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ABSTRACT

Incompleteness due to missing attribute values (aka “null values”) is very common in

autonomous web databases, on which user accesses are usually supported through mediators.

Traditional query processing techniques that focus on the strict soundness of answer tuples

often ignore tuples with critical missing attributes, even if they wind up being relevant to

the user query. Ideally, the mediator is expected to retrieve such relevant uncertain answers

and gauge their relevance by accessing their likelihood of being relevant answers to the

query. The autonomous nature of the databases poses several challenges in realizing this

idea. Such challenges include restricted access privileges, limited query patterns and cost

sensitivity of database and network resource consumption in web environment. This thesis

presents QPIAD – a framework for query processing over incomplete autonomous databases.

QPIAD is able to retrieve relevant uncertain answers with high precision, high recall and

manageable cost. Data integration over multiple autonomous data sources is an important

task performed by a mediator. This thesis describes query rewriting techniques to perform

data integration over multiple incomplete autonomous data sources on the web. Results of

experimental evaluation on real-life databases demonstrate that our system retrieve relevant

answers with high precision and manageable cost.

iii



To my parents

iv



ACKNOWLEDGMENTS

I would be restating the obvious when I say Prof. Subbarao Kambhampati is a great

advisor. I consider myself truly fortunate to have him as my advisor and would like to

thank him sincerely for the opportunity to work under his guidance. I am deeply grateful

to him for showing immense patience during the long and frustrating phase of research

problem identification and the change of my research area from Automated Planning to

Database/Information Integration. He has not only helped me in the development of ideas

and solutions but also in careful presentation of them. I am also thankful to his constructive

criticism on various drafts of research papers which helped me improve my writing skills.

I would also like to thank Prof. Yi Chen for helping me tremendously in making

steady progress in my thesis work. I benefited significantly from her counsel and guidance

in many important situations. I enjoyed the rewarding experience of having worked closely

with her on interesting problems. I would also like to thank other members of my committee

Prof. Chitta Baral and Prof. Huan Liu for providing helpful comments.

My special thanks to Jianchun Fan for being a great friend and collaborator. I

will always remember the discussions we had on research problems during the database

meetings. I would like to thank other member of DB-Yochan group Ullas Nambiar, Bhaumik

Chokshi and Garrett Wolf for their valuable comments and support in my research. I also

acknowledge all the AI Lab members who volunteered to take part in the user study and

helped me find enough users to make the user study possible.

Last, but not the least, I thank my parents for motivating me constantly in my life

and encouraging me to strive for higher goals in life.

v



TABLE OF CONTENTS

Page

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

CHAPTER 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1. Query Processing over Incomplete Autonomous Databases . . . . . . . . . . 3

1.2. Data Integration over Incomplete Autonomous Databases . . . . . . . . . . 5

1.3. Thesis Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4. Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

CHAPTER 2 CHALLENGES IN HANDLING INCOMPLETENESS OVER AU-

TONOMOUS DATABASES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

CHAPTER 3 QPIAD QUERY PROCESSING OVER INCOMPLETE AU-

TONOMOUS DATABASES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1. Preliminaries and Overview of Solution . . . . . . . . . . . . . . . . . . . . . 13

3.2. Retrieving Relevant Incomplete Information . . . . . . . . . . . . . . . . . . 17

3.2.1. Retrieving Relevant Uncertain Answers from Local Databases . . . . 18

3.2.2. Retrieving Relevant Uncertain Answers from Autonomous Databases 20

3.2.3. Algorithm for RRUA Approach . . . . . . . . . . . . . . . . . . . . . 23

3.3. Learning Attribute Correlations and Value Probability Distributions . . . . 26

3.3.1. Learning Attribute Correlations by Mining Approximate Functional

Dependencies(AFDs) . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3.2. Learning Value Distributions using Classifiers . . . . . . . . . . . . . 28

3.3.3. Combining AFDs and Classifiers . . . . . . . . . . . . . . . . . . . . 29

vi



Page

3.3.4. Learning Value Distributions Online from Base Result Set . . . . . . 31

3.4. Empirical Evaluation for QPIAD . . . . . . . . . . . . . . . . . . . . . . . . 33

3.4.1. Implementation and User Interface . . . . . . . . . . . . . . . . . . . 33

3.4.2. Experimental Aims & Settings . . . . . . . . . . . . . . . . . . . . . 34

3.4.3. Accuracy of Classifiers . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.4.4. Comparing RRUA with AUA and RUA . . . . . . . . . . . . . . . . 38

3.4.5. Effect of Confidence Threshold on Precision . . . . . . . . . . . . . . 42

3.4.6. Ranking the Rewritten Queries . . . . . . . . . . . . . . . . . . . . . 43

3.4.7. Robustness of the RRUA Approach . . . . . . . . . . . . . . . . . . 44

3.4.8. Comparison of RRUA with O-RRUA . . . . . . . . . . . . . . . . . . 46

CHAPTER 4 DATA INTEGRATION OVER INCOMPLETE AUTONOMOUS

DATABASES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.1. Leveraging Correlations among Data Sources . . . . . . . . . . . . . . . . . 48

4.1.1. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.1.2. Retrieving Relevant Answers from Data Sources Not Supporting the

Query Attribute . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.1.3. Empirical Evaluation of using Correlation Between Data Sources . . 52

4.2. Handling Joins over Incomplete Databases . . . . . . . . . . . . . . . . . . . 54

4.2.1. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2.2. Issues in Handling Joins over Incomplete Databases . . . . . . . . . 56

4.2.3. Joins over Incomplete Databases . . . . . . . . . . . . . . . . . . . . 57

4.2.4. Empirical Evaluation of Joins over Incomplete Databases . . . . . . 60

vii



Page

CHAPTER 5 RELATED WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

CHAPTER 6 DISCUSSION AND FUTURE WORK . . . . . . . . . . . . . . . . . 66

6.1. Handling General Queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6.2. Supporting Imprecise Queries over Incomplete Autonomous Databases . . . 67

CHAPTER 7 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

viii



LIST OF TABLES

Table Page

1. Statistics on missing values in web databases . . . . . . . . . . . . . . . . . 3

2. Fragment of a Car Database . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3. Fragment of a Car Database . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4. Domain size of attributes in the Cars database . . . . . . . . . . . . . . . . 35

5. Domain size of attributes in the Census database . . . . . . . . . . . . . . . 35

6. AFDs mined for the Cars database . . . . . . . . . . . . . . . . . . . . . . . 36

7. Comparison of null value prediction accuracy across different AFD-enhanced

classifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

8. Test queries on the global schema on body style attribute . . . . . . . . . . 53

9. Fragment of a Car Database . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

ix



LIST OF FIGURES

Figure Page

1. Global schema and local schema of data sources . . . . . . . . . . . . . . . . 6

2. QPIAD System architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3. Comparison of prediction accuracy across AFD-enhanced NBC classifier and

bayes network classifier over different samples sizes of the Car database. . . 37

4. Precision-Recall curves for σbody style=convt(Cars). . . . . . . . . . . . . . . . 39

5. Precision-Recall curves for σeducation=bachelors(Census). . . . . . . . . . . . . 39

6. Precision curves for σbody style=convt(Cars). . . . . . . . . . . . . . . . . . . 41

7. Precision curves for σeducation=bachelors(Census). . . . . . . . . . . . . . . . 41

8. Average Precision for various confidence thresholds(Cars). . . . . . . . . . . 42

9. Accumulated precision curve for 30 test queries on Car database. . . . . . . 43

10. Accumulated precision curve for 30 test queries on Census database. . . . . 44

11. Accumulated precision curve for σbody style=convt with different sample sizes

on Car database. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

12. Accumulated precision curve for σworkshop=private with different sample sizes

on Census database. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

13. Comparison of accumulated precision across RRUA and O−RRUA over 40

test queries on the Car database . . . . . . . . . . . . . . . . . . . . . . . . 46

14. Comparison of accumulated precision across RRUA and O−RRUA zoomed

over the top 10 rewritten queries . . . . . . . . . . . . . . . . . . . . . . . . 47

15. Global schema and local schema of data sources . . . . . . . . . . . . . . . . 49

16. Precision curve for top K tuples retrieved from Yahoo! Autos using AFDs

learned from Cars.om . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

x



Figure Page

17. Precision curve for top K tuples retrieved from CarsDirect using AFDs

learned from Cars.com . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

18. Autonomous sources S1(Cars) and S2(Review) . . . . . . . . . . . . . . . . 55

19. Mediator view over sources S1 and S2 . . . . . . . . . . . . . . . . . . . . . 55

20. Precision-Recall curve for the query σmodel=Civic on global schema R . . . . 61

21. Precision-Recall curve for the query σmake=Audi on global schema R . . . . 62

22. Precision-Recall curve for the query σRating=4 on global schema R . . . . . 62

xi



CHAPTER 1

INTRODUCTION

With the advent of Web, information has been made more readily and easily available

from a variety of data sources. For example, there are large number of web databases

containing used cars or houses available for sale[7, 41, 34, 18, 3]. Data sources on the

Web, unlike local relational databases, are evolving in an autonomous manner. Most web

data sources provide a form based interface which allows a user to query the database and

retrieve results matching the query constrained attributes they provided. Such databases

on which the query processor only has read-only access without any capability to write or

modify the databases are called as autonomous databases.

Data integration in autonomous web database scenarios has drawn much attention in

recent years, as more and more data becomes accessible via web servers which are supported

by back-end databases. A mediator provides a unified query interface as a global schema

of the underlying databases. Queries on the global schema are then rewritten as queries

over autonomous databases through their web interfaces. Current mediator systems [25, 22]

return to user only certain answers that exactly satisfy all the user query predicates. Tuples

that are otherwise highly relevant for the query will not be retrieved if they have null values

on any of the query predicates. For example, in a used car trading application, if a user asks

for convertible cars, all the returned answers must have the value “convt” for the attribute
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body style. Even though all Z4’s are convertible, a BMW Z4 car which has a null value in

its body style will not be returned. Unfortunately, such an approach is both inflexible and

inadequate for querying many autonomous web databases many of which are inherently

incomplete for the following reasons:

Incomplete Entry: Web databases are often input by lay individuals without any central

curation. For example, websites such as Cars.com and Yahoo! Autos, obtain car informa-

tion from individual car owners who may not provide complete information for their cars,

resulting in a lot of missing values (aka “null” values) in the databases. In the example

above, the owner of the BMW Z4 may have skipped filling the body style attribute as-

suming that it is obvious (just as the owner of an Accord may skip entering the make to

be Honda). As a result, this car won’t be retrieved by current mediators for queries on

“body style=convt”.1

Extraction Inaccuracy: Many web databases are being populated using automated in-

formation extraction techniques. As a result of the inherent imperfection of the extraction,

these web databases may contain missing values.

Schema Heterogeneity: The global schema provided by a mediator may often contain

attributes that do not appear in some local schemas. For example, a global schema for used

car trading may have an attribute called body style, which is supported in Cars.com, but

not in Yahoo! Autos. Given a query on the global schema that selects cars having body style

equal to “convertible”, approaches that only return certain answers won’t be able to return

car information from Yahoo! Autos.

Table 1 shows statistics on the percentage of incomplete tuples on two autonomous

1This type of incompleteness is expected to increase even more with services such as GoogleBase which
provide users significant freedom in deciding which attributes to define and/or list.
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Website # of Total Incomplete Body Engine

Attributes tuples tuples style

www.AutoTrader.com 13 25127 33.67% 3.6% 8.1%
www.CarsDirect.com 14 32564 98.74% 55.7% 55.8%

Table 1. Statistics on missing values in web databases

ID Make Model Year Body style

1 Audi A4 2001 convt

2 BMW Z4 2002 convt

3 Porsche Boxster 2005 convt

4 BMW Z4 2003 null

5 Honda Civic 2004 null

6 Toyota Camry 2002 sedan

Table 2. Fragment of a Car Database

web databases. The statistics were computed from a probed sample. The table also gives

statistics on the percentage of missing values for the body style and engine attributes.

These statistics show that incompleteness can indeed creep into online databases.

1.1. Query Processing over Incomplete Autonomous Databases

When faced with such incomplete web databases, current mediators provide only

certain answers thereby sacrificing recall. This is particularly problematic when the data

sources have a significant fraction of incomplete tuples, and/or the user requires high recall

(consider, for example, a law-enforcement scenario, where a potential crime suspect goes

unidentified because of information that is fortuitously missing in the database).

