A Frequency-based Approach for Mining Coverage Statistics in Data Integration

Zaiqing Nie & Subbarao Kambhampati
Department of Computer Science and Engineering
Arizona State University
Tempe, AZ 85287-5406
Email: {nie, rag @asu.edu

Abstract i 8=

Ruthor [riavei Han fitle |

Blb]der iTe ournal]

Fear = vl= 1990 [Search] Reset |

Query optimization in data integration requires source cover-
age and overlap statistics. Gathering and storing the required

[Query Results. Streaming

An Attribute-Orients
Databases G

1

1990 Aoslraﬁt&rﬁ btex

statistics presents many challenges, not the least of which is cor] * YandngCal bk Cercone e in S n
. 2. Fromtransitive closure recursions to single-chain recursions Google 1930 ARG L,

trolling the amount of statistics learned. In this paper we intro- ' R BE

duce StatMiner, a novel statistics mining approach which automat] @ Decomoesiion of Spaiial Database Guenes by Deduction and Compiliion Gaogle 1950 “Ds”}if i

Wej

Jiawei Han

ically generates attribute value hierarchies, efficiently discovers
frequently accessed query classes based on the learned attribu
value hierarchies, and learns statistics only with respect to thesq i

Abstract. Bibtex

N

RT-Tree: AnImproved R-Tree Index Structure for Spatiotemporal Databases Google 1990
Xigomei Xu, Jiawei Han, Wei Lu

It integrates CSB, DELP, ACH DL ienceDirect, Network Bibliography, CiteSeer and

classes. We describe the details of our method, and present eXpe| w. s o s oo woe -
mental results demonstrating the efficiency and effectiveness of our i o
approach. Our experiments are done in the context of BibFinder, Figure 1. The BibFinder User Interface

a publicly fielded bibliography mediator.
this paper, we motivate and investigate the issues involved in statis-
tics gathering in the context of a bibliography mediation system

1 Introduction that we are developing calldibFinder

BibFinder Scenario: We have been developingibFinder(Fig-
ure 1, http://rakaposhi.eas.asu.edu/bibfinder), a publicly fielded
computer science bibliography mediatoBibFinder integrates
several online Computer Science bibliography sources. It cur-

The availability of structured information sources on the web
has recently lead to significant interest in query processing frame-
works that can integrate information sources available on the In-

ternet. Data integration systems [1, 4, 9, 10, 14, 16] are being de-rently coversCSB, DBLP, Network Bibliography, ACM Digi-

\{eloped to provide a uniform interface to a multltgde of informa tal Library, ACM Guide, IEEE Xplore, ScienceDireand Cite-
tion sources, query the relevant sources automatically and restruc- o }

.~ SeerPlans are underway to add several additional sources includ-
ture the information from different sources. In a data integration

-) .) . - ng AMS MathSciNeandComputational Geometry Bibliography
scenario, a user interacts with a mediator system via a mediated_.. . o i)
. . . .) ince its unveiling in December 2002ibFinderhas been getting
schema. A mediated schema is a set of virtual relations, which

. . . . on the order of 200 queries a day.

are effectively stored across multiple and potentially overlapping : L
.) . . The sources integrated IBibFinderare autonomous and par-
data sources, each of which only contains a partial extension of . . o L
. oo . - tially overlapping. By combining the sourcesibFinder can

the relation. Query optimization in data integration [3, 5, 11, 12] o . .

. o . present a unified and more complete view to the user. However it
thus requires the ability to figure out what sources are most rel-

evant to the given query, and in what order those sources shouldaISO brings some |nte'res.t|ng optimization challgnges. The _global
schema exported biibFindercan be modeled in terms of just

be accessed. For this purpose, the query optimizer needs to acce . . .
pUrpose, query op %ﬁe relation:paper(title, author, conference/journal, year), and

statistics about the coverage of the individual sources with respect
the queries can be seen as selection queries on the paper relation.

tothe given query, as well as the degree to which the answers theyEach of the individual sources may export only a subset of the

export overlap. Gathering these statistics presents several chal- . o :
Hlobal relation. For exampléyetwork Bibliographyonly contains

lenges because of the autonomous nature of the data sources. | S . . .

publications in NetworksDBLP gives more emphasis to Database

*This research is supported in part by the NSF grant IRI-9801676 and publications, whileScienceDirechas only archival journal publi-
the ASU ET-P initiative grant ECR A601. We thank Louiga Raschid, cations.
Huan Liu, K. Selcuk Candan, Ullas Nambiar, and especially Thomas Her-
nandez for many helpful critiques. Need for Statistics: To efficiently answer user queries, it is im-

portant to find and access the most relevant subset of the sourcestrategy trades accuracy of statistics for reduced statistics learn-

for the given query. Suppose the user asks a selection query ing/storing costs. In thBibFinderscenario, for example, we could

Q(title,author,year)+ learn statistics with respect to the list of queries that are actually
paper(title, author, conference/journal, year), posed to the mediator over a period of time. The motivation for
conference/journal =“SIGMOD". such an approach is that even if a mediator cannot provide accurate

A naive way of answering this selection query would be to send statistics for every possible query, it can still achieve a reasonable
it to all the data sources, wait for the results, eliminate dupli- average accuracy by keeping more accurate coverage and over-
cates, and return the answers to the user. This not only leads tdap statistics for queries that are asked more frequently, and less
increased query processing time and duplicate tuple transmission@accurate statistics for infrequent queries. The effectiveness of this
but also unnecessarily increases the load on the individual sourcesapproach is predicated on the belief that in most real-world scenar-
A more efficient angolite approach would be to direct the query i0s, the distribution of queries posed to a mediator isurstorm,
only to the most relevant sources. For example, for the selectionbut rather Zipfian. This belief is amply validated BibFinder
query aboveDBLPandACM Digital Library is most relevant, and Figure 2 shows the distribution of the keywords, and bindings for
Network Bibliographyis much less relevant. Furthermore, since the Year attribute used in the first 15000 queries that were posed
DBLP stores records of virtually all the SIGMOD papers, a call to to BibFinder Figure 2(a) shows that the most frequently asked
ACM Digital Library is largely redundant. 10% keywords appear in almo§0% of all the selection queries
binding attribute Title. Figure 2(b) shows that the users are much
Coverage and Overlap Statistics:In order to judge the source more interested in recently published papers.
relevance howeveBibFindemeeds to know theoverageof each
sourceS with respect to the querg, i.e. P(S|Q), the probability
that arandom answer tuple for quépbelongs to sourcg. Given
this information, we can rank all the sources in descending order
of P(S|@). The first source in the ranking is the one we would
want to access first while answering quépy Since the sources
may be highly correlated, after we access the soSfcwith the
maximum coverag®(S’|Q), the second sourc®’ that we access
must be the one with the highestsidual coveragdi.e. provides
the maximum number of those answers that are not provided by
the first sources’). Specifically we need to determine the source
S that has the next best rank in terms of coverage but has minimal R (b) Queries binding attribute
overlap(common tuples) withs’. (2) Keywords Distribution year

