
AI-MIX: How a Planner Can Help Guide Humans
Towards a Better Crowdsourced Plan

Lydia Manikonda Tathagata Chakraborti Sushovan De
Kartik Talamadupula Subbarao Kambhampati

Department of Computer Science and Engineering
Arizona State University, Tempe AZ 85287 USA

{lmanikon, tchakra2, sushovan, krt, rao} @ asu.edu

Abstract

One subclass of human computation applications are those
directed at tasks that involve planning (e.g. tour planning)
and scheduling (e.g. conference scheduling). Interestingly,
work on these systems shows that even primitive forms of
automated oversight on the human contributors helps in sig-
nificantly improving the effectiveness of the humans/crowd.
In this paper, we argue that the automated oversight used in
these systems can be viewed as a primitive automated plan-
ner, and that there are several opportunities for more so-
phisticated automated planning in effectively steering crowd-
sourced planning. Straightforward adaptation of current plan-
ning technology is however hampered by the mismatch be-
tween the capabilities of human workers and automated plan-
ners. We identify and partially address two important chal-
lenges that need to be overcome before such adaptation of
planning technology can occur: (i) interpreting the inputs of
the human workers (and the requester) and (ii) steering or
critiquing the plans being produced by the human workers
armed only with incomplete domain and preference models.
To these ends, we describe the implementation of AI-MIX, a
tour plan generation system that uses automated checks and
alerts to help improve the quality of plans created by human
workers.

1 Introduction
In solving computationally hard problems – especially those
that require input from humans, or for which the complete
model is not known – human computation has emerged as
a powerful and inexpensive approach. One such core class
of problems is planning. Several recent efforts have started
looking at crowd-sourced planning tasks (Law and Zhang
2011; Zhang et al. 2012; Zhang et al. 2013; Lasecki et al.
2012; Lotosh, Milo, and Novgorodov 2013). Just like in
a formal organization, the quality of the resulting plan de-
pends on effective leadership. We observe that in most of
these existing systems, the workers are steered by primitive
automated components that merely enforce checks and en-
sure satisfaction of simple constraints. Encouragingly, ex-
periments show that even these primitive automated com-
ponents improve plan quality, for little to no investment in
terms of cost and time.

This begs the obvious question: is it possible to improve
the effectiveness of crowdsourced planning even further by
using more sophisticated automated planning technologies?
It is reasonable to expect that a more sophisticated auto-

mated planner can do a much better job of steering the crowd
(much as human managers “steer” their employees). Indeed,
work such as (Law and Zhang 2011) and (Zhang et al. 2012)
is replete with hopeful references to the automated planning
literature. There exists a vibrant body of literature on au-
tomated plan generation, and automated planners have long
tolerated humans in their decision cycle – be it mixed ini-
tiative planning (Ferguson, Allen, and Miller 1996) or plan-
ning for teaming (Talamadupula et al. 2010). The context of
crowdsourced planning scenarios, however, introduces a re-
versed mixed initiative planning problem – the planner must
act as a guide to the humans, who are doing the actual plan-
ning. The humans in question can be either experts who
have a stake in the plan that is eventually created, or crowd
workers demonstrating collective intelligence.

In this paper, we present AI-MIX (Automated Improve-
ment of Mixed Initiative eXperiences), a new system that
implements a general architecture for human computation
systems aimed at planning and scheduling tasks. AI-MIX
foregrounds the types of roles an automated planner can play
in such systems, and the challenges involved in facilitating
those roles. The most critical challenges include:

Interpretation: Understanding the requester’s goals as
well as the crowd’s plans from semi-structured or unstruc-
tured natural language input.

Steering with Incompleteness: Guiding the collaborative
plan generation process with the use of incomplete mod-
els of the scenario dynamics and preferences.

