for frequent item sets

Once the frequent item sets are identified, statistics for each
of them need to be computed. The statistics of an item set
are computed by considering the statistics of all the queries
that contain the item set. LetQIS denote the set of previ-
ously asked queries that contain the item setIS. The statis-
tics for an item setIS are defined as the weighted average
of the statistics of all the queries inQIS , according to the
following formula:

−−−−→
statsIS =

∑

qi∈QIS

freqqi∑
qj∈QIS

freqqj

×−−−−→statsqi (3)

As apparent in Formula 3, the statistics of the queries are
weighted by the frequency of each query, which was col-
lected in the previous phase in addition to

−−−→
statsq. Using

freqq∑
qj∈QIS

freqqj
as the weight ensures that the statistics for

the item set would be closer to those of the most frequent
queries containing the item set. The statistics should thus
be more accurate more often.3 Notice that

−−−−→
statsIS will

contain estimated statistics for each of these components:
coverageIS(Ci), overlapIS(Ci, Cj), and|RiIS |.

A special case must also be dealt with when computing
the statistics vectors of the frequent item sets, and that is for
theemptyitem set,ISempty. It is necessary to have statistics
for the empty set in order to have statistics for entirely new
queries (i.e. those which contain none of the frequent item
sets identified by the offline component). The statistics for
the empty set,

−−−−−−−−→
statsISempty , are computed after having ob-

tained all
−−−−→
statsIS vectors.

−−−−−−−−→
statsISempty is calculated by av-

eraging the statistics of all frequent item sets. Let us denote
asitem sets the set of all frequent item sets. The formula
we use is then:

−−−−−−−−→
statsISempty =

∑
IS∈item sets

−−−−→
statsIS

|item sets| (4)

The intuition behind this formula is that the statistics for
the empty set should try to reflect the general coverage and
overlap information of all collections, so that a query that
cannot be mapped to any stored keyword set would be as-
signed some average statistics which are representative of
all collections. With that reasoning in mind, the statistics
vector for the empty set is computed as the average of the
statistics of all stored item sets.

3This assumes that the new queries will follow a distribution close to
that of the previously asked queries.

3.2 Collection Selection at Runtime: the Online
Component

The online component of the collection selection system
is the component in charge of determining which is the best
set of collections to call for a given user query. This re-
quires essentially three phases. First the incoming query
must be mapped to a set of item sets for which the system
has statistics. Second, statistics for the query must be com-
puted using the statistics of all mapped item sets. Finally,
using these estimated query statistics, the system must de-
termine which collections to call and in what order.

3.2.1 Mapping the query to item sets

The system needs to map the user query to a set of item
sets in order to obtain some pre-computed statistics and esti-
mate the coverage and overlap statistics for the query. More
specifically, the goal is to find which group of item sets cov-
ers most, if not all, of the query. When several sets compete
to cover one term, the set(s) with the most terms is(are) cho-
sen. Consider for example the query “data integration min-
ing”, and suppose that only the item sets{{data}, {mining},
{integration}, {data, mining}, {data, integration}} are fre-
quent. In that case, the query will be mapped to the two
frequent two-term sets. Furthermore, if the item set{data,
integration, mining} was frequent, then clearly the query
would only be mapped to this three-term set.

The algorithm used to map the query to its frequent item
sets is given in Algorithm 1. Practically speaking, the query

Algorithm 1 mapQuery(queryQ, frequent item setsFIS)
→ ISQ

1: ISQ ← {}
2: freqQTerms ← {}
3: for all termst ∈ Q such thatt ∈ FIS do
4: freqQTerms ← freqQTerms ∪ t
5: ISQ ← PowerSet(freqQTerms)
6: for all ISi ∈ ISQ such thatISi /∈ FIS do
7: RemoveISi from ISQ

8: for all ISi ∈ ISQ do
9: if ISi ⊂ ISj for someISj ∈ ISQ then

10: RemoveISi from ISQ

11: ReturnISQ

q is mapped by first taking all frequent item sets that are
contained in the query (lines 3 to 7). Among these selected
item sets, those that are subsets of another selected item set
are removed (lines 8 to 10) on the grounds that the statistics
of a subset would be less accurate. The resulting set, which
we callISq, is the set of mapped item sets for the queryq.

