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Abstract

Although task reduction (HTN) planning historically pre-
ceded partial order (PO) planning, and is believed to be
more general than the latter, very little comparative anal-
ysis of the two planning formalisms has been done. Part
of the reason for this has been the lack of systematic
understanding of the functionalities provided by HTN
planning over and above that of partial order planning.
In this paper I will describe a generalized algorithm
template for partial order planning based on refinement
search, and extend it to cover HTN planning. I will use
this framework as a basis to (i) discuss the similarities and
differences between the HTN and the partial order plan-
ning methods, (ii) critically examine the claims regarding
the efficiency and expressiveness of HTN planning, and
(iii) shed light on several of the less understood features
of HTN planning.

1 Introduction

Of late, there has been an increased interest in understanding the
tradeoffs provided by the different classical planning algorithms,
with the objective of forming predictive hypotheses regarding the
fit between particular algorithms and problem types. Many recent
research efforts have attempted comparative empirical analyses of
planning algorithms [22, 1, 15, 13, 14]. One of the ironic things
about all these analyses has been that the planning algorithms they
consider, called partial order (PO) planning algorithms, differ from
the algorithms used in many of the ‘‘industrial strength’’ classical
planners, such as SIPE [17] and O-Plan [28, 27]. These planners
use what is commonly called task-reduction planning or HTN
(Hierarchical Task-Network) planning paradigm.

From a historical perspective, the lack of comparative work on HTN
planning algorithms is quite puzzling. After all, the first big shift
from state-space planning used in STRIPS [10] was not to partial-
order planning, but rather to HTN planning, as used in NOAH
[26]. Indeed, partial order planning, as it is understood today, is
an off-shoot of Chapman’s work on nonlinear planning [3] (which,
ironically enough, was initially intended to be a formalization of
task reduction planners such as NOAH, SIPE and NONLIN).1 There
are at least two general problems that lead to this state of affairs:
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1As a historical note, Chapman [3] intended to ‘‘clean’’ up
NOAH/NONLIN, and came up with the modal truth criterion which
essentially extends the NONLIN Q&A criterion to deal with partial
plans with variables. This version of plan-space planning, without
task reduction, has come to be known as ‘‘partial order planning’’.
Subsequently, Pednault [23] and McAllester [20], provided simpler
formalizations of partial order planning without recourse to modal
truth criteria, and sound and complete planners based on their
formalizations have been implemented [1, 24, 12].

1. There has been very little formalization of HTN planning
algorithms, with the result that for the uninitiated, it is very
difficult to differentiate essential features from ‘‘bells and
whistles’’ of HTN planning.

2. Although the affinity between HTN planning and partial order
planning is well known, there is a lack of systematic under-
standing of the similarities and differences in functionality
provided by the two planning paradigms. Some argue that
HTN planners have substantial formal as well as practical ad-
vantages over partial order planners, while others have vtaken
the position that HTN planning is an ‘‘efficiency hack’’ over
partial order planning.

To deal with the first problem, recently Erol et. al. [6, 7, 8] have
developed a coherent formalization and complexity analysis of HTN
planning. At the same time, Barrett and Weld [2] and Young et.
al. [32] have developed simpler implementations of HTN planners.
Barrett and Weld’s work has also taken some important first steps
towards the development of sound and complete HTN planning for
expressive action representations.

In this paper, I attempt to remedy the second problem, viz. the lack
of comparative understanding of HTN and partial order planning
algorithms. I will base my comparison on two generalized algorithm
templates for partial order planning and HTN planning based on
the idea of refinement search. Specifically, in my recent work
[15, 13, 14], I have developed a generalized algorithm template for
partial order refinement planning, the instantiations of which cover
most existing PO planners. In this paper, I will extend that algorithm
to cover HTN planners, and use the extended algorithm as a basis
to do a careful analysis of the similarities and differences in the two
planning paradigms.

We will see that the most important additional functionality offered
by HTN planning (over partial order planning) allowing the user a
greater control over the type of solutions generated by the planner. I
will show that many of the perceived advantages of HTN planning
over PO planning are related to this particular factor. I will also
clarify and qualify many claims of expressiveness and efficiency
that are attributed to HTN planners in the literature. Finally, the
refinement search-based view of HTN planning developed in this
paper will also help clarify several less understood/controversial
features of HTN planning such as ‘‘critics’’, ‘‘filter conditions’’,
and ‘‘phantomization.’’

Organization: The rest of this paper is organized as follows.
Section 2, reviews the refinement search based semantics for
partial order planning, and describes Refine-plan-PO, a gen-
eralized algorithm for partial order planning. Section 3 extends
Refine-plan-PO to cover HTN planning and discusses the dif-
ferences in the solution spaces and completeness characteristics of
HTN and PO planners. Using these generalized planning algo-
rithms as the background, Section 4 critically examines the various
perceived advantages of HTN planning, including efficiency, ex-
pressiveness and applicability to realistic problems. Section 5
shows how refinement search based view of HTN planning also
helps in clarifying several features of HTN planning such as condi-
tion typing, hierarchical promiscuity, and phantomization. Section
6 summarizes the contributions of this paper.
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2 A unifying framework for Partial order
planning based on Refinement Search

2.1 Plan Representation

A planning problem is a 3-tuple hI;G;Ai, where I is the description
of the initial state, G is the (partial) description of the goal state, and
A is the set of actions (also called ‘‘operators’’). An action sequence
(also referred to as ground operator sequence) S is said to solve a
planning problem, if S can be executed from the initial state of the
planning problem, and the resulting state of the world satisfies all
the goals of the planning problem.

Given a planning problem, a planner attempts to generate an action
sequence that solves the problem. Partial order planners do
this by searching in the space of partial plans.2 Partial plans are
best seen as implicit representations for sets of ground operator
sequences (potential solutions) [15, 13, 14]. In particular, a partial
plan corresponds to a set of ground operator sequences that are
consistent with the ordering, binding and auxiliary constraints on
the plan. The operation of a partial order planner can be seen as that
of repeatedly refining partial plans (i.e., adding constraints, and thus
splitting their candidate sets) until a solution can be picked from the
candidate set of the resulting partial plan.

