
The Case for Automated Planning in Autonomic Computing

Biplav Srivastava
IBM India Research Laboratory
Block 1, IIT Delhi, Hauz Khas,

New Delhi 110016, India.
Email: sbiplav@in.ibm.com

Subbarao Kambhampati
Dept. of Computer Sc. & Engg.

Arizona State University
Tempe, AZ 85287, USA.

Email: rao@asu.edu

Abstract

Computing systems have become so complex that the IT
industry recognizes the necessity of deliberative methods
to make these systems self-configuring, self-healing, self-
optimizing and self-protecting. Architectures for system
self-management, also called Autonomic Computing (AC),
have been proposed where elements are managed by mon-
itoring and analyzing behaviors and using the response to
plan and execute new actions that take or keep the system
in desirable states. In this paper, we explore the planning
needs of AC, its match with existing planning technology
and its connections with policies and planning for web ser-
vices and scientific workflows (grids). We show that plan-
ning is an evolutionary next step for AC systems that use
procedural policies today. This connection also raises inter-
esting research problems in adapting automated planning
techniques to AC applications.

1 Introduction

The vision of Autonomic Computing (AC)[12] is to
improve manageability of complex IT systems by mak-
ing them self-configuring, self-healing, self-optimizing and
self-protecting. This would require that the behavior of sys-
tem elements are monitored and analyzed, and the perfor-
mance is used to plan and execute suitable actions to take or
keep the system in desirable states.

Policy is a popular term in industry to refer to any declar-
ative specification of behavior that is desired from a soft-
ware system (e.g., agent) and the behavior is enforced by a
policy engine. Two types of policies are easily distinguish-
able. In the first case, the policy describes desired behavior
and exhaustively lists necessary actions to meet them under

all conditions. During runtime, a policy engine will verify
the conditions and take the stipulated action. This type of
policy is procedural in nature because the actions to take un-
der a condition is fully known, and it is suited for reactive
reasoning. In the second case, the policy only lists the sys-
tem’s expected behavior (e.g., goal state) and it is left to the
policy engine to deliberate and determine what actions need
to be taken to ensure the satisfaction of goals. A generaliza-
tion of goal type policy can include utility information so
that the selection of actions depends on runtime situations.
Planning provides the policy engines for goal-type policies.
Planning is thus critical for meeting the AC vision.

Planning is a very wide discipline characterized by how
the environment, the agent’s goal and its model of the world
are represented. Planning algorithms are best understood as
a refinement search over sets of possible plans - an algo-
rithm starts from the set of all possible plans and performs
refinements on the plan set leading to sub-sets from which
extracting a single solution is feasible[10, 9]. Various types
of planners can return sequential[19], conditional plans or
a generalized state-action mapping [5] specifying what ac-
tion to take in any state during execution(hence procedural
policies), that are optimized with respect to a defined met-
ric. In terms of performance, planning has seen an upsurge
in the last 6-7 years with new planners that are orders of
magnitude faster than before and are able to scale this per-
formance to complex domains, e.g., metric and temporal
constraints.

Despite the obvious potential for connections between
automated planning and autonomic computing, very little
has been done to exploit the synergy. Practitioners of AC
computing tend to develop their own specialized and often
brittle solutions for what are in essence planning problems,
while researchers in the planning community seem to be un-
aware of the potential applications in autonomic computing.

1



The objective of this paper is thus two-fold:

• Motivate early adopters of AC, who are using pro-
cedural policies, to consider planning and goal-
type policies by highlighting their potential for self-
management.

• Foreground some of the challenges and research prob-
lems raised in adapting automated planning techniques
to AC applications.

Here is the outline of the paper: we start with a brief
overview of planning followed by description of AC sce-
narios and how planning can be useful there. Then we
discuss two existing systems with planning capabilities
demonstrated on AC scenarios - the first is an optimizing
domain-dependent planning and scheduling system for self-
configuration while the latter is a domain-independent plan-
ning and execution system. These case-studies are used
to highlight the flexibility provided by automated planning
technology, in contrast to procedural policies. We then iden-
tify AC-specific planning challenges. They include working
with incomplete domain models and in managing life cycles
of plans. We round up by relating planning to procedural
policies and its connections to Web and Grid services and
finally give closing comments.