5

3.2.2 Computing statistics for the query

Once the incoming user query has been mapped to a
set of frequent item sets, the system computes cov-
erage and overlap estimates by using the statistics of
each mapped item set. For example, ifISqnew

=
{{data, integration}, {mining}} then the system would
use the statistics of both item sets{data, integration} and
{mining} for its statistics estimates. The query statistics
for qnew, noted as

−−−−−−→
statsqnew

, are calculated by averaging
each of the mapped item set statistics. When the query
qnew was not mapped to any item set (i.e.ISqnew

= {} =
ISempty), then we approximate

−−−−−−→
statsqnew as being equal

to
−−−−−−−−→
statsISempty

. In summary, we can write the following

definition for
−−−−−−→
statsqnew :

−−−−−−→
statsqnew =





∑
IS∈ISqnew

−−−−−→
statsIS

|ISqnew | , if ISqnew
6= ISempty

−−−−−−−−→
statsISempty

, if ISqnew
= ISempty.

(5)

3.2.3 Determining the collection order

The aim of our collection selection system is to make sure
that for any givenk, the system would return a set ofk col-
lections which would result in the most number of distinct
results of all sets ofk collections. Another way to consider
this is that every time a new collection (from the order sug-
gested by our system) is called, we would like to ensure
that it provides the mostnewresults, taking into account the
collections that have already been called. By taking into ac-
count coverage of collections with respect to item sets, our
strategy would thus avoid calling collections that contain
very few if any relevant documents. Moreover, by taking
into account overlap among collections, it would avoid call-
ing redundant collections which would not return any new
documents.

Once the query statistics
−−−−−−→
statsqnew have been computed,

the collection selection process is the following. The first
collection selected is simply the one with highest coverage
coverageqnew(Ci). The next collections are selected by de-
termining which one would lead to the largest remaining
result set document. More formally, the collection selection
process is done according to Formula 6. At each stepk, we
select collectionCl such that

l =





for k = 1 : argmax
i

[
coverageqnew(Ci)

]

for k > 1 :

argmax
i

[
|Riqnew | −

∑
Cj∈S overlapqnew(Ci, Cj)

]

(6)
whereS is the set of already selected collections.

Notice that fork > 1, the formula is approximating the
remaining result set document size by looking at pairwise
overlaps only. As was explained in Section 3.1.1, we are es-
sentially assuming that higher-order statistics (i.e. overlaps
between more than two collections) are absent. This could
obviously cause some inaccuracies in the statistics estima-
tion, but as will be shown in section 6, the approximation
presented here is quite effective.

4 ROSCO: Combining Relevance and Over-
lap

Although COSCO deals with overlap, it does not address
top-k relevance–assuming instead that all documents ex-
ported by a collection are equally relevant (which amounts
to the assumption that∪iDi ⊆ DK in Equation 1). ROSCO
relaxes this assumption by combining relevance and over-
lap estimations of the collections. It builds on COSCO by
adapting and extending ideas from ReDDE [17] and

As in COSCO, ROSCO also has an offline statistics gath-
ering component and an online query processing one. In
addition to statistics about the overlap between collections
(which it borrows from COSCO), ROSCO’s statistics learn-
ing component also aims to build an accurate representation
of the collections. To this end, it learns an accurate repre-
sentation of each collection using sampling techniques [4]
to help it estimate its size and relevance to a given query.
Given a new query, ROSCO uses these statistics to estimate
for each collection the relevance as well as the residual rel-
evance (given other selected collections).

The offline component uses query based sampling [4] to
acquire the necessary sample for building the representa-
tive. Each collection’s size is estimated as well in order to
normalize later computations by the collection’s size. An
inverted term index is built for the union of the collection
samples while the source of each document in this index is
noted. Finally, training queries are used to find frequently
jointly occurring query terms called frequent item sets. As
in COSCO, overlap statistics are then computed and stored
in relation to these frequent item sets. At this point the sys-
tem is ready to answer queries.