The Costs of Statistics Learning: If we have the coverage and
overlap statistics for every possible query, we can getthe complete Figure 2. Query Distributions in BibFinder
order in which to access the sources. However it would be very
costly to learn and store statistics w.r.t. every source-query combi- Handling New Queries through Generalization: Once we sub-
nation, and overlap information about every subset of sources withscribe to the idea of learning statistics with respect to a workload
respect to every possible query. The difficulty here is two-fold. query list, it would seem as if the problem of statistics gathering
First there is the cost of “Iearning"—which would involve probing is solved. When a new query is encountered’ the mediator S|mp|y
the sources with all possible queriaspriori, and computing the needs to look into the query list to see the coverage and overlap
coverage and overlap with respect to the queries. The second isstatistics on this query when it was last executed. In reality, we
the cost of “storing”the statistics. still need to address the issue of what to do when we encounter
a query that was not covered by the query list. The key here
is “generalization”-store statistict with respect to the specific
queries in the query list, but rather with respect to query classes.
The query classes will have a general-to-specific partial ordering
among them. This in turn induces a hierarchy among the query
1in practice, ACM Digital Library is not completely redundant since cl_asses, with the qu.er_y list queries making up the leaf nodes of the
it often provides additional information about papers — such as abstractshierarchy. The statistics for the general query classes can then be
and citation links — thaDBLP does not provide BibFinderhandles this computed in terms of the statistics of their children classes. When
by dividing the paper search into two phases—in the first phase, the user isa new query is encountered that was not part of the workload query
given a listing of all the papers that satisfy his/her qué&Finderuses a list, it can be mapped into the set of query classes in the hierarchy
combination of three attributes: title, author, and year as the primary key {hat are most similar, and the (weighted) statistics of those query

to uniquely identify a paper across sources. In the second phase, the user o
I . o oo classes can be used to handle the new query. Such an organization
can ask additional details on specific papers. While it is important to call

every potentially relevant source in the second phase, we do not have thif the statistics offers an important additional flexibility: we can
compulsion in the first phase. For the rest of this paper, all our referenceslimit the amount of statistics stored as much as we desire by strip-
to BibFinderare to its first phase. ping off (and not storing statistics for) parts of the query hierarchy.

Motivation for Frequency-based Statistics Learning: One way

of keeping both learning and storage costs down is to learn statis-
tics only with respect to a smaller set of “frequently asked” queries

that are likely to be most useful in answering user queries. This

[siemop | [icoe | [aaa | [Ece

Learn
AV Hierarchies
Using
Hierarchical Clustering

BibFinder

Query Processor
A

AV Hierarchy for the Conference Attribute AV Hierarchy for the Year Attribute

AV
Hierarchies

Discover Frequent

Query Classes
Using DFC

Frequent Query Classes

Frequent

Quey StatMiner

Classes W

Learn Coverage and o
‘'overage and Overlap
Overlap for frequent

classes using
modified Apriori

Statistics

Query Class Hierarchy

Figure 4. AV Hierarchies and the Correspond-
ing Query Class Hierarchy

Figure 3. StatMiner Architecture The rest of the paper is organized as follows. In the next sec-
tion, we define some terminology about query classes and AV hi-
erarchies. Section 3 describes the details of learning AV hierar-
g_hies. Section 4 describes how query classes are formed. Sec-
tion 5 describes how coverage and overlap statistics are learned
for the query classes that are retained. Section 6 describes how
a new query is mapped to the appropriate query classes, and how
the combined statistics are used to develop a query plan. Section 7

Modeling Query Classes:The foregoing discussion about query
classes raises the issue regarding the way query classes are d
fined to begin with. For selection queries that bind (a subset of)
attributes to specific values (such as the ones faceBibyinde),

one way is to develop “general-to-specific” hierarchies over at-
tribute values (AV hierarchies, see below). The query classes i))]
themselves are then naturally defined in terms of (cartesian) prod-de_Scrlbes the §ett|ng for the experlment_s we have done St
ucts over the AV hierarchies. Figure 4 shows an example of AV MinerandBibFinderto evaluate the effectiveness of our approach.

hierarchies and the corresponding query classes (see Section 2 fopection 8 presents th_e experimental results. Secgon 9 discusses re-
details). An advantage of defining query classes through the carte-ated work, and Section 10 presents our conclusions.
sian product of AV hierarchies is that mapping new queries into
the query class hierarchy is straightforward — a selection query?2 AV Hierarchies and Query Classes

binding attributesd; and A; will only be mapped to a query class

that binds either one or both of those attributes (to possibly generaIAV Hierarchy: As we consider selection queries, we can clas-

values of the attribute). sify the queries in terms of the selected attributes and their val-
The approach to statistics learning described and motivated inyes. To abstract the classes further we assume that the mediator
the foregoing has been implementedStatMiner and has been pag access to the so-called “attribute value hierarchies” for a sub-
evaluated in the context d@ibFinder Figure 3 shows the high- set of the attributes of each mediated relation. A hierarchy
level architecture ofStatMiner StatMinerstarts with a list of (or attribute value hierarchy) over an attributeis a hierarchical
workload queries. The query list is collected from the log of ¢jassification of the values of the attribute The leaf nodes of
queries submitted t@ibFinder and not only gives the specific pe hierarchy correspond to specific concrete valued,ofvhile
queries submitted tdibFinder but also coverage and overlap he non-leaf nodes are abstract values that correspond to the union
statistics on how many tuples for each query came from which of yajues below them. Figure 4 shows two very simple AV hier-
source. The query list is used to automatically learn AV hierar- gchies for the “conference” and “year” attributes of the “paper”
chies, and to prune query classes that subsume less than a givegsjation. Note that the hierarchies do not have to exist for every at-
number of user queries (specified by a frequency threshold). Foryipyte, but rather only for those attributes over which queries are
each of these remaining classes, class-source as well as clasgyassified. We call such attributes totassificatory attributes.
source set association rules are learned. An example of a classye can choose as the classificatory attributes the/batitibutes
source association rule could be ti&tGMOD — DBLP whose values differentiate the sources the most, where the number
with confidence 100%, which means that the information source g, is decided based on a tradeoff between prediction performance
DBLP covers all the paper information faf/GMOD related and the computational complexity of learning the statistics by us-
queries. ing thesek attributes. The selection of the classificatory attributes
may either be done by the mediator designer or using automated
2This also explains why we don't cluster the query list queries directly— techniques. Similarly, the AV hierarchies themselves can either be

there is no easy way of deciding which query cluster(s) a new query should hand-coded by the designer, or can be learned automatically. In
be mapped to without actually executing the new query and using its cov- ' '

erage and overlap statistics to compute the distance between that query an§ectlon 3, we give details on how we learn them automatically.
all the query clusters! Query Classes:Since a typical selection query will have values