A partial plan is a 5-tuple hT; O;B;ST ;Li where: T is the set of
steps in the plan; T contains two distinguished step names t 0 and
t1. ST is a symbol table, which maps step names to actions. The
special step t0 is always mapped to the dummy operator start,
and similarly t1 is always mapped to finish. The effects of
start and the preconditions of finish correspond, respectively,
to the initial state and the desired goals of the planning problem.
O is a partial ordering relation over T . B is a set of codesignation
(binding) and non-codesignation (prohibited binding) constraints on
the variables appearing in the preconditions and post-conditions of
the operators. L is a set of auxiliary constraints that restrict the
allowable orderings and bindings among the steps (see below).

An important type of auxiliary constraint is an interval preservation
constraint (IPC), which is specified as a 3-tuple: ht; p; t0i. A ground
operator sequence S is said to satisfy an IPC ht; p; t 0i of a planP ,if
there exists a mapping M between the steps of P and the elements
of S, such that M is consistent with ST (i.e., each step t of the plan
is mapped to the same action by M and ST ; M[t] = ST [t]) and
every operator of S that comes betweenM[t] and M[t0] preserves
p. A second type of auxiliary constraint is the point truth constraint
(PTC), which is specified as a 2-tuple: hp; ti. A ground operator
sequence S is said to satisfy a PTC hp; ti if there exists a mapping
M between the steps of P and and the elements of S such that M
is consistent with ST and p is true in the state precedingM[t] (The
notion of truth here is that the condition is asserted by some operator
and not deleted by any intervening operator).

Monotonicity of Auxiliary constraints: Auxiliary constraints can
be divided into two classes, monotonic and non-monotonic. An
auxiliary constraint is called monotonic if and only if once it is
violated by a partial plan, no additional refinement of the partial
plan will make it satisfy the constraint. Auxiliary constraints that do
not have this property are called non-monotonic. According to this
definition, the monotonicity of the auxiliary constraints depends on
both the constraint and the nature of the refinements allowed. In
particular, a constraint which is monotonic for a planner may be non-
monotonic for another that employs a different set of refinements.
IPCs are monotonic for normal partial order planning, while PTCs
are non-monotonic. We will see that IPCs can be used to model
bookkeeping (protection) constraints while PTCs can be used to
model filter conditions and phantomization constraints (Section 5).

2For a more formal development of the refinement search se-
mantics of partial plans, see [13, 15]

Algorithm Re�ne-Plan-PO(P) /*Returns refinements of P */

Parameters: sol: the routine for picking solution candidates from the
candidate set of the partial plan pick-open: the routine for picking open
conditions. pre-order: the routine which adds orderings to the plan to
make conflict resolution tractable. conflict-resolve:the routine which
resolves conflicts with auxiliary constraints.

0. Termination Check: If sol(P) returns a ground operator se-
quence that solves the problem, return it and terminate.

1.1 Goal Selection: Using the pick-open function, pick an open
prerequisite hC; ti (where C is a precondition of step t) from P to
work on. Not a backtrack point.

1.2. Goal Establishment: Non-deterministically select a new or
existing establisher step t0 for hC; ti. Introduce enough constraints
into the plan such that (i) t0 will have an effect C, and (ii) C
will persist until t. Backtrack point; all establishers need to be
considered.

1.3. Bookkeeping: (Optional) Add auxiliary constraints noting the
establishment decisions, to ensure that these decisions are not vi-
olated by latter refinements. This in turn reduces the redundancy
in the search space. Bookkeeping strategies used by most existing
planners can be modeled in terms of addition of interval preservation
constraints.

2. Tractability Re�nements: (Optional) These refinements help
in making the plan handling and consistency check tractable. Use
either one or both:

2.a. Pre-Ordering: Use some given static ordering mecha-
nism, pre-order, to impose additional orderings between
steps of the partial plans generated by the establishment re-
finement. Backtrack point; all interaction orderings need to
be considered.

2.b. Con
ict Resolution: Add orderings and bindings to
resolve conflicts between the steps of the plan, and the plan’s
auxiliary constraints. Backtrack point; all possible conflict
resolution constraints need to considered.

3. Consistency Check: (Optional) If the partial plan is inconsistent
(i.e., has no safe ground linearizations), prune it.

4. Recursive Invocation: Call Refine-Plan-PO on the the re-
fined partial plan (if it is not pruned).

Figure 1: A generalized algorithm for partial-order planning

From a search control point of view, monotonic constraints are
interesting because of the pruning power they provide. In particular,
a partial plan can be directly pruned from search if none of its ground
linearizations3 satisfy a monotonic constraint. Non-monotonic con-
straints cannot be used for pruning (since a violated constraint may
be satisfied after further refinement), but can be used as a basis for
selection heuristics. For example, the planner may prefer partial
plans that satisfy non-monotonic auxiliary constraints over those
that do not yet satisfy them. This distinction will be used to ex-
plain several differences between HTN and Partial order planners in
Section 5.

A plan is said to be consistent with respect to an auxiliary
constraint c if at least one ground linearization of the plan satisfies
the constraint. A partial plan is said to be consistent if at least
one of its ground linearizations is consistent with respect to all the
monotonic auxiliary constraints (such a ground linearization is called
a safe ground linearization).