The interpretation challenge arises because human workers
find it most convenient to exchange / refine plans expressed
in a representation as close to natural language as possible,
while automated planners typically operate on more struc-
tured plans and actions. The challenges in steering are mo-
tivated by the fact that an automated planner operating in
a crowdsourced planning scenario cannot possibly be ex-
pected to have a complete model of the domain and the pref-
erences; if it does, then there is little need or justification
for using human workers! Both these challenges are further
complicated by the fact that the (implicit) models used by
the human workers and the automated planner are very likely
to differ in many ways, making it challenging for the planner
to critique the plans being developed by the human workers.
For each challenge, we discuss two ways in which the asso-
ciated problems can be handled in a more effective fashion.

REQUESTER
(Human)

CROWD
 (Turkers)

PLANNER

Constraint Satisfaction

Scheduling & Assignment

Plan/Action Recognition

Plan Extraction

(from Text)

M: Partial Model

HCI

COLLABORATION

UNSTRUCTURED

STRUCTURED

Task specification
Requester’s goals
Preferences

Crowd’s plan
Sub-goals
New actions
Suggestions

FORM/MENU INPUT
SCHEDULES

ALERTS

STEERING

INTERPRETATION

Figure 1: A generalized architecture for crowdsourced plan-
ning systems.

For a more complete discussion of related work, we refer the
reader to an extended technical report (Talamadupula and
Kambhampati 2013), where we present and classify the var-
ious different existing crowdsourced planning systems.

The rest of the paper is organized as follows. We first
look at the problem of planning for crowdsourced planning
in more detail, and present a generalized architecture for this
task. Next, we consider the roles that an automated planner
can play within such an architecture, and discuss the chal-
lenges that need to be tackled in order to facilitate those
roles. We then describe the AI-MIX system, and prelimi-
nary results generated by the crowd (henceforth referred to
as the turkers) on Amazon MTurk using that system. We
hope that this work will spur more directed research on the
challenges that we have identified.

2 Planning for Crowdsourced Planning
The crowdsourced planning problem involves returning a
plan as a solution to a task, usually specified by a user called
the requester. The requester provides a high-level descrip-
tion of the task – most often in natural language – which
is then forwarded to the turkers. The turkers can perform
various roles, including breaking down the high-level task
description into more formal and achievable sub-goals (Law
and Zhang 2011), or adding actions into the plan that sup-
port those sub-goals (Zhang et al. 2012). The planner is the
automated component of the system, and it performs vari-
ous tasks ranging from constraint checking, to optimization
and scheduling, and plan recognition. The entire planning
process must itself be iterative, proceeding in several rounds
which serve to refine the goals, preferences and constraints
further until a satisfactory plan is found. A general archi-
tecture for solving this crowdsourced planning problem is
depicted in Figure 1.

2.1 Roles of the planner
The planning module, or the automated component of the
system, can provide varying levels of support. It accepts
both the sub-goals SG, and crowd’s plan PC , as input from

the turkers. This module analyzes the current plan generated
by the crowd, as well as the sub-goals, and determines con-
straint and precondition violations according to the model
M of the task that it has. The planner’s job is to steer the
crowd towards more effective plan generation.

However, the three main actors – turkers, requester, and
planner – need a common space in which to interact and
exchange information. This is achieved through a common
interactive space – the Distributed Blackboard (DBb) – as
shown in Figure 1. The DBb acts as a collaborative space
where information related to the task as well as the plan that
is currently being generated is stored, and exchanged be-
tween the various system components.

In contrast to the turkers, the planner cannot hope for very
complex, task-specific models, mostly due to the difficulty
of creating such models. Instead, a planner’s strong-suit is to
automate and speed-up the checking of plans against what-
ever knowledge it does have. With regard to this, the plan-
ner’s model MP can be considered shallow with respect to
preferences, but may range the spectrum from shallow to
deep where domain physics and constraints are concerned.
The planning process itself continues until one of the fol-
lowing conditions (or a combination thereof) is satisfied:

• The crowd plan PC reaches some satisfactory threshold
and the requester’s original goal G is fulfilled by it; this
is a subjective measure and is usually determined with the
intervention of the requester.

• There are no more outstanding alerts, and all the sub-goals
in SG are supported by one (or more) actions in PC .