Query Frequency |Answers| Overlap (Coverage random query posed to the mediator is subsumed by the €lass
Author="andy king” 106 46 DBLP 35 .
Gob % Itis computed asP(C) =, P(Q).
DESLE' gE?LP 132 Coverage and Overlap w.r.t Query ClassesThe coverageof a
= - data sources with respect to a querg), denoted byP(S|Q), is
CSB, DBLP, Science 1 the probability that a random answer tuple of quérys present
CSB, Science 1 . ~ X
Author=Tayyal & i o7 = T in sourceS. Theoverlapamong g sef of sourggs with respect to
Title="data mining” DBLP 16 a query@, denoted byP(S|Q), is the probability that a random
CsfcﬁdBle ; answer tuple of the quer is present in each sourcge S. The
ACMdl, CSB 3 overlap (or coverage whefiis a singleton) statistics w.r.t. a query
ACMdl, DBLP 3 Q are computed using the following formula
ACMdl, CSB, DBLP 2
Science 1 ~
& Nq(5)
P(S|Q) =
(51Q) No

Here NQ(§l is the number of answer tuples &f that are in all

sources ofS, Ng is the total number of answer tuples fQ.
Figure 5. A Query List Fragment We assume that the union of the contents of the available sources

within the system covers 100% of the answers of the query. In

] o other words, coverage and overlap are measured relative to the
of some set of attributes bound, we group such queries into query,ailable sources

classes using the AV hierarchies of the classificatory attributes. A We also define coverage and overlap with respect to a query

queryfeature is defined as the assignment of a classificatory at- classC rather than a single queg. The overlap of a source set
tribute to a specific value from its AV hierarchy. A feature is “ab- g (or coverage whets is a singleton) w.r.t. a query clags can
stract” if the attribute is assigned an abstract (non-leaf) value from be computed using the following formula:

its AV hierarchy. Sets of features are used to define query classes.

Specifically, a query class is a set of (selection) queries that all . P(CNS) Yoec P(5|Q)P(Q)

share a particular set of features. The space of query classes is just P(SIC) = P(C) = P(C)

the cartesian product of the AV hierarchies of all the classificatory o .

attributes. Specifically, lefl; be the set of features derived from The coverage and overlap statistics w.r.t. a class used to es-

the AV hierarchy of the'” classificatory attribute. Then the set of timate the source coverage and overlap for all the queries that are

all query classes (calletlassSet) is simply Hy x Ha x ... x H,. mapped intoC'. These statistics can be conveniently computed
The AV hierarchies induce subsumption relations among the queryUSing an association rule mining approach as discussed below.
classes. A clas€’; is subsumed by class; if every feature inC; Class-Source Association RulesA class-source association rule

is equal to, or a specialization of, the same dimension feature infepresents strong associations between a query class and a source
C;. A queryQ is said to belong to a class if the values of the set (which is some subset of sources available to the mediator).
classificatory attributes i) are equal to, or are specializations of, Specifically, we are interested in the association rules of the form
the features defining'. Figure 4 shows an example class hierarchy C — S, whereC'is a query class, anl is a source set (possibly

for a very simple mediator with two example AV hierarchies. The Singleton). Thesupportof the classC' (denoted byP(C)) refers

query classes are shown at the bottom, along with the subsumptiorf0 the class probability of the claés and the overlap (or coverage

relations between the classes. whenS is a singleton) statistiE’(§|C) is simply theconfidencef
such an association rule (denotedByS|C) = 205y Exam-

P(C)
ples of such association rules includéAAI — S, AI — Sy,

AT&2001 — S; and2001 — S; A Ss.

Query List: We assume that the mediator maintains a query list

QList, which keeps track of the user queries, and for each query
saves statistics on how often it is asked and how many of the query
answers came from which sources. In Figure 5, we show a query
list fragment. The statistics we remember in the query listare: (1) 3 ~Generating AV Hierarchies Automatically
the query frequency, (2) the total number of distinct answers from

In this section we discuss how to systematically build AV Hier-
all the sources, and (3) the number of answers from each source . . e . '
; L archies based on the query list maintained by the mediator. We first
set which has answers for that query. The query list is kept as a

XML file which can be stored on the mediator’s hard disk or other pleflne the dlstancg funct|on.between two atltrlbute values. Next \{ve
introduce a clustering algorithm to automatically generate AV Hi-

separate storage devices. Only the learned statistics for the fre- . . o .
) o o . erarchies. Then we discuss some complications of the basic clus-
quent query classes will remain in the mediator's main memory

ot acces. e usli 1 denote h ccessreguency o . (=79 ST PEPexessn dfrert e of e vues
query@, and F'R to denote the total frequency of all the queries query g g P

. . o tics for queries with low selectivity binding values. Finally we
List. Th lityof

!n QList e.query probabilityof a queryq, denoted byP.’(Q),. discuss how to flatten our automatically generated AV Hierarchies.

is the probability that a random query posed to the mediator is the

query@®, and is estimated a®?(Q) = %. Theclass probabil- Distance Function: The main idea of generating an AV hierar-
ity of a query clas€”, denoted byP(C'), is the probability thata chy is to cluster similar attribute values into classes in terms of

the coverage and overlap statistics of their corresponding seleg
tion queries binding these values. The problem of finding similar
attribute values becomes the problem of finding similar selection
queries. In order to find similar queries, we define a distance func
tion to measure the distance between a pair of selection querie

(@1,Q2):

d(Q1,Q2) = \/Z[P(@Ql) — P(S|Q2)P?

WhereS; denotes thé'” source set of all possible source sets
in the mediator. Although the number of all possible source sets ig
exponential in terms of the number of available sources, we only
need to consider source sets with answers for at least one of the tw
queries to computé(Q1, @2).> Note that we are not measuring
the similarity of the answers @9, andQ-, but rather the similarity

of the way their answer tuples are distributed over the sources|.

