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Abstract

Query optimization in data integration requires source cover-
age and overlap statistics. Gathering and storing the required
statistics presents many challenges, not the least of which is con-
trolling the amount of statistics learned. In this paper we intro-
duce StatMiner, a novel statistics mining approach which automat-
ically generates attribute value hierarchies, efficiently discovers
frequently accessed query classes based on the learned attribute
value hierarchies, and learns statistics only with respect to these
classes. We describe the details of our method, and present experi-
mental results demonstrating the efficiency and effectiveness of our
approach. Our experiments are done in the context of BibFinder,
a publicly fielded bibliography mediator.

1 Introduction

The availability of structured information sources on the web
has recently lead to significant interest in query processing frame-
works that can integrate information sources available on the In-
ternet. Data integration systems [1, 4, 9, 10, 14, 16] are being de-
veloped to provide a uniform interface to a multitude of informa-
tion sources, query the relevant sources automatically and restruc-
ture the information from different sources. In a data integration
scenario, a user interacts with a mediator system via a mediated
schema. A mediated schema is a set of virtual relations, which
are effectively stored across multiple and potentially overlapping
data sources, each of which only contains a partial extension of
the relation. Query optimization in data integration [3, 5, 11, 12]
thus requires the ability to figure out what sources are most rel-
evant to the given query, and in what order those sources should
be accessed. For this purpose, the query optimizer needs to access
statistics about the coverage of the individual sources with respect
to the given query, as well as the degree to which the answers they
export overlap. Gathering these statistics presents several chal-
lenges because of the autonomous nature of the data sources. In
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Figure 1. The BibFinder User Interface

this paper, we motivate and investigate the issues involved in statis-
tics gathering in the context of a bibliography mediation system
that we are developing calledBibFinder.

BibFinder Scenario: We have been developingBibFinder (Fig-
ure 1, http://rakaposhi.eas.asu.edu/bibfinder), a publicly fielded
computer science bibliography mediator.BibFinder integrates
several online Computer Science bibliography sources. It cur-
rently coversCSB, DBLP, Network Bibliography, ACM Digi-
tal Library, ACM Guide, IEEE Xplore, ScienceDirect,andCite-
Seer. Plans are underway to add several additional sources includ-
ingAMS MathSciNetandComputational Geometry Bibliography.
Since its unveiling in December 2002,BibFinderhas been getting
on the order of 200 queries a day.

The sources integrated byBibFinderare autonomous and par-
tially overlapping. By combining the sources,BibFinder can
present a unified and more complete view to the user. However it
also brings some interesting optimization challenges. The global
schema exported byBibFinder can be modeled in terms of just
the relation:paper(title, author, conference/journal, year), and
the queries can be seen as selection queries on the paper relation.
Each of the individual sources may export only a subset of the
global relation. For example,Network Bibliographyonly contains
publications in Networks,DBLP gives more emphasis to Database
publications, whileScienceDirecthas only archival journal publi-
cations.

Need for Statistics: To efficiently answer user queries, it is im-



portant to find and access the most relevant subset of the sources
for the given query. Suppose the user asks a selection query
Q(title,author,year) :−

paper(title, author, conference/journal, year),
conference/journal =“SIGMOD”.

A naive way of answering this selection query would be to send
it to all the data sources, wait for the results, eliminate dupli-
cates, and return the answers to the user. This not only leads to
increased query processing time and duplicate tuple transmission,
but also unnecessarily increases the load on the individual sources.
A more efficient andpolite approach would be to direct the query
only to the most relevant sources. For example, for the selection
query above,DBLP andACM Digital Library is most relevant, and
Network Bibliographyis much less relevant. Furthermore, since
DBLP stores records of virtually all the SIGMOD papers, a call to
ACM Digital Library is largely redundant.1

Coverage and Overlap Statistics:In order to judge the source
relevance however,BibFinderneeds to know thecoverageof each
sourceS with respect to the queryQ, i.e. P (S|Q), the probability
that a random answer tuple for queryQ belongs to sourceS. Given
this information, we can rank all the sources in descending order
of P (S|Q). The first source in the ranking is the one we would
want to access first while answering queryQ. Since the sources
may be highly correlated, after we access the sourceS′ with the
maximum coverageP (S′|Q), the second sourceS′′ that we access
must be the one with the highestresidual coverage(i.e. provides
the maximum number of those answers that are not provided by
the first sourceS′). Specifically we need to determine the source
S′′ that has the next best rank in terms of coverage but has minimal
overlap(common tuples) withS′.

The Costs of Statistics Learning: If we have the coverage and
overlap statistics for every possible query, we can get the complete
order in which to access the sources. However it would be very
costly to learn and store statistics w.r.t. every source-query combi-
nation, and overlap information about every subset of sources with
respect to every possible query. The difficulty here is two-fold.
First there is the cost of “learning”–which would involve probing
the sources with all possible queriesa priori, and computing the
coverage and overlap with respect to the queries. The second is
the cost of “storing”the statistics.

Motivation for Frequency-based Statistics Learning:One way
of keeping both learning and storage costs down is to learn statis-
tics only with respect to a smaller set of “frequently asked” queries
that are likely to be most useful in answering user queries. This

1In practice,ACM Digital Library is not completely redundant since
it often provides additional information about papers – such as abstracts
and citation links – thatDBLP does not provide.BibFinderhandles this
by dividing the paper search into two phases–in the first phase, the user is
given a listing of all the papers that satisfy his/her query.BibFinderuses a
combination of three attributes: title, author, and year as the primary key
to uniquely identify a paper across sources. In the second phase, the user
can ask additional details on specific papers. While it is important to call
every potentially relevant source in the second phase, we do not have this
compulsion in the first phase. For the rest of this paper, all our references
to BibFinderare to its first phase.

strategy trades accuracy of statistics for reduced statistics learn-
ing/storing costs. In theBibFinderscenario, for example, we could
learn statistics with respect to the list of queries that are actually
posed to the mediator over a period of time. The motivation for
such an approach is that even if a mediator cannot provide accurate
statistics for every possible query, it can still achieve a reasonable
average accuracy by keeping more accurate coverage and over-
lap statistics for queries that are asked more frequently, and less
accurate statistics for infrequent queries. The effectiveness of this
approach is predicated on the belief that in most real-world scenar-
ios, the distribution of queries posed to a mediator is notuniform,
but rather Zipfian. This belief is amply validated inBibFinder.
Figure 2 shows the distribution of the keywords, and bindings for
the Year attribute used in the first 15000 queries that were posed
to BibFinder. Figure 2(a) shows that the most frequently asked
10% keywords appear in almost60% of all the selection queries
binding attribute Title. Figure 2(b) shows that the users are much
more interested in recently published papers.