The second component of the system is the online com-
ponent. When a new query arrives, ROSCO queries the
centralized inverted term index. Using the results from this
sample index as well as the estimated collection sizes, an
estimate of the number of top-k documents in each col-
lection is made. The collection with the largest number of
top-k documents is selected first. At this point the number
of top-k documents is adjusted for each remaining collec-
tion by the estimated overlap with regard to the query. The
collection with the highest residual number of new top-k
documents is selected next. This continues until all of the
collections which are estimated to have at least one top-k

6

documents are selected. At this point, ROSCO loosens its
notion of relevance to allow all answers to a query. It will
then use the COSCO method to select the remaining collec-
tions. In the following subsections, the two components are
described in greater detail.

4.1 Gathering Size and Relevance Statistics

Collection Representation through Query Based Sam-
pling: To construct a sampled representation of each col-
lection (for use in relevance judgements), a number of ran-
dom queries are sent to each collection and a portion of the
results are kept for the sample. The queries that are chosen
can easily be randomly picked from the training queries. It
has been shown that a relatively small number of queries
is required to obtain an accurate representation of each col-
lection [4]. Furthermore, a refinement can be made by us-
ing only the first few queries from the training data and ob-
taining subsequent query terms from the documents which
are returned. During this exploration phase, the documents
from each collection are separately stored. An inverted in-
dex is built for each collection sample to provide single
source text retrieval from the sample.
Estimating Collection Size: Once a sample from each col-
lection is available, collection size estimates are made. The
sample-resample method [17] is used to estimate collection
size. It is assumed that the sample is representative of the
real collection. Then a query is randomly selected from the
training queries. This query is sent to both the real collec-
tion and the sample. Note that the sample collection size is
known and is denoted asNsample. The number of results in
the sample is denoted asRsample whereas the number of re-
sults from the real collection is denoted asR. Let N be the
size of the collection. So the probability,P (A) that the real
collection contains the query term isRN and the probability

P (B) that the sample contains the query term isRsample

Nsample
.

Now since,P (A) ≈ P (B), we haveN̂ = R·Nsample

Rsample

Si and Callan showed that when the mean of several es-
timates is used, the absolute error ratio of the size estimate
is small [17]. Note that the size of the union of all of the
collections can now be estimated. It is just the sum of all of
the individual estimates; however, this is not accurate in the
presence of overlap.The sample-resample method does not
allow for overlap and thus requires an extension.Let N̂ be
the sum of the estimated collection sizes, letN̂sample be the
total number of documents sampled, and letN̂ ′

sample be the
total number of distinct documents sampled. Then the size
of the union of all the collections,̂N ′, can be estimated as

N̂ ′ = N̂ ·N̂ ′
sample

N̂sample
.

These estimates are stored for each collection and for
the union of the collections. The estimates are used in the
online component for normalization purposes.

Finally, all of the documents that have been sampled are
indexed together while noting from which sources each doc-
ument has been obtained. It cannot be assumed that each
document came from exactly one source, as it may have
been sampled from multiple sources. Furthermore, it is pos-
sible to not only consider duplicates as exact replicas but
also as documents which are similar enough.

4.2 Answering Queries

When a query is posed to the ROSCO mediator, it will
first use the relevance and size statistics to find the collec-
tion with the most top-k documents. Then the mediator will
combine the relevance, size, and overlap estimates to find
the collections with the most remaining top-k documents.
This continues until the relevance estimates have been ex-
hausted at which point the result sizes are used instead of
top-k relevance estimates. The ROSCO collection selection
algorithm is described in Algorithm 2 below.