In this sense, we may find that a selection queny ference =
“AAAI” and another queryon ference = “SIGMOD?” to be

- Algorithm GAVH()
for (each attribute value)
generate a cluster nodg _
feature vectoC. fv = (P(S|Q), P(Q));
childrenC'.children = null;
put cluster nod€ into AVQueue;
end for
while (AVQueue has more than two clusters)
find the most similar pair of clusters; andCs;
I* d(C1,C2) is the minimum of ald(C;, C;) */
generate a new clustér,
— = — =
P(c1)x P(S|C1)+P(c2)x P(S|C2)

]

C.fo=(

P(C1)+P(C2))
oP(C2));
C.children = (C1,C2);
put clusterC' into AVQueue;
remove cluste€'; andC> from AVQueue;
end while
End GAVH,

, P(C1)+

similar in as much as the sources having tuples for the former also
have tuples for the latter. Similarly we define a distance function
to measure the distance between a pair of query clagse€t):

Figure 6. The GAVH algorithm

d(Cy,C2) = \/Z[P(@-Cl) — P(Si|C2))2 and overlap statistics vecta}?(§|0) by using the feature vectors
i of its children cluster€’;, Ca:
— —
Cl) X P(S|Cl) + P(CQ) X P(S|Cg)
P(C1) + P(C))

We compute a query class's coverage and overlap statistics
P(S|C) according to the definition of the overlap (or coverage)
W.r.t. to a class given in Section 2. The statistie65|Q) for a
specific query@ are computed using the statistics from the query
list maintained by the mediator.

G

P(C) = P(Ch) + P(C2)

Attribute Value Pre-Processing: The attribute values for gener-
ating AV hierarchies are extracted from the query list maintained
For now we will assume that all attributes have a discrete set by the mediator. Since the GAVH algorithm assumes that all at-
of values, and we will also assume that the corresponding cover-tributes have discrete domains, we may need to preprocess the
age and overlap statistics are available (see the last two paragraphgalues of some types of attributes. For continuous numerical at-
in this subsection regarding some important practical considera-tributes, we divide the domain of the attribute into small ranges.
tions). We now introduce GAVH_(Enerating AVHierarchy, see Each range is treated as a discrete attribute value. For keyword-
Figure 6), an agglomerative hierarchical clustering algorithm ([7]), based attributes such as the attribute “tittle BibFinder we learn
to automatically generate an AV Hierarchy for an attribute. the frequently asked keyword sets using an item set mining al-
The GAVH algorithm will build an AV Hierarchy tree, where gorithm. Each frequent keyword set will be treated as a discrete
each node in the tree has a feature vector summarizing the in-attribute value. Keyword sets that are rarely asked will not be re-
formation that we maintain about an attribute value cluster. The membered as attribute values.

feature vector is defined asP(g\C), P(C)), WhereP(§\C) is

3.1 Generating AV Hierarchies

Handling Low Selectivity Attribute Values: If an attribute value

the coverage and overlap statistics vector of the cluStéor all (i.e. a selection query binding value) is too general, some sources
the source sets anft(C') is the class probability of the cluster 4y only return a subset of answers to the mediator, while others
C. Feature vectors are only used during the construction of AV may not even answer such general queries. In such cases the me-
hierarchies and can be removed afterwards. As we can see fromyiaior will not be able to accurately figure out the number of tuples
Figure 6, we can incrementally compute a new cluster's coveragejn these sources, and thus cannot know the coverage and overlap
statistics of these queries to generate AV hierarchies. To handle
this we use the coverage statistics of more specific queries in the
query list to estimate the source coverage and overlap of the orig-
inal queries. Specifically, we treat the original general queries as
query classes, and to estimate the coverage of the sources for these

SFor example, suppose quefy; gets tuples form only source and
Ss, and Q2 gets tuples fromSs and .S, we will only consider source
sets{S1}.{S5}.{S1,S5}.{S7}, and{Ss, S7}. We will not consider
{S1,S7}, {S1, S5, S7}, {S2}, and many other source sets without any
answer for either of the queries.

general queries we use the statistics of the specific qdevigsin
these classes using the following formula:

ZQEC and (Q is speci fic) P(S|Q)P()
ZQGC’ and (Q s speci fic) P(@)

P(S|C) =

As we can see, there is a slight difference between this formula
and the formula for the definition of the overlap (or coverage) w.r.t.
to clasC. The difference is that here we only consider the overlap
(or coverage) of specific queries within the class.

3.2 Flattening Attribute Value Hierarchies

Since the nodes of the AV Hierarchies generated using our
GAVH algorithm contain only two children each, we may get a

Algorithm FAVH(clusterNod&™) //Starting from root;
if (C has children)
for (each child nod€.;,;;4 in C)
putCepirq into Children_Queue
for (each nodeC ;14 in Children_Queue)
if (d(Cenira; C) <= m)
put (Cepiiq)-children into Children_Queue;
removeC.p;;q4 from Children_Queue;
end if
for (each children nod€’.;,;;4 In Children_-Queue)
FAVH(Cchita);
end if
End FAVH,;

hierarchy with a large number of layers. One potential problem
with such kinds of AV Hierarchies is that the level of abstraction
may not actually increase when we go up the hierarchy. For ex-

ample, in Figure 7, assuming the three attribute values have the
same coverage and overlap statistics, then we should not put them

into separate clusters. If we put these attribute values into two
clustersC; andC3, these two clusters are essentially in the same
level of abstraction. Therefore we may waste our memory space
on remembering the same statistics multiple times.

1

@ a’((rl,(fz)sE

—_—

ONO
ONO

Figure 7. An example of Flattening AV Hierar-
chy

Flattened AV Hierarchy

Figure 8. The FAVH algorithm

If the distanced(C.rua, C'), between a cluster and its parent
clusterC' is not larger thaqi then we consider the cluster
as unnecessary and put aII ‘of its children directly into its parent
cluster.

4 Discovering Frequent Query Classes

As we discussed earlier, it may be prohibitively expensive to
learn and keep in memory the coverage and overlap statistics for
every possible query class. In order to keep the amount of statis-
tics low, we would like to prune query classes which are rarely
accessed. In this section we describe how frequently accessed
classes are discovered in a two-stage process.

We use the terncandidate frequent clag® denote any class
with class probability greater than the minimum frequency thresh-
old minfreq The example classes shown in Figure 4 with solid
frame lines are candidate frequent classes. As we can see, some
queries may have multiple lowest level ancestor classes which are
candidate frequent classes and are not subsumed by each other.
For example, the query (or class) (ICDE,01) has both the class

In order to prune these unnecessary clusters, we use anothe{pg 01) and class (ICDE,RT) as its parent class. For a query

algorithm called FAVH (Fattening AV Hierarchy, see Figure 8).
FAVH starts the flattening procedure from the root of the AV Hi-
erarchy, then recursively checks and flattens the entire hierarchy.
To determine whether a clustér.,;;4 should be preserved in
the hierarchy, we compute thightnesf the cluster, which mea-

with multiple ancestor classes, we need to map the query into a
set of least-general ancestor classes which are not subsumed by
each other (see Section 6). We will combine the statistics of these
mapped classes to estimate the statistics for the query.

We also define thelass access probabilityf a classC, de-

sures the accuracy of its statistics. We consider a cluster is tightnoted by P,,,,(C), to be the probability that a random query

if all the queries subsumed by the cluster (especially frequently
asked ones) are close to its center. Tightness(C), of a cluster
C, is calculated as following:

1
P(Q
ZQEC PEC)d Q,0)

whered(Q, C) is the distance between the quépyand the center
of the cluster.