(a) Keywords Distribution
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Figure 2. Query Distributions in BibFinder

Handling New Queries through Generalization: Once we sub-
scribe to the idea of learning statistics with respect to a workload
query list, it would seem as if the problem of statistics gathering
is solved. When a new query is encountered, the mediator simply
needs to look into the query list to see the coverage and overlap
statistics on this query when it was last executed. In reality, we
still need to address the issue of what to do when we encounter
a query that was not covered by the query list. The key here
is “generalization”–store statisticsnot with respect to the specific
queries in the query list, but rather with respect to query classes.
The query classes will have a general-to-specific partial ordering
among them. This in turn induces a hierarchy among the query
classes, with the query list queries making up the leaf nodes of the
hierarchy. The statistics for the general query classes can then be
computed in terms of the statistics of their children classes. When
a new query is encountered that was not part of the workload query
list, it can be mapped into the set of query classes in the hierarchy
that are most similar, and the (weighted) statistics of those query
classes can be used to handle the new query. Such an organization
of the statistics offers an important additional flexibility: we can
limit the amount of statistics stored as much as we desire by strip-
ping off (and not storing statistics for) parts of the query hierarchy.



Figure 3. StatMiner Architecture

Modeling Query Classes:The foregoing discussion about query
classes raises the issue regarding the way query classes are de-
fined to begin with. For selection queries that bind (a subset of)
attributes to specific values (such as the ones faced byBibFinder),
one way is to develop “general-to-specific” hierarchies over at-
tribute values (AV hierarchies, see below). The query classes
themselves are then naturally defined in terms of (cartesian) prod-
ucts over the AV hierarchies. Figure 4 shows an example of AV
hierarchies and the corresponding query classes (see Section 2 for
details). An advantage of defining query classes through the carte-
sian product of AV hierarchies is that mapping new queries into
the query class hierarchy is straightforward – a selection query
binding attributesAi andAj will only be mapped to a query class
that binds either one or both of those attributes (to possibly general
values of the attribute).2

The approach to statistics learning described and motivated in
the foregoing has been implemented inStatMiner, and has been
evaluated in the context ofBibFinder. Figure 3 shows the high-
level architecture ofStatMiner. StatMiner starts with a list of
workload queries. The query list is collected from the log of
queries submitted toBibFinder, and not only gives the specific
queries submitted toBibFinder, but also coverage and overlap
statistics on how many tuples for each query came from which
source. The query list is used to automatically learn AV hierar-
chies, and to prune query classes that subsume less than a given
number of user queries (specified by a frequency threshold). For
each of these remaining classes, class-source as well as class-
source set association rules are learned. An example of a class-
source association rule could be thatSIGMOD → DBLP

with confidence 100%, which means that the information source
DBLP covers all the paper information forSIGMOD related
queries.

2This also explains why we don’t cluster the query list queries directly–
there is no easy way of deciding which query cluster(s) a new query should
be mapped to without actually executing the new query and using its cov-
erage and overlap statistics to compute the distance between that query and
all the query clusters!
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Figure 4. AV Hierarchies and the Correspond-
ing Query Class Hierarchy

The rest of the paper is organized as follows. In the next sec-
tion, we define some terminology about query classes and AV hi-
erarchies. Section 3 describes the details of learning AV hierar-
chies. Section 4 describes how query classes are formed. Sec-
tion 5 describes how coverage and overlap statistics are learned
for the query classes that are retained. Section 6 describes how
a new query is mapped to the appropriate query classes, and how
the combined statistics are used to develop a query plan. Section 7
describes the setting for the experiments we have done withStat-
Miner andBibFinderto evaluate the effectiveness of our approach.
Section 8 presents the experimental results. Section 9 discusses re-
lated work, and Section 10 presents our conclusions.

2 AV Hierarchies and Query Classes

AV Hierarchy: As we consider selection queries, we can clas-
sify the queries in terms of the selected attributes and their val-
ues. To abstract the classes further we assume that the mediator
has access to the so-called “attribute value hierarchies” for a sub-
set of the attributes of each mediated relation. AnAV hierarchy
(or attribute value hierarchy) over an attributeA is a hierarchical
classification of the values of the attributeA. The leaf nodes of
the hierarchy correspond to specific concrete values ofA, while
the non-leaf nodes are abstract values that correspond to the union
of values below them. Figure 4 shows two very simple AV hier-
archies for the “conference” and “year” attributes of the “paper”
relation. Note that the hierarchies do not have to exist for every at-
tribute, but rather only for those attributes over which queries are
classified. We call such attributes theclassificatory attributes.
We can choose as the classificatory attributes the bestk attributes
whose values differentiate the sources the most, where the number
k is decided based on a tradeoff between prediction performance
and the computational complexity of learning the statistics by us-
ing thesek attributes. The selection of the classificatory attributes
may either be done by the mediator designer or using automated
techniques. Similarly, the AV hierarchies themselves can either be
hand-coded by the designer, or can be learned automatically. In
Section 3, we give details on how we learn them automatically.