2 Preliminaries

We review planning and their role in AC scenarios in this
section.

2.1 Planning

A planning problem PP is a 4-tuple 〈P, I,G,A〉 where
P is the set of predicates, I (⊆ P ) is the complete descrip-
tion of the initial state, G (⊆ P ) is the partial description
of the goal state, and A is the set of executable (primitive)
actions. A specification of an action consists of precondi-
tions (Apre

i ⊆ P ) and postconditions (Apost
i ⊆ P ). A plan

for PP is an action sequence S, such that if S is executed
in I , the resulting state of the world would contain G. A
planner finds a plan by efficiently searching in the space of
possible states configurations or action orderings (plans). It
is desirable that a planner be sound and complete. A plan-
ner is sound if it will only generate correct plans. A planner
is complete if it will always find a plan, provided one ex-
ists, given a domain and problem description. Automated
planners are designed to be sound and complete.

A plan can be obtained without a planning algorithm
and without explicit action specifications. An example
of the former is when the user provides the plan directly
and an example of the latter is when a plan is gener-
ated by some domain-dependent reasoning on initial and
goal states. However, the soundness and the complete-
ness of plan generator cannot be guaranteed. Domain-
dependent planners usually produce superior plans than
domain-independent methods, but they are harder to build
and cannot be reused.

The user or system need not act on a plan immediately.
A plan may be one of the many plans that are produced by
users or planning algorithms before some plan is executed.
They could be stored, searched, inspected, evaluated, mod-
ificated, and critiqued by human experts or automated rea-
soning systems, and executed. Eventually, plans will outlast
their utility and be replaced.

2.2 Planning needs of Autonomic Com-
puting Scenarios

In the AC vision[12], four aspects of self-management
have been identified. We discuss the role of planning in
these aspects.

Self-configuration: deals with installation, configura-
tion and integration of IT systems. The installation pro-
cedures work by gathering information about the host envi-
ronment, figuring out the dependencies among needed tasks
and also optimizing performance measures, and finally ex-
ecuting the tasks to realize the changes. Information about
host system is increasingly getting standardized along struc-
tured formats but the executable tasks can be ad-hoc scripts.
Humans want to be closely involved in key decisions during
execution.

Self-healing: deals with determination of problematic
situations and recovering from them. It requires the system
to reason with how activities can be performed, how diag-
nostic information is produced and how new changes can
be affected with minimal cost and maximum benefit. The
specification of actions could be known at some level of
granularity.

Self-optimizing: deals with improving the performance
of running systems by leveraging alternative opportunities.
The system would monitor its performance and based on
its changing environment, could initiate new changes (e.g.,
resource re-provisioning).

Self-protecting: deals with monitoring the environment
for threats and responding to them. It is related to self-
optimizing aspect but with the difference that the situation

2



needs time-bound response and lead to cascading effect.
Humans want to be closely involved based on the serious-
ness of the situation.

Type I G A S Constraints
Self-configuring Yes Yes - - Yes
Self-healing Yes Yes Yes - Yes
Self-optimizing - - - Yes Yes
Self-protecting - Yes - Yes Yes

Table 1. The level to which planning problem
information is expected to be available in AC
scenarios. (-) means not assured.

Table 1 summarizes the level to which information about
the initial state (I), goals (G), action specification (A), ex-
isting plans (S) and domain constraints (Constraints) is ex-
pected to be available in the different AC scenarios. In
self-configuring situation, actions may be scripts whose pre-
and post-condition information may not be known and there
may be no plans available a priori. In self-healing scenario,
A is expected so that alternative plans could be explored. In
self-optimizing and self-protecting scenarios, a plan would
be available for the running system but the goal specifica-
tion will be more clearly defined for the latter.

From the above discussion, planning needs for AC can
be summarized as follows:

1. The plan representation can be as general as work-
flows, e.g. BPEL4WS[6], with sequence, conditional,
parallel, non-deterministic and loop constructs.