A näıve approach for improving the recall would be to return, in addition to all

the certain answers, all the tuples with missing values on the constrained attribute(s). For

example, consider a selection query Q′ for cars having body style=convt on a fragment of

a Car database as shown in Table 2. For the above query Q′, a mediator could return

not only the tuples t1, t2, t3 whose body style values are “convt” but also the tuples t4

and t5 whose body style values are missing(null). This approach of returning all uncertain
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answers referred to as AUA has two obvious drawbacks. First, it is infeasible to retrieve

all tuples with nulls in some cases, as web databases usually do not allow the mediator to

directly retrieve tuples with null values on specific attributes. Second, and perhaps more

important, many tuples with missing values on constrained attributes are irrelevant to the

query. Intuitively, not all the tuples that have a null in the attribute body style represent

convertible cars! The AUA approach thus improves recall but suffers from low precision

and high cost.

Our Approach: In this thesis, we focus on query processing techniques for incomplete

autonomous databases, that not only return certain answers but also return, in a ranked

fashion, tuples that have missing values and yet are highly relevant to queries. The goal of

our query processing framework QPIAD2 is to return query answers with good precision,

recall and manageable cost.

Our approach starts by adapting standard techniques to predict missing values.

Given techniques to predict values for null, one obvious way of exploiting them would be to

store the predicted values in databases and then process queries on them directly. Indeed

this is advocated by some existing research efforts [21, 26, 31, 37]. Unfortunately, such

an approach is not appropriate for querying incomplete autonomous web databases. Since

a mediator usually does not have update capabilities over the autonomous databases, it

cannot directly replace the null values.

A more plausible solution is to first retrieve all the tuples with nulls on constrained

attributes, predict missing values for them, and then decide relevant query answer set.

However, this approach may be inappropriate as discussed before due to limited query

access pattern of web databases and high network transmission costs.

2QPIAD is an acronym for Query(Q) Processing(P) over Incomplete(I) Autonomous(A) Databases(D)
pronounced as kyōopēǎd′.
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To handle this challenge, we propose online query rewriting techniques that not only

retrieve certain answers to a query, but also highly relevant answers that have nulls on

constrained attributes. These latter answers, termed as relevant uncertain answers, are

retrieved without modifying the underlying data sources. When a query is submitted, the

mediator first retrieves all the certain answers for the given user query. Then based on the

certain answers and a set of mined attribute correlation rules, the mediator forms a group of

rewritten queries to be sent to the data sources. The rewritten queries are then ranked based

on their likelihood of bringing back relevant answers before being posed to the data sources.

Using missing value prediction techniques in the context of such query rewriting approach

poses some unique challenges such as how to generate and rank the rewritten queries.

To handle these, we present a missing value prediction strategy that uses Approximate

Functional Dependencies(AFDs) and Näıve Bayesian Classifiers(NBC). In the car database

example, this analysis may allow QPIAD to identify that model determines body style and

the fact that Z4 cars in the database often seem to be convertibles. QPIAD then rewrites the

query on body style=convt into additional selection queries such as model=Z4 to retrieve

relevant uncertain tuples such as t4.

1.2. Data Integration over Incomplete Autonomous Databases

Data integration over autonomous web databases is an important task performed by

mediators in web scenarios. In such scenarios, the mediator provides a global view over the

local schema of underlying data sources.

The mediator supports queries on attributes in the global schema which are often

not supported in the local schema of some individual data sources. For example, consider a

global schema GSUsedCars supported by the mediator over the sources Cars.com[7] and Ya-
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hoo! Autos[41] as shown in Figure 1. Since the form based interface of Yahoo! Autos doesn’t

support queries on body style attribute, the mediator cannot directly query the database

in order to retrieve cars having a specific body style. Given a query Q:σbody style=coupe on

global schema that selects cars of body style “coupe”, approaches that only return certain

answers won’t be able to return car information from Yahoo! Autos. Hence many relevant

cars from Yahoo! Autos wouldn’t be shown to the user. In order to retrieve ranked rele-

Mediator GSUsedCars(Make,Model, Y ear, Price,Mileage, Location,Body style)

Cars.com LSAutotrader(Make,Model, Y ear, Price, Mileage, Location,Body style)

Yahoo! Autos LSCars(Make,Model, Y ear, Price, Mileage, Location)

Figure 1. Global schema and local schema of data sources

vant uncertain tuples from such data sources, we use query rewriting techniques based on

attribute correlations and value distributions learned from other data sources supporting

the query attribute in their local schema.

Many queries issued on the global schema of the mediator may require performing

joins over individual data sources. For example, consider two data sources having local

schema as S1(Make,Model, Y ear) and S2(Model,Ratings) and global schema provided

by the mediator as GS(Make,Model, Y ear,Ratings). Consider a user query asking for all

cars made by Honda along with their ratings. If both sources S1 and S2 are complete, then

the mediator would first retrieve all tuples having make=Honda from source S1. Then it

would retrieve tuples from source S2 corresponding to the models of the tuples returned

from source S1. Finally, it would combine the tuples from the two sources using the join

attribute model and return the results to the users. If the sources are incomplete, then

above approach is not able to retrieve join results for car tuples having missing make in

source S1 but still might be relevant to the user query. Also, if the join attribute model

is missing for some tuples having make=Honda in source S1, the mediator cannot join
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that tuple with a ratings tuple from source S2. We present query rewriting techniques to

perform joins over incomplete autonomous databases in order to present ranked uncertain

join results for the user query.

1.3. Thesis Contributions

This thesis presents a framework for query processing over incomplete autonomous

web databases under a variety of circumstances. The major contributions of this thesis are

as follows:

• To the best of our knowledge, our framework is the first that retrieves relevant but

uncertain answers with missing values on constrained attributes without modifying

the underlying databases. Consequently, it is suitable for querying incomplete au-

tonomous databases. The idea of using attribute correlations and predicted value

distributions on missing values to rewrite queries is also a novel contribution of our

work. Our experimental evaluations show that our system retrieves the most relevant

information with highly manageable query evaluation cost.

• We also propose techniques to leverage correlations between data sources to retrieve

relevant uncertain answers from data sources not supporting the query attributes. We

also propose techniques to perform joins over incomplete autonomous databases.

1.4. Outline

The rest of the thesis is organized as follows. In the next chapter, we describe the

challenges involved in supporting query processing under imprecision and incompleteness

over autonomous web databases. In Chapter 3, we describe our query rewriting and value
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distribution learning techniques which are needed in order to support query processing

over incomplete autonomous databases. In Chapter 4, we describe data integration over

incomplete sources by supporting join queries over incomplete sources and by leveraging

correlation among data sources to answer queries on attributes which are not supported by

the local data source schema. Chapter 5 discusses the related work on handling incomplete-

ness in databases. In Chapter 6, we present a discussion and describe future work. Finally,

we conclude the thesis in Chapter 7.



CHAPTER 2

CHALLENGES IN HANDLING INCOMPLETENESS

OVER AUTONOMOUS DATABASES

In this chapter we describe the challenges involved in query processing under impre-

cision and incompleteness over autonomous web databases.

Consider a precise user query1 Q′:σbody style=convt on the fragment of an online Car

database shown in Table 3. Current query processing techniques only retrieve tuples that

exactly satisfy the user query Q′. Using these techniques, only tuples t1,t2, and t3 would be

retrieved based on the user query. However, it is quite possible that the entities represented

by incomplete tuples t4 may indeed be convertible cars. Current query processing techniques

fail to retrieve such tuples as a possible answer to the user query. We propose a query

processor capable of retrieving such possibly relevant tuples and ranking them in the order

1A precise query is the one in which the user knows exactly what he is looking for.

ID Make Model Year Body style

1 Audi A4 2001 convt

2 BMW Z4 2002 convt

3 Porsche Boxster 2005 convt

4 BMW Z4 2003 null

5 Honda Civic 2004 null

6 Toyota Camry 2002 sedan

Table 3. Fragment of a Car Database
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of their likelihood of being a relevant answer to the user query.

There are several challenges involved in supporting query processing over an incom-

plete autonomous database:

1. We need to develop techniques for predicting null values for autonomous databases.

This becomes more complicated in autonomous databases, as the mediator doesn’t

have access to the entire database and cannot write the predicted value back to the

database.

2. Since the mediator does not have access to the entire autonomous database, it has

to use a sample of the entire database for predicting missing values. The techniques

for predicting missing values have to be robust so that they can be applied for tuples

not present in the sample. In other words, using only attribute value correlations

from the tuples in the sample would not be effective for predicting missing values for

autonomous database.

3. Most autonomous databases do not support binding for null values in their web in-

terfaces. Hence, we need to develop query rewriting techniques in order to retrieve

tuples containing null values which might be relevant to a given user query.

4. The mediator has to employ appropriate learning techniques based on the sample

database in order to effectively predict null values for possible relevant tuples corre-

sponding to a query. In order to improve the classification accuracy, the mediator

can use certain results(without any null values) retrieved during query time to predict

missing values for other tuples containing null values.

5. In order to present ranked results to a user query, we need to develop techniques for

ranking tuples containing missing values in terms of their relevance to the user query.



11

Specifically, we need to develop appropriate ranking criteria as well as techniques to

assign ranks to tuples containing null values.

6. In order to achieve our goal of returning tuples with good precision, recall and manage-

able cost, the techniques developed should have high prediction accuracy and should

minimize network traffic while retrieving possible relevant tuples containing null val-

ues.

7. Since the query processor presents tuples that do not correspond to exact answers to

user query, it needs to provide explanations and justifications to gain the user’s trust.

In addition to the above mentioned challenges, when it comes to supporting query

processing over multiple incomplete autonomous databases, we need to address the following

issues:

1. For data aggregation across multiple incomplete autonomous databases, the global

schema may contain certain attributes which may not be supported by the local

schema of some databases. When the query involves an attribute which is not

supported by a data source, we need to retrieve ranked relevant results from such

databases in addition to certain answers from other databases.

2. Because the mediator doesn’t have access over the entire database, supporting joins

over multiple heterogenous incomplete databases becomes particularly challenging.

As the mediator doesn’t have access over entire database, we need to develop query

rewriting techniques to retrieve relevant tuples containing missing values from one

database and then join them with relevant tuples containing missing values from

another database.
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3. Learning on a sample in order to predict null values can be done for each database at

a local schema level or can be done at the global schema level by the mediator.

In the following chapters, we describe how our query processing framework addresses

these challenges.



CHAPTER 3

QPIAD QUERY PROCESSING OVER INCOMPLETE

AUTONOMOUS DATABASES

In this chapter1, we describe our techniques for supporting query processing over

incomplete autonomous databases. We describe QPIAD – our framework for mediator

query processing over incomplete autonomous databases.

3.1. Preliminaries and Overview of Solution

Our goal is to retrieve ranked relevant uncertain answers along with certain answers

for selection queries on incomplete autonomous databases.

We will start with formal definitions of certain answers and uncertain answers with

respect to selection queries.

Definition 1 (Complete/Incomplete Tuples) Let R(A1, A2, · · · , An) be a database re-

lation. A tuple t ∈ R is said to be complete if it has non-null values for each of the attributes

Ai; otherwise it is considered incomplete. A complete tuple t is considered to belong to the

set of completions of an incomplete tuple t̂ (denoted C(t̂)), if t and t̂ agree on all the non-null

attribute values.

1The material presented in this chapter is based on the ideas developed by the author with Jianchun Fan.
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The notion of completions brings forth the connection between incompleteness and

uncertainty: an incomplete tuple can thus be seen as a disjunction of its possible comple-

tions. We go a step further and view the incomplete tuple as a probability distribution over

its completions. The distribution can be interpreted as giving a quantitative estimate of

the probability that the incomplete tuple corresponds to a specific completion in the real

world.

Now consider a selection query Q:σAm=vm (1 ≤ m ≤ n) over R.

Definition 2 (Certain/Uncertain Answers) A tuple t is said to be a certain answer

for the query Q:σAm=vm if t.Am=vm. t is said to be an uncertain answer for Q where

t.Am=null (where t.Am is the value of attribute Am in t).

Notice that in the definition above, t can be either a complete or incomplete tuple. An

incomplete tuple can be a certain answer to the query, if its incompleteness is not on the

attribute being selected by the query.
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Figure 2. QPIAD System architecture.

Since we view the incomplete tuple as a probability distribution over its completions,
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it is possible for us to quantify the degree to which an uncertain answer is actually relevant

to a query Q.

Definition 3 (Degree of Relevance) The degree of relevance of a tuple t to the query

Q:σAm=vm is defined to be the probability P (t.Am=vm).