Query Classes:Since a typical selection query will have values



Query   Frequency   |Answers|   Overlap (Coverage)  
DBLP   35  
CSB   23  

CSB, DBLP   12  
DBLP, Science   3 

Science   3 
CSB, DBLP, Science   1 

Author=”andy king”   106   46  

CSB, Science   1 
CSB   16  

DBLP   16  
CSB , DBLP   7 

ACMdl   5 
ACMdl, CSB   3 

ACMdl, DBLP   3 
ACMdl, CSB, DBLP   2 

Author=”fayyad” &  
Title=”data mining”  

1  27  

Science   1 
 

Figure 5. A Query List Fragment

of some set of attributes bound, we group such queries into query
classes using the AV hierarchies of the classificatory attributes. A
query feature is defined as the assignment of a classificatory at-
tribute to a specific value from its AV hierarchy. A feature is “ab-
stract” if the attribute is assigned an abstract (non-leaf) value from
its AV hierarchy. Sets of features are used to define query classes.
Specifically, a query class is a set of (selection) queries that all
share a particular set of features. The space of query classes is just
the cartesian product of the AV hierarchies of all the classificatory
attributes. Specifically, letHi be the set of features derived from
the AV hierarchy of theith classificatory attribute. Then the set of
all query classes (calledclassSet) is simplyH1×H2× ...×Hn.
The AV hierarchies induce subsumption relations among the query
classes. A classCi is subsumed by classCj if every feature inCi

is equal to, or a specialization of, the same dimension feature in
Cj . A queryQ is said to belong to a classC if the values of the
classificatory attributes inQ are equal to, or are specializations of,
the features definingC. Figure 4 shows an example class hierarchy
for a very simple mediator with two example AV hierarchies. The
query classes are shown at the bottom, along with the subsumption
relations between the classes.

Query List: We assume that the mediator maintains a query list
QList, which keeps track of the user queries, and for each query
saves statistics on how often it is asked and how many of the query
answers came from which sources. In Figure 5, we show a query
list fragment. The statistics we remember in the query list are: (1)
the query frequency, (2) the total number of distinct answers from
all the sources, and (3) the number of answers from each source
set which has answers for that query. The query list is kept as a
XML file which can be stored on the mediator’s hard disk or other
separate storage devices. Only the learned statistics for the fre-
quent query classes will remain in the mediator’s main memory
for fast access. We useFRQ to denote the access frequency of a
queryQ, andFR to denote the total frequency of all the queries
in QList. Thequery probabilityof a queryQ, denoted byP (Q),
is the probability that a random query posed to the mediator is the
queryQ, and is estimated as:P (Q) =

FRQ

FR
. Theclass probabil-

ity of a query classC, denoted byP (C), is the probability that a

random query posed to the mediator is subsumed by the classC.
It is computed as:P (C) =

∑
Q∈C

P (Q).
Coverage and Overlap w.r.t Query Classes:Thecoverageof a
data sourceS with respect to a queryQ, denoted byP (S|Q), is
the probability that a random answer tuple of queryQ is present
in sourceS. Theoverlapamong a set̂S of sources with respect to
a queryQ, denoted byP (Ŝ|Q), is the probability that a random
answer tuple of the queryQ is present in each sourceS ∈ Ŝ. The
overlap (or coverage when̂S is a singleton) statistics w.r.t. a query
Q are computed using the following formula

P (Ŝ|Q) =
NQ(Ŝ)

NQ

HereNQ(Ŝ) is the number of answer tuples ofQ that are in all
sources ofŜ, NQ is the total number of answer tuples forQ.
We assume that the union of the contents of the available sources
within the system covers 100% of the answers of the query. In
other words, coverage and overlap are measured relative to the
available sources.

We also define coverage and overlap with respect to a query
classC rather than a single queryQ. The overlap of a source set
Ŝ (or coverage when̂S is a singleton) w.r.t. a query classC can
be computed using the following formula:

P (Ŝ|C) =
P (C ∩ Ŝ)

P (C)
=

∑
Q∈C

P (Ŝ|Q)P (Q)

P (C)

The coverage and overlap statistics w.r.t. a classC is used to es-
timate the source coverage and overlap for all the queries that are
mapped intoC. These statistics can be conveniently computed
using an association rule mining approach as discussed below.
Class-Source Association Rules:A class-source association rule
represents strong associations between a query class and a source
set (which is some subset of sources available to the mediator).
Specifically, we are interested in the association rules of the form
C → Ŝ, whereC is a query class, and̂S is a source set (possibly
singleton). Thesupportof the classC (denoted byP (C)) refers
to the class probability of the classC, and the overlap (or coverage
whenŜ is a singleton) statisticP (Ŝ|C) is simply theconfidenceof

such an association rule (denoted byP (Ŝ|C) = P (C∩Ŝ)
P (C)

). Exam-
ples of such association rules include:AAAI → S1, AI → S1,
AI&2001 → S1 and2001 → S1 ∧ S2.

3 Generating AV Hierarchies Automatically

In this section we discuss how to systematically build AV Hier-
archies based on the query list maintained by the mediator. We first
define the distance function between two attribute values. Next we
introduce a clustering algorithm to automatically generate AV Hi-
erarchies. Then we discuss some complications of the basic clus-
tering algorithm: preprocessing different types of attribute values
from the query list and estimating the coverage and overlap statis-
tics for queries with low selectivity binding values. Finally we
discuss how to flatten our automatically generated AV Hierarchies.

Distance Function: The main idea of generating an AV hierar-
chy is to cluster similar attribute values into classes in terms of



the coverage and overlap statistics of their corresponding selec-
tion queries binding these values. The problem of finding similar
attribute values becomes the problem of finding similar selection
queries. In order to find similar queries, we define a distance func-
tion to measure the distance between a pair of selection queries
(Q1, Q2):

d(Q1, Q2) =

√∑
i

[P (Ŝi|Q1)− P (Ŝi|Q2)]2

WhereŜi denotes theith source set of all possible source sets
in the mediator. Although the number of all possible source sets is
exponential in terms of the number of available sources, we only
need to consider source sets with answers for at least one of the two
queries to computed(Q1, Q2).3 Note that we are not measuring
the similarity of the answers ofQ1 andQ2, but rather the similarity
of the way their answer tuples are distributed over the sources.
In this sense, we may find that a selection queryconference =

“AAAI” and another queryconference = “SIGMOD” to be
similar in as much as the sources having tuples for the former also
have tuples for the latter. Similarly we define a distance function
to measure the distance between a pair of query classes (C1, C2):

d(C1, C2) =

√∑
i

[P (Ŝi|C1)− P (Ŝi|C2)]2

We compute a query class’s coverage and overlap statistics
P (Ŝ|C) according to the definition of the overlap (or coverage)
w.r.t. to a class given in Section 2. The statisticsP (Ŝ|Q) for a
specific queryQ are computed using the statistics from the query
list maintained by the mediator.

