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Abstract

Although task reduction (HTN) planning historically pre-
ceded partial order (PO) planning, and is understood to
be more general than the latter, very little analysis has
been done regarding its performance. Part of the reason
for this has been the lack of systematic understanding of
the functionalities provided by HTN planning over and
above that of partial order planning. HTN planning has
been characterized as everything from a panacea for the
problems of partial order planners to a mere ‘‘efficiency
hack’’ on partial order planning. In this paper I will
extend a generalized algorithm for partial order planning,
that I developed recent work, to cover HTN planning.
I will use this as a basis to separate the essential and
inessential differences between HTN and partial order
planning.

1 Introduction

Of late, there has been a lot of interest in understanding the
tradeoffs provided by the different classical planning algo-
rithms, with the objective of forming predictive hypotheses
regarding the fit between particular algorithms and problem
types [12, 15, 14, 16, 1]. One of the ironic things about all these
analyses has been that the planning algorithms they consider,
called partial order (PO) planning algorithms, differ from the
algorithms used in many of the ‘‘industrial strength’’ classical
planners, such as SIPE [17] and O-Plan [26, 25]. These plan-
ners use what is commonly called task-reduction planning or
HTN (Hierarchical Task-network) planning paradigm.

From a historical perspective, the lack of comparative work
on HTN planning algorithms is quite puzzling. After all, the
first big-shift from state-space planning used in STRIPS [10]
was not to partial-order planning, but rather to HTN planning,
as used in NOAH [24]. Indeed, partial order planning, as
it is understood today, is an off-shoot of Chapman’s work
on nonlinear planning [3] (which, ironically enough, was
intended to be a formalization of planners such as NOAH,
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SIPE and NONLIN).1 There are at least two reasons for this
state of affairs:

� There has been very little formalization of HTN planning
algorithms, with the result that for the uninitiated, it is
very difficult to differentiate essential features from
‘‘bells and whistles’’ of HTN planning.

� While the affinity between HTN planning and partial
order planning is well known, there is a lack of sys-
tematic understanding of the essential similarities and
differences between them. While everybody agrees on
what are the syntactic differences between them -- HTN
planners use task reductions and partial order planners
do not -- there is very little agreement on the differences
in functionalityprovided by the two planning paradigms.
Some argue that HTN planners have substantial formal
as well as practical advantages over partial order plan-
ners, while others have taken the position that HTN
planning is an ‘‘efficiency hack.’’

Some preliminary work towards providing independent
formal semantics for HTN planning has already been initiated
by Erol et. al. [6, 7]. The current paper attempts to tackle
these issues by reconstructing HTN planning starting from
partial order planning.

Specifically, in my recent work [12, 15, 14], I have de-
veloped a generalized algorithm for partial order refinement
planning. In this paper, I will extend that algorithm to cover
HTN planners, and use the extended algorithm as a basis to
do a careful analysis of the similarities and differences in
the two planning paradigms. In particular, I will distinguish
three types of possible advantages of HTN planning over PO
planning: Flexibility, Expressiveness and Efficiency. In each
case, I will carefully examine the merits of the arguments in
favor of HTN planning.

My analysis shows that the most important additional func-
tionality offered by the HTN planners over PO planners is
the increased flexibility that HTN paradigm provides for the

1As a historical note, Chapman intended to ‘‘clean’’ up
NOAH/NONLIN, and wound up essentially recasting the Nonlin
Q&A criterion, and losing in the process, the ideas of task reduc-
tions, protection intervals and critics. This version of plan-space
planning, without task reduction, has come to be known as ‘‘partial
order planning’’. Subsequently, Pednault [21] and McAllester [19],
provided simpler formalizations of partial order planning without
recourse to modal truth criteria, and sound and complete planners
based on their formalizations have been implemented.



domain writer in terms of specifying the types of ground op-
erator sequences that are accepted solutions for the problem.
I will show that many of the perceived advantages of HTN
planning over PO planning are related to this particular factor.
I will also clarify the errors in some of the claims of expres-
siveness and efficiency that are attributed to HTN planners
(by showing that those aspects can be easily duplicated in PO
planners).

While parts of this paper are somewhat tutorial in nature,
to the extent it succeeds in clarifying the similarities and
differences between the two planning paradigms, I believe
it will help both in capitalizing on the current comparative
work on partial order planners, as well as in setting up more
rigorous empirical comparisons among HTN planners in the
future.