The candidate set of a partial plan is the set of all ground operator
sequences that are consistent with the step, ordering and binding

3A ground linearization of a partial plan P : hT;O;B;ST ;Li
is a topological sort of T with respect to O, with all the variables
instantiated to values that are consistent with the constraints in B.
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Planner Soln. Constructor Goal Selection Bookkeeping Tractability Refinements

Tweak [3] MTC-based O(n4) MTC-based O(n4) None None
UA [22] MTC-based O(n4) MTC-based O(n4) None Unambiguous ordering
Nonlin [27] MTC (Q&A) based Arbitrary O(1) Interval & Goal Protection via Q&A Conflict Resolution
TOCL [1] Protection basedO(1) Arbitrary O(1) Contributor protection Total ordering
Pedestal [18] Protection basedO(1) Arbitrary O(1) Interval Protection Total ordering
SNLP [20] Protection based Arbitrary Contributor protection Conflict resolution
UCPOP [24] O(1) O(1)
MP, MP-I [12] Protection based Arbitrary (Multi) contributor protection Conflict resolution

SNLP-UA MTC basedO(n4) MTC basedO(n4) Contributor protection Unambiguous Ordering
SNLP-MTC MTC basedO(n4) MTC basedO(n4) Contributor protection conflict resolution
McNONLIN-MTC MTC basedO(n4) MTC basedO(n4) Interval protection conflict resolution

Table 1: Characterization of existing planners as instantiations of Refine-Plan. The last three planners have not been described in the
literature previously. They are used in the experiments to facilitate normalized comparisons.

constraints of the plan, and also satisfy its monotonic auxiliary
constraints. A ground operator sequence is a solution candidate if it
also satisfies the non-monotonic auxiliary constraints (if any), and
solves the problem.

2.2 A generalized algorithm template for Partial Order
Planning

As mentioned, the process of planning can be seen as a refinement
search which starts with a null partial plan (whose candidate set
corresponds to all possible ground operator sequences in the domain),
and repeatedly refines it until a solution can be picked from the
candidate set of a partial plan resulting from the refinements. Figure
1 provides a general algorithm template for partial order planning. I
will now briefly describe the individual steps of the algorithm.

Termination and the Solution Constructor function: The job of
a solution-constructor function is to look for and return a solution
candidate that is consistent with the current constraints of the partial
plan. Most existing solution constructors terminate when they reach
a partial plan all of whose safe ground linerizations correspond to
solutions for the planning problem.

Goal Selection and Establishment: The primary refinement opera-
tion in partial order planning is the so-called establishment operation.
It selects a precondition hC; si of the plan (whereC is a precondition
of a step s), and refines (i.e., adds constraints to) the partial plan
such that different steps act as contributors of C to s in different
refinements. Pednault [23] provides a general theory of establish-
ment refinement for plans containing actions with conditional and
quantified effects. Syntactically, each refinement corresponds to
adding different sets of new step, ordering and binding constraints
(as well as additional secondary preconditions, in the case of ADL
actions [23]) to the parent plan.

Bookkeeping/Protection: Once a goal is established, many partial
order planners employ bookkeeping strategies for remembering
the specific establishment decision and protecting it during latter
refinements. Bookkeeping strategies can be modeled in terms
of adding auxiliary constraints to the partial plan. One popular
bookkeeping strategy is the interval protection. Suppose the planner
just established a condition c at step twith the help of the effects of the
step t0. An interval protection strategy requires that no candidate of
the partial plan can have p deleted between operators corresponding
to t0 and t. It can thus be modeled by adding an IPC (interval
preservation constraint) ht0; p; ti. Another type of bookkeeping
strategy, called contributor protection, requires that no candidate
of the partial plan can have p either added or deleted between
operators corresponding to t0 and t. Thus contributor protection can
be modeled by adding of the twin interval preservation constraints
ht0; p; ti and ht0;:p; ti. Finally, multi-contributor protections, such

as those described in [12] can be modeled by adding a disjunction
of IPCs.

Consistency check and Tractability Refinements: The consis-
tency check is used to see if the partial plan is consistent with respect
to all of its constraints (in particular, whether it has at least one
ground linearization that satisfies all the auxiliary constraints). The
consistency check turns out to be intractable for any partial plan
containing IPCs (which, as we saw above, are added by most book-
keeping strategies). To make the consistency check tractable, many
planners use secondary refinement operations called ‘‘tractability
refinements’’ which push the complexity of consistency check into
the search space. There are two types of tractability refinement
strategies: pre-ordering and conflict resolution. In the case of pre-
ordering, tractability of consistency check is achieved by restricting
the type of partial orderings in the plan such that consistency with
respect to auxiliary constraints can be checked without explicitly
enumerating all the ground linearizations. In the case of conflict
resolution, the partial plan is refined (by adding ordering and binding
constraints) until each possible violation of the auxiliary constraint
(called conflict) is individually resolved.

Table 1 characterizes many well-known partial order planning
algorithms, as well as some novel ones as instantiations of
Refine-Plan-PO. Because Refine-Plan-PO makes explicit
the dimensions of variations among the existing planners, it facil-
itates normalized comparisons among them. In our recent work,
we used this framework to conduct empirical studies to understand
the fit between the domain characteristics and the performance of
different types of partial order planners (corresponding to different
instantiations of Refine-Plan-PO). Figure 2 contains a brief
summary of these studies.

3 Task Reduction (HTN) Planning

Let us now see how Refine-Plan-PO can be extended to cover
task reduction (HTN) planners. The partial plan representations
used in HTN planning are similar to partial order planning with one
important exception. Specifically, an HTN plan can be represented
as a 5-tuple hT;O;B;ST ;Li, with the exception that the steps in
T are mapped to two types of actions (also called tasks): primitive
actions which correspond to the usual actions in the PO planning,
and non-primitive (abstract) actions. A necessary condition for the
executability of a plan is that all steps be mapped to primitive tasks.

A generalized algorithm template for HTN planning is shown in
Figure 3. Unlike the partial order planners, where the main refine-
ment operation is the establishment operation, the main refinement
operation in HTN planning is ‘‘task reduction.’’ This involves choos-
ing a non-primitive task (say t 2 T ), and generating refinements
corresponding to all possible ways of reducing t.
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Comparative performance evaluation using Refine-Plan-PO

In the past, empirical analyses tended to focus on a wholistic ‘‘black-box’’ comparisons of brand-name planning algorithms, such
as TWEAK vs. SNLP. It is hard to draw meaningful conclusions from such comparisons since, when seen as instantiations of our
Refine-Plan-PO algorithm, they differ on a variety of dimensions (see Table 1). A more meaningful approach involves comparing
instantiations of Refine-Plan-PO that differ only on a single dimension.