3.1 Generating AV Hierarchies

For now we will assume that all attributes have a discrete set
of values, and we will also assume that the corresponding cover-
age and overlap statistics are available (see the last two paragraphs
in this subsection regarding some important practical considera-
tions). We now introduce GAVH (Generating AVHierarchy, see
Figure 6), an agglomerative hierarchical clustering algorithm ([7]),
to automatically generate an AV Hierarchy for an attribute.

The GAVH algorithm will build an AV Hierarchy tree, where
each node in the tree has a feature vector summarizing the in-
formation that we maintain about an attribute value cluster. The

feature vector is defined as:(
−−−−−→
P (Ŝ|C), P (C)), where

−−−−−→
P (Ŝ|C) is

the coverage and overlap statistics vector of the clusterC for all
the source sets andP (C) is the class probability of the cluster
C. Feature vectors are only used during the construction of AV
hierarchies and can be removed afterwards. As we can see from
Figure 6, we can incrementally compute a new cluster’s coverage

3For example, suppose queryQ1 gets tuples form only sourcesS1 and
S5, andQ2 gets tuples fromS5 andS7, we will only consider source
sets{S1},{S5},{S1, S5},{S7}, and {S5, S7}. We will not consider
{S1, S7}, {S1, S5, S7}, {S2}, and many other source sets without any
answer for either of the queries.

Algorithm GAVH()

for (each attribute value)

generate a cluster nodeC;

feature vectorC.fv = (
−−−−−→
P (Ŝ|Q), P (Q));

childrenC.children = null;

put cluster nodeC into AVQueue;

end for

while (AVQueue has more than two clusters)

find the most similar pair of clustersC1 andC2;

/* d(C1, C2) is the minimum of alld(Ci, Cj) */

generate a new clusterC;

C.fv = (
P (C1)×

−−−−−→
P (Ŝ|C1)+P (C2)×

−−−−−→
P (Ŝ|C2)

P (C1)+P (C2))
, P (C1)+

P (C2));

C.children = (C1, C2);

put clusterC into AVQueue;

remove clusterC1 andC2 from AVQueue;

end while

End GAVH;

Figure 6. The GAVH algorithm

and overlap statistics vector
−−−−−→
P (Ŝ|C) by using the feature vectors

of its children clustersC1, C2:

−−−−−→
P (Ŝ|C) =

P (C1)×
−−−−−→
P (Ŝ|C1) + P (C2)×

−−−−−→
P (Ŝ|C2)

P (C1) + P (C2))

P (C) = P (C1) + P (C2)

Attribute Value Pre-Processing: The attribute values for gener-
ating AV hierarchies are extracted from the query list maintained
by the mediator. Since the GAVH algorithm assumes that all at-
tributes have discrete domains, we may need to preprocess the
values of some types of attributes. For continuous numerical at-
tributes, we divide the domain of the attribute into small ranges.
Each range is treated as a discrete attribute value. For keyword-
based attributes such as the attribute “title” inBibFinder we learn
the frequently asked keyword sets using an item set mining al-
gorithm. Each frequent keyword set will be treated as a discrete
attribute value. Keyword sets that are rarely asked will not be re-
membered as attribute values.

Handling Low Selectivity Attribute Values: If an attribute value
(i.e. a selection query binding value) is too general, some sources
may only return a subset of answers to the mediator, while others
may not even answer such general queries. In such cases the me-
diator will not be able to accurately figure out the number of tuples
in these sources, and thus cannot know the coverage and overlap
statistics of these queries to generate AV hierarchies. To handle
this we use the coverage statistics of more specific queries in the
query list to estimate the source coverage and overlap of the orig-
inal queries. Specifically, we treat the original general queries as
query classes, and to estimate the coverage of the sources for these



general queries we use the statistics of the specific queries4 within
these classes using the following formula:

P (Ŝ|C)
.
=

∑
Q∈C and (Q is specific) P (Ŝ|Q)P (Q)∑

Q∈C and (Q is specific) P (Q)

As we can see, there is a slight difference between this formula
and the formula for the definition of the overlap (or coverage) w.r.t.
to classC. The difference is that here we only consider the overlap
(or coverage) of specific queries within the class.

3.2 Flattening Attribute Value Hierarchies

Since the nodes of the AV Hierarchies generated using our
GAVH algorithm contain only two children each, we may get a
hierarchy with a large number of layers. One potential problem
with such kinds of AV Hierarchies is that the level of abstraction
may not actually increase when we go up the hierarchy. For ex-
ample, in Figure 7, assuming the three attribute values have the
same coverage and overlap statistics, then we should not put them
into separate clusters. If we put these attribute values into two
clustersC1 andC2, these two clusters are essentially in the same
level of abstraction. Therefore we may waste our memory space
on remembering the same statistics multiple times.

Figure 7. An example of Flattening AV Hierar-
chy

In order to prune these unnecessary clusters, we use another
algorithm called FAVH (Flattening AV Hierarchy, see Figure 8).
FAVH starts the flattening procedure from the root of the AV Hi-
erarchy, then recursively checks and flattens the entire hierarchy.

To determine whether a clusterCchild should be preserved in
the hierarchy, we compute thetightnessof the cluster, which mea-
sures the accuracy of its statistics. We consider a cluster is tight
if all the queries subsumed by the cluster (especially frequently
asked ones) are close to its center. Thetightnesst(C), of a cluster
C, is calculated as following:

t(C) =
1∑

Q∈C

P (Q)
P (C)

d(Q, C)

whered(Q, C) is the distance between the queryQ and the center
of the cluster.