This paper is organized as follows. The next section,
Section 2, very briefly reviews the preliminaries of classical
planning, presents a generalized algorithm for PO planning,
and extends it to cover HTN planning. This section shows
that seen as refinement planners, the main difference between
HTN planning and PO planning is the primary refinement
they use: PO planners uses establishment refinement, while
HTN planners use task reduction refinement. I will discuss
how task reduction is a generalization of establishment re-
finement. Section 3 shows how the reconstruction of HTN
planning provided in this paper also helps in clarifying several
features of HTN planning such as condition typing, hierarchi-
cal promiscuity, and downward unlinearizability. Using the
generalized planning algorithms as the background, Section
4 critically examines the various types of advantages of HTN
planning. Section 5 summarizes the contributions of this
paper.

2 HTN Planning vs. partial order planning --
the preliminaries

In this section, we will cast partial order planning and HTN
planning within a uniform framework. We will start with
partial order planning, discuss a plan representation and a
generalized refinement planning algorithm. We will then
discuss how the representation as well as the algorithm can be
extended to cover HTN planning. We will start by reviewing
the main objectives of the planning problem. Whatever the
exact nature of the planner (partial order, state-space or HTN),
the ultimate aim of (classical) planning is to find a ground
operator sequence, which when executed in the given initial
state, will produce desired behaviors or sequences of world
states. In particular, a given ground operator sequence is
said to strips-solve a planning problem, if the ground
operator sequence can be executed from the initial state of the
planningproblem, and the sequence of states resulting from its
execution satisfy all the goals of the planning problem. Most
classical planning techniques have traditionally concentrated
on the sub-class of behavioral constraints called the goals
of attainment [11], which essentially constrain the agent’s
attention to behaviors that end in world states satisfying
desired properties.

2.1 Partial order planning

Partial order planners search in the space of partial plans.2

Partial plans are best seen as implicit representations for sets of
ground operator sequences (potential solutions) [12, 15, 14].
In particular, a partial plan corresponds to a set of ground
operator sequences that are consistent with the ordering,
binding and auxiliary constraints on the plan. The operation
of a refinement planner can be seen as that of repeatedly
splitting the candidate sets of the partial plan until a solution
candidate can be picked up from the candidate set in a bounded
time.

The following 5-tuple provides a uniform representation
for partial plans that is applicable across all plan space
planners: hT;O;B;ST ;Li where: T is the set of actions
(step-names) in the plan; T contains two distinguished step
names tI and tG. ST is a symbol table, which maps step
names to domain operators. The special step tI is always
mapped to the dummy operator start, and similarly tG
is always mapped to finish. The effects of start and
the preconditions of finish correspond, respectively, to
the initial state and the desired goals (of attainment) of the
planning problem. O is a partial ordering relation over T .
B is a set of codesignation (binding) and non-codesignation
(prohibited bindings) constraints on the variables appearing
in the preconditions and post-conditions of the operators. L
is a set of auxiliary constraints that restrict the allowable
orderings and bindings among the steps. An example of
auxiliary constraint is the protection intervals, and contributor
protection constraints used in many partial order planning
algorithms.

Auxiliary constraints can be divided into two classes,
monotonic constraints (or candidate constraints), and non-
monotonic (or solutionconstraints). An auxiliary constraint is
called monotonic if and only if once it is violated by a partial
plan, no additional refinement of the partial plan will make it
satisfy the constraint. A constraint is called non-monotonic if
it is not monotonic.3 Examples of monotonic constraints are
the protection constraints employed by many planners (such
as contributor protection and interval protection).

From a search point of view, monotonic constraints are
interesting because of the pruning power they provide. In par-
ticular, any partial plan none of whose ground linearizations
satisfy a monotonic constraint can be directly pruned from
search. Solution constraints cannot be used for pruning, but
can be used as a basis for selection heuristics. For example,
the planner can give preference to partial plans that satisfy
solution constraints already, over those that do not yet satisfy
them.

A partial plan is said to be consistent if at least one
of its ground linearizations is consistent with respect to
all the auxiliary constraints. A ground linearization that is
consistent with all auxiliary constraints is called a safe ground
linearization. A plan is said to be consistent with respect to
an auxiliary constraint c if at least one ground linearization
of the plan satisfies the constraint.

2For a more formal development of the refinement search se-
mantics of partial plans, see [15, 12]

3The reason why we call the former candidate constraints and the
latter solution constraints is that monotonic constraints must hold
for every candidate of the plan, while solution constraints need only
hold for the solution candidates.



Algorithm Refine-Plan-PO(P) /*Returns refinements of P */
Parameters: sol: the routine for checking termina-
tion pick-open: the routine for picking open conditions.
pre-order: the routine which adds orderings to the plan to
make conflict resolution tractable. conflict-resolve:the
routine which resolves conflicts with auxiliary constraints.

0. Termination Check If sol(P) returns a solution, return it and
terminate.

1. Goal Selection: Using the pick-open function, pick an open
goal hC; si (where C is a precondition of node s) from P to
work on. Not a backtrack point.