For example, from Table 1, we see that two of the important dimensions of variation among existing planners are the type and strength of
protection strategies and tractability refinements employed by the individual planners. In [14, 13, 15], we developed qualitative models
for the search space size and per-invocation cost of Refine-Plan-PO. According to this model, both tractability refinements and
bookkeeping strategies can be seen as transferring complexity between search space size and per-invocation cost of Refine-Plan-PO.
Tractability refinements attempt to reduce the cost of consistency check by refining partial plans further, and thereby increasing search
space size. Similarly protection strategies attempt to reduce the redundancy in the search space by adding further auxiliary constraints to a
partial plan, there by increasing the per-invocation cost of Refine-Plan-PO.

Since overall performance depends on both the per-invocation cost and the search space size, there is no reason to believe that any
particular point the spectrum of possible tractability refinements and protection strategies will provide a uniformly dominant performance
in all domains. The critical question instead becomes ‘‘What are the characteristics of the domains where specific types of protection
strategies/tractability refinements provide superior performance?’’

To answer these questions, we conducted empirical studies with instantiations of Refine-Plan-PO that vary along the dimensions of
tractability refinements and protection strategies [14, 15]. Our experiments show that the differences in tractability refinements cause
greater performance differentials than the differences in bookkeeping strategies. Protection strategies affect performance only when the
solution density is low, forcing the planner to explore a significant part of its overall search space. We also found that strong tractability
refinements can lead to improved performance only when the additional constraints added to the plan by these refinements lead to a
reduction of (simple) establishment possibilities. We demonstrate that this is most likely to happen in domains which have conditions that
are added and deleted by many actions (we call such conditions ‘‘high frequency conditions’’).

Figure 2: Predicting the performance of instantiations of Refine-Plan-PO

Algorithm Re�ne-Plan-Htn(P) /*Returns refinements of P */
Parameters:pick-task: the routine for picking non-primitive tasks for
reduction plan to make conflict resolution tractable. auxiliary constraints.

00. Termination Check: If all tasks of P are primitive, and if there
is a safe ground linearization of P that solves the problem, return
it and terminate.

1.10. Task Selection: Using the pick-task function, pick an unre-
duced task t 2 T from P to work on. Not a backtrack point.

1.20. Task Reduction: Non-deterministically select a reduction
schema S : P 0 for reducing t. Replace t in P with P 0 (This
involves removing t from P , merging the step, binding, ordering,
symbol table and auxiliary constraints fields of P 0 with those of P ,
and modifying the ordering and auxiliary constraints in P which
refer to t so that they refer to elements of P 0.

Backtrack point; all reduction possibilities need to be considered

1.30. Bookkeeping: Same as in Refine-Plan-PO

20. Tractability Re�nements: Same as in Refine-Plan-PO

40. Recursive Invocation: Call Refine-Plan-HTN on the the re-
fined partial plan (if it is not pruned).

Figure 3: A generalized algorithm for HTN planning (only the steps
that change from Refine-Plan-PO are shown)

The reduction involves replacing a non-primitive task with a par-
tial plan. The domain specification includes the legal ways of
reducing individual non-primitive tasks. Suppose the task t in plan
hT; O;B;ST ;Li is being reduced with the help of a reduction
method

t) P 0 : hT 0;O0

;B0;ST 0

;L0i:

(Notice that the plan fragment specified by the reduction method
not only contains steps and orderings, but also auxiliary constraints,
such as those corresponding to the IPCs and PTCs recommended in
the reduction schema).

The resulting refinement is computed by removing t from P , and

substitutingP 0 in its place, giving rise to a refined plan:

PR :

*
fT � t [ T 0g; f(O �Ot) [O0 [Omg;

fB [ B0 [ B0mg; fST [ ST 0g;
f(L �Lt) [ L0g

+

Notice that in replacing t with its reduction, we need to redirect any
constraints that explicitly name t, to steps in its reduction. Thus,
if Ot are the set of ordering constraints on P involving t, then
they are removed, and a set of new constraints Om are added in
their place, such that the Om contains orderings between steps of
P and P 0. Similar redirection is also done for auxiliary constraints
involving t. While HTN planning paradigm does not in general put
any restrictions on how this redirection needs to be achieved, we
will see in Section 5.3 that some properties of the planner (such
as the ability to prune plans that are inconsistent with respect to
the protection constraints, without losing completeness) depend on
specific types of merging strategies (c.f. [31]).

A special type of non-primitive tasks are the so called achievement
tasks. An achievement task t : achieve(c) aims to make condition
c true in the output situation of the task t. In addition to standard
reductions, achievement tasks have phantom reductions, to handle
the situations where the goal of the task is serendipitously achieved
as a side effect of some other reduction. Given a task t : achieve(c),
a phantom reduction of t is a schema:

P : hft0g; ;; ;; ft0 ! Noopg; fhc; t0igi

Thus, t can be reduced by replacing it with a dummy task t 0 (which
maps to a No-op), with the auxiliary point truth constraint that c is
true in the situation preceding t0 (see Section 2.1).

Observe that except for the main refinement step (which changes
from precondition establishment to task reduction), the algorithms
for PO and HTN planners are remarkably similar. It is interesting
to note that many of the features of HTN planners, such as critics,
and condition typing [17] can be accommodated without any major
changes to Refine-Plan-HTN. In particular, critics can be ac-
commodated as specialized tractability refinements and consistency
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HTN Planning as a ‘‘Problem’’

Historically, HTN planning has been seen as a ‘‘method’’ rather than as a ‘‘problem’’. Our discussion in Section 3.1 brings up an alternative
interpretation -- that HTN planners are solving a different planning problem compared to the partial order planners. I will now elaborate on
this view.