HC) =

4A query in the query list is called a specific query, if the number of

answer tuples of the query returned by each source is less than the source’

limitation.

posed to the mediator is actually mapped to the afask is esti-
mated using the following formula:

>

Q is mapped ta

Pmap(c) = P(Q)

Since the class access probability of a candidate frequent class
will be affected by the distribution of other candidate frequent
classes, in order to identify the classes with high class access prob-
ability, we have to discover all the candidate frequent classes first.
In the next subsection, we will introduce an algorithm to discover
candidate frequent classes. In Section 4.2, we will then discuss

Algorithm DFC(QList; minfreq : minimum support;n : # of
classificatory attributes)
classSet = {};
for(k =1,k <=n;k++)
LetclassSety, = {};
for(each quen@ € QList)
Cq = genClassSet(k,Q, ...);
for(each class € Cp)
if(c & classSety) classSety, = classSety U {c};
c.frequency = c.frequency + Q. frequency;
end for
end for
classSety, = {c € classSety|c.frequency >= minfreq};
classSet = classSet U classSety;
end for
return classSet;
End DFC;

Procedure genClassSet(: number of feature§) : the query;
classSet : discovered frequent class set; AV hierarchies)
for (each featuref; € Q)
ftSet; = {fi};
ftSet; = ftSet; U ({ancestor(f;)} — {root});
end for
candidateSetf};
for (eachk feature combinatiori ftSet;, , ..., ftSet;,))
tempSet = ftSet;, ;
for (i = 1;4 < ki + +)
remove any clas€' ¢ classSet; from tempSet;
tempSet = tempSet x ftSet;
end for
remove any clas€' ¢ classSety,_1 from tempSet;
candidateSet = candidateSet U tempSet;
end for
return candidateSet;

i+1;

End genClassSet

Figure 9. The DFC algorithm
Figure 10. Ancestor class set generation pro-

how to prune candidate frequent classes with low class access cedure
probability.

Example: Assume we have a quey={ICDE, 2001, 5Q (here
50 is the query frequency) and = 2. We first extract the fea-

We present an algorithm, DFC_{&overing Candidate ture(binding) valuesA., = ICDE, A., = 2001} from the
Frequent @asses, see Figure 9), to efficiently discover all the can- query. Then for each feature, we generate a feature set which
didate frequent classes. The DFC algorithm dynamically prunesincludes all the ancestors of the feature (see the corresponding
classes during counting and usesané-monotone property([7]) AV Hierarchies in Figure 4) . This leads to two feature sets:
to avoid generating classes which are supersets of the prunedftSet, = {ICDE, DB} and ftSets = {2001}. Suppose the
classes. class with the single feature “ICDE” is not a frequent class in the

Specifically the algorithm makes multiple passes over the previous results, then any class with the feature “ICDE” can not be
query listQList It first finds all the candidate frequent classes a frequent class according to the anti-monotone property. We can
with just one feature, then it finds all the candidate frequent classesprune the feature “ICDE” fronftSet;, then we get the candidate
with two features using the previous results and the anti-monotone2-feature class set for the quegy
property to efficiently prune classes before it starts counting, and candidateSet = ftSet; x ftSets = {DB&2001}.
so on. The algorithm continues until it gets all the candidate fre-
quent classes with all the features (where: is the total num- . .
ber of classificatory attributes for which AV-hierarchies have been 4.2 Pruning Low Access Probability Classes
learned). For each que€y in thek-th pass, the algorithm finds the
set ofk feature classes the query falls in, and for each dlass The DFC algorithm will discover all the candidate frequent
the set, it increases the class probabilityC) by the query prob- classes, which unfortunately may include many infrequently
ability P(Q). The algorithm prunes the classes with class proba- mapped classes. Here we introduce another algorithm, PLC
bility less than the minimum threshold probabilityin freq. (Pruning Low Access Probability [@sses, see Figure 11), to as-

The DFC algorithm finds all the candidate ancestor classes with Sign class access probability and delete the classes with low access
k features for a quer§) = {A., , ..., A.,, frequency} by proce- probability. The algorithm will scan the query list once, and map
duregenClassSetsee Figure 10), wherd., is the feature value ~ €ach query into a set of least-general candidate frequent ancestor
of thei'” classificatory attribute. The procedure prunes infrequent classes (see Section 6). It then computes the class access prob-
classes using the frequent classdetsSet found in the previous ability for each class by counting the total frequencies of all the
(k—1) passes. In order to improve the efficiency of the algorithm, queries mapped to the class. The class with the lowest class access

it dynamically prunes infrequent classes during the cartesian prod-probability (less thannin freq) will be pruned, and the queries
uct procedure. of the pruned classes will be re-mapped to other existing ancestor

classes. The pruning process will continue until there is no class
5)f a set cannot pass a test, all of its supersets will fail that test as well. with access probability less than the threshalih freq.

4.1 Discovering Candidate Frequent Classes

Procedure PLC(QList; classSet:
minfreq)
for (eachC' € classSet)
initialize FR = 0,andFRc =0 ;
for (each quenQ)
Map Q@ into a set of least-general classeset;
for(eachC € mSet)
FRc <« FRc + FRg;
FR=FR+ FRg;
end for

frequent classes from DF

end for
for (each clas<”)
class access probabilifymap (C) — 5
while (3C € classSet) Prmap(C) < minfreq)
Delete the class with the smallest class access probabifity,
from classSet;
Re-map the queries which are mappedto
for (new mapped clasS}, ¢ vapped)
recompUterap(CnewMapped);
end while
End PLC;

FR¢o .

Figure 11. The PLC procedure

5 Mining Coverage and Overlap Statistics

For each frequent query class in the mediator, we learn cover-

age and overlap statistics. We use a minimum support threshold

minoverlap to prune overlap statistics for uncorrelated source
sets.

A simple way of learning the coverage and overlap statistics
is to make a single pass over tid ist, map each query into its

keep coverage statistics for these sources. Then we discoer all
sourceSet ® with overlap greater thaminoverlap and keep only
overlap statistics for these source sets. This process continues until
we have the overlap statistics for all the correlated source sets.

6 Using Learned Coverage and Overlap
Statistics

With the learned statistics, the mediator is able to find relevant
sources for answering an incoming query. In order to access the
learned statistics efficiently, both the learned AV hierarchies and
the statistics for frequent query classes are loaded into hash tables
in the mediator's main memory. In this section, we discuss how
to use the learned statistics to estimate the coverage and overlap
statistics for a new query, and how these statistics are used to gen-
erate query plans.