2.1. Goal Establishment: Non-deterministically select a new or
existing establisher step s0 for hC; si. Introduce enough
constraints into the plan such that (i) s0 will have an effect
C , and (ii) C will persist until s. Backtrack point; all
establishers need to be considered.

2.2. Book Keeping: (Optional) Add auxiliary constraints noting
the establishment decisions, to ensure that these decisions
are not violated by latter refinements. This in turn reduces
the redundancy in the search space. The auxiliary constraints
may be one of goal protection, causal link protection or
exhaustive causal link protection.

3. Tractability Refinements: (Optional) These refinements help
in making the plan handling and consistency check tractable.
Use either one or both:

3.a. Pre-Ordering: Use some given static ordering mech-
anism, pre-order, to impose additional orderings
between steps of the partial plans generated by the
establishment refinement. Backtrack point; all interac-
tion orderings need to be considered.

3.b. Conflict Resolution: Add orderings and bindings to re-
solve conflicts between the steps of the plan, and the
plan’s auxiliary constraints. Backtrack point; all possi-
ble conflict resolution constraints need to considered.

4. Consistency Check: (Optional) If the partial plan is inconsis-
tent (i.e., has no safe ground linearizations), prune it.

5. Recursive Invocation: Call Refine-Plan-PO on the the
refined partial plan (if it is not pruned).

Figure 1: A generalized algorithm for partial-order planning

2.1.1 Refinements in Partial Order Planning
The algorithm in Figure 1 provides a general outline for

partial order planning algorithms. The primary refinement
operation in partial order planning is the establishment opera-
tion -- pick a goal hC; siwhere s is a step of the plan and C is
a condition that needs to be true before s, and consider all pos-
sible ways of establishing it. Once a goal is established, many
partial order planners add an auxiliary (book-keeping) con-
straints remembering the specific establishment decision. For
most existing planners, these constraints can be expressed in
terms of interval preservation constraints of the form hs; p; s0i
with the semantics that the constraint is satisfied by a ground
linearization of the plan as long as every step s00 that comes
between s and s0 preserves p. Finally, the consistency check
checks to see if the partial plan is consistent with respect to
all of its constraints (in particular, whether it has at least one
ground linearization that satisfies all the auxiliary constraints).

Some planners that use book-keeping refinements also use
what are called tractability refinements, to ensure that the
partial plans continue to obey all the auxiliary constraints. In

particular, the use of tractability refinements has the effect
of pushing the complexity from the consistency check into
the search space. Whether or not this improves the overall
performance of the planner depends to a large extent on the
way solutions in the candidate set of the partial plan get split
by tractability refinements [15, 14].

2.2 HTN Planning
The partial plan representations used in HTN planning are
similar to partial order planning with one important exception.
Specifically, an HTN plan can be represented as a 5-tuple
hT;O;B;ST ;Li, with the exception that the steps in T are
mapped to two types of actions (also called tasks): primitive
actions which correspond to the usual actions in the PO
planning, and non-primitive (abstract) actions. A necessary
condition for the executability of a plan is that all steps be
mapped to primitive tasks.

A generic algorithm for HTN planning is shown in Figure 2.
Unlike the partial order planners, where the main refinement
operation is the establishment operation, the main refinement
operation in HTN planning is what is known as a ‘‘task
reduction.’’ This involves choosing a non-primitive task
(say t 2 T ), and generating refinements corresponding to all
possible ways of reducing t.

The reduction involves replacing a non-primitive task with
a partial plan. The domain specification includes the legal
ways of reducing individual non-primitive tasks. Suppose the
task t in plan hT;O;B; ;Li is being reduced with the help of
a reduction method

t ) P0 : hT 0; O0;B0;ST 0;L0i:

(Notice that the plan fragment specified by the reduction
method not only contains steps and ordering,but also auxiliary
constraints, such as those corresponding to the protection
intervals recommended in the reduction schema).

The resulting refinement is computed by removing t from
P, and substituting P 0 in its place, giving rise to a refined
plan:

PR :

*
fT � t [ T 0g; f(O� Ot) [O0 [Omg;

fB [ B0 [ B0mg; fST [ ST 0g;
f(L� Lt) [ L0g

+

Notice that in replacing t with its reduction, we need to
redirect any constraints that explicitly name t, to steps in its
reduction. Thus, if Ot are the set of ordering constraints on P
involving t, then they are removed, and a set of new constraints
Om are added in their place, such that the Om contains
orderings between steps of P and P0. Similar redirection is
also done for auxiliary constraints involving t. While HTN
planning paradigm does not in general put any restrictions
on how this redirection needs to be achieved, we will see in
Section 3.1 that some properties of the planner (such as the
ability to prune plans that are inconsistent with respect to the
protection constraints, without losing completeness) depend
on specific types of merging strategies (c.f. [29]).