Figure 2 shows our system architecture. In this framework, a user accesses au-

tonomous databases through a mediator. When a user submits a query to the mediator,

the query reformulator first directs the query to the autonomous databases and retrieves the

set of all certain answers (called the base result set). In order to retrieve relevant uncertain

answers, the mediator needs to issue additional queries taking into account the limited ac-

cess patterns of the autonomous databases. We propose online query rewriting techniques

to generate new queries based on the original query, the base result set, and a set of rules

learned from a database sample. The goal of these new queries is to return an extended

result set, which consists of highly relevant uncertain answers to the original query. Since

these new queries are not all equally good in terms of retrieving relevant uncertain answers,

they are ranked before being posed to the databases.

For example, consider a user query Q:σmake=Honda(cars), the mediator returns the

following certain answers that satisfy the query predicates:

Make Model Year Color ...

Honda Accord 1999 red · · ·

Honda Civic 2000 cactus · · ·

Honda Accord 2001 silver · · ·

· · · · · · · · · · · · · · ·

From the table above, it is intuitive that if we generate a new query to retrieve

tuples from the database having model=Accord, we are likely to get cars made by Honda,
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including those having missing value on the make attribute. We capture this intuition by

mining attribute correlations from the data itself. One obvious type of attribute correlations

is “functional dependencies”. For example, the functional dependency model → make often

holds in automobile data records. Given such a dependency, we can see that among all the

tuples with missing make values, the ones with model value “Accord” (or other car models

made by Honda) are very likely to be query answers and thus should be returned. There

are two problems in adapting the method directly based on functional dependencies: (i)

often there are not enough strong functional dependencies in the data and (ii) autonomous

databases are unlikely to advertise the functional dependencies. The answer to both these

problems involves learning approximate functional dependencies from a (probed) sample of

the database.

Definition 4 (Approximate Functional Dependency) X  A over relation R is an

approximate functional dependency(AFD) if it holds on all but a small fraction of the tuples.

The set of attributes X is called the determining set of A denoted by dtrSet(A).

For example, an AFD model  body style indicates that the value of a car’s model attribute

sometimes (but not always) determines the value of body style attribute. Note that AFDs

can also describe distributional properties of the attribute values without explicit semantic

significance. For example, AFD (model, color) year suggests that statistically some year

value is more common than others for a given (model, color) value pair.

While AFDs can help us rewrite a given query to retrieve uncertain answers, we

still need a mechanism for ranking the rewritten queries as not all rewritten queries

produce equally relevant uncertain answers. We can rank the rewritten queries if we

have access to distribution of values for the missing attribute. For example, consider

an AFD model  body style and the original user query σbody style=convt(Cars) asking
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for all convertible(convt) cars in the database. In this case, the two rewritten queries

Q1:σmodel=Mustang and Q2:σmodel=Z4 are generated to retrieve tuples that have null val-

ues on the attribute body style but are likely to be relevant to the query. If we know

P (body style=convt | model=Mustang)=0.4 and P (body style=convt | model=Z4)=0.9,

then we can estimate that query Q2 is likely to retrieve uncertain answers that are more

relevant than those of Q1. This type of relevance ranking is beneficial in mediated query

processing over autonomous databases. When database or network resources are limited,

the mediator can send only the most relevant rewritten queries to the autonomous databases

and sacrifice least amount of relevant uncertain answers. It also allows the query processing

procedure to adapt to different users’ preferences in terms of precision and recall of the

uncertain answers.

The correlations between attributes and value distributions are exploited in query

rewriting to retrieve highly relevant uncertain answers. We reduce the problem of acquir-

ing such value distributions to learning classifiers based on a sample of the autonomous

database. We develop an AFD-enhanced Näıve Bayesian classifier learning method(where

AFD plays a feature selection role for the classification task).

Our system mines AFDs and learns value distributions on a small portion of data

from the autonomous database. The sampling module collects the sample data from the au-

tonomous database, and the knowledge mining module learns AFDs and the AFD-enhanced

classifiers from these samples.

3.2. Retrieving Relevant Incomplete Information

In this section we first introduce how to retrieve relevant uncertain answers from

incomplete local databases, over which we have full control. We then discuss the limitations
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of these approaches in the context of autonomous databases. Finally, we will present a novel

query rewriting technique that overcomes these limitations.

To evaluate the effectiveness of methods for retrieving relevant uncertain answers

from incomplete databases, we use precision and recall as the measurements. Precision is

defined as the ratio of the number of relevant tuples retrieved to the total number of tuples

retrieved; and recall is defined as the ratio of the number of relevant tuples retrieved to the

total number of relevant tuples in the database.

3.2.1. Retrieving Relevant Uncertain Answers from Local Databases.

Typically, missing values in relational databases are interpreted in two typical ways. The

first approach treats missing values as a special value, “null”, which is not equal to any con-

crete value . In this case, evaluating a selection query with attributes bound to a concrete

value does not return the tuples with null on the constrained attributes. For example, a

selection query on a Car database σbody style=convt(Cars), retrieves all tuples having convt

in the body style attribute. This approach gives answers with 100% precision but low re-

call, since all the relevant uncertain answers are ignored. We call this approach as returning

certain answers only (CAO).

Alternatively, a null value can be interpreted as a universal value, i.e. the system

assumes that without further information, a null possibly matches any concrete value. In

this case, evaluating a selection query returns not only all the certain answers but also all

the uncertain answers that have nulls on the constrained attributes. For example, for the

same selection query as above σbody style=convt(Cars), it returns the results of the extended

query σbody style=convt ∨ body style=null. This approach gives answers with 100% recall but low

precision, since not all uncertain answers are relevant. We call this approach as returning
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all uncertain answers(AUA).

When traditional relational databases evaluate selection queries, each tuple is con-

sidered as either a correct answer or an incorrect answer. In traditional databases, there is

no gray area and thus no uncertain answers will be shown to the user. Naturally, when it

comes to incomplete databases, such systems implicitly use the CAO approach. As shown in

the example above, such systems can support the AUA approach by extending the selection

predicates of the queries with a null value binding, such as body style=null.

We propose an approach that returns relevant uncertain answers(RUA) by inter-

preting missing values according to the inherent correlations among attributes and values.

With a better estimation of missing values, this approach improves precision significantly

when compared with AUA. In Section 3.3, we will present an AFD-enhanced classifier to

explore the correlations among attributes and values. In this section, we focus on how to

leverage the mined correlations to retrieve relevant uncertain answers.

We begin by retrieving all the certain and uncertain answers, as in AUA. The certain

answers are then presented directly to the users as sound answers. Then for each uncertain

answer, we apply the classification techniques (see Section 3.3) to assess its likelihood of

being a relevant answer to the query.

Specifically, let R(A1, A2, · · · , An) be a database relation, and query Q:σAm=vm (1 ≤

m ≤ n) a selection query over R. Suppose t̂ is an uncertain answer returned by AUA,

with a null value on attribute Am. Suppose we have an AFD dtrSet(Am)  Am, where

dtrSet(Am), the determining set of Am is a set of attributes that determines Am. In

Section 3.3, we will discuss how to mine and choose AFDs in detail. Let t̂(dtrSet(Am)) be

the projection of tuple t̂ on the determining set. For tuple t̂, our AFD-enhanced classifiers

give the value probability distribution P (Am=vm | t̂(dtrSet(Am))), which captures the
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likelihood of t̂ being relevant to the query. Such probability is computed for each uncertain

answer as its ranking score. RUA only returns the most relevant uncertain answers whose

ranks are above a given threshold. These results are returned to the user following the set

of certain answers.

Our experiments (see Section 3.4) show that RUA approach significantly improves

the precision of the relevant uncertain answers that are returned when compared to AUA.

3.2.2. Retrieving Relevant Uncertain Answers from Autonomous

Databases. Retrieving relevant uncertain answers is more challenging when it comes to

autonomous web databases when compared to local databases. First, web databases usually

do not support arbitrary selection query patterns as local databases do. For example, a

website rarely allows users to submit queries such as “list all the cars that have a missing

value for body style attribute”. Therefore the mediator may not be able to directly retrieve

uncertain answers, thus AUA and RUA approaches are not applicable in this scenario. Sec-

ond, even if the web databases allow null value binding, AUA and RUA approaches tend to

return too many irrelevant uncertain answers. In the sample query σbody style=convt(Cars),

both AUA and RUA retrieve all the tuples with missing body style values, most of which

may not be “convt” at all. Although RUA ranks uncertain answers and only returns the

most relevant ones, significant database and network resources are wasted while processing

and transmitting the irrelevant ones. Thus in a web environment, such approaches are not

desirable.

To address the two challenges above, intuitively we would like to issue queries in an

intelligent way, so that the query patterns are more likely to be supported by web databases,

and only the most relevant uncertain answers are sent back to the mediator in the first place.
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Query Rewriting: The goal of our query rewriting is to generate a set of rewritten

queries to retrieve relevant uncertain answers. Let’s consider the same user query Q′ asking

for all convertible cars. We use the fragment of Car database shown in Table 2 to explain

our approach. First, we issue the query Q′ to the autonomous database to retrieve all the

certain answers which correspond to tuples t1, t2 and t3 from Table 2. These certain answers

form the base result set of Q′.

Make Model Year Body style

Audi A4 2001 convt

BMW Z4 2002 convt

Porsche Boxster 2005 convt

In this table, we only show the make, model, year and body style attributes

since body style is the constrained attribute in the query and suppose we have an AFD

model  body style. Consider the first tuple t1=〈Audi,A4, 2001, convt〉 in the base result

set. If there is a tuple ti in the database with the same value for model as t1 but missing

value for body style, then ti.body style is likely to be convt according to the AFD. There-

fore we consider ti as a relevant uncertain answer to the query Q′ and to retrieve ti from

the database (which does not support null value binding), the mediator can issue another

query Q1:σmodel=A4. Similarly, we can issue queries Q2:σmodel=Z4 and Q3:σmodel=Boxster

to retrieve other relevant uncertain answers. Note that the generated queries will return

highly relevant uncertain answers, such as t4 from Table 2, as well as a few tuples whose

body style value is neither convt nor null, as the AFD only holds approximately. Therefore,

we would like to filter out those tuples from the answers which will be discussed in more

detail later.

As illustrated above, this approach restricts the retrieval of uncertain answers to just
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the relevant tuples, it is named as returning restricted relevant uncertain answers (RRUA).

RRUA follows a two-step approach. First, the original query is sent to the database to

retrieve the certain answers which are then returned to the user. Next, a group of rewritten

queries are sent to the database to retrieve the relevant uncertain answers, which have the

same values as some certain answers on the determining attribute sets of the constrained

attribute according to AFDs.

RRUA approach has two advantages. First, it can be used to query autonomous

databases which do not support null value binding. Second, RRUA is much more efficient as

it only retrieves relevant uncertain answers rather than all uncertain answers thus requiring

fewer tuples to be retrieved and transmitted when compared with AUA and RUA.

Ranking Rewritten Queries: In the query rewriting step of RRUA, we generate new

queries according to the distinct value combination on the determining set of the con-

strained attribute in the base result set. However, these queries may not be equally good

in terms of retrieving relevant uncertain answers. In the example above, based on three

certain answers to the user query Q′:σbody style=convt(Cars), we generate three new queries:

Q1:σmodel=A4, Q2:σmodel=Z4 and Q3: σmodel=Boxster. Although all three queries retrieve

uncertain answers that are likely to be more relevant to Q′ than a random tuple with

missing body style value, they may not be equally good. For example, based on the value

distribution in the sample database, we may find that a Z4 model car is more likely to

be a convertible than a car with A4 model. As will be discussed in Section 3.3.2, we build

AFD-enhanced classifiers which give the probability values P (body style=convt|model=A4),

P (body style=convt|model=Z4) and P (body style=convt|model=Boxster). Using these

probability values, we rank the rewritten queries according to the relevance of their ex-

pected query results.
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Ranking rewritten queries according to their answers’ expected degrees of relevance

brings forth two very appealing characteristics of the RRUA approach.

1. When database or network resources are limited, the mediator can choose the most

relevant queries to be sent to the database (bringing in the most relevant answers) and

sacrifice the least amount of relevant answers. This allows the mediator to retrieve

relevant uncertain answers with highly manageable cost. For a given cost limit (defined

in terms of the number of queries to be sent to a database, and correspondingly the

number of answer tuples returned), RRUA is able to maximize the precision.