4A query in the query list is called a specific query, if the number of
answer tuples of the query returned by each source is less than the source’s
limitation.

Algorithm FAVH(clusterNodeC) //Starting from root;

if (C has children)

for (each child nodeCchild in C)

putCchild into Children Queue

for (each nodeCchild in Children Queue)

if (d(Cchild, C) <= 1
t(Cchild)

)

put (Cchild).children into Children Queue;

removeCchild from Children Queue;

end if

for (each children nodeCchild in Children Queue)

FAVH(Cchild);

end if

End FAVH;

Figure 8. The FAVH algorithm

If the distance,d(Cchild, C), between a cluster and its parent
clusterC is not larger than 1

t(Cchild)
, then we consider the cluster

as unnecessary and put all of its children directly into its parent
cluster.

4 Discovering Frequent Query Classes

As we discussed earlier, it may be prohibitively expensive to
learn and keep in memory the coverage and overlap statistics for
every possible query class. In order to keep the amount of statis-
tics low, we would like to prune query classes which are rarely
accessed. In this section we describe how frequently accessed
classes are discovered in a two-stage process.

We use the termcandidate frequent classto denote any class
with class probability greater than the minimum frequency thresh-
old minfreq. The example classes shown in Figure 4 with solid
frame lines are candidate frequent classes. As we can see, some
queries may have multiple lowest level ancestor classes which are
candidate frequent classes and are not subsumed by each other.
For example, the query (or class) (ICDE,01) has both the class
(DB,01) and class (ICDE,RT) as its parent class. For a query
with multiple ancestor classes, we need to map the query into a
set of least-general ancestor classes which are not subsumed by
each other (see Section 6). We will combine the statistics of these
mapped classes to estimate the statistics for the query.

We also define theclass access probabilityof a classC, de-
noted byPmap(C), to be the probability that a random query
posed to the mediator is actually mapped to the classC. It is esti-
mated using the following formula:

Pmap(C) =
∑

Q is mapped toC

P (Q)

Since the class access probability of a candidate frequent class
will be affected by the distribution of other candidate frequent
classes, in order to identify the classes with high class access prob-
ability, we have to discover all the candidate frequent classes first.
In the next subsection, we will introduce an algorithm to discover
candidate frequent classes. In Section 4.2, we will then discuss



Algorithm DFC(QList; minfreq : minimum support;n : # of

classificatory attributes)

classSet = {};
for (k = 1; k <= n; k + +)

Let classSetk = {};
for (each queryQ ∈ QList)

CQ = genClassSet(k, Q, ...);

for (each classc ∈ CQ)

if (c /∈ classSetk) classSetk = classSetk ∪ {c};
c.frequency = c.frequency + Q.frequency;

end for

end for

classSetk = {c ∈ classSetk|c.frequency >= minfreq};
classSet = classSet ∪ classSetk;

end for

return classSet;

End DFC;

Figure 9. The DFC algorithm

how to prune candidate frequent classes with low class access
probability.

4.1 Discovering Candidate Frequent Classes

We present an algorithm, DFC (Discovering Candidate
Frequent Classes, see Figure 9), to efficiently discover all the can-
didate frequent classes. The DFC algorithm dynamically prunes
classes during counting and uses theanti-monotone property5 ([7])
to avoid generating classes which are supersets of the pruned
classes.

Specifically the algorithm makes multiple passes over the
query list QList. It first finds all the candidate frequent classes
with just one feature, then it finds all the candidate frequent classes
with two features using the previous results and the anti-monotone
property to efficiently prune classes before it starts counting, and
so on. The algorithm continues until it gets all the candidate fre-
quent classes with all then features (wheren is the total num-
ber of classificatory attributes for which AV-hierarchies have been
learned). For each queryQ in thek-th pass, the algorithm finds the
set ofk feature classes the query falls in, and for each classC in
the set, it increases the class probabilityP (C) by the query prob-
ability P (Q). The algorithm prunes the classes with class proba-
bility less than the minimum threshold probabilityminfreq.

The DFC algorithm finds all the candidate ancestor classes with
k features for a queryQ = {Ac1 , ..., Acn , frequency} by proce-
duregenClassSet(see Figure 10), whereAci is the feature value
of theith classificatory attribute. The procedure prunes infrequent
classes using the frequent class setclassSet found in the previous
(k−1) passes. In order to improve the efficiency of the algorithm,
it dynamically prunes infrequent classes during the cartesian prod-
uct procedure.

5If a set cannot pass a test, all of its supersets will fail that test as well.

Procedure genClassSet(k : number of features;Q : the query;

classSet : discovered frequent class set; AV hierarchies)

for (each featurefi ∈ Q)

ftSeti = {fi};
ftSeti = ftSeti ∪ ({ancestor(fi)} − {root});

end for

candidateSet={};
for (eachk feature combination(ftSetj1 , ..., ftSetjk

))

tempSet = ftSetj1 ;

for (i = 1; i < k; i + +)

remove any classC /∈ classSeti from tempSet;

tempSet = tempSet× ftSetji+1 ;

end for

remove any classC /∈ classSetk−1 from tempSet;

candidateSet = candidateSet ∪ tempSet;

end for

return candidateSet;

End genClassSet;

Figure 10. Ancestor class set generation pro-
cedure

Example: Assume we have a queryQ={ICDE, 2001, 50} (here
50 is the query frequency) andk = 2. We first extract the fea-
ture(binding) values{Ac1 = ICDE, Ac2 = 2001} from the
query. Then for each feature, we generate a feature set which
includes all the ancestors of the feature (see the corresponding
AV Hierarchies in Figure 4) . This leads to two feature sets:
ftSet1 = {ICDE, DB} andftSet2 = {2001}. Suppose the
class with the single feature “ICDE” is not a frequent class in the
previous results, then any class with the feature “ICDE” can not be
a frequent class according to the anti-monotone property. We can
prune the feature “ICDE” fromftSet1, then we get the candidate
2-feature class set for the queryQ,

candidateSet = ftSet1 × ftSet2 = {DB&2001}.