A special type of non-primitive tasks are the so called
achievement tasks (t : achieve(c)), which aim to make con-
dition c true. The reduction of achievement tasks corresponds
to the establishment refinement in PO planners. Achievement
tasks can either be reduced with the help of appropriate task
reduction schema (as done for other types of tasks), or can
be handled by phantomization. In the latter case, the effects



Algorithm Refine-Plan-Htn(P) /*Returns refinements of P */
Parameters: sol: the routine for checking termination
pick-task: the routine for picking non-primitive tasks for re-
duction pre-order: the routine which adds orderings to the plan
to make conflict resolution tractable. conflict-resolve:the
routine which resolves conflicts with auxiliary constraints.

0. Termination Check If sol(P) returns a solution, return it and
terminate.

1. Task Selection: Using the pick-task function, pick an
unreduced task t 2 T from P to work on. Not a back-
track point.

2.1. Task Reduction: Non-deterministically select a reduction
schema S : P 0 for reducing t. Replace t in P with P 0

(This involves removing t from P , merging the step, bind-
ing, ordering, symbol table and auxiliary constraints fields of
P 0 with those of P , and modifying the ordering and auxiliary
constraints in P which refer to t so that they refer to elements
of P 0.
(If t is a task of type achieve(C), then one way of reducing
t is to establish C with the help of some existing step in the
plan; see Refine Plan). Introduce enough constraints into the
plan such that (i) s0 will have an effect C , and (ii) C will
persist until s.
Backtrack point; all reduction possibilities need to be con-
sidered.

2.2. Book Keeping: (Optional) Add auxiliary constraints noting
the establishment decisions, to ensure that these decisions
are not violated by latter refinements. This in turn reduces
the redundancy in the search space. The auxiliary constraints
may be one of goal protection, causal link protection or
exhaustive causal link protection.

3. Tractability Refinements: (Optional) These refinements help
in making the plan handling and consistency check tractable.
Use either one or both:

3.a. Pre-Ordering: Use some given static ordering mech-
anism, pre-order, to impose additional orderings
between steps of the partial plans generated by the
establishment refinement. Backtrack point; all interac-
tion orderings need to be considered.

3.b. Conflict Resolution: Add orderings and bindings to re-
solve conflicts between the steps of the plan, and the
plan’s auxiliary constraints. Backtrack point; all possi-
ble conflict resolution constraints need to considered.

4. Consistency Check: (Optional) If the partial plan is inconsis-
tent (i.e., has no safe ground linearizations), prune it.

5. Recursive Invocation: Call Refine-Plan-HTN on the the
refined partial plan (if it is not pruned).

Figure 2: A generalized algorithm for HTN planning

of a step t0 in the plan are used to establish c at t (and an
appropriate book-keeping constraint is added to the plan), and
the type of t is replaced with a dummy ‘‘No op’’ primitive
task.

Note that except for the establishment step (and the change
from goal selection to task selection in Step 1), the algorithms
for PO and HTN planners are remarkably similar. It is
interesting to note that many of the features of HTN planners,
such as critics, condition typing can be accommodated without
any major changes to Refine-Plan-HTN. In particular,
critics can be accommodated as tractability refinements (step
3), while condition typing can be accommodated through the

auxiliary constraints mechanism (see Section 3).

3 Clarifying some features of implemented
HTN Planners

One of the important advantages of the representation and
candidate set semantics of the partial plans developed in
Section 2 is that it allows us to put in perspective many
of the features of HTN planning, including filter conditions
[5], abstraction vs. task reduction [17] and downward-
unlinearizability [29].

In particular, a proper understanding of auxiliary con-
straints clarifies several misconceptions about the HTN plan-
ning. We will start by recalling the following points about
auxiliary constraints: The auxiliary constraints give pruning
only when they are monotonic (but can be used as selection
heuristics if they are non-monotonic). Whether or not an
auxiliary constraint is monotonic depends on the type of re-
finements done by the planner (see the definition in Section
2.1). Finally, we can change the nature of a constraint from
a monotonic to non-monotonic one by restricting the type of
refinements, or constraining the type of domain theory. We
can use this understanding to clarify several issues in HTN
planning.

3.1 Downward Unlinearizability
One of the differences introduced by changing Step 2.1 from
establishment to task reduction refinement is that constraints
that are normally monotonic for partial order planners can
become non-monotonic. In particular, protection intervals are
a form of auxiliary constraints that are monotonic for partial
order planners. (This is because once a plan is inconsistent
with respect to a protection interval, no amount of step addi-
tion, ordering and binding constraints can make it consistent).
However, protection intervals can become non-monotonic in
the presence of task reduction refinements. Specifically, a
partial plan that is inconsistent with respect to its auxiliary
constraints might become consistent after further task reduc-
tion. Thus, inconsistency with respect to protection intervals
cannot be used to prune partial plans. Yang [29] noticed this
phenomenon first, and developed certain restrictions on the
way auxiliary constraints are redirected during task reduction
(Section 2.2)4, under which the plans inconsistent with re-
spect to protection intervals can be pruned without loss of
completeness.