2. This adjustable mechanism allows the mediator to adapt to different users’ preferences

on precision and recall. For users who care more about the relevance or precision of the

results, the mediator can send only the top ranked rewritten queries. For those who

are more interested in recall, the mediator can send a larger portion of the rewritten

queries and retrieve more relevant uncertain answers.

3.2.3. Algorithm for RRUA Approach. Algorithm 1 shows the details of the

RRUA approach. Let R(A1, A2, · · · , An) be a database relation, and dtrSet(Am) be the

determining set of an attribute Am (1 ≤ m ≤ n), according to the best selected AFD (to be

discussed in Section 3.3.3). RRUA processes a given selection query Q : σAm=vm according

to the following two steps.

1. Send Q to the database and retrieve the base result set RS(Q) as the certain answers

of Q. Return RS(Q) to the user.

2. Generate a set of new queries, rank them, and send the most relevant ones to the

database to retrieve the extended result set R̂S(Q) as relevant uncertain answers of
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Algorithm 1 Rewriting queries to retrieve relevant uncertain answers from autonomous
database

Require: R(A1, A2, · · · , An): database relation; Am: attribute of R, (1 ≤ m ≤ n); Q :
σAm=vm : selection query over R;

1: send Q to the database
2: let RS(Q)= base result set returned for Q
3: show RS(Q) to the user
4: for all ti ∈ πdtrSet(Am)(RS(Q)) do
5: selection predicate spQi

= ∅
6: for all Aj ∈ dtrSet(Am) do
7: spQi

= spQi
+ “ ∧ Aj = ti(Aj)”

8: Qi = “σspQi
”

9: PQi
= P (Am = vm|ti)

10: rank {Qi|ti ∈ πdtrSet(Am)(RS(Q))} according to PQi

11: pick top K queries
(1 ≤ K ≤ ||πdtrSet(Am)(RS(Q))||)

12: let extended result set R̂S(Q) = ∅
13: for all Qi ∈ top K queries do
14: send Qi to the database and retrieve result set RS(Qi)

15: append RS(Qi) to R̂S(Q)

16: for all t̂r ∈ R̂S(Q) do
17: if t̂r ∈ RS(Q) or t̂r(Am) 6= vm then

18: R̂S(Q) = R̂S(Q) − {tr}

19: show R̂S(Q) to the user

Q. This step contains the following tasks.

(a) Generate rewritten queries. Let πdtrSet(Am)(RS(Q)) be the projection of RS(Q)

onto dtrSet(Am). For each tuple ti in πdtrSet(Am)(RS(Q)), create a selection

query Qi in the following way. For each attribute Aj in dtrSet(Am), create

a selection predicate Aj=ti(Aj). The selection predicates of Qi consist of the

conjunction of all these predicates.

(b) Rank rewritten queries. Compute the conditional probability of

PQi
=P (Am=vm|ti) for each Qi. Rank all Qis according to their PQi

val-

ues.

(c) Retrieve extended result set. Pick the top K queries {Q1, Q2, · · · , QK} and issue
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them in the order of their ranks. Their result sets RS(Q1), RS(Q2), · · · , RS(QK)

compose the extended result set R̂S(Q). The results in R̂S(Q) are ranked ac-

cording to the ranks of the corresponding queries, i.e. the results in RS(Q1) are

ranked higher than those in RS(Q2), and so on.2

(d) Post-filtering. Remove from R̂S(Q) the tuples with Am 6= null. Return the

remaining tuples in R̂S(Q) as the relevant uncertain answers of Q.

For each relevant uncertain answer t̂r, the mediator can optionally return its rele-

vance confidence, P (t̂r(Am)=vm | t̂r(dtrSet(Am))). This allows the users to further filter

the answers according to their own preferences on precision and recall.

Multi-attribute Selection Queries: Although we described the above algorithm in the

context of single attribute selection queries, it is easy to see that this algorithm can be

adapted to support multi-attribute selection queries by adding extra selection predicates.

These selection predicates correspond to the user query constrained values except the at-

tribute for which we are retrieving a relevant uncertain tuple having a null value. They are

added while generating the rewritten queries in Step 2(a).

As discussed earlier, web databases usually support limited types of query patterns.

In the case where null value binding is supported by the database (thus AUA, RUA and

RRUA approaches are all applicable), RRUA approach can take advantage of the null

value binding to avoid retrieving undesirable tuples. In the query rewriting step, each of

the rewritten queries can have an extra selection predicate (Am=null) in conjunction with

other predicates. In this case, the post-filtering step can be avoided.

Admittedly, the queries issued by RRUA are likely to contain more predicates, and

therefore are more complex than those of AUA and RUA. As a result the database query

2All results returned for a single query are ranked equally.
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processing cost could increase. However, in a web environment, the overall processing cost

is highly dominated by the data transmission latency. By significantly reducing the amount

of irrelevant data transmitted, RRUA becomes more desirable in terms of overall cost.

3.3. Learning Attribute Correlations and Value Probability Distributions

As we have discussed, to retrieve uncertain answers in the order of their relevance,

RRUA requires two types of information: (i) attribute correlations in order to generate

rewritten queries (ii) value distributions in order to rank the rewritten queries. In this

section, we present how each of these are learned. Our solution consists of two stages.

First, the system mines the inherent correlations among database attributes represented

as AFDs. Then it builds Näıve Bayes Classifiers based on the features selected by AFDs

to compute probability distribution over the possible values of the missing attribute for a

given tuple. We exploit AFDs for feature selection in our classifier as it has been shown

that appropriate feature selection before classification can improve learning accuracy[6].

3.3.1. Learning Attribute Correlations by Mining Approximate Func-

tional Dependencies(AFDs). In this section, we describe the method for mining AFDs

from a (probed) sample of database. We also present our algorithm for pruning noisy AFDs

in order to retain only the valuable ones for use in the query rewriting module. Recall that

an AFD is a functional dependency if holds on all but a small fraction of tuples. Several

error measurements for AFDs have been proposed [23, 12, 24]. Among them, the g3 measure

proposed by Kivinen and Mannila [23] is widely accepted. g3 measure is defined as the ratio

of the minimum number of tuples that need to be removed from relation R to make X  A

a functional dependency over the total number of tuples in R. The confidence of an AFD
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X  A is defined as: conf(X  A)=1 − g3(X  A). Similarly, we define approximate

key(AKey) as an attribute set X ⊂ R, such that X is a key of all but a small fraction of

tuples in R. We use TANE[20] algorithm to discover AFDs and AKeys whose confidence

is above a threshold α, which is set to 0.3 in our system. This ensures that we do not miss

any significant AFDs.

Pruning Noisy AFDs: In most cases, AFDs with high confidence are desirable features

for learning probability distributions for missing values. However, not all high confidence

AFDs are useful for feature selection. To see this, we first observe that AFDs and AKeys act

differently for missing value prediction. AKeys with high confidence are not useful because

most of the AKey values are distinct. For example, consider a relation car(VIN, model,

make, color, year). After mining, we find that VIN is an AKey (in fact, a key) which

determines all other attributes. Given a tuple t with null value on model, its VIN is not

helpful in estimating the missing model value, since there are no other tuples sharing t’s VIN

value. Therefore, we use AFDs with high confidence as selecting features for classification

as long as their determining sets are not AKeys.

Algorithm 2 Pruning AFDs

Require: A: set of AFDs along with their confidence,K: set of AKeys along with their
confidence

1: set N = ∅
2: for each AFD Ai in A do
3: for each Approximate key Ki in K do
4: if Ki ⊆ dtrSet(Ai) and (conf(Ai) − conf(Ki)) < δ then
5: Prune Ai

6: else
7: N = N ∪ Ai

8: return N

Algorithm 2 describes how to prune AFDs that have high confidence AKey in the

determining set. Note that AFDs with a superset of AKey attributes in the determining
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set should also be removed. For example, suppose we have an AFD {A1, A2}  A3 with

confidence 0.97, and an AKey {A1} with confidence 0.95. Since {A1, A2} is a high confidence

superset of AKey, where most of {A1, A2} value pairs would be distinct, this AFD won’t

be useful in predicting the values for A3 and needs to be pruned. The difference between

the confidence level of an AFD and the corresponding AKey is considered in AFD pruning

based on a threshold δ(currently set at 0.3 in our system based on experimentation).

3.3.2. Learning Value Distributions using Classifiers. Given a tuple with a

null value, we now need to estimate the probability of each possible value of the attribute

containing the null. We reduce this problem to a classification problem using mined AFDs

as a feature selection step. A classifier is a function f that maps a given attribute vector ~x

to a confidence that the vector belongs to a class - that is, f(~x)=confidence(class). The

input of our classifier is a random sample S of an autonomous database R with attributes

A1, A2, · · · , An and the mined AFDs. For a given attribute Am, (1 ≤ m ≤ n), we compute

the probabilities for all possible class values of Am, given all possible values of its determining

set dtrSet(Am) in the corresponding AFDs.

We construct a näıve-Bayes classifiers (NBC) for each missing attribute. Let a value

vi in the domain of the missing attribute Am represent a possible class for Am. Let ~x denote

the values of Am’s determining set in a tuple with missing Am value. We use Bayes theorem

to estimate the probabilities:

P (Am=vi|~x)=
P (~x|Am=vi) P (Am=vi)

P (~x)

for all values vi in the domain. P (~x|Am=vi) is often impractical to compute without sim-

plifying assumptions. NBC assumes that for a given class, the features X1, · · · ,Xn are
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conditionally independent, and therefore simplifies the computation to:

P (~x|Am=vi) =
∏

i

P (xi|Am=vi)

Despite this strong simplification, NBC has been shown to be surprisingly effective[15]. In

the actual implementation, we adopt the standard practice of using NBC with a variant

of Laplacian smoothing called m-estimates[28] to smooth the estimates and to improve the

accuracy.

3.3.3. Combining AFDs and Classifiers. In the preceding discussion, we

glossed over the fact that there may be more than one AFD associated with an attribute.

In other words, one attribute may have multiple determining set with different confidence

levels. For example, we have the AFD model  make with confidence 0.99. We also

see that certain types of cars are made in certain countries, so we might have an AFD

country  make with some confidence value. As we use AFDs as a feature selection step

for NBC, we experimented with several alternative approaches for combining AFDs and

classifiers to learn the probability distribution of possible values for null.

All Attributes: In this “baseline” method, we do not consider feature selection based on

AFD but instead use all the attributes3 for learning the value distribution of possible values

for null using the Näıve Bayes classifier.

One AFD with highest Confidence(Best AFD): In this method, we consider feature

selection based on AFD. For each attribute, among the AFDs with this attribute as depen-

dent attribute, we select the one with highest confidence. We use the determining attributes

in the selected AFD for learning the probability distribution of null value for that attribute

using NBC. If there are multiple AFDs with the same highest confidence value, we would

3We can also use this method for attributes for which AFDs do not exist.
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select the AFD which has the least number of attributes as the selectivity of that AFD will

be high when compared to the AFD which has more attributes. For example, if we are

learning the probability distribution of the null value for Am and we have two AFDs with

the same highest confidence: {A1, A2}  Am and {A3, A4, A5}  Am, we chose the first

AFD as it has fewer attributes. In this method, there will be one classifier for each attribute

which is based on the AFD selected. Based on the features selected by the AFD, we use a

Näıve Bayes Classifier to compute the value distribution of the possible values for the null.

Hybrid One-AFD: Our experiments(see Section 3.4.3) indicate that using an AFD which

has a very low confidence degrades the classification accuracy. So, if we are using just the

best AFD, namely the one with the highest confidence, and the confidence value is quite

low, then that AFD will not be effective in learning an accurate probability distribution

for a null value. Hence, we do prune the AFDs based on the confidence measure. If

the confidence of the best selected AFD is below a threshold4, then we ignore that AFD

for feature selection and instead add another AFD having the highest confidence with its

determining set consisting of all other attributes except the attribute we are predicting.

Thus, for such low confidence AFDs, we wind up using all the attributes as in the method

“All Attributes” for learning the value distribution of the possible values for the null using

a Näıve Bayes Classifier.