Both partial order and state space planning methods aim to solve the so-called STRIPS planning problem. A STRIPS planning problem is
a 3-tuple hI;G;Ai where I is the initial state, G is the final state, and A is the set of actions allowed in the domain. A ground operator
(action) sequenceS is said to be a solution if every action in S belongs to A, and executing S in I produces a state of the world where G is
satisfied. S is then said to solve the problem hI;G;Ai.

The task reduction planners can be seen as solving a different problem, that we shall call the HTN planning problem. An HTN planning
problem can be seen as a STRIPS planning problem augmented with a set of context-free grammars: hI;G;A; fG 1;G2; � � � ;Gmgi. The
terminal symbols in each of the grammars Gi are drawn from A. An action sequence S is a solution to the HTN planning problem if and
only if it solves the problem, and S is a valid sentence in each of the grammars in G [21, 7].

Since task reduction and partial order planners are solving different problems, the completeness criteria for these methods will naturally
be different. In particular, a complete task reduction planner does not have to generate every ground action sequence that solves the
problem, but only those which are also valid sentences in the grammars G i.

This problem-based characterization also explains the complexity difference between planning in STRIPS and HTN formalisms.
Propositional STRIPS planning is known to be PSPACE-complete [20], whereas HTN planning is known to be undecidable in all but most
restrictive cases [7]. As McAllester points out [21], this complexity difference can be understood on the basis of the fact that intersection
of context free grammars (which is part of HTN planning problem) is an undecidable problem [11].

Figure 4: Formal characterization of the HTN planning problem

checks, while condition typing can be accommodated through the
auxiliary constraints mechanism (see Section 5). Finally, some im-
plementations of HTN planners, such as O-Plan [28] allow for both
precondition establishment and task reduction refinements within
the same algorithm. In this paper, I will concentrate on ‘‘pure’’ task
reduction planners, and leave the issue of utility of combining both
refinement strategies for future investigation.

Below, we will look at one important ramification of shifting from
establishment refinement to task reduction refinement. In Section
5, we will discuss several additional ramifications of this shift.

3.1 Solution Space of HTN planners

As we mentioned earlier, in partial order planning, any ground
operator sequence that solves the given problem is considered a
solution to the problem. In contrast, not all such ground operator
sequences are produced as solutions by a task reduction planner.
Specifically, a ground operator sequenceS thatsolves the problem
is generated as a solution if and only if there is a way of reducing the
initial null plan to S in terms of the reduction schemasprovided to the
planner. In [2], Barrett explains this in terms of the ‘‘parseability’’
of potential solutions in terms of the reduction schemas. From the
refinement search point of view, task reduction refinements split the
candidate set of a partial plan in a way that automatically prunes all
ground operator sequences that will not have such a parse. Because
of this, the solution space of HTN planners is different from that of
partial order planners, and depends on the reduction schemas.

It is important to understand the practical utility of this difference
in solution spaces. In many realistic planning problems, not every
operator sequence that solves a problem may be an acceptable
solution, as the users tend to have strong preferences about the types
of solutions they are willing to accept. Consider the following two
examples:

Example 1. A travel domain, where the user wants to eliminate
travel plans that involve building an airport to take a flight out of the
city (or even, stealing money to buy a ticket).

Example 2. A process planning domain with the task of making
a hole, where there are two types of drilling operations, D1 and D2
and two types of hole-positioning operations H1 and H2. A hole
can be made by selecting one hole-positioning and one hole-drilling

operation. The user wants only those hole-making plans that pair D1
with H1 or D2 with H2.

In both the examples, the user is not satisfied with every plan that
satisfies the goals, but only a restricted subsetof them. Handling such
restrictions in partial order planning would involve either attempting
to change the domain specification (drop operators, or change their
preconditions); or implementing complex post-processing filters to
remove unwanted solutions. While the second solution is often
impractical, the first one can be too restrictive. For example, one
way of handling the travel example above is to restrict the domain
such that the ‘‘airport building’’ action is not available to the planner.
This is too restrictive since the there may be other ‘‘legitimate’’ uses
of airport building operations that the user may want the planner to
consider.

HTN planning provides the user a more general and flexible way
of exercising control over solutions. In particular, by allowing
non-primitive tasks, and controlling their reduction through user-
specified task-reduction schemas, HTN planning allows the user to
control the planner’s access to the actions in the domain.

Another way of looking at the above is in terms of the solution
languages defined by HTN and PO planners. The solution language
of partial order planners is a regular language, while HTN planners
also allow higher order solution languages (such as context free
languages as well as their intersections) [7].4 In particular, suppose
the domain contains three actions a1; a2; a3. The solution plans
produced by the partial order planners can be described by a regular
language (such as fa1ja2ja3g�), while that of HTN planners can be
described by a higher level language (such as a1 na2na3n). Using
partial order planners in domains with strong structural constraints
is thus akin to using regular expressions to generate strings that are
valid sentences in a context free languages -- although it can be
done, it will be very inefficient. See Figure 4 for a discussion and
elaboration on this view.

The difference in the solution spaces of HTN and PO planners has
important ramifications. To begin with, the completeness of an HTN
planners has to be defined with respect to both the domain actions, as
well as the set of non-primitive tasks and the task reduction schemas
(this is what Erol et. al. [8] do in their formalization of HTN

4The analogy between HTN task reduction schemas and operators
in partial order planning on the one hand, and regular languages and
Context Free Grammars on the other is first made by Erol [7].
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planning). In the latter sections of this paper, we shall also see that
this difference has implications to the efficiency of HTN planning.

4 Examining potential advantages of HTN
Planning

Given the Refine-Plan-Po and Refine-Plan-HTN algo-
rithm templates, we shall now address the claims regarding the
advantages of HTN planners over PO planners. I will separate
the claims regarding the advantages of HTN planning into three
categories -- efficiency, expressiveness and applicability to realistic
planning problems -- and critically examine each in turn.