In terms of our reconstruction of HTN planning, this
phenomenon can be explained easily. Since monotonicity of
a constraint depends upon the types of refinements allowed by
the planner, it is possible to lose monotonicitywhen additional
refinement operations are added to the planner. It is equally
possible to regain monotonicity by placing restrictions on the
refinement operations.

3.2 Filter Conditions/Reduction Assumptions
One of the aspects of HTN planning, that have been much
misunderstood is the role of Filter conditions/Reduction as-
sumptions in planning. The writers of HTN planners, includ-
ing Oplan [26] and SIPE [17] swear by them, while some

4Yang [29] phrases his restrictions in terms of the types of the
reduction schemata allowed in the domain. It can however be recast
in terms of restriction on the way protection intervals are redirected
during task reduction



other researchers have dismissed them as efficiency hacks
that lead to incompleteness in partial order planners.

Filter conditions are the applicability conditions of the
operators that should never be explicitly considered for estab-
lishment. Filter conditions thus provide a way for the domain
writer to disallow certain types of solutions (e.g., building an
airport in a city for the express purpose of going from there
to another city) even if they satisfy the standard definition of
plan solutions.5

Given this understanding of filter conditions, it is fairly
straight forward to include filter conditions into either of the
refinement planning algorithms. Specifically, in refinement
planning, filter conditions should be seen as point truth
constraints that need to hold in every solution candidate. In
particular, they can be modeled as point truth constraints of
the form hc@si with the semantics that the condition c must
be true before s. Any time an operator or a task reduction
schema is selected, all the filter conditions are added as point
protections to the auxiliary constraints of the partial plan.

Most previous work has characterized filter conditions as
filtering out particular operators or task-reduction schemas
from consideration. Unless the auxiliary constraints repre-
senting filter conditions are monotonic, this type of pruning
can lead to loss of completeness. Some researchers (c.f. [5])
have suggested that unless filter conditions are used to prune,
they do not affect the efficiency of planner in any way.

In my view, the primary functionality of filters is not to
improve efficiency, but to enable the user to disallow certain
types of solutions. Secondly, while filter conditions can not
be used to prune partial plans, they can be used as a basis for
selection heuristics. Specifically, we can always prefer partial
plans which have filter conditions already established (this is
not pruning). In fact, the use of filters in NONLIN, SIPE and
other planners can be seen as a heuristic that considers all the
plans with satisfied filter conditions first, before considering
any plans with unsatisfied filters.6

The discussion above also shows that filter conditions can
not only be given clean semantics, they can be used whether
or not we are using partial order or HTN planning paradigm.
Later in the paper (Section 4.1), we will see that the main
functionality provided by filter conditions, viz., to provide
user control over the type of solutions returned by the planner,

5Notice, once again, the similarity between filter conditions and
the control over solutions provided by HTN planning; see Section
4.1.

6In fact, even Pryor and Collins[5] do use filter condition satis-
faction as part of the ranking metric in one of their experiments, and
find that it substantially improves the performance of a partial order
planner. Pryor and Collins also argue that the functionality of filter
conditions can be achieved through use of conditional effects and
secondary preconditions. As the foregoing discussion shows, this
statement is incorrect. Secondary preconditions can not be used to
replace filter conditions. The semantics of secondary preconditions
allow explicit subgoaling on these preconditions (for example, to
make a step with a conditional effect ‘‘If P then C’’ establish a
condition C , we may subgoal on the secondary precondition P . In
contrast, one is never allowed to achieve filter conditions. Thus
if the same operator had a filter condition P and an effect C , we
cannot subgoal on P to establish C . Any solution in which P does
not hold will be disallowed. While it may be true that some planners
mistakenly used filters to get the functionality of context dependent
effects, in general, secondary preconditions and filters have very
different semantics.

is more in tune with the main functionality of HTN planners.

3.3 Abstraction levels vs. Reduction Levels

Given that task reduction is the main refinement operation
of HTN planning, it is natural to try to attribute levels
of ‘‘abstractness’’ to the various tasks in an HTN plan.
Specifically, reduction level of a task in an HTN plan is the
number of reductions that were done to introduce that task
into the plan. From the beginning, one of the questions about
HTN planning has been whether or not the reduction levels
correspond to abstraction levels. Many of the ideas about HTN
planning have been proposed with the implicit assumption
that the reduction levels do correspond to abstraction levels.