Ensemble of Classifiers: Each attribute may have multiple AFDs, all of which can

be used for learning the probability distribution of null value for that attribute. So we

combine the predictions of all AFDs by using an ensemble of classifiers as follows: We have

a set of km AFDs for each attribute Am: S1  Am, S2  Am, · · · , Skm  Am. So we have

km classifiers - C1, C2, · · · , Ckm
corresponding to the km AFDs to compute the probability

4Currently the threshold is set at 0.5 based on experimentation
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distribution of Am with each classifier Ci using different set of features. Each classifier Ci

is trained independently on the sample training set and then is used to predict individually

on the testing set. The accuracy that the classifier Ci achieved on the testing test is chosen

as the weight of the classifier Ci denoted by wi. The weight for each classifier is determined

by performing multiple runs on different training data and testing data to get an average

value of the weight wi. While computing the value distribution for missing values using

the ensemble classifier, we do a weighted voting of all the classifiers based on the learned

weights for each classifier.

P (Am=Vi)=

km∑

i=1

wi ∗ P (Am=Vi|Si)

Our experiments described in Section 3.4.3 show that Hybrid One-AFD approach

performs better than all other approaches in terms of classification accuracy.

3.3.4. Learning Value Distributions Online from Base Result Set. RRUA

approach learns value distributions on a probed sample of autonomous database. Any

technique based on learning from a sample can be inaccurate if it encounters data previously

unseen in the training sample. For the cars domain, the probed sample covered a major

portion of the domain values for all attributes. However, in domains where the sample

obtained through probing queries covers only a small fraction of the actual domain values,

learning based on a sample would lead to an inaccurate estimation of value distributions.

For example, consider a rare query Q:σmodel=viper which corresponds to a car made by

Dodge for which we have no data in our training sample. Hence, the rewritten query ranker

module would not be able to rank the queries for bringing in possible relevant tuples having

missing values on model. Hence, we propose an online learning algorithm O−RRUA which

ranks rewritten queries based on the value distribution learned from the base result set
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Algorithm 3 Rewriting queries online using O−RRUA approach to retrieve relevant un-
certain answers

Require: R(A1, A2, · · · , An): database relation; Am: attribute of R, (1 ≤ m ≤ n); Q :
σAm=vm : selection query over R;

1: send Q to the database;
2: let RS(Q) = base result set returned for Q;
3: learn AFD-enhanced NBC on the base result set RS(Q);
4: for all ti ∈ πdtrSet(Am)(RS(Q)) do
5: selection predicate spQi

= ∅;
6: for all Aj ∈ dtrSet(Am) do
7: spQi

= spQi
+ “ ∧ Aj = ti(Aj)”;

8: Qi = “σspQi
”;

9: PQi
= P (Am = vm|ti);

10: rank {Qi|ti ∈ πdtrSet(Am)(RS(Q))} according to RQi
;

11: pick top K queries
(1 ≤ K ≤ ||πdtrSet(Am)(RS(Q))||);

12: let extended result set R̂S(Q) = ∅;
13: for all Qi ∈ top K queries do
14: send Qi to the database and retrieve result set RS(Qi);

15: append RS(Qi) to R̂S(Q);

16: for all t̂r ∈ R̂S(Q) do
17: if t̂r ∈ RS(Q) or t̂r(Am) 6= vm then

18: R̂S(Q) = R̂S(Q) − {tr};

19: show R̂S(Q) to the user;

instead of using a NBC classifier on a probed sample. O−RRUA uses a probed sample

in order to learn only higher level attribute correlations in terms of AFDs which are less

susceptible to sample biases. Hence, O−RRUA is less prone to any biases that the sample

may introduce.

We use value distributions which are learned online by applying NBC classifiers on

the base result set to rank the rewritten queries so that they are issued in order of their

likelihood of bringing highly relevant results. We propose an online learning algorithm

described in Algorithm 3 that dynamically ranks the rewritten query based on the tuples in

the base result set. O−RRUA approach uses the same set of rewritten queries as RRUA,

except that the ranking of queries is based on the value distributions learned from the
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base result set rather than from a probed sample. The algorithm is based on the heuristic

that frequently appearing determining set of attributes are more likely to bring in possibly

relevant tuples containing null on the query constrained attribute.

3.4. Empirical Evaluation for QPIAD

In this section, we describe implementation and an empirical evaluation of our system

QPIAD for query processing over incomplete web databases.

3.4.1. Implementation and User Interface. QPIAD system is implemented in

Java and has a form based query interface. The system returns each relevant uncertain

answer to the user along with a confidence measure equal to the assessed degree of rele-

vance. Although the relevance estimate could be biased by the imperfections of the learning

method, its inclusion can provide useful guidance to the users, over and above the ranking.

This allows users to further filter off uncertain answers based on her notion of what level of

confidence would be acceptable. In the used car domain, due to large number of answers

retrieved, the user may only be interested in top uncertain answers having high confidences.

In other sensitive applications like an FBI agent querying a database in order to identify

possible terrorist suspects, the agent may look for more uncertain results even with low

confidence. QPIAD also can optionally “explain” its relevance assessment by providing

snippets of its reasoning. In particular, it justifies the confidence associated with an answer

by listing the AFD that was used in making the density assessment. In case of our running

example, the uncertain answer t4 for the query Q′ will be justified by showing the learned

AFD model body style.
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3.4.2. Experimental Aims & Settings. Since the performance of the query

rewriting and ranking technique relies on the quality of the classifiers, we first show that our

AFD-enhanced classifiers give highly accurate classification. We will then evaluate our query

rewriting and ranking techniques on incomplete databases. The evaluation spans three as-

pects (1) comparing the precision, recall and cost of AUA, RUA and RRUA in retrieving

relevant uncertain answers (2) evaluating the precision obtained by returning uncertain an-

swers at different confidence thresholds (3) evaluating the query ranking method in RRUA

(4) testing the robustness of the RRUA approach and (5) evaluating the effectiveness of

query rewriting in order to retrieve relevant answers from data sources not supporting the

query attribute.

Two different databases are tested. One is the Used car database extracted

from AutoTrader[3] which has around 100,000 tuples. The relation of this database is

Cars(make,model,year,price,milage,location,color,body style). The second database that we

use is the Census database from UCI[38] data repository which has around 45,000 tuples.

The stored relation of this database is Census(age, workshop, weight, education, marital-

status, occupation, relationship, race, sex, capital-gain, capital-loss, hours-per-week, native-

country). The AutoTrader [41] database inherently has lot of cars having missing values for

some attributes as described in Table 1. To evaluate the effectiveness of our techniques

against a ground truth, we consider only tuples of the database which were complete and

then artificially make the test database incomplete by randomly selecting 10% of records

and making them incomplete. Each incomplete tuple has exactly one random attribute as

null.5 We use a similar approach to artificially introduce null values in the Census database.

We partitioned each database into two parts: a training set and a test set. To

5In order to show the effectiveness of our AFD-enhanced classifier, we only consider missing values on
attributes for which AFDs exist.
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simulate the relatively small percentage of the training data available to the mediators over

autonomous databases, we experimented with different sizes of training set, varying from

3% to 20% of the entire databases. We also artificially insert an ID attribute into each tuple

and keep a complete copy of each database so that we can compare the retrieved incomplete

tuples against the ground truth to compute the accuracy for our methods.

3.4.3. Accuracy of Classifiers. Since we use classifiers as a basis for query rewrit-

ing and for ranking queries, we perform a baseline study on their accuracy. Specifically,

for each tuple in the test set, we compute the probability distribution of possible values

of a null, and choose the one with the maximum probability. Then we can compare the

predicted value against the actual value of that attribute to see if the prediction is correct.

The classification accuracy is defined as the proportion of the tuples in the test set that

have their null values predicted correctly.

In this experiment, we use a training set whose size is 10% of the database to train

the classifiers for each attribute, according to the methods discussed in Section 3.3.3. Our

goals were to evaluate and compare the classification accuracy achieved by various methods

of AFD-enhanced classifiers. We also compare the classification accuracy obtained by the

AFD-enhanced classifier versus other alternatives such as Bayesian Network Classifiers.

Attribute Make Model Year Color Body style

Cars10(Mediator) 51 568 28 600 23

Cars100(Complete) 100 1151 55 2427 28

Table 4. Domain size of attributes in the Cars database

Attribute Workshop Education Marital Relationship Race Sex Capital Hours Native
status Gain Week Country

Census25 (Mediator) 7 16 7 6 5 2 100 86 41
Census100 (Complete) 7 16 7 6 5 2 121 96 41

Table 5. Domain size of attributes in the Census database
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AFD Confidence

model make 0.99

(year, location) make 0.51

price make 0.43

(make, year, color)  model 0.47

(make, location) model 0.46

(make, color) model 0.36

(make, location) year 0.54

price year 0.45

model year 0.4

(make, location) color 0.43

price color 0.37

model body style 0.9

Table 6. AFDs mined for the Cars database

In order to learn AFDs, we need to first collect a representative sample of the data

stored in the sources. Since the sources are autonomous, this will involve probing the sources

with a set of probing queries. Table 4 and 5 show the domain size of various attributes for

the Cars and Census databases as seen by the mediator and in the complete database.

Although the training set in mediator is only 10% of the complete database, it covers a

significant part of the domain for each attribute. We mine AFDs from the training set

in order to use them for null value prediction on the test set. Table 6 shows the AFDs

mined for the Cars database. We tried using different percentages of training set 3%, 5%,

10%, 15%, 20% however the mined AFDs were the same with only a minor change in their

confidence values. The best selected AFD for each attribute remained the same across

different sample sizes. In addition, the classification accuracy obtained was roughly the

same across the sample sizes. This shows that the value distribution learning approach is

robust against different sample sizes. Later on in Section 3.4.7 we also show the robustness

of our query rewriting and ranking approach RRUA across different sample sizes.

For each database, the accuracy is measured over 5 runs using a different training set
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Database Best All Ensemble Hybrid
AFD Attributes One-AFD

Cars 43.06 28.22 34.3 43.86

Census 72 70.51 70.56 72

Table 7. Comparison of null value prediction accuracy across different AFD-enhanced clas-
sifiers

and test set for each run. Table 7 shows the average prediction accuracy of various AFD-

enhanced classifiers for both databases. Considering the large domain sizes of attributes in

the Cars database the classification accuracy obtained is quite reasonable, since a random

guess would give much lower prediction accuracy.
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Figure 3. Comparison of prediction accuracy across AFD-enhanced NBC classifier and
bayes network classifier over different samples sizes of the Car database.

We can also see in Table 7 that the Hybrid One-AFD approach performs better than

both the method that uses all attributes and the method that uses an ensemble classifier.

Note that in the Census database, the best selected AFD for each attribute has a confidence

value above the threshold, therefore the performance of using the best AFD method is the

same as that of using the Hybrid One-AFD method. As a result, we use the Hybrid One-
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AFD method in our query rewriting implementation. We will also see that this helps us to

keep query cost manageable during query rewriting phase as we issue much less number of

queries by using just one AFD than using multiple AFDs.

We also compared the accuracy of our AFD-enhanced NBC classifier with two

other approaches - one based on association rules[40] and the other that learns bayesian

networks[17] from the data. Figure 3 shows comparison of the accuracy between the AFD-

enhanced NBC classifier and bayes network. For various sample sizes, the AFD-enhanced

NBC classifier performs on par with the bayesian network classifier while taking signifi-

cantly less time to learn. The accuracy of our approach is competitive with the bayesian

networks approach while being significantly better than the association rules. Learning time

for bayesian networks is significantly higher compared to AFD-enhanced NBC classifier.

3.4.4. Comparing RRUA with AUA and RUA. To compare the effective-

ness of retrieving relevant uncertain answers, we randomly formulate selection queries and

retrieve uncertain answers from the test databases using AUA, RUA and RRUA. Recall

that AUA approach presents all tuples containing missing values on the query constrained

attribute without ranking them. RUA approach begins by retrieving all the certain and

uncertain answers, as in AUA, then it rank uncertain answers according to the classification

techniques described in Section 3.3. In contrast, RRUA uses query rewriting techniques

to retrieve only relevant uncertain answers in a ranked order. For each uncertain answer

retrieved, we verify whether or not it is indeed an answer to the user query by checking if it

is also a result for the query when evaluated on the original complete copy of the databases.