2. The plans are needed even if the initial state, goal state
and action specification are not available, individually
or collectively.

3. Automated plan generation is important but plans
could also be obtained by users or domain-dependent
methods. Even automatically generated plan may be
analyzed by users before execution.

4. Over time, there would be a repository of previously
generated and executed plans. They have to be consid-
ered while selecting existing or generating new plans.

5. The plans would typically be centrally executed but in
large applications, the execution can be distributed.

3 Two Planning-based Systems for AC Sce-
narios

We discuss two sytems that use planning capabilities for
AC scenarios. They will illustrate the potential of existing
solutions and help in identifying domain-specific challenges
for planning.

3.1 Domain-dependent Planning for Con-
figuring Systems with CHAMPS

Configuring computing systems is an error-prone and
costly step in setting up any IT solution. In this process,
individual components are assembled and tuned to deploy a
working solution. Typical problems include installing and
configuring a multiple-machine deployment of J2EE based
enterprise application along with its supporting middle-
ware software like web servers (e.g., Apache Tomcat, IBM
HTTPServer), application servers (e.g., IBM WebSphere)
and databases (e.g., mySQL, IBM DB2). The aim is to pro-
vide intelligent support to system administrators and auto-
mate large parts of the configuration process such that the
system could reconfigure itself when necessary. Plans orig-
inate from human experts similar to scripts capturing best
practices or they are generated by techniques from planning,
scheduling and domain-based dependency reasoning[11].
The plans are represented as BPEL4WS workflows analyze
and are executed by human administrators, often with fully
automated subplans, which the IT system takes care of with-
out requiring human intervention.

An example of a complex IT application is the online
book store application used in the Transaction Processing
Council’s Web (TPC-W) benchmark[18, 11]. It is a two-
tiered application consisting of a web application server
running 14 servlets and a database server working with 10
database tables. The servlets are hosted by a servlet con-
tainer which depends on the web application server and op-
erating system (OS). The database system also depends on
the operating system, but the two application tiers can be
on distinct machines and OSes. More details on domain-
dependent optimized plan generation for change manage-
ment and this application can be found in CHAMPS[11]. A
plan to install the application would broadly consist of ini-
talization (configuration information gathering) steps, two
parallel sub-sequences for the two tiers and finally clean-up
steps. Among the two sub-sequence, one is to set up OS, ap-
plication server, servlet containers and servlets, and another
is to set up OS, database server and database tables. There

3



Install-OSRedHatLinux

Flow:InstallJ2EEBestSell

Sequence:
InstallApllicationServer Sequence:

InstallDatabaseServer

Install-WAS51

Install-
ServletBestSell

Install-OSAIX

Install-DBMSDB2UDB81

Flow:InstallTables

Install-OSRedHatLinux

Flow:InstallJ2EEBestSell

Sequence:
InstallApllicationServer Sequence:

InstallDatabaseServer

Install-WAS51

Install-
ServletBestSell

Install-OSAIX

Install-DBMSDB2UDB81

Flow:InstallTables

Install-TableOrders
Install-TableOrderline
Install-TableItem
Install-TableAuthors

Figure 1. A workflow plan to install BestSell servlet,
a small part of the example bookstore application.
Square represents basic/executable activities while
oval represents structured activities (e.g., sequence).
The arrows represent explicit synchronization depen-
dencies between activities in the workflow.

is dependency across the two sub-sequences as well. Fig-
ure 1 shows and example of a plan for installing one servlet
(a small part) of the application which can be generated and
executed by CHAMPS.

The advantage of a domain-dependent planner like
CHAMPS for self-configuration is that it can find efficient
plans for the specific scenario. However, this planning does
not shed light on how planning in other AC scenarios could
be covered. Another weakness, which is also common with
all existing planners including ABLE as discussed later, is
that plans are meant to be executed immediately. There is
no support for storing, tracking and reusing plans.