A necessary condition for any such correspondence is that
no primitive task should ever be reduced to itself. It must be
noted that once this restriction is enforced, the task reduction
schemata cannot be used to model looping and iteration (see
Section 4.2). Both require schemata which allow a task to be
recursively reduced to itself.7

When there is is a correspondence between reduction and
abstraction levels, such a correspondence can be exploited
in many ways to provide pruning power during planning.
Suppose that the task selection step always picks tasks of a
higher level for expansion before it picks tasks of a lower
level (note that this selection strategy is only one among the
many possible selection strategies). For example, suppose
a condition C occurs only as the effect of the set of tasks
T 0 � T (where T is the set of primitiveand non-primitive task
templates in the domain). Suppose there is a partial ordering
among the tasks of T such that all tasks in T 0 are ordered to
come at a higher level than that of some task t. Now suppose
the planner is about to reduce t, and the reduction schema has
a filter condition C. At this point, if C is not currently true in
the plan, then we can safely prune the plan without worrying
about loss of completeness. Once again, this can be seen
in terms of monotonicity and non-monotonicity of auxiliary
constraints: the existence of strict hierarchy among tasks (in
terms of which tasks can be reduced which) has helped us
turn a non-monotonic constraint into a monotonic one.

4 Examination of the advantages of HTN
Planning

Given the many similarities between the partial ordering
and HTN planning paradigms, the next question I would
like to address is regarding the specific advantages (such as
additional functionalities provided) of HTN planners over
PO planners. In the past, many different claims have been
made in this regard. I will separate the claims regarding
the advantages of HTN planning into three categories and
critically examine them in turn:

Flexibility: Claims regarding how HTN planning methodol-
ogy provides more flexibility to the user in modeling the
planning domain and problem.

Expressiveness: Claims that HTN planners can handle a
larger class of goals and problems than PO planning.

Efficiency: Claims that HTN planers are more ‘‘efficient’’
in plan generation than PO planners.

7Erol et. al. [7] show that when there is a strict level associated
with the tasks in the domain, then HTN planning is decidable.



4.1 Flexibility Arguments

HTN planning has been considered to be more ‘‘user-
flexible’’ and user-friendly than partial order planning. The
arguments about flexibility are to some extent subjective and
have never been stated formally. In this section, I will sep-
arate and discuss one type of flexibility, that I think is a
major advantage of HTN planning. It is the flexibility they
provide the users and domain-writers to delineate the types
of solutions that they want the planner to produce.

To elaborate, note that the definition of solutions in terms
ofstrips-solve in (see Section 2) means that any ground
operator sequence that is executable and satisfies the goals of
the problem is a valid solution. Unfortunatelyhowever, not all
such solutions are reasonable. In realistic domains, the users
may have strong preferences about the types of solutions they
are willing to accept. Consider the following two examples:

Example 1. A travel domain, where the user wants to
eliminate travel plans that involve building an airport to take
a flight out of the city (or alternately, stealing money to buy
a ticket).

Example 2. A process planning domain with the task of
making a hole, where there are two types of drilling oper-
ations, D1 and D2 and two types of hole-positioning oper-
ations H1 and H2. A hole can be made by selecting one
hole-positioning and one hole-drilling operation. The user
wants only those hole-making plans that pair D1 with H1 or
D2 with H2.

In both the examples, the user is not satisfied with every
plan that satisfies the goals, but only a restricted subset of
them. Handling such restrictions in partial order planning
would involve either attempting to change the domain speci-
fication (drop operators, or change their preconditions); or im-
plement complex post-processing filters to remove unwanted
solutions. While the second solution is often impractical, the
first one can be too restrictive. For example, one way of
handling the travel example above is to restrict the domain
such that the ‘‘airport building’’ action is not available to the
planner. This is too restrictive since the there may be other
‘‘legitimate’’ uses of airport building operations that the user
may want the planner to consider.

HTN planning provides the user a more general and flexi-
ble way of exercising control over solutions. In particular, by
allowing non-primitive tasks, and controlling their reduction
through user-specified task-reduction schemas, HTN plan-
ning allows the user to control the access of the planner to the
actions in the domain.8

Another way of looking at the above is in terms of the
solution languages defined by HTN and PO planners. The
solution language of partial order planners is a regular lan-
guage, while HTN planners also allow higher order solution
languages (such as context free languages). In particular, sup-
pose the domain contains two actions a1 and a2. The solution
plans produced by the partial order planners can be described
by a regular language (such as fa1ja2g�), while that of HTN

8In [4], Drummond makes a similar point, suggesting that task-
reduction schemas allow the user to not only specify what skeleton
plan is used to achieve a goal, but also to specify a priori what causal
dependencies must hold in the plan fragment. He observes that this
shifts the focus from precondition establishment to plan merging.

planners can be described by a context free language (such as
a1na2n).9

The fact that HTN planners allow the user to put restrictions
on the types of solutions returned by the planner also has some
fundamental ramifications on the notions of completeness of
the planner. We know that the completeness of a partial order
planner can be determined given the actions. In particular,
given a planning problem in the domain, if there is any
ground operator (action) sequence that can strips-solve
the problem, then a complete partial order planner must be
able to find a solution for it.