Since RUA and RRUA rank uncertain answers in terms of relevance, we use precision-recall

curves to compare the relevance of the returned answers. Precision and recall are calculated
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Figure 4. Precision-Recall curves for σbody style=convt(Cars).
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Figure 5. Precision-Recall curves for σeducation=bachelors(Census).
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as follows. At the time when the mediator sees the Kth (K=1, 2, 3, · · ·) answer tuple,

precision =
number of true relevant answers so far

number of answers so far

recall =
number of true relevant answers so far

total number of true relevant answers

Since all three methods return certain answers, we focus on comparing the effec-

tiveness of retrieving relevant uncertain answers. Here, the precision and recall are both

calculated with respect to uncertain answers instead of the entire answer set. Figure 4 shows

the precision and recall curves of a query on car database, and Figure 5 shows the curves of

a query on census database.6 In both figures, the numbers in the parenthesis in the legend

are the number of uncertain answers retrieved by each method. It shows that both RUA

and RRUA approach have significantly higher precision compared to AUA. The curves for

RUA and RRUA are almost always overlapping for the Cars and Census database since

RRUA returns a subset of the answers of RUA, and both of them use the same probability

distribution to rank the query answers. For the query body style=convt, the curves for

RRUA and RUA are overlapping in the initial portion. However, later on precision for

RUA falls since it returns all uncertain answers and in the process returns large number

of tuples which have a higher rank but are not really relevant to the query. In contrast,

RRUA only retrieves few highly relevant tuples, hence the precision for the returned tuples

remains high throughout. Note that RRUA does not reach 100% recall since it does not

return all uncertain answers.

In terms of the cost, RRUA is the best as it avoids retrieving too many irrelevant

tuples. The number of tuples processed and transmitted by RRUA approach is a small

6Note that to evaluate the full spectrum of precision-recall curve, we return all results for RUA without
pruning them on a threshold on confidence in all the experiments. Similarly, RRUA sends all rewritten
queries rather than few selected top ranked ones to databases.
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Figure 6. Precision curves for σbody style=convt(Cars).
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Figure 7. Precision curves for σeducation=bachelors(Census).
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fraction of that by AUA and RUA approaches. RRUA can further cut down the cost by

only sending the top ranked rewritten queries to the database.

Though precision-recall curves capture the relevance of tuples in the full range of

the uncertain answer set, they cannot reflect the “density” of the relevant answers along

the time line. Thus, we also plot the precision of each method at the time when top

K(K=1, 2, · · · , 100) answers are retrieved using the same experiment setting, as shown in

Figure 6 and 7. Again RUA and RRUA are much better in retrieving relevant uncertain

answers in top K results which is critical in web scenarios. In Figure 6, the curve of AUA

is not visible since it performs so bad that there are no relevant answers in the first 100

tuples returned.
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Figure 8. Average Precision for various confidence thresholds(Cars).

3.4.5. Effect of Confidence Threshold on Precision. QPIAD presents ranked

relevant uncertain answers to users along with a confidence so that the users can use their

own discretion to filter off answers with low confidence. We conducted experiments to

evaluate how pruning answers based on a confidence threshold affects the precision of the

results returned. Figure 8 shows the average precision obtained over 40 test queries on Cars
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database by pruning answers based on different confidence thresholds. It shows that the

high confidence answers returned by QPIAD are most likely to be relevant answers.

3.4.6. Ranking the Rewritten Queries. To control query processing cost ac-

cording to application requirements, users’ preferences and real-time system workload,

ranking the rewritten queries is critical in the RRUA approach. In this section, we ver-

ify whether the ranked rewritten queries actually bring uncertain answers in the descending

order of relevance, measured by the precision of the returned answer set.
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Figure 9. Accumulated precision curve for 30 test queries on Car database.

For this purpose, we experiment on the two test databases as follows. For each

database, we choose 30 test queries, each of which is a selection query with a single “at-

tribute=value” predicate. For each query, we use RRUA to generate a ranked list of rewrit-

ten queries {Q1, Q2, · · · , Qn}, which are issued to the database one by one in order. After

the extended result set R̂S(Qm) of each query Qm is retrieved, we calculate the accumulated
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Figure 10. Accumulated precision curve for 30 test queries on Census database.

precision as follows:

m∑
k=1

number of relevant answers in R̂S(Qk)

m∑
k=1

number of answers in R̂S(Qk)

Figure 9 and 10 show the average accumulated precision of the 30 test queries on each

database. We used the aggregate statistics over 30 queries to avoid biased information from

a single query. As we can see, RRUA is able to generate a ranked list of rewritten queries,

and the queries ranked higher tend to bring in uncertain answers that are more relevant.

By choosing the top ranked rewritten queries to send to the database, the mediator can

maximize the precision with any given cost restriction.

3.4.7. Robustness of the RRUA Approach. The performance of RRUA ap-

proach, in terms of precision and recall, relies on the quality of the AFDs and Näıve Bayesian

classifiers learned by the knowledge mining module. In data integration systems, the avail-

ability of the sample training data from the autonomous data sources is restrictive. Usually
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Figure 11. Accumulated precision curve for σbody style=convt with different sample sizes on
Car database.
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Figure 12. Accumulated precision curve for σworkshop=private with different sample sizes on
Census database.
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the mediator is only able to sample a rather small portion of the data from each source.

Here we present the robustness of the RRUA approach in the face of limited sample data.

The performance of RRUA approach, in terms of precision and recall, relies on

the quality of the AFDs and Näıve Bayesian Classifiers learned by the knowledge mining

module. In data integration scenario, the availability of the sample training data from

the autonomous data sources is restrictive. Here we present the robustness of the RRUA

approach in the face of limited size of sample data.

Figure 11 and Figure 12 show the accumulated precision of a selection query on the

Car and Census databases, using various sizes of sample data as training set. We see that

the quality of the rewritten queries all fluctuate in a relatively narrow range and there is

no significant drop of precision with the sharp decrease of sample size from 15% to 3%.
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Figure 13. Comparison of accumulated precision across RRUA and O−RRUA over 40 test
queries on the Car database

3.4.8. Comparison of RRUA with O-RRUA. Figure 13 compares the aver-

age accumulated precision over 40 test queries on the Cars database using the RRUA and

O−RRUA approaches. The precision curves for both the approaches more or less overlap
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Figure 14. Comparison of accumulated precision across RRUA and O−RRUA zoomed over
the top 10 rewritten queries

with O−RRUA approach performing slightly better for the top 5 rewritten queries. Figure

14 zooms in to show the precision across these two approaches for top 10 rewritten queries.

This shows that if the mediator were to issue only a few top queries due to limited net-

work resources, using the online learning approach would result in higher precision. Since

both O−RRUA and RRUA approach uses the same set of queries ranked in a different

order, RRUA approach slowly catches up with the O−RRUA approach. Since both the

approaches use attribute correlations learned using AFDs to retrieve only relevant results,

both approaches retrieve answers with high precision. However, with no significant differ-

ence in precision between RRUA and O−RRUA, the query time processing costs involved

with O−RRUA approach makes it less feasible for web scenarios. Hence, we use RRUA

approach for all our experiments.



CHAPTER 4

DATA INTEGRATION OVER INCOMPLETE

AUTONOMOUS DATABASES

In this chapter, we describe our approaches to perform data integration over in-

complete autonomous databases in a mediator scenario. In many scenarios, the mediator

supports queries on attributes in the global schema which are not supported in the local

schema of some individual data sources. In this case, effectively all data sources not sup-

porting the query attributes are ignored. We present query rewriting techniques to retrieve

relevant uncertain tuples from such data sources based on attribute correlations and value

distributions learned from other data sources. Many queries on the global schema of the

mediator may require performing joins over individual data sources. We describe query

rewriting techniques to perform joins over incomplete autonomous databases in order to

present uncertain join results for the user query.

4.1. Leveraging Correlations among Data Sources

4.1.1. Motivation. The global schema supported by the mediator may often con-

tains attributes which are not supported in some individual data sources. For example, con-

sider a global schema GSUsedCars supported by the mediator over the sources Cars.com[7]
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and Yahoo! Autos[41] as shown in Figure 15. Since the form based interface of Ya-

hoo! Autos doesn’t support queries on body style attribute, the mediator cannot directly

query the database in order to retrieve cars having a specific body style. Given a query

Q:σbody style=coupe on global schema that selects cars of body style “coupe”, approaches that

only return certain answers won’t be able to return car information from Yahoo! Autos.

Hence many relevant cars from Yahoo! Autos wouldn’t be shown to the user.

Mediator GSUsedCars(Make,Model, Y ear, Price,Mileage, Location,Body style)

Cars.com LSAutotrader(Make,Model, Y ear, Price, Mileage, Location,Body style)

Yahoo! Autos LSCars(Make,Model, Y ear, Price, Mileage, Location)

Figure 15. Global schema and local schema of data sources

We use AFDs and NBC classifiers which we learned on Cars.com to retrieve cars

from Yahoo! Autos as possible ranked relevant answers to a query on body style=coupe.

For example, consider the Cars.com database for which we have mined an AFD model  

body style. Note that this is an approximate functional dependency since a single model may

have two different body styles. For example, the model Civic has both the coupe and sedan

body styles. In order to retrieve relevant answers from the Yahoo! Autos database, the

mediator issues rewritten queries to Yahoo! Autos based on the AFD and tuples retrieved

from the base set results of Cars.com.

4.1.2. Retrieving Relevant Answers from Data Sources Not Supporting

the Query Attribute. Consider a mediator which performs data aggregation over au-

tonomous sources S1, S2, · · · , Sn. Let LSi denote the local schema for each source Si and

GS denote the global schema supported by the mediator over all the sources. Consider a

query Q on an attribute Am over the global schema GS. Let Ss be the set of sources sup-

porting attribute Am in their local schema LS. Let Ss be the set of sources not supporting
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attribute Am in their local schema LS. For each source Sk ∈ Ss, we use AFDs for attribute

Am from a correlated source Sc ∈ Ss in order to retrieve relevant tuples from source Sk.

Definition 5 (Correlated Source) For any autonomous data source Sk not supporting

the attribute Am, we define a correlated source Sc as any data source that satisfies the

following: (i) Sc supports attribute Am in its local schema (ii) Sc has an AFD for Am (iii)

Sk supports the determining set of attributes in the AFD for Am mined from Sc.

Definition 6 (Maximum Correlated Data Source) From all sources correlated with a

given source Sk, the source for which the AFD for Am has the highest confidence is called

the maximum correlated source.

For example, consider four autonomous sources S1, S2, S3 and S4 with local schema

as LS1(E,F,G), LS2(A,B,C), LS3(C,E,F ) and LS4(C,F,G) respectively. The global

schema of the mediator is GS(A,B,C,D,E, F,G). For queries on attribute C, in order

to retrieve relevant tuples from source S1 which doesn’t support attribute C, we need to

find correlated sources. Suppose sources S2, S3 and S4 have AFDs {A,B}  C(0.7),

{E,F}  C(0.8) and {F,G}  C(0.6) respectively. Then only sources S3 and S4 are

correlated with source S1 because S1 does not support attributes A,B in its local schema.

Among the two correlated sources, S3 will be the maximum correlated source as the AFD

for C in S1 has the highest confidence(0.8).

Algorithm 4 shows the details of the approach used to retrieve relevant tuples from

the source not supporting the query attribute. Let R(A1, A2, · · · , An) be a database relation

of the maximum correlated source Sc, and dtrSet(Am) be the determining set of an attribute

Am (1 ≤ m ≤ n), according to the best selected AFD (as discussed in Section 3.3.3). The

algorithm processes a given selection query Q : σAm=vm over the global schema GS in the
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Algorithm 4 Rewriting queries to retrieve relevant uncertain answers from an autonomous
data source not supporting the query attribute

Require: R(A1, A2, · · · , An): database relation of maximum correlated source Sc; Am:
attribute of query not supported in source Sk, (1 ≤ m ≤ n); Q : σAm=vm : selection
query over global schema GS;

1: send Q to the correlated data source Sc

2: let RSSc(Q)= base result set returned for Q on data source Sc

3: for all ti ∈ πdtrSet(Am)(RSSc(Q)) do
4: selection predicate spQi

= ∅
5: for all Aj ∈ dtrSet(Am) do
6: spQi

= spQi
+ “ ∧ Aj = ti(Aj)”

7: Qi = “σspQi
”

8: PQi
= P (Am = vm|ti)

9: rank {Qi|ti ∈ πdtrSet(Am)(RSSc(Q))} according to PQi

10: pick top K queries
(1 ≤ K ≤ ||πdtrSet(Am)(RSSc(Q))||)

11: let result set for source Sk be R̂SSk
(Q) = ∅

12: for all Qi ∈ top K queries do
13: send Qi to the data source Sk and retrieve result set RSSk

(Qi)

14: append RSSk
(Qi) to R̂SSk

(Q)

15: Return R̂SSk
(Q)

following two steps.

1. Send Q to the correlated data source Sc and retrieve the base result set RSSc(Q) as

the answers of Q.