4.1 Efficiency Arguments

The most important advantage claimed for HTN planning has to
do with efficiency in plan generation. At first glance this seems
counterintuitive -- after all, the worst case complexity of HTN
planning is higher than that of STRIPS planning problem (see
Figure 4)! Clearly, the efficiency claim needs to be qualified and
circumscribed to those domains where the user does have strong
biases about acceptable solutions. Once we consider this class of
problems (which, as we argued earlier, are more representative
of realistic planning problems), we can begin to understand the
efficiency claims.

Pruning Power: To some extent, the very fact that HTN planning
allows the users more control over specifying the types of solutions
they want, also has ramifications on efficiency. After all, if the user
did not want a travel plan that involves stealing money to buy a
ticket, any effort the planner spends in refining such a plan is wasted.
One question that still needs to be addressed is whether the ‘‘task
reduction’’ approach is required to achieve this efficiency. Recently,
Barrett and Weld [2] experimented with an interesting alternative
approach. This approach uses HTN schemas to do incremental
bottom-up parsing of the partial plans generated by a partial-order
planner (UCPOP [24]), and prunes plans which do not have any
parse. They compare this approach with task reduction approach
and conclude that task reduction may still do better by avoiding even
partial exploration of branches leading to solutions that violate the
structural constraints required by the user.

(Re)using Canned Plans: Another source of efficiency for HTN
planning is the fact that reduction schemas typically encode large
plan fragments with pre-packaged causal structure. This obviates
all the search needed to construct the plan fragment in the first
place (as is done by a partial order planner), and shifts the focus
from precondition establishment to merging of these canned plans.
However, whether or not the use of canned plans improves efficiency
depends on the level of interactions between the canned plans -- if
they interact too much, the cost of merging could be as high as cost
of synthesizing customized plans. Thus this source of efficiency
depends critically upon the task reduction schemas of the domain
being relatively interaction free.

A related issue is the differences between using task reduction
schemas and doing HTN planning vs. using stored plans and fa-
cilitating plan reuse in the context of a partial order planning. To
begin with, macro-operators typically do not have the hierarchical
structure inherent in task reduction schemas. Further, macro opera-
tors and stored plans are always used along with primitive operators.
In contrast, task reduction schemas are typically used in lieu of the
primitive operators.5

Critics, Resources and Time Windows: Several other features,
such as condition typing [27], time-windows [29] and resource based

5Although it is theoretically possible to make reduction schemas
correspond to primitive operators, it is more likely that reduction
schemas in realistic domains correspond to large plan fragments.

reasoning [28, 30] have been claimed to be sources of efficiency
for task reduction planning. Although these ideas originated with
HTN planners, they can also be used effectively in partial order
planning. For example, time windows and resource reasoning aim
to prune partial plans that are infeasible in terms of their temporal
constraints and resource requirements. These can, in principle, be
modeled as monotonic auxiliary constraints. In Section 5.1, we
will discuss how filter conditions can be modeled with the help of
auxiliary constraints.

Another feature of HTN planners that is said to make them more
efficient is the use of ‘‘critics.’’ Within refinement search view of
planning, critics can be modeled as generalized interaction detection
and resolution procedures and/or consistency checks with respect to
specific types of auxiliary constraints. Given that features such as
resources, time windows and critics can be adapted to partial order
planning as well as HTN planning, any argument about the relative
efficiency of HTN planning that depends on these features has to
be justified by the extra leverage, if any, achieved by the reduction
levels in the planner.

4.2 Expressiveness arguments

Another class of advantages often associated with HTN planning
are that of ‘‘expressiveness.’’ We have already discussed one type
of expressiveness -- HTN planning provides the user the ability to
specify arbitrary structural constraints on the acceptable solutions.
The literature also contains claims of expressiveness in terms of
the ability to model a larger class of planning problems and goals
compared to PO planners; I will examine these in this section.

Intermediate Goals: Intermediate goals are useful in describing
planning problems which cannot be defined in terms of the goal state
alone. As an example, consider the goal of making a round trip from
Phoenix to San Francisco. Since the initial and final location of the
agent is Phoenix, this goal cannot be modeled as a goal of attainment,
i.e., a precondition of t1 (unless time is modeled explicitly in the
action representation [25]).

It has been mentioned in the literature (c.f. [6]) that such goals
cannot be be modeled in classical planning without hierarchical
task reduction. This claim needs to be qualified to some extent.
Although much of the work on partial order planning concentrated
on goals of attainment, it does not mean that other types of behavioral
constraints cannot be handled within partial order planning. In most
cases, allowing for a wider variety of goals simply involves starting
with an initial partial plan that has more pre-specified constraints,and
more dummy steps. For example, we can deal with the round trip goal
within partial order planning by adding an additional dummy step
(say tD) to the plan such that tD has a precondition At(Phoenix)
and t1 has a precondition At(SFO), and t0 � tD � t1 .

What is harder is enforcing arbitrary structural restrictions (e.g.
‘‘matching’’ restrictions) on the different parts of the plan. An
example would be enforcing a restriction that the two segments
of the round trip should involve the same mode of transportation.
While even this problem can be modeled and solved within a partial
order planning framework, it cannot be done by merely starting with
a more involved initial plan, and requires changes to the domain.
HTN planners, on the other hand, can allow a more straightforward
way of dealing with such problems by allowing the user to define
a non-primitive task (say Round-Trip(x,y)) and associating
customized reduction schema for that task.

Notice that the discussion in the preceding paragraph shows an
alternative way of interpreting the expressiveness argument-- in
terms of the control afforded to the user over the type of solutions
generated by the planner.
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Looping and Iteration: Another expressiveness claim that is
made in favor of HTN planning is regarding the ability to express
looping and iteration. For example, suppose we want to model
the task of emptying a truck. A natural way of doing this task
is to keep removing one object at a time until the truck becomes
empty. This can be modeled by having a non-primitive task called
Empty-truck, and a reduction method:

Empty-truck ) [ take-out-widget ! Empty-truck].