4.2 Pruning Low Access Probability Classes

The DFC algorithm will discover all the candidate frequent
classes, which unfortunately may include many infrequently
mapped classes. Here we introduce another algorithm, PLC
(Pruning Low Access Probability Classes, see Figure 11), to as-
sign class access probability and delete the classes with low access
probability. The algorithm will scan the query list once, and map
each query into a set of least-general candidate frequent ancestor
classes (see Section 6). It then computes the class access prob-
ability for each class by counting the total frequencies of all the
queries mapped to the class. The class with the lowest class access
probability (less thanminfreq) will be pruned, and the queries
of the pruned classes will be re-mapped to other existing ancestor
classes. The pruning process will continue until there is no class
with access probability less than the thresholdminfreq.



Procedure PLC(QList; classSet: frequent classes from DFC;

minfreq)

for (eachC ∈ classSet)

initialize FR = 0, andFRC = 0 ;

for (each queryQ)

MapQ into a set of least-general classesmSet;

for (eachC ∈ mSet)

FRC ← FRC + FRQ;

FR = FR + FRQ;

end for

end for

for (each classC)

class access probabilityPmap(C) ← FRC
FR

;

while ((∃C ∈ classSet) Pmap(C) < minfreq)

Delete the class with the smallest class access probability,C′,
from classSet;

Re-map the queries which are mapped toC′;
for (new mapped classCnewMapped)

recomputePmap(CnewMapped);

end while

End PLC;

Figure 11. The PLC procedure

5 Mining Coverage and Overlap Statistics

For each frequent query class in the mediator, we learn cover-
age and overlap statistics. We use a minimum support threshold
minoverlap to prune overlap statistics for uncorrelated source
sets.

A simple way of learning the coverage and overlap statistics
is to make a single pass over theQList, map each query into its
ancestor frequent classes (see Section 6), and update the corre-

sponding statistics vectors
−−−−−→
P (Ŝ|C) of its ancestor classes using

the query’s coverage and overlap statistics vector
−−−−−→
P (Ŝ|Q) through

the formula
−−−−−→
P (Ŝ|C) =

∑
Q∈C

−−−−−→
P (Ŝ|Q)×P (Q)

P (C)
. When the map-

ping and updating procedure is completed, we simply need to
prune the overlap statistics which are smaller than the threshold
minoverlap. One potential problem of this naive approach is the
possibility of running out of memory, since the system has to re-
member the coverage and overlap statistics for each source set and
class combination. If the mediator has access ton sources and has
discoveredm frequent classes, then the memory requirement for
learning these statistics ism × 2n × k, wherek is the number
of bytes needed to store a float number. Ifk = 1, m = 10000,
and the total number of memory available is1GB, this approach
would not scale well when the number of sources is greater than
16.

In order to handle scenarios with large number of sources, we
use a modified Apriori algorithm ([2]) to avoid considering any
supersets of an uncorrelated source set. We first identify individ-
ual sources with coverage statistics greater thanminoverlap, and

keep coverage statistics for these sources. Then we discover all2-
sourceSet 6 with overlap greater thanminoverlap, and keep only
overlap statistics for these source sets. This process continues until
we have the overlap statistics for all the correlated source sets.

6 Using Learned Coverage and Overlap
Statistics

With the learned statistics, the mediator is able to find relevant
sources for answering an incoming query. In order to access the
learned statistics efficiently, both the learned AV hierarchies and
the statistics for frequent query classes are loaded into hash tables
in the mediator’s main memory. In this section, we discuss how
to use the learned statistics to estimate the coverage and overlap
statistics for a new query, and how these statistics are used to gen-
erate query plans.

Query Mapping: Given a new queryQ, we first get all the ab-
stract values from the AV hierarchies corresponding to the bind-
ing values inQ. Both the binding values and the abstract values
are used to map the query into query classes with statistics. For
each attributeAi with bindings, we generate a feature setftSetAi

which includes the corresponding binding value and abstract val-
ues for the attribute. The mapped classes will be a subset of the
candidate class setcSet:

cSet = ftSetA1 × ftSetA2 × ...× ftSetAn

wheren is the number of attributes with bindings in the query. Let
sSet denote all the frequent classes which have learned statistics
andmSet denote all the mapped classes of queryQ. Then the set
of mapped classes is:

mSet = cSet− {C|(C ∈ cSet) ∩ (C /∈ sSet)}
−{C|(∃C′ ∈ (sSet ∩ cSet))(C′ ⊂ C)}

In other words, to obtain the mapped class set we remove all the
classes which do not have any learned statistics as well as the
classes which subsume any class with statistics from the candi-
date class set. The reason for the latter is because the statistics of
the subsumed class are more specific to the query.

Once we have the relevant class set, we compute the estimated

coverage and overlap statistics vector
−−−−−→
P (Ŝ|Q) for the new query

Q using the statistics vectors of the mapped classes
−−−−−→
P (Ŝ|Ci) and

their corresponding tightness informationt(Ci).

−−−−−→
P (Ŝ|Q) =

∑
Ci

t(Ci)∑
t(Ci)

−−−−−→
P (Ŝ|Ci)

Since the classes with large tightness values are more likely
to provide more accurate statistics, we give more weight to query
classes with large tightness values.

Using Coverage and Overlap Statistics to Generate Query
Plans: Once we have the coverage and overlap statistics, we use
the Simple Greedy and Greedy Selectalgorithms described in
[5] to generate query plans. Specifically,Simple Greedygenerates
plans by greedily selecting the topk sources ranked only according

6k-sourceSet denotes the source sets with only k sources.



to their coverages, whileGreedy Selectselects sources with high
residual coverages calculated using both the coverage and overlap
statistics. A residual coverage computing algorithm is discussed
in [13] to efficiently compute the residual coverage using the esti-
mated coverage and overlap statistics. Specifically, recall that we
only keep overlap statistics for correlated source sets with suffi-
cient number of overlap tuples, and assume that source sets with-
out overlap statistics are disjoint (thus their probability of overlap
is zero). If the overlap is zero for a source setŜ, we can ignore
looking up the overlap statistics for supersets ofŜ, since they will
all be zero by the anti-monotone property. In particular, this algo-
rithm, which exploits this structure of the stored statistics, will cut
the number of statistics lookups from2n to R + n, whereR is
the total number of overlap statistics remembered for classC and
n is the total number of sources already selected. This resulting
efficiency is critical in practice since computation of residual cov-
erage forms the inner loop of any query processing algorithm that
considers source coverage.