Algorithm 2 CollectionSelection(query) →
OrderedCollectionList

Load Overlap and Result Size statistics for the query
Query the total sample collection
Count ← 0
for all resultsr in the query results in descending rank
do

r.Document.Score ← Count
Count ← Count +
mean(r.EstimatedSize/r.SampleSize)

for all collectionsc do
c.Score ← 0
for all documentsd in c do

if d.Score < Threshold then
c.Score ← c.Score + 1

c.Score ← c.Score·c.EstimatedSize
c.SampleSize

while exists a collectionc with c.Score > 0 do
Pick a collection with
argmax{ResidualRelevance(Collection)}

while exists a collectionc not yet selecteddo
Pick a collection with
argmax{ResidualCoverage(Collection)}

Return Order of Collections

4.2.1 Finding the Most Relevant Collections

As mentioned, ROSCO aims to estimate the relevance and
residual relevance of each individual collection given a
query. The (residual) relevance of a collection is defined
as the fraction of top-k (new) result documents that it is
expected to give. The idea of algorithm 2 is to find the col-
lections with the highest number of remaining top-k doc-
uments first and then find the collections with the most re-

7

maining results. It accomplishes this by assigning each doc-
ument a score equal to the number of documents which are
estimated to be more relevant than itself. Each collection is
then assigned a score which is the estimated number of top-
k documents in the collection. Finally, those collections
with the most remaining top-k documents are chosen and
then it selects the rest of the collections by choosing which
collection has the most remaining results. The algorithm is
described in more detail below.

As in COSCO, the algorithm begins by computing all
non-empty subsets of the query and finding the correspond-
ing frequent item sets. If no frequent item sets are found
then the empty set statistics are used. Otherwise, the statis-
tics are the mean of the frequent item sets that are found.
The query is then sent to the complete sample collection,
which is the union of the individual collection samples. The
complete sample collection returns a ranked list of docu-
ments which are relevant to the query. Next, theCount is
initialized to zero. This count indicates the estimated num-
ber of relevant documents encountered thus far.

After this initialization, the algorithm then iterates
through all of the results with the most relevant results be-
ing visited first. The document that corresponds to the result
has its score set toCount which is the number of relevant
documents encountered. Therefore, the score of each doc-
ument is the estimated number of documents that are more
relevant than it in the entire collection. To see why, note that
Count is incremented by the mean of the ratio of each col-
lection’s estimated size to its sample size. The collections
that are included in this computation are those in which the
result can be found. The mean of this ratio is the number of
documents in the real union of collections that the sample
result is representing.

In the next step, each collection is examined and its score
is initially set to zero. Then for all the documents which are
in the sample collection and have a score less than some
threshold, the collection will receive one more point. The
documents that contribute represent the documents which
are in the top-k documents overall wherek is the threshold.
Finally, the collection’s score is scaled by the ratio of the
estimated collection size to the sample size.

At this point, each collection’s score is an estimate of
the number of documents in the top-k documents overall.
The algorithm then proceeds to select the collection with
the highest residual relevance while there exist collections
with a score greater than zero. Thus all of the collections
that originally were thought to contain documents in the
top-k documents are selected before any of the collections
thought to not contain such documents. The equation for
computing residual relevance is included below.

ResidualRelevance(C) = C.Score×(1− Overlap(C)

C.EstimatedSize
)

(7)

The overlap component is the number of documents
in the collection that overlap with documents in the pre-
viously selected collections. Therefore, this essentially
reduces the estimated number of relevant documents in
the collection. The overlap equation is:Overlap(C) =∑

Overlap(C,Ci)
EachCi is a previously selected collection and the statis-

tics for this have been computed at the first step of the algo-
rithm.

4.2.2 Using Overlap to Find New Results

Once all of the collections which probably contain top-k
documents have been selected, then the notion of relevance
is expanded to include all results instead of just top-k doc-
uments. Since this is the goal of the COSCO algorithm,
ROSCO will now switch into COSCO mode where it will
continue to pick the collection with the highest residual cov-
erage until all collections have been picked. Residual cov-
erage is computed as follows.

ResidualCoverage(C) = C.ResultSize−
∑

Overlap(C)
(8)

Now that all of the collections have been selected then
the order in which they were selected is returned. This or-
dering constitutes the approximated best subset of collec-
tions of sizen wheren is the firstn collections in the list.