Although task reduction schemas provide a natural way of modeling
such looping [19], this claim needs to be qualified in two important
aspects: (i) many types of problems involving looping can in fact be
handled by partial order planners such as UCPOP [24] with the help
of quantified goals, and (ii) very few implemented HTN planners
actually are capable of dealing with non-trivial forms of looping.
Elaborating on the first point, the truck example above can be easily
modeled with the help of a quantified ‘‘goal of attainment’’ such
as 8Object(x):In(x; Truck). While UCPOP itself uses the static
universe assumption and splits this goal into a large conjunctive
goal, more recent partial order planners such as XII [9] also provide
the capability to handle quantified effects in non-static universes
(e.g., when the number of objects in the truck changes dynamically
during plan execution). While there could be problems where the
looping cannot be trivially converted into a quantified goal, it is not
clear that any of the existing HTN planners are able to deal with
such problems.

4.3 Applicability to ‘‘realistic problems’’

Perhaps the most controversial class of advantages claimed for
HTN planning have to do with their ability to model ‘‘realistic
problems.’’ Part of the reason for these claims has to do with the
fact that the only large scale applications of domain independent
classical planning have been done in the context of HTN planners.
In [4], Drummond makes the argument that this is not a coincidence
and that the planning task as well as the available knowledge in
most realistic problems are such that they are best modeled in the
HTN planning framework rather than the partial order planning
framework. Specifically, he argues that the planning knowledge
is in the form of relatively independent pre-formed abstract plans,
rather than in the form of individual primitive actions. Further, he
suggests that the planning activity in such domains is closer to plan
merging than precondition establishment.

Our theoretical reconstruction of HTN planning is not particularly
helpful in judging the validity of these claims. Instead their validity
depends on the existence of a large number of ‘‘stabilized’’ domains
where humans have already come up with the right types of relatively
interaction free plan fragments. It is interesting to note McDermott’s
observations (made in the context of his comparison of regression
planners and task reduction planners6) [18]:

‘‘� � � The truth is that [regression] and [reduction]
planners are not competing. The spaces searched by [re-
duction] planners are quite different from those searched
by [regression] ones. A [reduction] planner pastes to-
gether big canned plans, postponing decisions about how
those plans will interact. That approach makes no sense
unless each of the plans is written in a robust way that
will allow it to succeed when other things are happen-
ing. That gives the planner the freedom to ignore most
interactions. In other words, the planner is not avoiding
interactions by means other than search; instead, it is

6Although McDermott used the terms ‘‘linear’’ and ‘‘nonlinear,’’
his ‘‘linear’’ planners correspond to regression planners which use
precondition establishment as the main refinement operation and his
‘‘nonlinear’’ planners correspond to task reduction planners.

presupposing that plans have been written so that fatal
interactions are improbable. This presupposition is false
in the blocks world, where all the difficulties are due to
intricate combinatorics in stringing together tiny pieces
of plan.’’

5 Clarifying features of HTN Planning

One of the important advantages of the representation and candidate
set semantics of the partial plans developed in Section 2 is that it
allows us to put in perspective many of the less-understood features
of HTN planning, including filter conditions [5], abstraction vs. task
reduction [17] and why plans with unresolvable protection conflicts
cannot in general be pruned in HTN planning [31]. I will elaborate
on this in the following three sections.

5.1 PTCs, Filter Conditions and Phantomization

An aspect of HTN planning that has been much misunderstood is
the role of filter conditions (also called reduction assumptions) in
planning. The implementors of HTN planners, including O-Plan
[28] and SIPE [17] swear by them, while some other researchers
have dismissed them as efficiency hacks that lead to incompleteness
in partial order planners.

Filter conditions are the applicability conditions of the operators
that should never be explicitly considered for establishment. Most
previous work has characterized filter conditions as filtering out
particular operators or task-reduction schemas from consideration.
As has been pointed out by Pryor and Collins [5], using filter
conditions this way will lead to loss of completeness.

In my view, the loss of completeness is a ramification of the
erroneous interpretation (and implementation) of filter conditions.
The right way to understand filter conditions is to see them as an
integral part of the agenda to allow the user greater control over
the types of solutions generated by the planner. In particular, filter
conditions enable the domain writer to disallow certain types of
solutions. For example, if the user wants to keep an airport building
plan in the library, but disallow its use in a plan to fly from one city
to another, this can be accomplished by making the existence of the
airport a ‘‘filter condition’’ of the task of taking flight.

Given this understanding of filter conditions, it is fairly straight-
forward to include filter conditions into either of the refinement
planning algorithms. Specifically, in refinement planning, filter
conditions can be modeled as point truth constraints (see Section
2.1) of the form hc; ti with the semantics that the condition c must
be true before t in every solution candidate. Any time an operator
or a task reduction schema is selected, all the filter conditions are
added as PTCs to the auxiliary constraints of the partial plan.

Since PTCs are in general non-monotonic auxiliary constraints,
failure of filter conditions can not be used to prune partial plans.
However, they can be used as a basis for selection heuristics.
Specifically, we can always prefer partial plans which have filter
conditions already established (this is not pruning). In fact, the use
of filters in NONLIN, SIPE and other planners can be seen as a
heuristic that considers all the plans with satisfied filter conditions
first, before considering any plans with unsatisfied filters.

The preceding discussion about modeling filter conditions also
has implications to the phantomization step in HTN planning (see
Section 3). In planners like NONLIN [27], phantomization of
a task t : achieve(c) is accomplished by treating it as a simple
establishment, and finding existing tasks t00 in the plan that can
provide c. When such tasks are found, an IPC ht 00; c; ti is added to
the plan to remember the establishment relation. Since the simple
establishment possibilities depend on the order in which the tasks
are selected for reduction prior to t00, this method will provide
different results for different task selection orders, thus necessitating
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backtracking on task selection order. The approach of adding a PTC,
as done in Refine-Plan-HTN, (see Section 3), obviates this
problem.