In the case of HTN planners, the fact that there exists a
ground operator sequence that strips-solves the prob-
lem does not necessarily mean that a complete planner must
find it as a solution. In particular, unless there is a sequence
of reductions of the goals tasks that results in that ground
operator sequence, the HTN planner will not find it. Thus,
the completeness of an HTN planner has to be defined with
respect to both the domain actions, as well as the set of
non-primitive tasks and the task reduction schemas (this is
what Erol et. al. [8] do).

4.2 Expressiveness arguments

An important class of advantages often associated with HTN
planning are that of ‘‘expressiveness’’, or the ability to model
a larger class of planning problems compared to PO planners.
While for the most part these comments have been made
informally (e.g., in conference panels), some of them have
also appeared in the literature (e.g. [6]). In this section, I will
examine the expressiveness arguments.

Intermediate Goals: Intermediate goals are useful to de-
scribe planning problems which cannot be defined in terms
of the goal state alone. As an example, consider the goal of
making a round trip from Phoenix to San Francisco. Since
the initial and final location of the agent is Phoenix, this goal
cannot be modeled as a goal of attainment, i.e., a precondi-
tion of t1 (unless time is modeled explicitly in the action
representation [23]).

It has been mentioned in the literature (c.f. [6]) that such
goals cannot be be modeled in classical planning without
hierarchical task reduction. To some extent, this claim is
erroneous and needs to be qualified. Although much of
the work on partial order planning concentrated on goals of
attainment, it does not mean that other types of behavioral
constraints cannot be handled withing partial order planning.
In most cases, allowing for a wider variety of goals simply
involves starting with an initial partial plan P; that has
more pre-specified constraints, and more dummy steps. For
example, we can deal with the round trip goal within partial
order planning by adding an additional dummy step (say tD)
to the plan such that tD has a precondition At(Phoenix) and
t1 has a precondition At(SFO), and t0 � tD � t1.

What is harder is enforcing ‘‘matching’’ restrictions on
the different parts of the plan. For example, enforcing a
restriction that the two segments of the round trip should

9To my knowledge, the analogy between HTN task reduction
schemas and operators in partial order planning on the one hand,
and regular languages and Context Free Grammars on the other is
first made by Erol [7]. However, Erol seems to use the analogy to
explain the complexity of HTN planning, rather than to explain the
types of functionalities it provides).



involve the same mode of transportation. While even this
problem can be modeled and solved within a partial order
planning framework, it cannot be done by merely starting
with a more involved initial plan, and requires changes to
the domain. HTN planners, on the other hand, can allow
a more straightforward way of dealing with such problems
by allowing the user to define a non-primitive task (say
Round-Trip(x,y)) and associating customized reduction
schema for that task.

Notice that the discussion in the preceding paragraph
shows an alternative way of interpreting the expressiveness
argument-- it is not that HTN planners are able to deal with
more expressive goals, but that they allow the users more
control over the kinds of solutions they are willing to accept
(see Section 4.1).

Looping and Iteration: Another expressiveness claim that
is made in favor of HTN planning is regarding the ability
to express looping and iteration. From the very beginning
[18], it has been noted that task reduction schemata provide
a natural way to model looping. For example, suppose we
want to model the task of emptying a truck. A natural way
of doing this task is to keep removing one object at a time
until the truck becomes empty. This can be done by having
a non-primitive task called Empty-truck, and a reduction
method:

Empty-truck

) [take� out� widget! Empty� truck]:

The problem with these arguments is two fold: (i) many
types of problems involving looping can in fact be handled
by partial order planners such as UCPOP [22] with the
help of quantified goals, and (ii) very few implemented HTN
planners actually are capable of dealing with non-trivial forms
of looping. Elaborating on the first point, the truck example
above can be easily modeled with the help of a quantified
‘‘goal of attainment’’ such as 8Object(x):In(x; T ruck).
While UCPOP itself uses static universe assumption and splits
this goal into a large conjunctive goal, more recent partial
order planners such as XII [9] also provide the capability to
handle quantified effects in non-static universes (e.g., when
the number of objects in the truck changes dynamically during
plan execution).