5 Experimental Setup

In this section, we begin by describing how performance
of the various methods is measured. We then describe in de-
tail how the testbeds were created to evaluate performance.
A detailed analysis of these testbeds shows that they do
indeed provide a diverse and substantial array of environ-
ments in which to test the various methods. Each of the
tested methods will be described in detail as well as how the
training was performed. In this section, we focus on how the
testbeds are created and the performance of the algorithms
is measured. The experimental results are described in the
next section.

5.1 Testbed Creation

In order to do an accurate examination of the perfor-
mance of the proposed solution in a variety of settings, three
important factors were identified that describe various col-
lections: (i) the variability of the size of collections (Same
or Variable), (ii) the distribution of relevant documents
(Randomly distributed orClustered), and (iii) the presence
or absence of overlap (No duplicates orDuplicates). The
first factor was chosen because it has been shown that some

8

methods seem to perform poorly when collection sizes dif-
fer whereas others perform well with similar sized collec-
tions [16]. The second factor is important because intu-
itively some collections are more relevant on some topics
than others. Furthermore, relevance based methods assume
that this is the case. Therefore, the effect of the distribution
of relevant documents should be important to these meth-
ods. Finally, as we argued, most real world collections have
overlap and it is thus necessary to understand the effect of
overlap on the performance. Varying these three factors pro-
duces eight combinations. These combinations form the ba-
sis of the eight testbeds included in the experiments.

In order to form the eight testbeds, a large number of
documents were required. Therefore, 38,323 abstracts were
obtained from various online scientific abstract providers:
ACMDL, ACM G UIDE, CSB, COMPENDEX, SCI-
ENCE DIRECT, CITESEER, DBLP, IEEE XPLORE AND

NETBIB. Each testbed has 100 collections within it. The
difference between the testbeds is how they distribute the
abstracts amongst the collections.

Although we performed experiments with all eight
testbeds, due to space restrictions, we focus mainly on 4 of
the testbeds that have overlap and one testbed which doesnt.
The full set of results are available in [6].
Testbed 2 (SRD): Same Size, Random Distribution, Du-
plicates: This testbed was created by randomly assigning
1000 documents to each collection. The documents were
picked with replacement which leads to overlap, but note
that the collections are the same size and have a random
distribution of relevant documents.
Testbed 4(VRD): Varying Size, Random Distribution,
Duplicates: This testbed randomly picked a size for each
testbed and then randomly picked the documents with re-
placement from the total pool of documents. The sizes were
picked in an exponential fashion thereby yielding signifi-
cant differences in size. note that there is overlap in this
testbed. Again, the distribution of relevance is random in
this testbed.
Testbed 6(SCD): Same Size, Clustered Distribution, Du-
plicates: This testbed used k-means clustering to create 250
clusters; however, it randomly assigned clusters with re-
placement to create 100 collections of nearly identical size.
Therefore, there is overlap in this testbed and clustered dis-
tribution.
Testbed 7(VCN): Varying Size, Clustered Distribution,
No Duplicates: To create this testbed, k-means was used to
cluster the documents but only 100 clusters were created.
These clusters became the 100 collections for the testbed.
Thus, there is no overlap and the collection sizes vary. Also,
the collections vary in relevance.
Testbed 8(VCD): Varying Size, Clustered Distribution,
Duplicates: The last testbed was also created using k-
means clustering with 250 clusters. This time though, each
collection was randomly assigned 3 clusters with replace-

ment. The sizes of the collections vary quite a bit and there
is overlap between the collections. Also, it is a clustered
distribution so relevance varies from collection to collection
according to the query.