Query Mapping: Given a new query), we first get all the ab-
stract values from the AV hierarchies corresponding to the bind-
ing values in@. Both the binding values and the abstract values
are used to map the query into query classes with statistics. For
each attributed; with bindings, we generate a feature gefet 4,
which includes the corresponding binding value and abstract val-
ues for the attribute. The mapped classes will be a subset of the
candidate class sebet:

cSet = ftSeta, x ftSeta, x ... X ftSeta,

wheren is the number of attributes with bindings in the query. Let
sSet denote all the frequent classes which have learned statistics
andmSet denote all the mapped classes of qu@ryThen the set
of mapped classes is:

mSet = cSet — {C|(C € cSet) N (C ¢ sSet)}

—{C|(3C" € (sSet N cSet))(C' C C)}

In other words, to obtain the mapped class set we remove all the
classes which do not have any learned statistics as well as the

ancestor frequent classes (see Section 6), and update the corrgjasses which subsume any class with statistics from the candi-

sponding statistics vector:B(§\C’) of its ancestor classes using
— =
the query’s coverage and overlap statistics ve£tg§|Q) through

— =
— P(S P(Q)
the formulaP(S|C) = Lace P(<C|>Q)X . When the map-

date class set. The reason for the latter is because the statistics of
the subsumed class are more specific to the query.
Once we have the relevant class set, we compute the estimated
- a—

coverage and overlap statistics vecRJ(r§\Q) for the new query
—_—

ping and updating procedure is completed, we simply need 0) ysing the statistics vectors of the mapped clag€8|C;) and

prune the overlap statistics which are smaller than the thresholdgjr corresponding tightness informatiofc’;)

minoverlap. One potential problem of this naive approach is the
possibility of running out of memory, since the system has to re-

member the coverage and overlap statistics for each source set and

class combination. If the mediator has access sources and has
discoveredn frequent classes, then the memory requirement for
learning these statistics & x 2™ x k, wherek is the number

of bytes needed to store a float numberk I= 1, m = 10000,

and the total number of memory availablelis B, this approach
would not scale well when the number of sources is greater than
16.

In order to handle scenarios with large number of sources, we
use a modified Apriori algorithm ([2]) to avoid considering any
supersets of an uncorrelated source set. We first identify individ-
ual sources with coverage statistics greater tmamoverlap and

=

P(SIQ) = Y 5=,y P(51C:)
; > HCi)
Since the classes with large tightness values are more likely

to provide more accurate statistics, we give more weight to query
classes with large tightness values.

Using Coverage and Overlap Statistics to Generate Query
Plans: Once we have the coverage and overlap statistics, we use
the Simple Greedy and Greedy Selectalgorithms described in

[5] to generate query plans. Specifical§imple Greedgenerates
plans by greedily selecting the tésources ranked only according

6k-sourceSet denotes the source sets with only k sources.

to their coverages, whil&reedy Selectelects sources with high

residual coverages calculated using both the coverage and overlap lzzzz ?
statistics. A residual coverage computing algorithm is discussed \

in [13] to efficiently compute the residual coverage using the esti- 8000 \
mated coverage and overlap statistics. Specifically, recall that weg ~ "°% \
only keep overlap statistics for correlated source sets with suffi- 2 60 \
cient number of overlap tuples, and assume that source sets withs 5000 \
out overlap statistics are disjoint (thus their plobability ofoverlap § 4000 &

is zero). If the overlap is zero for a source $gtwe can ignore § 3000

looking up the overlap statistics for superseté\oéince they will 2000 \\
all be zero by the anti-monotone property. In particular, this algo- 1000 M
rithm, which exploits this structure of the stored statistics, will cut

))
« =
<) <)

the number of statistics lookups frop¥ to R + n, whereR is

the total number of overlap statistics remembered for dlassd

n is the total number of sources already selected. This resulting
efficiency is critical in practice since computation of residual cov-

erage forms the inner loop of any query processing algorithm that Figure 12. The total number of classes
considers source coverage. learned

0.03
0.13
0.23
0.53
0.63
0.73

minfreq(%)

7 Experimental Setting 1,600,000

—O— minoverlap=0

We now describe the data, algorithms and metrics of our exper- 1 400,000 -0~ minoverlap=0.1
. . —— minoverlap=0.2
imental evaluation.

—X-minoverlap=0.3

1,200,000

tes)

Database Set:Five structured Web bibliography data sources in 2
BibFinderare used in our experimental evaluation: DBLP, CSB, g
ACM DL, Science Direct and Network Bibliography. We used the & 800,000

25000 real queries asked BjbFinderusers as of May 20, 2003 \

as the query list. Among them, we randomly chose 4500 queries 600,000 HZ\ \
X

1,000,000

nsum

as test queries and the others were used as training data. The AY 400,000

Hierarchies for all four attributes were learned automatically us-é 200,000 \

ing our GAVH algorithm. The learned Author hierarchy has more ’ X% o o

than 8000 distinct valu€sthe Title hierarchy keeps only 1200 0 A

frequently asked keyword itemsets, the Conference hierarchy has 003 013 023 033 043 053 063 073

more than 600 distinct values, and the Year hierarchy has 95 dis- minfreq (%)

tinct values. Note that we consider a range query (for example:

“>1990") as a single distinct value. Figure 13. The total amount of memory
needed for keeping the learned statistics in

Algorithms: In order to evaluate the effectiveness of our learned
statistics, we implemented ti8mple GreedyandGreedy Select

algorithms to generate query plans using the learned source cov-
erage and overlap statistics. A sim@andom Selectalgorithm error is computed using the following formula:
was also used to randomly choose k sources as the top k sources.

BibFinder

Evaluation Metrics: We generate plans using the learned statis- Y OeTestQuerySet \/Zi[P’(@\Q) — P(S,|Q)]?

tics and the algorithms mentioned above. The effectiveness of the : [TestQuerySet|

statistics is estimated according to how good the plans are. The

goodness of a plan, in turn, is evaluated by calling the sources inwhereS; denotes the'" source set of all possible source sets in the
the plan as well as all the other sources available to the mediator.mediator,P’(S;|Q) denotes the estimated overlap (or coverage) of
We define theprecisionof a plan to be the fraction of sources in the source se§; for queryQ, P(S;i|Q) denotes the real overlap (or
the estimated plan, which turn out to be the truekgpurces after coverage) of the source s6t for query @, andTestQuerySet

we execute the query. refers to the set of all test queries.
We also measure thabsolute errorbetween the estimated

statistics and the real coverage and overlap values.abkelute

8 Experimental Results

“Since it is too large for GAVH to learn upon it directly, we first group
these 8000 values into 2300 value clusters using a radius based clusteringPac€ Consumption for Different minfreq and minoverlap
algorithm (O(n) complexity), and use GAVH to generate a hierarchy for Thresholds In Figures 12 and 13, we observe the reduction in
these 2300 value clusters. space consumption and number of classes when we increase the