While there could be problems where the looping cannot
be trivially converted into a quantified goal, it is not clear
that any of the existing planners are able to deal with such
problems.10

4.3 Efficiency Arguments
Another class of advantages claimed for HTN planning deal
with efficiency in plan generation. To some extent, the
very fact that HTN planning allows the users more control
over specifying the types of solutions they want, also has
ramifications on efficiency. After all, if the user did not want
a travel plan that involves stealing money to buy a ticket, any
effort the planner spends in refining such a plan is wasted.

Another source of efficiency for HTN planning is the fact
that reduction schemas typically encode large plan fragments

10In fact, many existing HTN planners attempt to map reduction
levels and abstraction levels. We already noted (see Section 3.3)
that recursive schemas that are needed to model looping will make
it harder to enforce such a mapping.

that are relatively stable. This obviates all the search needed
to construct the plan fragment in the first place (as is done by
a first-principles based partial order planner).11

It may be argued that this particular efficiency can be
achieved within the partial order planing framework through
techniques such as macro-operators. Although the use of
canned plans in HTN planning is reminiscent of the macro-
operator type techniques for improving planning perfomance,
there are some important differences. To begin with, macro
operators typically do not have the hierarchical structure
inherent in task reduction schemas. Further, macro operators
are always used along with primitive operators. Thus the
macro-operators tend to increase the branching factor of the
search, reduce solution depth, but leave the completeness
(with respect to primitive operators) unaffected.

On the other hand, task reduction schemas are typically
used in lieu of the primitive operators.12 Thus, the branching
factor does not necessarily increase in the presence of task
reduction schemas. Thus, while the depth can reduce and
branching factor does not necessarily increase. Of course,
the completeness with respect to primitive operators is lost.
However, as we discussed earlier, this should be seen as a
feature rather than a bug, in that reduction schemas provide
the user the flexibility to prune specific classes of plans.13

Several other features, such as condition typing [25], time-
windows [27] and resource based reasoning [26, 28] have
been claimed to be sources of efficiency for task reduction
planning. efficiency in HTN planning. Although these
ideas originated with HTN planners, they can also be used
effectively in partial order planning. For example, time
windows and resource reasoning aim to prune partial plans
that are infeasible in terms of their temporal constraints and
resource requirements. These can, in principle, be modeled
in terms of monotonic auxiliary constraints. We have already
discussed how filter conditions can be modeled with the help
of auxiliary constraints.

Another feature of HTN planners that is said to make them
more efficient is the use of ‘‘critics.’’ Critics are generalized
interaction detection and resolution procedures. The operation
of most of the ‘‘critics’’ used in the implemented planners can
be formalized as doing tractability refinements with respect
to specific types of auxiliary constraints.

Given that features such as resources, time windows and
critics can be adapted to partial order planning as well as HTN
planning, any argument about the relative efficiency of HTN
planning that depends on these features has to be justified by
the extra leverage, if any, achieved by the reduction levels in

11Of course, there is still the search involved in dealing with
interactions that arise in merging the different plan fragments.

12Although it is theoretically possible to make reduction schemas
correspond to primitive operators, it is more likely that reduction
schemas in realistic domains correspond to large plan fragments.

13Barrett and Weld [2] provide an interesting alternative approach
for exploiting the efficiency aspect of task reduction schemas. They
use HTN schemas to do incremental bottom-up parsing of the partial
plans generated by a partial-order planner (UCPOP [22]), and prune
any plans which do not have any parse. An interesting open question
is to what extent the functionality of HTN planning can be achieved
through a partial order planner augmented with a schema-parser.
Clearly, the solution control aspect of HTN planning can be handled
through schema parsing to some extent. However, it is not clear how
schema parsing will be able exploit the features of HTN planning
that depend on the levels of detail in the plan.



the planner.

5 Summary

In this paper, I showed how a generalized algorithm for PO
planning can be extended to cover HTN planning. I have
then used it to clarify the various features of HTN planning,
as well as critically examine a variety of claims regarding
the advantages of HTN planning. My analysis indicates that
the primary advantage of HTN planners is the flexibility they
provide the user in controllingthe types of solutionsgenerated
by the planner. I observed that this flexibility can also have
ramifications on the efficiency. I have also attempted to
qualify and/or clarify several other claims about advantages
of HTN planning.

The work reported in this paper is by no means the last
word on the comparative advantages of the two planning
paradigms. In particular, comparative analysis will need
focused empirical studies to understand which features of
HTN planning will be useful in what types of domains.
However, I believe this does constitute a first step towards
that goal. In particular, the understanding of the connections
between HTN planning and partial order planning will mean
that any insights regarding performance tradeoffs in partial
order planning (e.g. [14, 20]) can be exploited in HTN
planning. It could also help us in formulating focused
empirical studies to understand the tradeoffs provided by the
various features of HTN planners.
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