7 Experimental Setting

We now describe the data, algorithms and metrics of our exper-
imental evaluation.

Database Set:Five structured Web bibliography data sources in
BibFinderare used in our experimental evaluation: DBLP, CSB,
ACM DL, Science Direct and Network Bibliography. We used the
25000 real queries asked byBibFinderusers as of May 20, 2003
as the query list. Among them, we randomly chose 4500 queries
as test queries and the others were used as training data. The AV
Hierarchies for all four attributes were learned automatically us-
ing our GAVH algorithm. The learned Author hierarchy has more
than 8000 distinct values,7 the Title hierarchy keeps only 1200
frequently asked keyword itemsets, the Conference hierarchy has
more than 600 distinct values, and the Year hierarchy has 95 dis-
tinct values. Note that we consider a range query (for example:
“>1990”) as a single distinct value.

Algorithms: In order to evaluate the effectiveness of our learned
statistics, we implemented theSimple GreedyandGreedy Select
algorithms to generate query plans using the learned source cov-
erage and overlap statistics. A simpleRandom Selectalgorithm
was also used to randomly choose k sources as the top k sources.

Evaluation Metrics: We generate plans using the learned statis-
tics and the algorithms mentioned above. The effectiveness of the
statistics is estimated according to how good the plans are. The
goodness of a plan, in turn, is evaluated by calling the sources in
the plan as well as all the other sources available to the mediator.
We define theprecisionof a plan to be the fraction of sources in
the estimated plan, which turn out to be the true topk sources after
we execute the query.

We also measure theabsolute errorbetween the estimated
statistics and the real coverage and overlap values. Theabsolute

7Since it is too large for GAVH to learn upon it directly, we first group
these 8000 values into 2300 value clusters using a radius based clustering
algorithm (O(n) complexity), and use GAVH to generate a hierarchy for
these 2300 value clusters.
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Figure 12. The total number of classes
learned
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Figure 13. The total amount of memory
needed for keeping the learned statistics in
BibFinder

error is computed using the following formula:

∑
Q∈TestQuerySet

√∑
i
[P ′(Ŝi|Q)− P (Ŝi|Q)]2

|TestQuerySet|

whereŜi denotes theith source set of all possible source sets in the
mediator,P ′(Ŝi|Q) denotes the estimated overlap (or coverage) of
the source set̂Si for queryQ, P (Ŝi|Q) denotes the real overlap (or
coverage) of the source set̂Si for queryQ, andTestQuerySet

refers to the set of all test queries.

8 Experimental Results

Space Consumption for Different minfreq and minoverlap
Thresholds: In Figures 12 and 13, we observe the reduction in
space consumption and number of classes when we increase the
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Figure 14. The average distance between the
estimated statistics and the real coverage and
overlap values.

minfreqandminoverlapthresholds. Slightly increasing themin-
freq threshold from 0.03% to 0.13% causes the number of classes
to drop dramatically from approximately 10000 classes to 3000.
As we increase theminfreq threshold, the number of classes de-
creases, however the decrease rate becomes smaller as the thresh-
old becomes larger. In Figure 13, we observe the size of the re-
quired memory for different levels of abstraction of the statistics.
Clearly, as we increase any of these two thresholds the space con-
sumption drops, however the pruning power also drops simultane-
ously.8

Accuracy of the Learned Statistics for Different minfreq and
minoverlapThresholds: Figure 14 plots the absolute error of the
learned statistics for the 4500 test queries. The graph illustrates
that although the error increases as any of these two thresholds
increase, the increase rates remain almost the same. There is no
dramatic increase after the initial increases of the thresholds. If
we looked at both Figures 13 and 14 together, we can see that
the absolute error of threshold combination:minfreq = 0.13%

andminoverlap = 0.1 is almost the same as that ofminfreq =

0.33% andminoverlap = 0, while the former uses only50% of
the memory required by the latter. This fact tells us that keeping
very detailed overlap statistics of uncorrelated source sets for gen-
eral query classes would not necessarily increase the accuracy of
our statistics while requiring much more space.
Effectiveness of the Learned Statistics: We evaluate the effec-
tiveness of the learned statistics by actually testing these statistics

8Note that for a better readability of our plots, we did not include the
number of classes and memory consumption when theminfreq threshold
is equal to zero, as the corresponding values were much larger than those
obtained for other threshold combinations. In fact, the total number of
classes when theminfreqis equal to zero is about 540000, and the memory
requirement when bothminfreqandminoverlapare equal to zero is about
40MB. Although in our current experiment setting 40MB is the maximal
memory space needed to keep the statistics (mainly becauseBibFinder is
at its beginning stage), the required memory could become much larger as
the number of users and the number of integrated sources grow.
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BibFinderreturns by executing the query plans
with top 2 sources.
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Figure 16. Precision for query plans with top
2 sources.

in BibFinderand observing the precision of the query plans and the
number of distinct answers returned from the Web sources when
we execute these plans to answer user queries.

Note that in all the figures described below, RS refers to Ran-
dom Select algorithm, SG0 refers to Simple Greedy algorithm
with minoverlap = 0, GS0 refers to Greedy Select algorithm
with minoverlap = 0, SG0.3 refers to Simple Greedy algorithm
with minoverlap = 0.3, and GS0.3 refers to Greedy Select algo-
rithm with minoverlap = 0.3.