5.2 Tested Methods

In order to demonstrate the efficiency of COSCO and
ROSCO, they are compared to two other well known meth-
ods CORI [3] and ReDDE [17]. In the following sections,
the implementation of each method is briefly discussed.
ROSCO: The offline component of ROSCO was imple-
mented as described previously. A large set of queries from
the Bibfinder system [15] was used as the training queries.
Each collection in each testbed was sampled by using 10
randomly selected training queries. The samples were used
to build the representative. Next, 10 size estimates were
made for each collection. The final size estimate is the mean
of these estimates. Finally, queries that appeared more than
5 times were used in the frequent item set computation. A
support value of .05% was required during the Apriori al-
gorithm.
COSCO: ROSCO and COSCO require the same set of
overlap statistics. So these two methods shared them for
the experiments. ROSCO differs from COSCO in that it
uses top-k relevance and overlap during its first phase while
COSCO always considers coverage and overlap. The sec-
ond phase of ROSCO is identical to COSCO. So COSCO
does not use the size estimates and relevance representative.
ReDDE: ReDDE [17] and ROSCO use the same set of size
and collection representation statistics so these were also
shared. ROSCO contrasts with ReDDE because it considers
overlap. ReDDE does not use the overlap statistics. ReDDE
has no notion of residual relevance and all calculations are
thus done with the assumption that every document (or doc-
ument class) belongs to precisely one collection.
CORI : Until recently, CORI [3] has been widely accepted
as the best, most stable method for collection selection;
hence, it was included in this study. CORI models each
collection as a virtual document. It can be viewed as adf-
icf method wheredf is the document frequency of a term
within a collection andicf is the inverse collection fre-
quency of a term. Single source text retrieval is performed
over the collection of these virtual documents to determine
the order in which the collections should be called. CORI
used the same sample as ROSCO and ReDDE. Once this
sample was obtained then the document frequency or the
number of documents containing each term in a collection
was determined. Also, the collection frequency of a term
was determined by finding the number of collections in the
testbed which contain the term.

To establish a baseline and bounds for the performance
of our systems, we have also experimented with three straw-

9

Figure 1. Percent of greedy ideal for testbed
2 (SRD)

man approaches: (i) Greedy ideal (ii) Size-based and (iii)
Random.
Greedy Ideal: This method attempts to greedily maximize
the percentage recall (Equation 1), assuming oracular infor-
mation. Specifically, greedy ideal assumes complete knowl-
edge of every collection and will always pick the collection
with the most documents in the top-k first followed by the
collection with the real highest residual relevance next and
so on. It understands both higher order and lower order
overlap. For the empirical study, Greedy Ideal is imple-
mented as a “post-facto” method–which calls all the collec-
tions with the query, and analyzes their results to decide on
the ideal order. The method is “greedy” in the sense that
given a collection subset of sizec that is greedy maximal
then it will pick a subset of sizec + 1 that is also greedy
maximal and therefore it never backtracks.4 Greedy ideal
provides an upper bound on performance over the long run.
Random: This method picks collections randomly and thus
provides a lower bound on long run performance. Any al-
gorithm should outperform random in the long run. The
difference between a given method and the random method
shows the degree of improvement over the baseline perfor-
mance.
Size Based: This method picks the collections in the or-
der of their sizes starting with the largest (without regard to
relevance or overlap). French and Powell [16] showed that
most collection selection algorithms inadvertently follow a
size based ranking. Size based ranking selects the largest
collection first and then the next largest and so on. There-
fore, including the size based ranking in the experiments al-

4A non-greedy version will have to consider all possiblec + 1-sized
subsets of collections and will thus be exponential even for the post-facto
analysis!

Figure 2. Percent of greedy ideal for testbed
4 (VRD)

lowed an examination of whether the various methods seem
to follow that ranking.

6 Experimental Results

For the experiments, 100 queries which were disjoint
from the training queries were sent to each method. The
percent recall at each step (collection call) was determined
for every method. Then the results were averaged in order to
provide a clear look at performance. Ideally, we would like
to get high recall with the fewest collection calls (and thus
the methods that perform better at the lower end of num-
ber of collections accessed are preferred). In addition to
percentage recall, we also measured the performance of the
individual methods relative to the performance of Greedy
Ideal. Our hypothesis is that COSCO and ROSCO will per-
form better than approaches like CORI when the collections
have overlap. Between COSCO and ROSCO, we would ex-
pect ROSCO to perform better as it considers both relevance
and overlap.