3 Planning Challenges
From the architecture described in Figure 1, it is fairly ob-
vious that a planner (automated system) would interact with
the rest of the system to perform one of two tasks: (1) in-
terpretation and (2) steering. Interpretation is required for
the planner to inform itself about what the crowd is doing;
steering is required for the planner to tell the crowd what
they should be doing.

3.1 Interpretation of the Crowd’s Evolving Plan
The planner must interpret the information that comes from
the requester, and from the crowd, in order to act on that
information. There are two ways in which the planner can
ensure that it is able to understand that information:

Force Structure The system can enforce a pre-determined
structure on the input from both the requester, and the crowd.
This can by itself be seen as part of the model Mp, since the
planner has a clear idea about what kind of information can
be expected through what channels. The obvious disadvan-
tage is that it reduces flexibility for the turkers. In the tour
planning scenario, for example, we might force the requester
to number his/her goals, and force the turkers to explicitly
state which goals their proposed plan aims to handle (c.f.
(Zhang et al. 2012)). The turkers could also be required to
add other structured attributes to their plans such as the du-
ration and cost of various activities (actions) that are part of
the plan.

Extract Structure The planner can also extract structure
from the turker inputs to look for specific action descrip-
tions that are part of the planner’s model MP , in order to
understand what aims a specific plan is looking to achieve.
Although this problem has connections to plan recogni-
tion (Kautz and Allen 1986; Ramı́rez and Geffner 2010),
it is significantly harder as it needs to recognize plans not
from actions, but rather textual descriptions. Thus it can in-
volve first recognizing actions and their ordering from text,
and then recognizing plans in terms of those actions. Un-
like traditional plan recognition that starts from observed
plan traces in terms of actions or actions and states, the in-
terpretation involves first extracting the plan traces. Such
recognition is further complicated by the impedance mis-
match between the (implicit) planning models used by the
human workers, and the model available to the planner.

Our system uses both the techniques described above to
gather relevant information from the requester and the turk-
ers. The requester provides structured input that lists their
constraints as well as goals (and optionally cost and dura-
tion constraints), and can also provide a free unstructured
text description for the task. The turkers in turn also pro-
vide semi-structured data - they are given fields for activity
title, description, cost and duration. The turkers can also
enter free text descriptions of their suggestions; the system
can then automatically extract relevant actions by using NLP
methods to match the input against the planner’s model MP .

3.2 Steering the Crowd’s Plan
The planner can steer the turkers by offering helpful sugges-
tions, alerts, and perhaps even its own plan. There are two
main kinds of feedback an automated planner can provide to
the human workers:

Constraint Checking One of the simplest ways of gener-
ating helpful suggestions for the crowd is to check for quan-
titative constraints imposed by the requester that are violated
in the suggested activities. In terms of the tour planning sce-
nario, this includes: (i) cost of a particular activity; and (ii)
the approximate duration of an activity. If the requester pro-
vides any such preferences, our system is able to check if
they are satisfied by the crowd’s inputs.

Constructive Critiques Once the planner has some
knowledge about the plan that the turkers are trying to
propose (using the extraction and recognition methods de-
scribed above), it can also try to actively help the creation
and refinement of that plan by offering suggestions as part
of the alerts. These suggestions can vary depending on the
depth of the planner’s model. Some examples include: (i)
simple notifications of constraint violations, as outlined pre-
viously; (ii) plan critiques (such as suggestions on the order
of actions in the plan and even what actions must be present);
(iii) new plans or plan fragments because they satisfy the
requester’s stated preferences or constraints better; (iv) new
ways of decomposing the current plan (Nau et al. 2003); and
(v) new ways of decomposing the set of goals SG.

In the next section, we will describe the specific components
of the AI-MIX system that solve some of the planning chal-
lenges listed here in more detail.

4 System Description
The following section describes in detail the AI-MIX sys-
tem that was deployed on Amazon’s MTurk platform1 to en-
gage the turkers in the tour planning task. The system is
similar to Mobi (Zhang et al. 2012) in terms of the types of
inputs it can handle and the constraint and quantity checks
that it can provide (we discuss this further in Section 5.1).
However, instead of using structured input, which severely
restricts crowd turkers and limits the scope of their contribu-
tions, our system is able to parse natural language from user
inputs and reference it against relevant actions in a domain
model. This enables more meaningful feedback and helps
provide a more comprehensive tour description.