3.2 Domain Independent Planning with
ABLE

ABLE1 is a toolkit for building multiagent autonomic
systems. It provides a lightweight Java agent framework,
a comprehensive JavaBeans library of intelligent software
components, a set of rule development and test tools, and
an agent platform. ABLE supports various type of rules
(e.g., If-then-else, Fuzzy rules, Prolog rules) and their cor-
responding rule engines. A developer can build a compos-
ite JavaBean (called an agent) by mixing different types of
rules and embed the resulting component in an application.

1Available at http://www.alphaworks.ibm.com/tech/able.

ABLE has been extended with a planning rules that is
compliant with the planning community’s Planning Domain
Description Language (PDDL[7])[15]. Since PDDL comes
in various flavors, i.e. levels, the planning rules cannot be
tied for processing to any specific planning engine. There-
fore, it has a general planning framework called Planner4J
comprising of a set of common interfaces2, and any planner
that is compliant with it can be used to process the plan-
ning rules, provided it can handle the corresponding level
of expressivity (e.g., PDDL level).

In ABLE, rule engines are coded in Java and compiled
into bytecodes. Rules are compiled into Java objects and
are processed by the inferencing engine specified for a rule
block. At execution time, ABLE can execute any action
recommended by the inference engine(s) by invoking ap-
propriate Java objects associated with the rules. If a user
already has the planning domain and problem information
in PDDL, the planner can be invoked directly with minimal
effort. However, the full power of ABLE can be realized
by coding the planning problem in ARL since it allows the
user to mix rules of different types and invoke arbitrary Java
objects for realizing actions.

A scenario for self-recovery of web applications was
shown with ABLE in [15]. The objective is that a web ap-
plication (e.g., the Online Book Store) should be able to au-
tomatically self-configure and self-heal in response to run-
time exigencies to keep the website available. The problem
had two machines and the web application consisted of two
servlets that can run on any of the two machines provided an
application server (e.g., WebSphere Application Server) is
running on that machine. The applications access a database
server (e.g., DB2) and a directory server (e.g., SecureWay),
which may run on any machine. The initial state has the
two machines running and all the software servers installed.
The goal is to have both the applications running over time.
If any software server or machine were to fail, the system
should be able to infer and initiate actions to migrate the
computation in a way that the web applications continue to
run.

The problem was modeled as a planning problem with
the initial state capturing the hardware and software con-
siderations and the goal encoding the self-management ob-
jective. The set of actions explicate the preconditions and
postconditions while initiating valid system response activ-
ities. The planner would find a plan to achieve the goal
and then initiate (user-defined) Java methods corresponding
to actions in the plan to materialize the overall system re-

2It also has utility functions and reference planner implementations.

4



sponse.
The key benefits for using the planning-enabled ABLE

for AC scenarios are:

• It provides the applications with a common planning
and execution platform to embed, test and evolve with
state-of-the art planners.

• It supports arbitrary customization of an action’s
execution-time behavior using Java methods. Further-
more, the action set can be modified in the dynamic
environment and a new planning problem posed quite
easily.

• It contains a planning framework to enhance and de-
velop new planners faster by reusing existing compo-
nents.

• The existing range of learning beans, rule types and
data filters can be used to build complex planning
agents.

However, ABLE is only making standard planners avail-
able for AC scenarios. The algorithms assume that the do-
main specification (P and A) is complete. Moreover, there
is no support for storing, tracking and reusing plans.

4 AC Specific Challenges in using Planning

Based on our survey and experience of applying plan-
ning to autonomic computing, we identify two important
challenges that AC applications pose to automated planning
research – the need to support planning in partially specified
domains, and the need to support plan life-cycle manage-
ment. In this section, we describe these briefly.

4.1 Handling Incomplete Domain Model

The fact that a domain model is incomplete means many
things. It could mean that domain is incompletely known
though whatever is known is correct. This is orthogo-
nal/different from expressiveness of domain model, e.g.,
PDDL levels[7], where the domain model at each level is
complete though it may abstract some details of the world,
which may get revealed in a more detailed higher PDDL
level. Expressiveness impacts the complexity of planning
and the representation of output plan. Incomplete domain
model is also orthogonal/different from planning formula-
tions varying in complexity like classical, conditional with
partial observability, etc., where a problem is intrinsically of

one type and hence cannot be expressed in any more simpler
form.