Figures 1-6 show some of the results of our experiments.
The first five compare COSCO, ROSCO, ReDDE and CORI
in terms of their relative peformance with respect to Greedy
Ideal in five of the eight testbeds. The last shows the per-
centage recall of these four methods as well as the three
strawman methods (Greedy Ideal, Size-based and Random)
in one of the (more realistic) testbeds. The results show that
ROSCO clearly outperforms the other methods by 5% to
25% when selecting a small subset of collections .

Figure 1 shows that in the presence of overlap that
CORI’s performance suffers dramatically. Furthermore, in
this case ROSCO outperforms all of the other methods.
Figure 2 shows the performance of the methods in testbed

10

Figure 3. Percent of greedy ideal for testbed
6 (SCD)

4 where collection sizes vary and the distribution of rele-
vant documents israndom. This is probably not like real
world scenarios since collections most likely do not have
randomly assigned documents but are authoritative on cer-
tain topics. In this testbed, both ROSCO and ReDDE suffer
in the beginning. COSCO performs very well but not much
better than size based ranking does. Finally, CORI performs
very poorly especially in the presence of overlap. Figure 3
again illustrates that ROSCO outperforms all of the other
methods in testbed 6. CORI’s performance degrades signif-
icantly in the presence of overlap.

Finally, testbeds 7 and 8 represent those that are most
likely encountered in the real world. The collections vary in
size and they have a clustered distribution. Figure 4 shows
that in testbed 7 , ROSCO outperforms the other methods at
every step except for a small range where CORI performs
the best; but, CORI is very unstable in this testbed. Figure
5 shows that in testbed 8, ROSCO outperforms the other
methods until about half of the collections have been se-
lected when COSCO begins to outperform ROSCO. How-
ever, since collection selection aims to select a small subset
of collections, it is more important to perform well early
on. Notice that CORI’s performance deteriorates quickly
because of the presence of overlap. Finally, Figure 6 shows
the relative performance of the all 7 approaches (includ-
ing the 3 strawman approaches) in testbed 8. This figure
provides another perspective on the way different methods
compare to Greedy Ideal.

Summarizing the results over all testbeds (including the
three that are not discussed here, but are included in [6]),
we see that both COSCO and ROSCO perform better than
CORI in all testbeds where there is overlap among collec-
tions. CORI also seems to be much less stable. As ex-

Figure 4. Percent of greedy ideal for testbed
7 (VCN)

pected, ROSCO is an improvement on COSCO as well. Al-
though ReDDE follows ROSCO closely in some testbeds,
ROSCO consistently improves on it by 3%-7%. ROSCO
performs the best over all the collections with the exception
of testbeds 3 and 4. These testbeds however, reflect scenar-
ios that are less likely in the real world.

7 Conclusion

This paper addressed the issue of collection selection
for information retrieval in an environment composed of
overlapping collections. We presented two approaches: (i)
COSCO, which takes into consideration the coverage of in-
dividual collections and the overlap between collections be-
fore determining which collection should be called next and
(ii) ROSCO, which builds on the COSCO system to com-
bine overlapand relevance statistics to identify collections
that can provide highest percentage of top-k documents
(from the virtual union of collections).

In order to systematically compare these algorithms to
other state-of-the-art collection selection algorithms, we
created a set of eight test beds which vary across three fun-
damental dimensions. A detailed comparative evaluation is
conducted over these testbeds among ROSCO, COSCO as
well as two existing algorithms CORI and ReDDE. Our ex-
periments showed that ROSCO and COSCO outperform ex-
isting methods in the testbeds that have overlapping collec-
tions, while being competitive in the others. ROSCO, which
builds on COSCO, outperforms the latter as expected.

References

[1] R. Agrawal and R. Srikant. Fast algorithms for mining asso-
ciation rules. InProceedings of VLDB Conference, 1994.