2. Generate a set of new queries, rank them, and send the most relevant ones to the data

source Sk not supporting the query attribute to retrieve the result set as relevant

uncertain answers of Q. This step contains the following tasks.

(a) Generate rewritten queries. Let πdtrSet(Am)(RSSc(Q)) be the projection of

RSSc(Q) onto dtrSet(Am). For each tuple ti in πdtrSet(Am)(RSSc(Q)), create

a selection query Qi in the following way. For each attribute Aj in dtrSet(Am),

create a selection predicate Aj=ti(Aj). The selection predicates of Qi consist of

the conjunction of all these predicates.
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(b) Rank rewritten queries. Compute the conditional probability of

PQi
=P (Am=vm|ti) for each Qi. Rank all Qis according to their PQi

val-

ues.

(c) Retrieve extended result set. Pick the top K queries {Q1, Q2, · · · , QK} and

issue them in the order of their ranks to data source Sk. Their result sets

RSSk
(Q1), RSSk

(Q2), · · · , RSSk
(Qn) compose the result set R̂SSk

(Q). The re-

sults in R̂SSk
(Q) are ranked according to the ranks of the corresponding queries,

i.e. the results in RSSk
(Q1) are ranked higher than those in RSSk

(Q2), and so

on.1

4.1.3. Empirical Evaluation of using Correlation Between Data Sources.

In this section, we describe experiments that show the effectiveness of our approach of query

rewriting using attribute correlations mined from one data source to retrieve the relevant

uncertain answers from other data sources.

4.1.3.1. Experimental Settings. We consider a mediator supporting data ag-

gregation over three data sources. The global schema supported by the medi-

ator is GSUsedCars(Make,Model, Y ear, Price,Mileage, Location,Body style) The lo-

cal schema of the individual source Cars.com[7] is LSCars(Make,Model, Y ear, Price,

Mileage, Location,Body style) and its form based interface supports queries on the

body style attribute using Advanced Search[8]. The local schema of sources Cars.com[7] and

CarsDirect [9] is LSY ahoo,CarsDirect(Make,Model, Y ear, Price, Mileage, Location) which

do not support a query on body style in their form based interface. To evaluate the effec-

tiveness of query rewriting approach in retrieving relevant answers for queries not supported

by Yahoo! Autos and CarsDirect, we check the actual body style of the retrieved car tuple

1All results returned for a single query are ranked equally.
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Query Number Query

1 body style=coupe

2 body style=sedan

3 body style=convt

4 body style=suv

5 body style=wagon

Table 8. Test queries on the global schema on body style attribute

to determine whether the tuple was indeed a relevant answer to the original query. In order

to retrieve relevant tuples from Yahoo! Autos and CarsDirect, we use 5 test queries on the

attribute body style as shown in Table 8.
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Figure 16. Precision curve for top K tuples retrieved from Yahoo! Autos using AFDs
learned from Cars.om

4.1.3.2. Experimental Results. We use AFDs and NBC classifiers learned from

Cars.com to retrieve cars from Yahoo! Autos and CarsDirect as possible ranked relevant

answers to a query on body style. We use the AFD model  body style mined from a

sample of Cars.com in order to retrieve tuples from Yahoo! Autos and CarsDirect using

Algorithm 4. We measure the average precision for the top K tuples retrieved from Yahoo!

Autos and CarsDirect over the test queries. Figure 16 and 17 shows that our query rewriting

technique is able to retrieve tuples with high precision from Yahoo! Autos and CarsDirect.
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Figure 17. Precision curve for top K tuples retrieved from CarsDirect using AFDs learned
from Cars.com

This shows that our techniques of rewriting queries using AFDs and value distributions

learned from correlated sources can be used to retrieve relevant answers from data sources

not supporting query attribute.

4.2. Handling Joins over Incomplete Databases

Handling joins over autonomous databases is important for a mediator performing

data integration over multiple heterogenous data sources. When the autonomous databases

are complete, the mediator can use the PARTITION algorithm described in [42]. In this

section, we describe our initial efforts to support join queries over incomplete autonomous

databases under precise queries.

4.2.1. Motivation. Consider two sources S1 and S2 providing information about

used cars as shown in Figure 18 and a mediator that provides an integrated view as shown

in Figure 19. Consider a user query asking for all cars made by Honda along with their
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Make Model Year Price

Honda Civic 2000 10000

Honda Accord 2004 20000

Honda null 2000 15000

null Accord 2002 18000

Toyota Camry 2003 16000

Model Rating Reliability

Civic 5 high

Corolla 4 medium

Accord 4 very high

Camry 5 high

A4 3 low

Figure 18. Autonomous sources S1(Cars) and S2(Review)

Mediator View:

UsedCars(Make,Model, Y ear, Price,Rating,Reliability):−
Cars(Make,Model, Y ear, Price), Review(Model,Rating,Reliability)

Figure 19. Mediator view over sources S1 and S2

ratings. If both sources S1 and S2 are complete, then the mediator would first retrieve

all tuples having make=Honda from source S1. Then it would retrieve tuples from source

S2 corresponding to the models of the tuples returned from source S1. Finally, it would

combine the tuples from the two sources using the join attribute model and return the

results to the users.

If the sources are incomplete, then above approach is not able to retrieve join results

for car tuples having missing make in source S1 but still might be relevant to the user

query. Also, if the join attribute model is missing for some tuples having make=Honda

in source S1, the mediator cannot join that tuple with a ratings tuple from source S2. We

would like to present such uncertain join results to the users in a ranked order based on

their likelihood of being a relevant answer to the user query. Since the data sources are

autonomous, we need query rewriting techniques to retrieve tuples containing null values

and to join tuples from the two sources in order to obtain uncertain join results. We also

need ranking techniques to rank the join tuples based on their relevance to the user query.
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4.2.2. Issues in Handling Joins over Incomplete Databases. Since incom-

plete databases are similar to probabilistic databases once the probabilities for the missing

values are assessed, we first discuss the issues involved in performing joins over probabilistic

databases. Consider an incomplete tuple with a missing model value from the Cars database

and two complete tuples from the Review database as shown in the table below.

Make Model Year Price

Honda null[0.6 Civic 0.4 Accord] 2003 18000

Model Ratings

Civic 5

Accord 4

Make Model Year Price Ratings Probability

Honda Civic 2003 18000 5 0.6

Honda Accord 2003 18000 4 0.4

Given that the missing model value has 0.6 probability to be Civic and 0.4 Accord,

the join of this incomplete tuple with a tuple from Review table on the foreign key model

will lead to a disjunction between the tuples in the result set. Each tuple in the disjunc-

tion is associated with a probability corresponding to the probability value of the missing

attribute. In web scenarios, users find it hard to read disjunctive tuples. Hence we perform

an approximation on the set of disjunctive tuples and only show the tuple with the highest

probability from a set of disjunctive tuples. We will use this approximation for performing

joins over incomplete autonomous databases as described in the next section. Note that

this approximation is performed at the end when an uncertain join result is to be presented

to the user. In all intermediate join results we keep the disjunction over tuples without

performing an approximation so as to get the correct maximum probability value. Current

databases use RUA approach to perform joins over incomplete databases where first all

incomplete tuples are retrieved from one relation and then joined with tuples from other

relation. We describe a query rewriting approach to retrieve ranked uncertain join answers
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based on their likelihood of being a relevant answer to the query.

4.2.3. Joins over Incomplete Databases. To keep the discussion simple we con-

sider single attribute selection queries over global schema GS(A1, A2, · · · , An) of the media-

tor performing data integration over an incomplete source S1 and a complete source S2. The

relation of incomplete source S1 is LS1(A1, A2, · · · , Aj−1, Aj) and the relation of complete

source S2 is LS2(Aj , Aj+1, · · · , An) with Aj as the primary key. Consider a single attribute

selection query2 Q:σAq=vq over global schema GS. Here, we have three possibilities for the

selection query attribute. For each case, we describe how our RRUA approach retrieves

highly relevant uncertain join results in a ranked order.

Case 1:Aq=Aj

In this case, the query attribute is the same as the join attribute. For example, consider

a query Q:σmodel=Civic(UsedCars) over global schema. We first retrieve complete tuples

from source S1 which satisfy the user query Q which form the base set. We also retrieve

tuples from S2 that satisfy the query attribute value. Next, we combine the two results

based on the join attribute Aj to get certain join results. In order to present uncertain

join results to the user we need to retrieve tuples from source S1 containing missing

values on the join attribute. We use our query rewriting techniques, as described in

Section 3.2, to retrieve ranked results from source S1. These incomplete tuples are then

joined with tuples retrieved from source S2 on attribute Aj to get uncertain join results.

The uncertain join results are ranked based on the rank of the rewritten queries that

retrieved the incomplete tuple corresponding to source S1 having missing value on the Aj.

2Note that here we only consider general selection queries projected on all attributes in global relation
GS as it is most likely to be in web scenarios.
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Algorithm 5 Algorithm to perform joins over incomplete autonomous databases

Require: GS(A1, A2, · · · , An): global schema supported by mediator; LS1(A1, A2, · · · , Aj−1, Aj):
relation of incomplete source S1; LS2(Aj , Aj+1, · · · , An): relation of complete source S2 with
primary key Aj ; Aj : join attribute of source S1 and S2; Q: σAq=vq

:selection query over global
schema R;

1: initialize uncertain join result set JRS = ∅
2: if Aj = Aq then
3: send Q to the S1 and S2 to get base result sets RS1(Q) and RS2(Q) resp.
4: use Algorithm 1 to retrieve extended result set ERS1(Q) using base set RS1(Q)
5: for all tk ∈ ERS1(Q) do
6: use hash joins to join tuple tk with result set RS2(Q) on attribute Aj

7: rank each uncertain join tuple tj : R(tj) = rank of rewritten query that retrieved tk
8: add tj , R(tj) to JRS
9: else

10: if Aj 6= Aq and Aq ∈ LS1 and Aq /∈ LS2 then
11: send Q to the data source S1 to get base result set RS1(Q)
12: for all ti ∈ πdtrSet(Aj)(RS1(Q)) having ti(Aj) = null do
13: Pti

= MAX{P (Aj = vt|ti); 1 ≤ t ≤ |Aj |}
14: Vti

= {vt|P (Aj = vt|ti) is maximum}
15: if ERS2(Vti

) does not exist then
16: send query Q: σAj=Vti

to data source S2 to get the result set ERS2(Vti
)

17: use hash joins to join tuple ti with result set ERS2(Vti
) on attribute Aj

18: rank each uncertain join tuple tj :R(tj) = Pti

19: add tj , R(tj) to JRS
20: use Algorithm 1 to retrieve extended result set ERS1(Q) using base set RS1(Q)
21: for all tk ∈ ERS1(Q) do
22: if ERS2(tk(Aj)) does not exist then
23: send query Q: σAj=tk(Aj) to data source S2 to get the result set ERS2(tk(Aj))
24: use hash joins to join tuple tk with result set ERS2(tk(Aj)) on attribute Aj

25: rank each uncertain join tuple tj : R(tj) = rank of the rewritten query that retrieved tk
26: add tj , R(tj) to JRS
27: else
28: if Aj 6= Aq and Aq ∈ LS2 and Aq /∈ LS1 then
29: send Q to the data source S2 to get base result set RS2(Q)
30: for all Vi ∈ π(Aj)(RS2(Q)) do
31: if ERS1(Vi) does not exist then
32: send query Q′: σAj=Vi

to data source S1 to get base result set RS1(Q
′))

33: use Algorithm 1 to retrieve extended result set ERS1(Vi) using base set RS1(Q
′)

34: for all tk ∈ ERS1(Vi) do
35: rank each tuple tk: R(tk) = Rank of rewritten query that retrieved tk
36: add tk, R(tk) to ERS1

37: for all tk ∈ ERS1 do
38: use hash joins to join tk with RS2(Q) on maximum probability value for Aj in tk
39: rank each uncertain join tuple tj: R(tj) = maximum rank of R(tk) among all queries that

retrieved tk
40: add tj , R(tj) to JRS
41: sort the uncertain join results in JRS based on their rank and display them
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Case 2:Aq 6= Aj and Aq ∈ LS1 and Aq /∈ LS2

In this case, the query attribute is not the join attribute and the query attribute belongs only

to the relation LS1 of source S1. For example, consider a query Q:σmake=Honda(UsedCars)

over the global schema. In order to present uncertain join results, we need to consider two

types of tuples from the incomplete data source: (i) Tuples having a missing value on the

query constrained attribute and (ii) Tuples from the base set having a missing value on the

join attribute. We will use query rewriting techniques, discussed in Section 3.2, in order to

retrieve tuples having missing value on the query constrained attribute. We then join these

tuples with the tuples of source S2 based on the join attribute. The uncertain join results

are ranked based on the rank of the rewritten queries that retrieved them. For tuples in

the base set having a missing value on the join attribute, we predict the value of null as the

value having maximum probability using NBC classifiers as described in Section 3.3.2. We

then use the predicted value to join it with the corresponding tuple(s) of source S2. In this

case, the uncertain joins results are then ranked based on the maximum probability value

of the join attribute.