If a plan is generated with incomplete domain models,
it leads missing or under specified causal dependencies be-
tween actions in the plan. This affects the soundness guar-
antee of the planner because a generated plan may turn out
to be not executable.

A domain may be incompletely specified in many ways.
Formally, a planning domain is incomplete if at least one of
the following happens (* denotes the corresponding com-
plete specification):

• P ⊂ P ∗

• Apre
i ⊂ Apre∗

i for some Ai

• Apost
i ⊂ Apost∗

i for some Ai

• There are relations αi : {Pi} × P which are not
reflected in causal dependencies for achievement of
predicates in A

• There are relations βi : {Ai} × A which are not re-
flected in causal dependencies among actions in A

In the first case, the list of predicates in the domain is
incomplete. In the second case, the list of preconditions
for an action is incomplete. The preconditions can also be
disjunctive but in contrast to traditional planning where dis-
junction is due to inherent uncertainity that will disappear
at runtime, disjunction due to incomplete model will only
get resolved with more domain input. In the third case, the
list of postconditions of an action is incomplete and it can
only get resolved with more domain input.

In many real domains like AC, the dependency among
tasks or predicates is given but it is not explained in terms
of a causal explanatin (i.e., what precondition/effect depen-
dencies are violated if the dependency is violated). For ex-
ample, it is known that a specific action must occur before
another action but this information is known as an order-
ing relation (Ai ≺ Aj) but the actions do not have a causal
dependency in terms of the modeled pre- and post condi-
tions [13]. The fourth and fifth cases represent specification
of dependencies among predicates and actions, respectively,
that do not have causal explanation. Axioms can be used to
specify these types of incompleteness.

The challenge for planning community is how to effec-
tively deal with such incompleteness. There has been some
initial work, e.g., in[8], the authors look at the problem of
evaluating plans when the underlying actions are incom-
pletely modeled. They define four types of risk based on the

5



structure of the plan provided that any action’s specification
can be corrected in future. Plans are compared based on
their assessed risks, and a ranking is derived. To plan with
relations that do not have causal dependencies, techniques
from the intersection of planning and distributed scheduling
(c.f. [2, 13]) will need to be adopted and extended.

4.2 Managing Life Cycle of Plans

A plan is synthesized for meeting some goals. But syn-
thesis is just the beginning of a complex life-cycle manage-
ment process. Plans must be organized in large collections,
where they can be grouped along different purposes and
are amenable to search, inspection, evaluation, and modi-
fication by human experts or automated reasoning systems.
With users in the loop, plans which have been used in the
past and have been successful, are more likely to be used
again. New plans would get requested only when there is a
deficiency in the existing plans. Eventually, plans will out-
last their utility and be replaced.

Planning community has focussed primarily on synthe-
sis. To support AC applications, one needs to manage the
life cycle of plans within an application and based on the
context of their usage. For example, one needs techniques
to automatically generate metadata annotations of plans that
could be used for storage and retrieval. If humans provide
metadata, each annotation could be different and metadata
mismatches will become a critical issue unless the user is
very constrained.

The challenges in generating metadata for managing
plans are many. The plan can be as expressive as general
workflows with both automated and manual sub-plans. The
specification of the pre- and postconditions of each action
may not be available. Furthermore, the initial situation for
which the plan was generated and the goal it is supposed
to achieve are seldomly available. This lack of information,
which is taken for granted in AI planning, neccessitates new
techniques to deduce a plan’s usage context. An initial ap-
proach for plan life cycle is discussed in [17] where plan
analysis techniques take BPEL4WS workflows or PDDL
plans as input, build action models using plan structure and
generate metadata based on the given plan and as well as
compared to other plans in a plan repository.

5 Relationship with other technologies

We now discuss relationship of planning with procedural
policies, and Web services and Grid.