11

Figure 5. Percent of greedy ideal for testbed
8 (VCD)

[2] R. A. Baeza-Yates and B. A. Ribeiro-Neto.Modern Infor-
mation Retrieval. ACM Press / Addison-Wesley, 1999.

[3] J. P. Callan, Z. Lu, and W. B. Croft. Searching distributed
collections with inference networks. InProceedings of ACM
SIGIR Conference, pages 21–28, 1995.

[4] Callan, J. and Connell, M. Query-based sampling of text
databases.Information Systems, 19(2):97-130, 2001.

[5] J. G. Conrad and J. R. S. Claussen. Early user–system in-
teraction for database selection in massive domain-specific
online environments.ACM Transactions on Information Sys-
tems, 21(1):94–131, 2003.

[6] J. (W) Dyer. Relevance and Overlap in Text Resource Selec-
tion Honors Thesis. Dept. of CSE. Arizona State University.
April 2005. rakaposhi.eas.asu.edu/wes-thesis.pdf

[7] L. Gravano, H. Garćıa-Molina, and A. Tomasic. GlOSS:
text-source discovery over the Internet.ACM Transactions
on Database Systems, 24(2):229–264, 1999.

[8] T. Hernandez. Improving text collection selection
with coverage and overlap statistics. M.S. Thesis.
Dept. of CSE. Arizona State University. October 2004.
rakaposhi.eas.asu.edu/thomas-thesis.pdf

[9] T. Hernandez and S. Kambhampati. Improving text collec-
tion selection with coverage and overlap statistics. WWW
(Special interest tracks and posters) 2005.

[10] A. E. Howe and D. Dreilinger. SAVVYSEARCH: A
metasearch engine that learns which search engines to query.
AI Magazine, 18(2):19–25, 1997.

[11] P. Ipeirotis and L. Gravano. Distributed search over the hid-
den web: Hierarchical database sampling and selection. In
Proceedings of VLDB Conference, 2002.

[12] B. J. Jansen and U. Pooch. A review of web searching studies
and a framework for future research.Journal of the American
Society for Information Science and Technology, 52(3):235–
246, 2001.

Figure 6. Percentage Recall of all methods for
testbed 8 (VCD)

[13] Z. Liu, C. Luo, J. Cho, and W. Chu. A probabilistic approach
to metasearching with adaptive probing. InProceedings of
the International Conference on Data Engineering, 2004.

[14] W. Meng, C. Yu, and K.-L. Liu. Building efficient and
effective metasearch engines.ACM Computing Surveys,
34(1):48–89, 2002.

[15] Z. Nie and S. Kambhampati. A frequency-based approach
for mining coverage statistics in data integration. InPro-
ceedings of the International Conference on Data Engineer-
ing, 2004.

[16] A. L. Powell and J. C. French. Comparing the performance
of collection selection algorithms.ACM Transactions on In-
formation Systems, 21(4):412–456, 2003.

[17] Si, L. and Callan, J. Relevant Document Distribution Estima-
tion Method for Resource Selection. InProceedings of the
26th Annual International ACM SIGIR Conference on Re-
search and Development in Information Retrieval, 2003.

[18] C. Silverstein, M. Henzinger, H. Marais, and M. Moricz.
Analysis of a very large AltaVista query log. Technical Re-
port 1998-014, Digital SRC, 1998.

[19] E. M. Voorhees, N. K. Gupta, and B. Johnson-Laird. The col-
lection fusion problem. InText REtrieval Conference, TREC,
1994.

[20] Z. Wu, W. Meng, C. Yu, and Z. Li. Towards a highly-scalable
and effective metasearch engine. InProceedings of the World
Wide Web Conference, pages 386–395, 2001.

[21] R. Yerneni, F. Naumann, and H. Garcia-Molina. Maximizing
coverage of mediated web queries. Technical report, Stan-
ford University, 2000.

[22] B. Yuwono and D. L. Lee. Server ranking for distributed text
retrieval systems on the internet. InDatabase Systems for
Advanced Applications, pages 41–50, 1997.

12