4.1 Requester Input
The task description is provided by the requester, in the form
of a brief description of their preferences, followed by a list
of activities they want to do as part of the tour, each accom-
panied by a suitable hashtag. For example, the requester
might include one dinner activity and associate it with the
tag #dinner. These tags are used internally by the system to
map turker suggestions to specific tasks. The upper half of
Figure 2 shows an example of a requester task, which in-
cludes a block of text for the turkers to extract context from,
and structured task requests associated with hashtags.

4.2 Interface for Turkers
The main AI-MIX interface, shown in Figure 2, contains the
task description (as provided by the requester) and a section
that lists instructions for successfully submitting a HIT on
Amazon MTurk. The remaining components, arranged by
their labels in the figure, are:

1. Requester Specification: This is the list of requests and
to-do items that are yet to be satisfied. All the unsatisfied
constituents of this box are initially colored red. When a
tag receives the required number of supporting activities,
it turns from red to green. Tags that originated from the
requester are classified as top-level tags, and are always
visible. Tags that are added by the automated planner or
by turkers are classified as lower priority, and disappear
once they are satisfied.

2. Turker Inputs: Turkers can choose to input one of two
kinds of suggestions: (i) a new action to satisfy an existing
to-do item; or (ii) a critique of an existing plan activity
(action).

3. Turker Responses: The “Existing Activities” box dis-
plays a full list of the current activities that are part of the
plan. New turkers may look at the contents of this box in
order to establish the current state of the plan. This com-
ponent corresponds to the Distributed Blackboard men-
tioned in Section 2.1.

4. Planner Critiques: The to-do items include automated
critiques of the current plan that are produced by the plan-
ner. In the example shown, “broadwayshow showing” is
a planner generated to-do item that is added in order to
improve the quality of the turkers’ plan.

1Amazon Mechanical Turk, http://www.mturk.com

http://www.mturk.com

Figure 2: The tour planner interface of the AI-MIX system on MTurk.

Finally, the right hand portion of the interface consists of a
map, which can be used by turkers to find nearby points of
interest, infer routes of travel or the feasibility of existing
suggestions, or even discover new activities that may satisfy
some outstanding tags. Turkers have two choices in terms
of the kinds of responses (HITs) that they can provide to the
system: (i) they may add a new activity in response to one
of the to-do tags; or (ii) they may enter a critique or a note
to point out flaws in one of the existing activities.

Activity Adddition The “Add Activity” form is shown in
Figure 3. Turkers may choose to add as many new activi-
ties as they like. Each new activity is associated with one of
the to-do tags. After each activity is submitted, a quantita-
tive analysis is performed where the activity is (i) checked
for possible constraint (duration or cost) violations; or (ii)
critiqued the planner.

Action Extraction To facilitate the extraction of mean-
ing from the turker generated activities, the system performs
parts of speech (PoS) tagging on the activities to identify the
name of the activity as well as the places that turkers are re-
ferring to; currently, we assign the verb and noun parts of the
tagger’s output to these respectively. We used the Stanford
Log-Linear Part-of-Speech tagger (Toutanova et al. 2003).

Sub-Goal Generation AI-MIX uses the same tags used
by turkers while inputting activities in order to determine
whether the planner has additional subgoal annotations on
that activity. To facilitate this, the planner uses a primi-
tive PDDL (McDermott et al. 1998) domain description of
general activities that may be used in a tour-planning appli-

cations – this description corresponds to the planner model
MP introduced previously. Examples of actions in MP in-
clude activities such as visit, lunch, shop etc. Each
action comes with a list of synonyms, which help the plan-
ner in identifying similar activities. Currently, we generate
these synonyms manually, but it is trivial to automate this
via the use of resources such as WordNet. Each action also
comes with some generic preconditions. When the planner
determines that a turker generated activity matches one of
the actions from its model, it generates sub-goals to be added
as to-do items back in the interface based on the precondi-
tions of that action. An example of an action description (for
the “visit” action) is given below:
(:action visit ;; synonyms: goto, explore