0.5 53

0.4) s 48
W E—r
W z Hseo
S 03 S 43 -GS0
i} o g %5603
o % -o-GS0.3
5 02 S 38
> 5
< —O— minoverlap=0 5
—{ minoverlap=0.1 Q
0.1 —/"— minoverlap=0.2 g 33
—$4 minoverlap=0.3 z O/<>/<>\<>
0 28
003 013 023 033 043 053 063 0.73 0.03 0.13 0.23 0.33 0.43 0.53 0.63 0.73
minfreq(%) minfreq(%)
Figure 14. The average distance between the Figure 15. The average number of answers
estimated statistics and the real coverage and BibFindermreturns by executing the query plans
overlap values. with top 2 sources.
minfreqand minoverlapthresholds. Slightly increasing thein- 1
freq threshold from 0.03% to 0.13% causes the number of classes
to drop dramatically from approximately 10000 classes to 3000. 0.9 %%:ﬁ:ﬂ
As we increase theninfreqthreshold, the number of classes de- © & ! It
creases, however the decrease rate becomes smaller as the thresh-0.8
old becomes larger. In Figure 13, we observe the size of the reg o
quired memory for different levels of abstraction of the statistics.-§ 0.7 A GSO
Clearly, as we increase any of these two thresholds the space comi- -6-5G0.3
sumption drops, however the pruning power also drops simultane- 06 X-GS03
ously®
Accuracy of the Learned Statistics for Different minfreq and 0.5 0\0/0—0/0/0/0\0
minoverlapThresholds Figure 14 plots the absolute error of the
learned statistics for the 4500 test queries. The graph illustrates 0.4
0.03 013 023 033 043 053 063 0.73

that although the error increases as any of these two thresholds
increase, the increase rates remain almost the same. There is no
dramatic increase after the initial increases of the thresholds. If
we looked at both Figures 13 and 14 together, we can see that
the absolute error of threshold combinationin freq = 0.13%
andminoverlap = 0.1 is almost the same as thatwfin freq =

0.33% andminoverlap = 0, while the former uses onl§0% of

the memory required by the latter. This fact tells us that keeping in BibFinderand observing the precision of the query plans and the
very detailed overlap statistics of uncorrelated source sets for gen-number of distinct answers returned from the Web sources when
eral query classes would not necessarily increase the accuracy ofve execute these plans to answer user queries.

our statistics while requiring much more space. Note that in all the figures described below, RS refers to Ran-
Effectiveness of the Learned StatisticsWe evaluate the effec- dom Select algorithm, SGO refers to Simple Greedy algorithm

tiveness of the learned statistics by actually testing these statisticSyith minoverlap = 0, GSO refers to Greedy Select algorithm

8Note that for a better readability of our plots, we did not include the W!th mz.noverlap = 0, SGO.3 refers to Simple Greedy algorithm
number of classes and memory consumption whernniméreq threshold with minoverlap = 0.3, and GSO0.3 refers to Greedy Select algo-
is equal to zero, as the corresponding values were much larger than thoséithm with minoveriap = 0.3.
obtained for other threshold combinations. In fact, the total number of In Figure 15, we observe how thaminfreq and minoverlap
classes when thminfregis equal to zero is about 540000, and the memory {hragholds influence the average number of distinct answers re-
Leo?\zgerzﬁgt when botminfreqandminoverlapare equal to zero is about turned by BibFinder for the 4500 test queries when executing

. ough in our current experiment setting 40MB is the maximal . e

memory space needed to keep the statistics (mainly be@ih&éinderis query plans with top 2 sources. As indicated by the graph, for all
at its beginning stage), the required memory could become much larger aghe threshold combinations, we always get on average more than
the number of users and the number of integrated sources grow. 50 distinct answers when using our learned statistics and query

minfreq(%)

Figure 16. Precision for query plans with top
2 sources.

1 0.6
——RS
0.95 _ -1-SG
% s 05
09 ¥ X X % X X X 2 é O\Q/OW
5 04
. 085 ——RS 3
o --SGO ‘é
g 0.8 ——GS0 z 0.3
b 075 -X-5G0.3 °
: -X-GS0.3 = 02
o
0.7 2 s 00— g0—o0—0—O0—0
3 o1
0.65 S
o
06 & 0
003 013 023 033 043 053 063 0.73 0.003 0.13 023 033 043 053 063 0.73
minfreq (%) minfreq (%)
Figure 17. Precision for query plans with top Figure 18. The percent of the total source-
3 sources. calls that are irrelevant for query plans with

top 1 sources.

plans selected by Simple Greedy and Greedy Select, while we
can only get about 30 distinct answers by randomly selecting 2 with 768Mb of RAM. From the experiments, we found that using
sources. In Figures 16 and 17, we observe the average precisiofhe learned statistics to generate query plans for a new query is
of the top 2 and top 3 sources ranked using statistics with different very fast, specifically always less than 1 millisecond. In terms of
level of abstraction for the test queries. As we can see, the plansthe statistics learning, costs associated with discovering frequent
using our learned statistics have high precision, and their precisionquery classes and learning statistics are also fairly inexpensive (i.e.
decreases very slowly as we change ithiafreq and minoverlap always less than 100 seconds). Our previous experiments with 20
thresholds. artificial sources (see [13]) also shows that our statistics learning
One fact we need to point out is that the precision of the plans algorithms can scale well. The most expensive phase is learning
using Simple Greedy and Greedy Select algorithm are very closethe AV Hierarchies. During the experiments we found that the
(although Greedy Select is a little better most of the time). This is GAVH algorithm can be very time-consuming when the number
not as we expected, since the Simple Greedy only uses the coverof attribute values is large. Specifically, it takes us 719ms to learn
age statistics, while Greedy Select uses both coverage and overlaghe Year hierarchy, 1 minute to learn the Conference hierarchy, 25
statistics. When we studied many queries asked byBihEinder minutes to learn the Title keywords hierarchy, and 2.5 hours to
users and the corresponding coverage and overlap statistics, wéearn the Author hierarchy. However since GAVH runs offline and
found that the distribution of answer tuples over sources integratedonly needs to run once, it still is not a major drawback. Since it
by BibFinderalmost follow independence assumption for most of is the most time consuming phase, we can consider incrementally
the queries asked by the users. However in other scenarios Greedypdating the hierarchy as new queries come in.
Select can perform considerably better than Simple Greedy. For
instance, in our previous experiment with a controlled data set,
where we set 20 artificial sources including some highly correlated 9 Related Work