5.1 Relationship between procedural poli-
cies and plans

As mentioned in the introduction, the term policy is used
to refer to any declarative specification of behavior that is
desired from a software system but they usally refer to pro-
cedural policies. There are many choices for a procedural
policy language for AC, e.g., WS-Policy3 being defined for
web services and REI4. Most languages support variations
of the Event-Condition-Action (ECA) specification. ECA
rules specify what actions to take in response to events pro-
vided stated conditions hold, i.e., [1]:

On : ≺ Event �
If : ≺ Condition � holds

Do : ≺ Actions �

Action refers to any activity that can be performed in the
domain and a policy may consist of one or more actions.
The policy language may additionally allow specification
of scoping and priority (business value) of rules that can be
used for rule selection while working with a set of rules.

Planning can be used for managing procedural policies -
while creating new policies, validating properties with ex-
ising policies, updating policies - based on whether a set of
policies could be composed. In [14], it was shown how de-
cision support problems in managing software components
over their life cycle could be answered by posing them as
planning problems. The same could be done for procedural
policies. For example, suppose there are three policies re-
lated to managing data about a customer and sending out
monthly report (see Figure 2). Policy-1 states that when-
ever a customer account is deleted, the account details are
archived and the account is made inactive. Policy-2 states
that when an account is archived, the customer is informed
(to notify record retention requirements). Policy-3 governs
monthly account report that is prepared for active accounts.
Now if the policy designer wants to check if the monthly
report will be sent to a customer whose account has been
deleted, a planning problem can be made to answer whether
a subset from the existing policies are composable to pro-
duce such a situation. The initial state will encode that the
account is deleted, the goal state will encode that the ac-
count report is sent to the user, and the specification of plan-
ning actions can be derived from the specification of exist-
ing policies. It turns out that no plan is possible with the

3ftp://www6.software.ibm.com/software/developer/library/ws-
policy.pdf

4http://ebiquity.umbc.edu/v2.1/get/a/publication/57.pdf

6



existing policies, and hence the stated situation is not possi-
ble.

Name: Policy-1
Event: Customer-account-deleted
Condition:
Action: Account-archived, Account-inactived

Name: Policy-2
Event: Account-archived
Condition:
Action: Send-customer-intimation

Name Policy-3
Event: Month-end
Condition: Account-active
Action: Send-monthly-report

Policy situation to verify
Event:
Condition: Customer-account-deleted
Action: Send-monthly-report

Figure 2. The set of exisiting policies and the
policy to validate in the example to manage
policies.

Reciprocally, procedural policies can be used while plan-
ning for the AC scenarios. Essentially, they allow users to
decide what decision to make in a situation, and this infor-
mation can be used to pick any information needed for plan-
ning. More specifically, procedural policies can be used to:

• Select information for goals (G)

• Select information for initial state (I)

• Select actions relevant for planning (A) and what gets
modeled in their specification.

• Select predicates in the planning problem (P ).

5.2 Relating AC with Web Services and
Scientific Flows

Planning is actively being applied for composition of
web services[16] and scientific workflows (grid)[4]. There
are interesting similarities and contrasts between the plan-
ning requirements of autonomic computing and those of
web services and scientific workflows. All of them require
an expressive plan representation like BPEL4WS. All of
these applications also pose the challenge of incomplete
domain theories. In the case of web services, the incom-
pleteness may come because of faulty or incomplete ser-
vice annotations, while for workflows, the incompleteness

may come because of constraints and dependencies without
causal explanations. Plan management is also critical for
these applications, while the need for automated synthesis
is less prominent. In grid and web services, the plans will
be distributedly executed while they will be primarily cen-
trally executed in AC. Hence, techniques from distributed
planning for generating concurrent plans are more relevant
to the former.

6 Conclusion

In this paper, we explored the planning needs of AC, its
match with existing planning technology, and its connec-
tions with policies and planning for web services and scien-
tific workflows (grids). We observe that (1)automated plan-
ning technology is an evolutionary next step for AC sys-
tems that use procedural policies today and (2) AC require-
ments call for plan synthesis and management techniques
that work with incomplete domain specifications (theories)
and support a life cycle view of plans.