In Figure 15, we observe how theminfreq and minoverlap
thresholds influence the average number of distinct answers re-
turned byBibFinder for the 4500 test queries when executing
query plans with top 2 sources. As indicated by the graph, for all
the threshold combinations, we always get on average more than
50 distinct answers when using our learned statistics and query
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Figure 17. Precision for query plans with top
3 sources.

plans selected by Simple Greedy and Greedy Select, while we
can only get about 30 distinct answers by randomly selecting 2
sources. In Figures 16 and 17, we observe the average precision
of the top 2 and top 3 sources ranked using statistics with different
level of abstraction for the test queries. As we can see, the plans
using our learned statistics have high precision, and their precision
decreases very slowly as we change theminfreqandminoverlap
thresholds.

One fact we need to point out is that the precision of the plans
using Simple Greedy and Greedy Select algorithm are very close
(although Greedy Select is a little better most of the time). This is
not as we expected, since the Simple Greedy only uses the cover-
age statistics, while Greedy Select uses both coverage and overlap
statistics. When we studied many queries asked by theBibFinder
users and the corresponding coverage and overlap statistics, we
found that the distribution of answer tuples over sources integrated
by BibFinderalmost follow independence assumption for most of
the queries asked by the users. However in other scenarios Greedy
Select can perform considerably better than Simple Greedy. For
instance, in our previous experiment with a controlled data set,
where we set 20 artificial sources including some highly correlated
sources, we did find that the plans generated by Greedy Select
were significantly better than those generated by Simple Greedy.
For detailed information about our experiments on the controlled
data set, please see [13].

Figure 18 shows the possibility of a source call being a com-
pletely irrelevant source call (i.e. the source has no answer for
the query asked). The graph reveals that the most relevant source
selected using our algorithm has only 12% possibility of being
an irrelevant source call, while the randomly picked source has
about 46% possibility. This illustrates that by using our statistics
BibFindercan significantly reduce the unnecessary load on its in-
tegrated sources.

Efficiency Issues: We now discuss the time needed for learning
and using the coverage and overlap statistics. All our experi-
ments were run under JDK 1.2.2 on a 500MHZ SUN-Blade-100
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calls that are irrelevant for query plans with
top 1 sources.

with 768Mb of RAM. From the experiments, we found that using
the learned statistics to generate query plans for a new query is
very fast, specifically always less than 1 millisecond. In terms of
the statistics learning, costs associated with discovering frequent
query classes and learning statistics are also fairly inexpensive (i.e.
always less than 100 seconds). Our previous experiments with 20
artificial sources (see [13]) also shows that our statistics learning
algorithms can scale well. The most expensive phase is learning
the AV Hierarchies. During the experiments we found that the
GAVH algorithm can be very time-consuming when the number
of attribute values is large. Specifically, it takes us 719ms to learn
the Year hierarchy, 1 minute to learn the Conference hierarchy, 25
minutes to learn the Title keywords hierarchy, and 2.5 hours to
learn the Author hierarchy. However since GAVH runs offline and
only needs to run once, it still is not a major drawback. Since it
is the most time consuming phase, we can consider incrementally
updating the hierarchy as new queries come in.

9 Related Work

The utility of quantitative coverage statistics in ranking the
sources was first explored by Florescuet. al. [5]. The primary aim
of the effort was however on the “use” of coverage statistics, and
it does not discuss how such coverage statistics could be learned.
In contrast, our main aim in this paper is to provide a framework
for learningthe required statistics.

There has been some previous work on learning database statis-
tics both in multi-database literature and data integration literature.
Much of it, however, focused on learning response time statistics.
Zhu and Larson [18] describe techniques for developing regres-
sion cost models for multi-database systems by selective query-
ing. Adali et. al. [1] discuss how keeping track of rudimentary
access statistics can help in doing cost-based optimizations. More
recently, the work by Gruseret. al. [6] considers mining response
time statistics for sources in data integration scenario. In contrast,



our work focuses on learning coverage and overlap statistics. As
has been argued by us [12] and others [3], query optimization in
data integration scenarios require both types of statistics.

Another strand of related work [8, 17] considers the problem
of text database selection in the context of keyword queries sub-
mitted to meta-search engines. Although some of these efforts
use a hierarchy of topics to categorize the Web sources, they use
only a single topic hierarchy and do not deal with computation of
overlap statistics. In contrast we deal with classes made up from
the cartesian product of multiple attribute value hierarchies, and
are also interested in modeling overlap. This makes the issue of
space consumed by the statistics quite critical for us, necessitat-
ing our threshold-based approaches for controlling the resolution
of the statistics. Furthermore, most of the existing approaches in
text database selection assume that the terms in a user’s query are
independent (to avoid storing too many statistics). No efficient ap-
proaches have been proposed to handle correlated keyword sets.
We are currently working on applying our techniques to the text
database selection problem to effectively solve the space and learn-
ing overhead brought by providing coverage and overlap statistics
for both single word and correlated multi-word terms.

In the current work, we have assumed that the mediator will
maintain a query list. However the query list may not be available
for mediators at their beginning stages. For such cases our earlier
work [15] introduces a size-based approach to learning statistics.
There we assume that query classes with more answer tuples will
be accessed more frequently, and learn coverage statistics with re-
spect to large query classes.

10 Conclusions

In this paper we motivated the need for automatically mining
the coverage and overlap statistics of sources w.r.t. frequently ac-
cessed query classes for efficient query processing in a data in-
tegration scenario. We then presented a set of connected tech-
niques that automatically generate attribute value hierarchies, ef-
ficiently discover frequent query classes and learn coverage and
overlap statistics for only these frequent classes. We described
the algorithmic details and implementation of our approach. We
also presented an empirical evaluation of the effectiveness of our
approach inBibFinder, a publicly available bibliography media-
tor. Our experiments demonstrate that (i) We can systematically
trade the statistics learning time and number of statistics remem-
bered for accuracy by varying the frequent class thresholds. (ii)
The learned statistics provide tangible improvements in the source
ranking, and the improvement is proportional to the granularity of
the learned statistics. A prototype of theBibFindersystem using
these statistics was demonstrated atVLDB 2003 [14].

One direction that we are currently pursuing is to make the
statistics learning framework more adaptive to changes in user in-
terests (as captured by the query list) as well as the number and
content of the data sources. We believe that our general approach
can be easily made incremental to support these goals.
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