sources, we did find that the plans generated by Greedy Select The utility of quantitative coverage statistics in ranking the
were significantly better than those generated by Simple Greedy.soyrces was first explored by Florestual. [5]. The primary aim
For detailed information about our experiments on the controlled of the effort was however on the “use” of coverage statistics, and
data set, please see [13]. it does not discuss how such coverage statistics could be learned.
Figure 18 shows the possibility of a source call being a com- In contrast, our main aim in this paper is to provide a framework
pletely irrelevant source call (i.e. the source has no answer for for learningthe required statistics.
the query asked). The graph reveals that the most relevant source There has been some previous work on learning database statis-
selected using our algorithm has only 12% possibility of being tics both in multi-database literature and data integration literature.
an irrelevant source call, while the randomly picked source has Much of it, however, focused on learning response time statistics.
about 46% possibility. This illustrates that by using our statistics Zhu and Larson [18] describe techniques for developing regres-
BibFindercan significantly reduce the unnecessary load on its in- sion cost models for multi-database systems by selective query-
tegrated sources. ing. Adaliet. al. [1] discuss how keeping track of rudimentary
Efficiency Issues We now discuss the time needed for learning access statistics can help in doing cost-based optimizations. More
and using the coverage and overlap statistics. All our experi- recently, the work by Gruseat. al. [6] considers mining response
ments were run under JDK 1.2.2 on a 500MHZ SUN-Blade-100 time statistics for sources in data integration scenario. In contrast,

our work focuses on learning coverage and overlap statistics. AsReferences

has been argued by us [12] and others [3], query optimization in

data integration scenarios require both types of statistics. [1] S. Adali, K. Candan, Y. Papakonstantinou, and V. S. Subrah-
manian. Query caching and optimization in distributed mediator
systems. IrProc. of SIGMOD 1996.

[2] R. Agrawal and R. Srikant. Fast Algorithms for Mining Asso-

Another strand of related work [8, 17] considers the problem
of text database selection in the context of keyword queries sub-
mitted to meta-search engines. Although some of these efforts!! ", ! A
use a hierarchy of topics to categorize the Web sources, they uséation Rules. IrProc. of VLDB Santiage, Chile, 1994.
only a single topic hierarchy and do not deal with computation of [3] A- Doan and A. Halevy. Efficiently Ordering Plans for Data
overlap statistics. In contrast we deal with classes made up from!ntegration. InProc. of ICDE 2002.
the cartesian product of multiple attribute value hierarchies, and [4] O. M. Duschka, M. R. Genesereth, and A. Y. Levy. Recursive
are also interested in modeling overlap. This makes the issue ofQuery Plans for Data Integration. Iournal of Logic Program-
space consumed by the statistics quite critical for us, necessitatning, Volume 43(1)pages 49-73, 2000.
ing our threshold-based approaches for controlling the resolution[5] D. Florescu, D. Koller, and A. Levy. Using probabilistic infor-
of the statistics. Furthermore, most of the existing approaches inmation in data integration. IRroc. of VLDB 1997.
text database selection assume that the terms in a user’s query arg] J. Gruser, L. Raschid, V. Zadorozhny, and T. Zhan: Learning
independent (to avoid storing too many statistics). No efficient ap- Response Time for WebSources Using Query Feedback and Ap-
proaches have been proposed to handle correlated keyword setglication in Query Optimization. IWVLDB Journal 9(1) pages
We are currently working on applying our techniques to the text 18-37, 2000.
database selection problem to effectively solve the space and learnf7] J. Han and M. Kamber. Data Mining: Concepts and Tech-
ing overhead brought by providing coverage and overlap statisticsniques. Morgan Kaufmman Publishers, 2000.
for both single word and correlated multi-word terms. [8] P. Ipeirotis and L. Gravano. Distributed Search over the

In the current work, we have assumed that the mediator will Hidden-Web: Hierarchical Database Sampling and Selection. In
maintain a query list. However the query list may not be available Proc. of VLDB 2002.
for mediators at their beginning stages. For such cases our earlief9] E. Lambrecht, S. Kambhampati and S. Gnanaprakasam. Op-
work [15] introduces a size-based approach to learning statistics.timizing recursive information gathering plans. Rroc. of the
There we assume that query classes with more answer tuples willnternational Joint Conference on Atrtificial Intelligence (IJCAI)
be accessed more frequently, and learn coverage statistics with re1999.
spect to large query classes. [10] A. Levy, A. Rajaraman, and J. Ordille. Query Heteroge-
neous Information Sources Using Source DescriptionsProc.
of VLDB, 1996.

[11] F. Naumann, U. Leser, and J. Freytag. Quality-driven Integra-
tion of Heterogeneous Information Systems.Froc. of VLDB
1999.

In this paper we motivated the need for automatically mining [12] Z- Nie and S. Kambhampati. Joint optimization of cost and
coverage of query plans in data integration. Froc. of CIKM,

the coverage and overlap statistics of sources w.r.t. frequently ac-

cessed query classes for efficient query processing in a data in/tlanta, Georgia, November 2001.

tegration scenario. We then presented a set of connected techl13] Z. Nie and S. Kambhampati. A Frequency-based Approach
niques that automatically generate attribute value hierarchies, ef-for Mining Coverage Statistics in Data Integration. ASU CSE TR
ficiently discover frequent query classes and learn coverage and?3-004. Dept. of Computer Science & Engg. Arizona State Uni-
overlap statistics for only these frequent classes. We described’€rsity-

the algorithmic details and implementation of our approach. We http : //www.public.asu.edu/ ~ zaigingn/ fregbased.pdf

also presented an empirical evaluation of the effectiveness of our[14] Z. Nie, S. Kambhampati, and T. Hernandez.
approach inBibFinder, a publicly available bibliography media- BibFinder/StatMiner: Effectively Mining and Using Cover-
tor. Our experiments demonstrate that (i) We can systematically 2ge and Overlap Statistics in Data IntegrationPfoc. of VLDB
trade the statistics learning time and number of statistics remem-2003.

bered for accuracy by varying the frequent class thresholds. (i) [15] Z. Nie, U. Nambiar, S. Vaddi, and S. Kambhampati. Min-
The learned statistics provide tangible improvements in the sourceing Coverage Statistics for Websource Selection in a Mediator. In
ranking, and the improvement is proportional to the granularity of Proc. of CIKM 2002.

the learned statistics. A prototype of tBébFindersystem using [16] R. Pottinger and A. Y. Levy , A Scalable Algorithm for An-
these statistics was demonstrate@/aDB 2003 [14]. swering Queries Using Views. IAroc. of VLDB 2000.

One direction that we are currently pursuing is to make the [17]W. Wang, W. Meng, and C. Yu. Concept Hierarchy based text
statistics learning framework more adaptive to changes in user in-database categorization in a metasearch engine environment. In
terests (as captured by the query list) as well as the number and’roc. of WISEJune 2000.
content of the data sources. We believe that our general approach18] Q. Zhu and PA Larson. Developing Regression Cost Models
can be easily made incremental to support these goals. for Multi-database Systems. Rroc. of PDIS 1996.

10 Conclusions