:parameters (?p - place)

:precondition (at ?p) ;; Getting to ?p,

;; Entrance fee ?p, ;; Visiting hours ?p

:effect (visited ?p))

In the example given above, the planner would pop up
the three preconditions – Getting to, Entrance fee,
and Visiting hours – as to-do sub-goals for any
visit actions suggested by turkers. In addition to popping
up sub-goals as to-do tags, the system also provides some
helpful text on what is expected as a resolution to that to-do
item – this is indicated by the yellow “planner critique” box
in Figure 2.

Constraint Checking In addition to generating sub-goals
for existing activities, our system also automatically checks
if constraints on duration and cost that are given by the
requester are being met by the crowd’s plan. If these

Figure 3: Adding and critiquing activities (plan actions) in the AI-MIX system.

constraints are violated, then the violation is automatically
added to the to-do stream of the interface, along with a de-
scription of the constraint that was violated. Turkers can
then choose to add an action that resolves this to-do item
using the normal procedure.

Adding Turker Critiques The turkers can also choose
to add critiques of actions in the existing plan, instead of
adding actions that satisfy existing to-do items. To do this,
they use the form shown in the lower half of Figure 3. The
turkers click on an existing activity, and enter the note or
critique in a text box provided. Additionally, they are also
asked to enter a child tag, which will be used to keep track
of whether an action has been added to the plan that resolves
this issue. Turkers are free to add as many critiques as they
want.

A video run-through of our system can be found at the fol-
lowing URL: http://youtu.be/73g3yHClx90.

5 Experiments
5.1 Experimental Setup
For our study, HITs were made available to all US residents
(since the requests involved locations inside the US) with a
HIT approval rate greater than 50%. Turkers were paid 20
cents for each HIT, and each turker could submit 10 HITs
per task. We use tour planning scenarios for six major US
cities, reused from the Mobi system’s evaluation (Zhang et
al. 2012). To measure the impact of automated critiquing
on the generated plans, we compare the results from three
experimental conditions:

C1: Turkers can give suggestions in free text after reading the
task description - there are no automated critiques.

C2: Turkers quantify their suggestions in terms of cost and
duration, and the system checks these constraints for vio-
lations with respect to the requester demands.

C3: In addition to C2, we process free-form text from turker
input, and extract actions to match with our planning
model in order to generate alerts for sub-goals and miss-
ing preconditions.

C1 and C2 were compared to the proposed approach, C3,
separately. Each set was uploaded at the same time, with
the same task description and HIT parameters. In the first
run, C3 and C2 were compared on 6 scenarios (New York,
Chicago, San Francisco, Las Vegas, Washington and Los
Angeles) and were given 2 days before the HITs were ex-
pired. The interface for both C3 and C2 is identical to elim-
inate any bias. In the second run, the conditions C1 and
C3 were run over a period of one day, for the two scenar-
ios which were most popular in the first run (New York and
Chicago). For each of these tasks, the requester prepopu-
lates the existing activities with one or two dummy inputs
that reflect the kinds of suggestions she is looking for. In
sum, we had more than 150 turkers who responded to our
HITs. The analysis that follows is from the 35 turkers who
contributed to the final comparisons among C1, C2, and C3.

5.2 Task Completion Latency

When C3 was compared to C1 over a period of one day, we
found that C3 received four responses from 3 distinct turk-
ers, whereas C1 failed to attract any responses. This might
indicate that the presence of the “TO DO” tags generated by
the automated critiquing component was helpful in engag-
ing the turkers and guiding them towards achieving specific
goals. However, there may also be alternate explanations
for the fact that C1 did not receive any inputs, such as turker
fatigue, or familiarity with the C3 interface from previous
runs. There is need for further experimentation before these
results can be conclusively proved.