7 Acknowledgements

We thank Jana Koehler, Joe Bigus, Joe Hellerstein and
Jeff Kephart for useful discussions on practical planning.

References

[1] Bailey, J., Poulovassilis, A., and Wood, P. 2002. An Event-
Condition-Action Language for XML. Proc. WWW, Honolulu,
Hawaii.

[2] Beck, C., Fox, M. Scheduling Alternative Activities.
AAAI/IAAI 1999: 680-687.

[3] Bigus, J., Schlosnagle, D., Pilgrim, J., Mills, W., and Diao,
Y. 2002. ABLE: A Toolkit for Building Multiagent Autonomic
Systems. IBM Systems Journal, Volume 41, Number 3. Also at
http://www.research.ibm.com/journal/sj/413/bigus.html.

[4] Blythe, J., Deelman, E., Gil, Y., Kesselman, C., Agarwal, A.,
and Mehta, G. 2003. The Role of Planning in Grid Comput-
ing. Proc. Intl Conf. on Automated Planning and Scheduling
(ICAPS).

[5] Blythe, J. 1999. An Overview of Planning Under Uncertainty.
AI Magazine, Vol. 20(2), pp. 35–54.

[6] Curbera, F., and others. 2002. Business Process Execu-
tion Language for Web Services (BPEL4WS). http://www-
106.ibm.com/developerworks/webservices/library/ws-bpel/.

[7] Fox, M., and Long, D. 2002. PDDL2.1: An Extension to
PDDL for Expressing Temporal Planning Domains. Available
at http://www.dur.ac.uk/d.p.long/competition.html.

7



[8] Garland, A. and Lesh, N. 2002. Plan evaluation with incom-
plete action descriptions. In Proc. of the 18th National Confer-
ence on Artificial intelligence (AAAI’02), USA.

[9] Kambhampati, S., Knoblock, C. and Yang, Q. 1995. Planning
as Refinement Search: A Unifying framework for evaluating
design trafeoffs in partial order planning. Artificial Intelligence,
Special issue on Planning and Scheduling. Vol. 76.

[10] Kambhampati, S., and Srivastava, B. 1995. Universal Clas-
sical Planner: An algorithm for unifying state space and plan
space approaches. In New Trend in AI Planning: EWSP 95,
IOS Press.

[11] Keller, A., Hellerstein, J., Wolf, J., Wu, K. and Krishnan, V.
2004. The CHAMPS System: Change Management with Plan-
ning and Scheduling. Proceedings of the IEEE/IFIP Network
Operations and Management Symposium (NOMS 2004).

[12] Kephart, J. and Chess, D. 2003. The Vision of Autonomic
Computing. IEEE Computer, Vol. 36, No. 1, pp 41-50.

[13] Munindar P. Singh, Greg Meredith, Christine Tomlinson,
Paul C. Attie: An Event Algebra for Specifying and Scheduling
Workflows. DASFAA 1995: 53-60.

[14] Srivastava, B. 2004. A Decision-support Framework for
Component Reuse and Maintenance in Software Project Man-
agement. IEEE 8th European Conference on Software Mainte-
nance and Reengineering (CSMR 2004), Tampere, Finland.

[15] Srivastava, B., Bigus, J., and Schlosnagle, D. 2004. Bringing
Planning to Autonomic Applications with ABLE. Proc. IEEE
1st International Conference on Autonomic Computing, New
York, USA.

[16] Srivastava, B. and Koehler, J. 2003. Web Service Com-
position: Current Solutions and Open Problems. ICAPS 2003
Workshop on Planning for Web Services, pages 28 - 35.

[17] Srivastava, B., Vanhatalo, J., and Koehler, J. 2005. Managing
the Life Cycle of Plans. IBM Research Report.

[18] TPP-Council. 2002. Transaction Processing Performance
Council Benchmark W Specification (Web Commerce) v1.8.
http//www.tpc.org/tpcw.

[19] Weld, D. 1999. Recent Advances in AI Planning. AI Maga-
zine, Volume 20, No.2, pp 93-123.

8