The discussion above also shows that filter conditions can not only
be given clean semantics, they can be used whether we are using
partial order or HTN planning paradigm. We also note see that the
main functionality provided by filter conditions, viz., to provide user
control over the type of solutions returned by the planner, is more in
tune with the main functionality of HTN planners.

5.2 Abstraction levels vs. Reduction Levels

Given that task reduction is the main refinement operation of HTN
planning, it is natural to try to attribute levels of ‘‘abstractness’’ to
the various tasks in an HTN plan. Specifically, we can define the
reduction level of a task in an HTN plan as the number of reductions
that were done to introduce that task into the plan. Many of the
ideas about HTN planning have been proposed with the implicit
assumption that the reduction levels do correspond to abstraction
levels. A necessary condition for any such correspondence is that no
primitive task should ever be reduced to itself. It must be noted that
once this restriction is enforced, the task reduction schemata cannot
be used to model looping and iteration (see Section 4.2). Both the
latter require schemata which allow a task to be recursively reduced
to itself.

When there is a correspondence between reduction and abstraction
levels, such a correspondence can be exploited in many ways to
provide pruning power during planning. Consider an instance of
Refine-Plan-HTN, where the task selection step always picks
tasks of a higher level for reduction before it picks tasks of a lower
level (note that this selection strategy is only one among the many
possible selection strategies). For example, suppose a condition C
occurs only as the effect of the set of tasks T 0 � T (where T is
the set of primitive and non-primitive task templates in the domain).
Suppose further that there is a partial ordering among the tasks of
T such that all tasks in T 0 are ordered to come at a higher level
than that of some task t. Consider a situation where the planner is
about to reduce t, and the reduction schema has a filter condition
C . At this point, if C is not currently true in the plan, then we can
safely prune the plan without worrying about loss of completeness.
This can be seen in terms of monotonicity and non-monotonicity of
auxiliary constraints: the existence of a strict hierarchy among tasks
(in terms of which tasks can be reduced by which) helps us turn
a filter condition from a non-monotonic auxiliary constraint into a
monotonic one.

5.3 Admissibility of pruning plans with unresolvable
conflicts

One of the differences introduced by changing step 1.2 in the
Refine-Plan algorithm from establishment to task reduction
refinement (see Figure 3) is that constraints that are normally
monotonic for partial order planners can become non-monotonic.
In particular, IPCs are a form of auxiliary constraints that are
monotonic for partial order planners. (This is because once a plan is
inconsistent with respect to a protection interval, no amount of step
addition, ordering and binding constraints can make it consistent).
However, IPCs can become non-monotonic in the presence of task
reduction refinements. This is illustrated by the example in Figure
5. Specifically, a partial plan that is inconsistent with respect to
its auxiliary constraints might become consistent after further task
reduction. Thus, partial plans with unresolvable conflicts between
their protection constraints cannot be pruned. This phenomenon was
first noticed by Yang [31].

Given our reconstruction of HTN planning in terms of refinement
search, this phenomenon can be explained easily. Since monotonic-
ity of a constraint depends upon the types of refinements allowed by

Figure 5: Example illustrating the non-monotonicity of IPCs when
task reduction refinements are allowed. Although the top plan has
no ground linearizations that are safe with respect to all the IPCs,
the bottom plan, resulting from a reduction of A to A1 ! A2 and
B to B1 ! B2, does have ground linearizations that are safe. The
reason for this is that IPCs incident on and emerging from a single
action are redirected to different actions after reduction (e.g. the
IPCs incident on A are redirected to A1 while those emerging from
from A are redirected to A2).

the planner, it is possible to lose monotonicity when the refinement
is shifted from precondition establishment to task reduction. It is
equally possible to regain monotonicity by placing restrictions on
the refinement operations. Indeed, Yang [31] suggests a restriction
called ‘‘unique main subaction’’ restriction, which effectively redi-
rects all the auxiliary constraints involving a step t to a unique step
t0 in its reduction. With this restriction, IPCs become monotonic for
task reduction refinements.

6 Summary and Conclusions

In this paper, I showed how a generalized algorithm for partial order
planning can be extended to cover HTN planning. I have then
used it to clarify various features of HTN planning, as well as to
critically examine a variety of claims regarding the advantages of
HTN planning. My analysis indicates that the primary advantage of
HTN planners is the flexibility they provide the user in controlling
the types of solutions generated by the planner. I argued that this
flexibility has important ramifications on the efficiency of HTN
planning.

I have also attempted to qualify and/or clarify several other claims
about advantages of HTN planning. To summarize, the sources
of efficiency particular to HTN planning stem from the use of
reduction schemas -- these allow the planner to focus its search
towards solutions that are acceptable to the user. The use of
reduction schemas also allows the planner to shift the focus of the
planner from localized precondition establishment to a more global
plan merging. Other features such as critics, condition typing,
while originating with HTN paradigm, are also applicable to partial
order planners. In terms of refinement search, they can be seen
as specialized consistency checks and tractability refinements. The
main source of expressiveness for HTN planning is the ease with
which user can place arbitrary structural constraints on acceptable
solutions. Other claims about expressiveness -- including the ability
to handle looping, intermediate goals etc. -- need to be qualified as
they can also be handled in partial order planning to some extent.

Finally, I used the refinement search based model of HTN plan-
ning to re-interpret many features of HTN planning including the
filter conditions, phantomization decisions, the relation between
abstraction and reduction levels, and why plans with unresolvable
protection conflicts cannot in general be pruned in HTN planning.

The work reported in this paper is by no means the last word on
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the comparative advantages of the two planning paradigms. In
particular, comparative analysis will need focused empirical studies
to understand which features of HTN planning will be useful in
what types of domains. However, this paper does constitute a first
step towards that latter goal. In particular, the understanding of the
connections between HTN planning and partial order planning will
mean that any insights regarding performance tradeoffs in partial
order planning (e.g. [14, 22]) can be exploited in HTN planning. For
example, the understanding of the effect of tractability refinements
and protection strategies on performance, gained in the context of
partial order planning (see Figure 2) can also be applicable in the
context of HTN planning.
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