We also looked at the number of HITs taken to complete
the tasks for each of the scenarios. After the HITs were
expired, none of the tasks were entirely complete (no out-
standing to-do items), but C2 still had 3.83 unfulfilled tags
per HIT as compared to 10.5 for C3. As expected, the task
completion latency seems to have increased for C3, since
alerts from the system drive up the number of responses re-
quired before all the constraints are satisfied. As shown in
the following paragraph, however, the increased quality of
generated plans may justify this additional latency.

http://youtu.be/73g3yHClx90

Show: Go to TKTS half ticket discount booth. You have to stand in line
early but it’s an authentic nyc experience #show(3 hours)(200.0 $)
Show: Go to show #show(3 hours)(200.0 $)
Show: ABSOLUTELY CANNOT go wrong with Phantom of the Opera
#show(3 hours)(200.0 $)
Lunch: Alice’s Tea Cup #lunch(20.0 $)
Design: Walk around the Garment District (go into shops) just south of
Times Square. They often print their own fabrics. #design(2 hours)(0.0 $)
Dessert: Serendipity #dessert(1 hours)(10.0 $)
piccolo angolo: Italian in the Village - real deal #italiandinner(2
hours)(60.0 $)
Lombardi’s Pizza: #italian dinner #italiandinner todo1
Ice Cream: http://www.chinatownicecreamfactory.com/ #italiandin-
ner todo0
#lunch: Mangia Organics #lunch todo0
watch Wicked (musical): Do watch Wicked the musical. It’s a fantas-
tic show and one of the most popular on Broadway right now! #broad-
wayshow(3 hours)(150.0 $)
watch How to Succeed in Business: Also a great show, a little less grand
than Wicked. #broadwayshow(3 hours)(150.0 $)
Activity Steamer: #lunch #lunch todo1
Paradis To-Go: Turkey & Gruyere is pretty delicious. The menu is simple,
affordable, but certainly worth the time #lunch(1 hours)(10.0 $)
cupcakes!: Magnolia Bakery on Bleecker in the Village #dessert(1
hours)(10.0 $)

Table 1: Sample activity suggestions from turkers for the
two conditions: C2 (top) and C3 (bottom).

5.3 Generated Tour Plan Quality
We see that the quality of the plans, in terms of detail and de-
scription, seems to increase in C3, since we now have users
responding to planner critiques to further qualify suggested
activities. For example, a turker suggested “not really fun,
long lines and can not even go in and browse around” in re-
sponse to a planner generated tag (related to a “fun club”
activity suggested previously), while another suggested a
“steamer” in response to a planner alert about “what to eat
for lunch”. A comparison between the plans generated by
C2 and C3 (for New York City) is given in Table 1. This
seems to indicate that including a domain description in ad-
dition to the simplistic quantity and constraint checks in-
creases the plan quality.

5.4 Role Played by the Planner Module
We now look at some statistics that capture the role played
by the planning module in the tasks. We received a total
of 31 new activity suggestions from turkers, of which 5 vi-
olated quantity constraints. The C3 interface attracted 39
responses, compared to 28 for C2, which may indicate that
the planner tags encouraged turker participation.

Note that in the AI-MIX interface, there is no perceptual
difference between the critiques generated by the planner
and the critiques suggested by humans. With this in mind,
there were 8 flaws pointed out by humans, but none were
acted upon by other turkers; the planner on the other hand
generated 45 critiques, and 7 were acted upon and fixed by
turkers. This seems to indicate that turkers consider the plan-
ner’s critiques more instrumental to the generation of a high
quality plan than those suggested by other turkers. Though
these results are not entirely conclusive, there is enough evi-
dence to suggest that the presence of an automated critiquing
system does help to engage and guide the focus of the crowd.

6 Conclusion
In this paper, we presented a system, AI-MIX, that is a first
step towards using an automated planner in a crowdsourced
planning application. We identified two major challenges in
achieving this goal: interpretation and steering. We then de-
scribed the framework for AI-MIX, and showed how these
challenges were handled by our system – using forced struc-
ture and structure extraction for interpreting actions; and us-
ing constraint checking and automated planner critiques for
steering. We also presented preliminary empirical results
over the tour planning domain, and showed that that using
an automated planner results in the generation of better qual-
ity plans. We are continuing to run experiments using more
scenarios and larger time scales to provide further validation
for our hypotheses.