Case 3:Aq 6= Aj and Aq ∈ LS2 and Aq /∈ LS1

In this case, the query attribute is not the join attribute and the query attribute belongs only

to the relation LS2 of source S2. For example, consider a query Q:σRating=4(UsedCars)

over the global schema. First we issue the query Q:σAq=vq to source S2 to get the base set.

We then retrieve values of join attribute Aj for all the tuples in the base set. We need to

join these tuples with the corresponding tuples of source S1 on Aj . There may be tuples in

the source S1 having a missing value on the join attribute but would produce a relevant join

result. We retrieve such tuples having a missing value on the join attribute using the query

rewriting techniques discussed in Section 3.2. Notice that it is possible for an incomplete
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tuple to be present in extended results result set of more than one rewritten query. In this

case, the rank of the tuple will be equal to the maximum of the ranks of the rewritten

queries that retrieved it. The value having the maximum probability for null attribute Aj

will be used to join results with those from source S2. We then present ranked uncertain

join results in response to the original query on the global schema.

Algorithm 5 describes the details of our approach for performing joins over incom-

plete data sources. This algorithm can be extended to handle joins over two incomplete

databases by using similar query rewriting techniques to retrieve uncertain relevant results

from both the databases and then joining them based on the predicted join value. The

rank of the uncertain join results would be the product of the rank of the individual tuples

forming the join result from source S1 and S2.

4.2.4. Empirical Evaluation of Joins over Incomplete Databases. In this

section, we show the experimental results which illustrate the effectiveness of our approach

to perform joins over autonomous incomplete databases.

4.2.4.1. Experimental Settings. We consider a mediator supporting data aggre-

gation over two data sources. The global schema supported by the mediator is

GS(Make,Model, Y ear, Price,Mileage, Location,Rating). We consider two individual

sources:AutoTrader which gives a description of used cars and contains 100, 000 tuples

as used in Section 3.4.2 and a synthetic database which gives user ratings for models of

cars containing reviews for 600 models. The local schema of the individual source Auto-

Trader [3] is LSAutoTrader(Make,Model, Y ear, Price,Mileage, Location) and local schema

of the synthetic source Review is LSReview(Model,Rating) with model as the primary key.

We consider test queries of three types as described in Section 4.2.3.
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4.2.4.2. Experimental Results. We evaluate the effectiveness of our approach by mea-

suring precision-recall for the uncertain join answers for the test queries. We compare our

RRUA based query rewriting approach which retrieves uncertain join results in a ranked

order based on their relevance to the user query to the RUA approach which returns all

uncertain joins results without query rewriting.
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Figure 20. Precision-Recall curve for the query σmodel=Civic on global schema R

Figures 20, 21 and 22 show the precision recall curves for uncertain join results over

the incomplete databases for the test queries σmodel=Civic, σmake=Audi and σratings=4 for

RUA and RRUA approaches. These queries are issued on the global schema GS. The

figures in the parentheses in the legend represent the number tuples retrieved by these

approaches. As we can see from these figures that RRUA retrieves only a fraction of tuples

retrieved by RUA with high precision. Thus our join algorithm based on RRUA is able

to retrieve uncertain join results with high precision. Even though our approach cannot

achieve 100% recall, the precision is reasonably high for the retrieved tuples and in web

scenarios only top K uncertain join answers are to be displayed to the user.
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Figure 21. Precision-Recall curve for the query σmake=Audi on global schema R
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Figure 22. Precision-Recall curve for the query σRating=4 on global schema R



CHAPTER 5

RELATED WORK

Querying incomplete databases: Compared to previous work on querying incomplete

databases, the critical novelty of our work is that our approach does not modify original

data. It is therefore suitable for querying incomplete autonomous databases, where a

mediator is not able to store the estimation of missing values in sources. Techniques

have been studied to process queries on databases with null values [21]. Null values are

typically represented in three different approaches:(i) Codd Tables where all the null values

are treated as the same; (ii) V-tables which allow many different null values marked by

variables; and (iii) Conditional tables which are V-tables with additional attributes for

conditions. [26] proposed a query language on incomplete databases, where we can have

a subset of the domain as an attribute value. [31, 11] discussed query evaluation on

incomplete databases where attribute values can be intervals. In all the above approaches,

data sources need to be modified, and standard relational data model and query languages

need to be extended in order to handle incomplete data. In contrast, our work proposes

online query rewriting techniques to query incomplete autonomous databases without

modifying source data and data models.
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Probabilistic Databases: Incomplete databases are similar to probabilistic databases

once the probabilities for missing values are assessed. [37] gives an overview of querying

probabilistic databases where each tuple is associated with an additional attribute describ-

ing the probability of its existence. Some recent work on the TRIO[36, 39] system deals

with handling uncertainty over probabilistic relational databases. ConQuer[16, 2] system

returns clean answers over inconsistent databases. Handling inconsistency in databases is

a special case of handling missing values where the inconsistent attribute can only take

values that lead to inconsistency rather than any possible value. These approaches assume

the presence of probabilities for missing data. Since autonomous databases do not store or

allow mediators to store probability distribution, our approach assesses these probabilities

in order to issue rewritten queries to retrieve relevant answers. Thus, our query rewriting

techniques could also be used by these systems if the databases are autonomous.

Query relaxation: Reformulating queries using database constraints for query optimiza-

tion in distributed mediator systems has been described in [32]. There has been work on

query relaxation over databases [30, 29] which focuses on how to relax input query con-

straints such that data that partially satisfies the query constraints is also returned. Our

work is similar to such efforts in the spirit of retrieving relevant data even when it does

not exactly satisfy user queries. However, we focus on retrieving data that has missing

values in the query constrained attributes, yet is likely to be relevant to the original user

query. Since we use an entirely new set of rewritten queries to retrieve uncertain answers,

our query relaxation is value directed.

Learning missing values: There has been a large body of work on missing values impu-

tation [14, 33, 35, 40, 4, 27]. Common imputation approaches include substituting missing
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data values by the mean, the most common value, default value of the attribute in ques-

tion, or using k-Nearest Neighbour[4], association rules[40], conditioned sets[27] etc. Other

approach used to estimate missing values is parameter estimation. Maximum likelihood pro-

cedures that use variants of the Expectation-Maximization algorithm[14, 33] can be used

to estimate the parameters of a model defined for the complete data. In this thesis, we

are interested not in the standard imputation problem but a variant that can be used in

the context of query rewriting. In this context, it is important to have schema level de-

pendencies between attributes as well as distribution information over missing values. We

use AFDs for the former, and an AFD-enhanced Näıve Bayes Classifier for the later. We

experimented with other methods including association rules and bayes network learning -

but found them to be either significantly less accurate or significantly costlier to compute.

Keyword search over relational databases: In recent years, there has been a huge

interest on ranking answers in the context of keyword queries over relational databases[1,

5, 19, 10, 13]. However, all these efforts assume that the databases are complete which

may not be true in the context of web databases. Moreover, their focus is mainly on

local databases over which the query processor has full control. In contrast, we consider

incomplete autonomous web databases providing limited access to a mediator through a

form based interface which proliferates the web these days.
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DISCUSSION AND FUTURE WORK

In this chapter, we discuss future directions for the work presented in this thesis. We

describe how to extend our current system handling only single attribute selection queries

to general queries involving multi-attribute selection queries along with multiple nulls per

tuple. We also describe the need to handle incompleteness and imprecision over incomplete

autonomous databases.

6.1. Handling General Queries

To support queries with selections on multiple attributes, we need to address the

following challenges. First, assessing the relevance function over all the subset of attributes

can be expensive. This requires exploring appropriate relevance independence assumptions

over attributes. Second, assessing the density function can be difficult since the values of

multiple attributes can be missing and those attributes may interact with each other. For

example, if a user is interested in searching cars where model is Explorer and body style is

SUV. Since body style highly depends on model as we learned from the AFDs and Bayesian

Nets, it is not straightforward to assess the density for a tuple that has missing values on

both model and body style. We can explore two options to infer correlated attribute values
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and compare their performance. One is to use inferences of attribute causal relationship.

For example, we predict the possible values of model, based on which we further predict the

possible values of body style. However, the prediction accuracy degrades after each inference

step. The option is to explore additional attribute causal relationships. For example, if the

engine is V 8, then the body style is likely to be SUV . The prediction accuracy depends on

the availability of other causal relationship with high accuracy and the existence of relevant

values.

In order to support selection queries having multiple attributes bound, we need

to extend our query rewriting techniques in order to retrieve tuples containing nulls on

different query constrained attributes. First, we retrieve tuples containing nulls on only

one of the query attributes while satisfying all other query constrained attributes. Such

tuples containing nulls on different attributes could be ranked based on the probability of

null being equal to the query constrained attribute. Next, if sufficient number of results are

not obtained, we retrieve all tuples with two query attributes having null values. All such

tuples must be ranked lower than tuples having missing values on only one attribute of the

query predicate. We continue in similar fashion until we have retrieved a sufficient number

of uncertain answers or have considered all possible sizes of subsets of query constrained

attributes having null values.

6.2. Supporting Imprecise Queries over Incomplete Autonomous Databases

More and more lay users are accessing databases on the web and often, these lay

users are not able to articulate their queries in a precise manner. Instead, the imprecise

queries they pose only approximately characterize the type of answer tuples they are looking
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Id Make Model Year Color Body style

1 Honda Civic 2000 red sedan
2 Honda Accord 2004 blue coupe
3 Toyota Camry 2001 silver sedan
4 Honda null 2004 black coupe
5 BMW 3-series 2001 blue convt
6 Honda Civic 2004 green coupe
7 Honda null 2000 white sedan
8 Toyota null 1999 beige sedan

Table 9. Fragment of a Car Database

for. For example, the query Q:CarDB(model ≈ Civic) is an imprecise query, the answers

to which should have a value similar to Civic for the model attribute.

In both cases, there are some tuples which do not exactly satisfy the query constraints

but nevertheless are likely to be relevant to the user.

Example: Consider a fragment of online Car database DBf as shown in Table 9. Suppose

a user poses an imprecise query Q′:σmodel≈Civic on this table. Clearly tuples 1 and 6 are

relevant as they are exact answers to the query. In addition, the tuples 4 and 7 might be

relevant if there are reasons to believe that the missing value might be a Civic. Finally,

tuples 2 and 3 might be relevant if Civic is considered similar enough to Accord and/or

Camry.

Ideally, a query processor should be able to present such implicitly relevant results to

the user, ranking them in terms of their expected relevance. Query processing in this context

has commonalities with query processing in probabilistic databases and handling imprecise

queries. However, to support query processing under imprecision and incompleteness brings

forth many challenges the primary of which is to rank results in presence of both incomplete

and similar tuples.
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CONCLUSION

Incompleteness is inevitable in autonomous web databases. Retrieving highly rel-

evant uncertain answers from such databases is challenging due to the restricted access

privileges of mediator, the limited query patterns supported by autonomous databases, and

the sensitivity of database and network workload in web environment. We developed a novel

query rewriting technique that tackles these challenges. Our approach involves rewriting

the user query based on the knowledge of database attribute correlations. The rewritten

queries are then ranked by leveraging attribute value distributions according to their like-

lihood of retrieving relevant uncertain answers before they are posed to the databases. To

support such query processing techniques, we developed methods to mine attribute corre-

lations in the form of AFDs and the value distributions of AFD-enhanced classifiers, from

a small sample of the database itself. Our primary technique RRUA, is able to retrieve

relevant uncertain answers from databases that don’t allow null value binding. It’s query

ranking procedure is able to provide a spectrum of cost-quality trade-offs. Our compre-

hensive experiments demonstrate the effectiveness of our query processing and knowledge

mining techniques.

We also described experiments for performing data integration over multiple incom-

plete data sources by supporting join queries and leveraging the correlation among data
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sources to retrieve relevant tuples from a source not supporting the query attribute.

In summary, this thesis presented techniques to support mediated query processing

over incomplete autonomous web databases.
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