References
[Ferguson, Allen, and Miller 1996] Ferguson, G.; Allen, J.; and

Miller, B. 1996. Trains-95: Towards a mixed-initiative planning
assistant. In Proceedings of the Third Conference on Artificial In-
telligence Planning Systems (AIPS-96), 70–77.

[Kautz and Allen 1986] Kautz, H., and Allen, J. F. 1986. General-
ized plan recognition. In Proceedings of the fifth national confer-
ence on artificial intelligence, volume 1, 32–37. Phil., PA.

[Lasecki et al. 2012] Lasecki, W. S.; Bigham, J. P.; Allen, J. F.; and
Ferguson, G. 2012. Real-time collaborative planning with the
crowd. In Twenty-Sixth AAAI Conference on Artificial Intelligence.

[Law and Zhang 2011] Law, E., and Zhang, H. 2011. Towards
large-scale collaborative planning: Answering high-level search
queries using human computation. Proc. AAAI11.

[Lotosh, Milo, and Novgorodov 2013] Lotosh, I.; Milo, T.; and
Novgorodov, S. 2013. CrowdPlanr: Planning Made Easy with
Crowd. In Data Engineering (ICDE), 2013 IEEE 29th Interna-
tional Conference on. IEEE.

[McDermott et al. 1998] McDermott, D.; Knoblock, C.; Veloso,
M.; Weld, S.; and Wilkins, D. 1998. PDDL–the Planning Domain
Definition Language: Version 1.2. Yale Center for Computational
Vision and Control, Tech. Rep. CVC TR-98-003/DCS TR-1165.

[Nau et al. 2003] Nau, D. S.; Au, T.-C.; Ilghami, O.; Kuter, U.;
Murdock, J. W.; Wu, D.; and Yaman, F. 2003. Shop2: An htn
planning system. J. Artif. Intell. Res. (JAIR) 20:379–404.

[Ramı́rez and Geffner 2010] Ramı́rez, M., and Geffner, H. 2010.
Probabilistic plan recognition using off-the-shelf classical plan-
ners. In AAAI.

[Talamadupula and Kambhampati 2013] Talamadupula, K., and
Kambhampati, S. 2013. Herding the crowd: Automated planning
for crowdsourced planning. CoRR abs/1307.7720.

[Talamadupula et al. 2010] Talamadupula, K.; Benton, J.; Kamb-
hampati, S.; Schermerhorn, P.; and Scheutz, M. 2010. Planning
for human-robot teaming in open worlds. ACM Transactions on
Intelligent Systems and Technology (TIST) 1(2):14.

[Toutanova et al. 2003] Toutanova, K.; Klein, D.; Manning, C. D.;
and Singer, Y. 2003. Feature-rich part-of-speech tagging with a
cyclic dependency network. In Proc. of HLT-NAACL, 252–259.

[Zhang et al. 2012] Zhang, H.; Law, E.; Miller, R.; Gajos, K.;
Parkes, D.; and Horvitz, E. 2012. Human Computation Tasks with
Global Constraints. In CHI, 217–226. ACM.

[Zhang et al. 2013] Zhang, H.; Andre, P.; Chilton, L.; Kim, J.; Dow,
S. P.; Miller, R. C.; MacKay, W.; and Beaudouin-Lafon, M. 2013.
Cobi: Communitysourcing Large-Scale Conference Scheduling. In
CHI Interactivity 2013. ACM.

	Introduction
	Planning for Crowdsourced Planning
	Roles of the planner

	Planning Challenges
	Interpretation of the Crowd's Evolving Plan
	Steering the Crowd's Plan

	System Description
	Requester Input
	Interface for Turkers

	Experiments
	Experimental Setup
	Task Completion Latency
	Generated Tour Plan Quality
	Role Played by the Planner Module

	Conclusion

